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Generative Active Learning for Image Synthesis Personalization
Anonymous Author(s)∗

+ canal

Reference <cat> Generated <cat>+ rococo Reference <dog> Generated <dog> + forest

Generated <cat> + moon Generated <cat> + throne Reference <dog> + Tokyo Generated <dog> + cyberspace

Figure 1: Given a few images of the subject of interest, the proposed method is capable of generating diverse personalized
images in different contexts, such as moon, throne, rococo, etc.

ABSTRACT
This paper presents a pilot study that explores the application of
active learning, traditionally studied in the context of discrimina-
tive models, to generative models. We specifically focus on image
synthesis personalization tasks. The primary challenge in conduct-
ing active learning on generative models lies in the open-ended
nature of querying, which differs from the closed form of query-
ing in discriminative models that typically target a single concept.
We introduce the concept of anchor directions to transform the
querying process into a semi-open problem.We propose a direction-
based uncertainty sampling strategy to enable generative active
learning and tackle the exploitation-exploration dilemma. Exten-
sive experiments are conducted to validate the effectiveness of our
approach, demonstrating that an open-source model can achieve
superior performance compared to closed-source models developed
by large companies, such as Google’s StyleDrop. The source code
is available at https://github.com/(open_upon_acceptance).
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1 INTRODUCTION
Recently, generative models, such as large language models (e.g.,
ChatGPT [17], Llama [32]) and image generation models DALL•E
[20], Stable Diffusion [22]), have demonstrated impressive capabil-
ities in producing compelling and diverse results. The key to the
success lies in the availability of high-quality training samples on an
incredibly large scale. In addition to the real-world datasets that are
expensive to collect, numerous studies [2, 16] have demonstrated
that incorporating synthetic samples can effectively improve the
capability and generalization of models. However, as the number
of generated samples can be extensive and of varying quality, a cru-
cial question arises: how can we select the most informative samples
with minimal cost for training? This issue has been extensively dis-
cussed in the field of active learning, which attempts to maximize
a model’s performance while annotating the fewest samples [31].
However, traditional active learning approaches primarily focus on
improving discriminative models. The application of active learning
in generative models, particularly in utilizing synthetic samples
to enhance model performance, remains an open and challenging
research area.

In this paper, we present a pilot study on the application of active
learning in generative models, specifically focusing on the image
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synthesis personalization (ISP) [18]. ISP is a representative family
of generative tasks that requires the cost-effective selection of syn-
thetic data for training. The learning objective of ISP is to model
the user’s “subject of interest” (SoI) based on a limited number of
reference images and generate new images that feature the SoI. For
instance, in the case of learning from a few images of the user’s
pet cat, as illustrated in Figure 1, the trained model should be ca-
pable of generating diverse scenes with the cat, such as the cat on
the moon or sitting on the Iron Throne, depending on the given
prompt [23]. Similarly, when the SoI revolves around a specific
style, like Van Gogh paintings or the user’s own artwork, the ISP
model should be able to adopt that style and generate new images
with the same artistic characteristics [28]. Given the highly specific
nature of personal interests, the availability of reference images is
often limited. Therefore, selecting good samples from the newly
generated images to augment the reference set has proven to be
a more practical approach [28]. This can be done in an iterative
manner, which aligns well with the framework of active learning.

While the idea of bringing active learning from discriminative
models to generative models holds promise, it also presents several
challenges. One key challenge is the causal loop in the querying
strategy design. In discriminative active learning (DAL), informative
samples are selected and queried from a closed set of unlabeled data,
typically for tasks like recognizing predefined simple concepts (e.g.,
dog). This closed-set nature makes it feasible to design strategies
that compare the information carried by different unlabeled samples
(e.g., entropy in uncertainty sampling) so as to prioritize directions
in the feature space for querying. In contrast, generative active
learning (GAL) faces a scenario where the querying is open to all
directions, because the user may combine the SoI with all possible
prompts, which can carry much more complex and undetermined
semantics. This openness makes the sample-evaluation-based DAL
querying strategies infeasible in GAL. This is because generated
samples are not readily available unless prompts are given, and it
is not easy to design prompts before determining the directions to
query. This creates a typical causal loop, making it challenging to
establish a clear sequence of actions between determining what to
generate and knowing which directions to query.

In this paper, we tackle this challenge by transforming the open
querying problem into a semi-open one. Our approach involves col-
lecting prompts to create a pool of querying intentions. The prompt
embeddings serve as anchors in the target space, indicating the
candidate directions to query and explore. During each iteration of
the GAL process, we generate samples using these prompts for eval-
uation. This semi-open scheme strikes a balance by constraining
the candidate directions for querying while allowing enough free-
dom to explore the target space through the generation of samples.
Although this approach provides access to generated samples, the
sample-based evaluation commonly used in DAL cannot be directly
applied to GAL due to the fundamental differences between discrim-
inative and generative models. Discriminative models learn a single
distribution to distinguish simple semantics (e.g., dog), resulting in
semantically consistent information carried by positive (negative)
samples [21]. However, generative models focus on generalizing
to various mixed semantics (e.g., to generate images not only of
the user’s pet dog in a forest but also of the dog on Tokyo street)

[20]. Consequently, generative models need to handle multiple sub-
distributions, each modeling a specific combination of semantics.
The information carried by samples from different sub-distributions
are not consistent, rendering sample-based evaluation infeasible.
To address this issue, we propose a distribution-based querying
strategy that adapts the classical Uncertainty Sampling [31, 35] to
the new generative scenario. It considers the distributional aspects
of generative models and provides a more suitable framework for
querying and evaluating samples in GAL.

Another challenge is the exploitation-exploration dilemma [37].
In DAL, the collected samples from different iterations are accumu-
lated for training, and the learned distribution or decision boundary
may gradually shift from the samples collected in the early iter-
ations. This is generally not a problem as long as it benefits the
classifier’s performance. In contrast, in GAL, the fidelity to the ref-
erence images is of great importance which pushes the generated
samples towards the references. Additionally, samples generated
in the early iterations have been shown to have a higher likeli-
hood of fulfilling the fidelity criteria compared to later iterations,
and thus should be exploited as new references with greater atten-
tion. However, the generated samples cannot be too close to the
references, otherwise, this causes over-fitting. Meanwhile, the gen-
erated samples need to be generalized to a certain target direction
indicated by corresponding prompt, which attracts them to move
toward the target direction against the references. The GAL process
needs to learn how to navigate this balance between adhering to
the references and exploring new directions. We propose a balanc-
ing scheme that evaluates the importance of references, thereby
allowing us to weigh the contributions of different iterations.

The contribution of this paper can be summarized as: 1) A pilot
work to discuss the application of active learning in generative
models; 2) A distribution-based querying strategy for personalized
image synthesis; and 3) A strategy to balance the exploitation and
exploration in GAL.

2 RELATEDWORK
2.1 Active Learning
Active learning is a subfield of machine learning, which aims to
find an optimal querying strategy to maximize model performance
with the fewest labeling cost. The most common strategies in-
clude uncertainty sampling [31, 35], query by committee [26], and
representation-based sampling [8, 25], etc. The rationale behind
is to provide the most valuable samples to learn a better decision
boundary. However, acquiring real-world datasets still poses chal-
lenges in certain scenarios, such as few-shot learning. To address
this issue, the use of generative networks for data augmentation has
been investigated. For example, GAAL [43] first introduced GAN
[9] to generate training samples. However, this random generation
does not guarantee more informative samples compared to the orig-
inal dataset. In contrast, BGADL [33] jointly trained a generative
network and a classifier so as to generate samples in disagreement
regions [31]. Subsequent approaches, such as VAAL [27] and TA-
VAAL [12] employed adversarial training for data augmentation
to improve the feature representation. It is important to note that
while these works have explored the use of generative models, their
primary focus is on improving the discriminative model’s ability.
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Algorithm 1 Generative Active Learning
Input: anchor embedding set A, reference images x, subject of
interest e∗, non-SoI ē∗, pre-trained model 𝑓𝜃 , number of synthetic
samples per prompt𝑚
Initialize training set T = {(x, e∗ ⊕ ē∗)}.
repeat

Fine-tune 𝑓𝜃 on T
for a𝑖 in A do

for 𝑗 = 1 to𝑚 do
Generate image I𝑖 𝑗 on a𝑖 by 𝑓𝜃
Verify whether I𝑖 𝑗 is overfitted by Equation 8

end for
Calculate Ω(a𝑖 ) according to Equation 6

end for
Update T with top-𝑘 anchor embeddings
Update openness score according to Equation 9

until Stopping criterion is met according to Equation 10

2.2 Personalized Content Generation
Text-to-image synthesis has earned significant attention for its
potential applications in content creation, virtual reality, and com-
puter graphics. Impressive works such as DALL•E [20], Stable Diffu-
sion [22], Imagen [24], have shown immense potential to generate
compelling and diverse images. As an application of image gen-
eration, personalized image synthesis offers user an opportunity
to create customized object or style that is difficult to generate
using pre-trained models. To accomplish content personalization,
some studies [5, 14, 38, 39] have concentrated on training a unified
model capable of personalizing any input image. However, these
approaches struggle to perform satisfactory fidelity with the ref-
erences. In contrast, other research studies [1, 4, 13, 23] enhance
subject appearance preservation by adopting fine-tuning approach
on pre-trained models for each reference group. In particular, Tex-
tual Inversion [6] aims to find an optimal token embedding to
reconstruct the training images without additional regularization
samples. DreamBooth [23] retrains the entire diffusion model and
incorporates a prepared regularization dataset to alleviate the over-
fitting problem. Following this training framework and regulariza-
tion approach, other works focus on enhancing different aspects
of personalized image synthesis, like training acceleration [13]
and multiple concepts composition [15, 30, 41]. As for expanding
training samples, SVDiff [10] applies image stitching techniques,
but does not explore the use of generated samples. In summary,
although additional training samples are adopted in the training
process, no generated samples are involved in these studies.

2.3 Personalized Style Generation
Style generation is one of the notable advancements in the field
of image synthesis. Style transfer [7, 36, 42] aims to transform the
visual style of a given image to another input image while preserv-
ing its contents. However, these methods do not offer the chance to
generate images based on text prompts. Meanwhile, another line of
research focuses on personalized style generation, which aims to
reverse visual styles on textual descriptions. A recent study, Style-
Drop [28], introduces a parameter-efficient fine-tuning method and

an iterative training framework with feedback to facilitate style
recreation. Specifically, preset prompts are used to generate images
and these images are then subject to user filtering, where users will
identify high-quality images that can be used for further training.
While this approach leverages human feedback to enhance model
performance, the need for human inspection and the equal weight-
ing of selected samples pose limitations. In this paper, we propose
methods that effectively alleviate the burden on human resources
through active learning and reduce selection bias by balancing the
importance of synthetic and real samples.

3 METHOD
In this section, we introduce our implementation of generative
active learning for image synthesis personalization. The algorithm,
along with its pseudo-code, is depicted in Algorithm 1.

3.1 Preliminaries for Image Synthesis
Personalization

The current state-of-the-art methods for Image Synthesis Person-
alization (ISP) are all based on diffusion models [11, 29]. What
sets diffusion models apart is their “generate-by-denoise” approach.
During training, a text-image pair is used, and the process begins
by iteratively adding noise to the image x according to the Markov
chain, resulting in a noisy image x𝑡 . The noisy image is then com-
bined with the text embedding e to create a new noisy image em-
bedded with the text semantics, denoted as x𝑡 ◦ e. Learning then
proceeds to denoise this image and reconstruct the original image
x, which is represented as

x̂ = 𝑓𝜃 (x𝑡 ◦ e) (1)

The objective is to minimize the reconstruction loss

𝐿𝑟𝑒𝑐 = E
[
𝑤𝑡 ∥x̂ − x∥2

2
]

(2)

where 𝑤𝑡 is a time-dependent weight. During the inference, the
prompt embedding ẽ is then fusedwith a random noise 𝜖 to generate
the image x̃ = 𝑓𝜃 (𝜖 ◦ ẽ) that aligns with the semantics of interest.

To perform an ISP process, a pre-trainedmodel 𝑓𝜃 is typically fine-
tuned using reference images that contain the Subject of Interest
(SoI). A pseudo text word 𝑆∗ is utilized to represent the SoI and
is incorporated into simple sentences, such as “a photo of 𝑆∗,” as
a reference prompt. The training process involves updating the
parameters of the model 𝑓𝜃 to establish the association between the
visual appearance of the SoI (indicated by given reference images
I𝑟 ) and its corresponding semantic embedding e∗. After the fine-
tuning, new images of SoI can be generated with prompts like “𝑆∗
running on the street with a dog” or “𝑆∗ ridding a house on the
Golden Bridge” if the SoI is an object. In case the SoI is a specific
style, new images can be generated using prompts like “a drawing
of New York City with style 𝑆∗” or “a teddy bear of style 𝑆∗”.

3.2 Direction-based Uncertainty Sampling
It is evident that a limited number of reference images for the SoI
is insufficient to ensure the fine-tuned model’s generalizability to
a broader range of semantics. We need to generate new samples
to augment the references, which requires prompts to determine
the direction to query. However, the querying remains open to all

3
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Figure 2: Overfitted and well-aligned generations. The model
has to exclude the non-SoI for successful generations.

directions since users may combine the pseudo text word 𝑆∗ with
various unseen concepts in future prompts. To address this, we
transform the problem into a semi-open one by incorporating the
SoI with a set of predefined concepts (e.g., cat and table) that can
be gathered from existing benchmarks. These concepts serve as
anchors in the target space, with each anchor representing a specific
direction for querying when combined with the SoI to form anchor
prompts (e.g., “𝑆∗ with a dog”). The model’s ability to generate high-
quality samples for these anchor prompts determines its level of
generalization. While the anchor directions are predetermined, the
querying process remains open due to the introduction of random
noise 𝜖 , which leads to variations in the generated images for the
same prompt. To ease the discussion, let us denote the anchor
embedding set as A = {a𝑖 }, 𝑖 ∈ N and the set of embeddings of
anchor prompts or directions to query can be denoted as

e∗ ⊕ A = {e∗ ⊕ a𝑖 }, 𝑖 ∈ N. (3)

where ⊕ is a model-dependent operator, which is typically imple-
mented by directly inputting the embeddings as a sequence.

In each iteration of the generative active learning (GAL), we
generate𝑚 samples for each anchor prompt. We need to initiate the
next round of GAL by selecting informative ones from the generated
samples as new references. However, as discussed, conventional
sample-based querying is infeasible in GAL, because evaluating
performance on individual samples lacks of global perspective to
measure the model’s generalizability. Additionally, relying solely
on generalizability to build a metric is challenging because higher
generalizability may indicate well-explored directions, where sam-
ples would not provide novel information for improving the model.
This is similar to the situation in Discriminative Active Learning
(DAL), where including samples from well-classified locations does
not contribute to performance improvement and instead hinders ex-
ploration. A popular solution is Uncertainty Sampling [31], which
selects samples from areas where the model exhibits uncertainty.
In the context of GAL, we can adapt this idea to identify direc-
tions where the quality of model-generated samples lies between
well-generalized and overfitted. Let I𝑖 𝑗 , 𝑗 ∈ [1,𝑚] denote an image
generated for the 𝑖𝑡ℎ anchor direction a𝑖 as

I𝑖 𝑗 = 𝑓𝜃
(
𝜖 ◦ (e∗ ⊕ a𝑖 )

)
(4)

and there is an oracle function to verify whether I𝑖 𝑗 is overfitted as

Φ(I𝑖 𝑗 ) ∈ {0, 1}, (5)

we can implement a direction-based uncertainty sampling for GAL
bymeasuring the entropy on the portions of overfitted (non-overfitted)

samples as

Ω(a𝑖 ) = − [(1 − 𝛽𝑖 ) log(1 − 𝛽𝑖 ) + 𝛽𝑖 log 𝛽𝑖 ] (6)

𝛽𝑖 =

∑𝑚
𝑗=1 Φ(I𝑖 𝑗 )

𝑚
. (7)

In DAL, the learning employs human annotators as oracles. How-
ever, due to the computational expense of current diffusion models,
it becomes impractical for human annotators to wait for the results
of each iteration, resulting in significant delays. Hiring human an-
notators as oracles can be extremely costly, which might be one of
the reasons why successful ISP models using generated results as
argumentation are predominantly developed by large companies
like Google [5, 28], who can afford such expenses. In our study, we
found the oracle function Φ(I𝑖 𝑗 ) can be estimated by evaluating the
generated image I𝑖 𝑗 ’s fidelity to both the anchor direction and irrel-
evant semantics in the reference prompt. This observation stems
from the fact that the reference prompt consists of two components:
the SoI and non-SoI semantics. Most previous studies focus on the
fidelity to the SoI semantics, while the non-SoI semantics are not
fully leveraged. These non-SoI semantics can be considered distrac-
tor semantics that the generated images should avoid, similar to
negative labels in discriminative models. One such example can
be found in Figure 2, in which the SoI is the drawing style while
the non-SoI is the concept cat. The overfitted samples are those
failed to disentangle the cat from the generation. Therefore, we
propose a straightforward metric to simulate the oracle function.
Let ē∗ denote the non-SoI embedding, the function is written as

Φ(I𝑖 𝑗 ) =
{

1, 𝑠𝑖𝑚(I𝑖 𝑗 , a𝑖 ) ≤ 𝑠𝑖𝑚(I𝑖 𝑗 , ē∗)
0, 𝑠𝑖𝑚(I𝑖 𝑗 , a𝑖 ) > 𝑠𝑖𝑚(I𝑖 𝑗 , ē∗)

(8)

where the 𝑠𝑖𝑚() is a fidelity metric of an image to a semantics. In
this study, we simply adopt the CLIP similarity [19].

With all necessary components built, the querying can then be
conducted by evaluating all the anchor directions and selecting
the ones with top-𝑘 uncertainty scores (using Equation 6). For
each direction, we choose the generated image with the highest
𝑠𝑖𝑚(I𝑖 𝑗 , a𝑖 ) score (indication of the faithfulness to the direction) as
a new reference image.

3.3 Balancing the Exploitation and Exploration
As aforementioned, in the progression of GAL iterations, we need
to keep the knowledge learned at past rounds while encouraging
the model to explore. This introduces an exploitation-exploration
dilemma [37]. To address this challenge, we propose evaluating the
openness of the model at each round, using it as an indicator of the
expected contribution of the novel information introduced in that
round. Given that the novel information is encapsulated within the
newly included reference images, we can utilize this indicator as a
weight to regulate their impact on the learning process in the sub-
sequent round. This encourages the exploration when the expected
contribution is high, otherwise encourages the exploitation.

To assess the openness of a round, we can utilize the uncer-
tainty score previously computed by Equation 6. Our rationale is
that as the model explores more directions, its level of openness
increases. Hence, the openness score for the round can be estimated

4
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Table 1: The performance of different GAL strategies including random selection (Random), human feedback (Human),
direction-based uncertainty sampling (Uncertainty), direction-based uncertainty sampling with balance scheme (Uncertainty +
Balance), human feedback with balance scheme (Human + Balance).

Object Style
Models TXT-ALN ↑ IMG-ALN ↑ OVF ↓ TXT-ALN ↑ IMG-ALN ↑ OVF ↓
Baseline (DreamBooth) 0.298 0.796 0.363 0.318 0.694 0.171
Random 0.285 0.714 0.391 0.247 0.620 0.327
Human 0.297 0.721 0.331 0.272 0.622 0.212
Uncertainty (ours) 0.305 0.755 0.268 0.286 0.628 0.110
Uncertainty + Balance (ours) 0.309 0.771 0.268 0.337 0.669 0.058
Human + Balance (Oracle + ours) 0.307 0.772 0.254 0.342 0.650 0.023

by calculating

Δ(𝑓𝜃 ) =
𝜆

|A|

|A |∑︁
𝑖=1

Ω(a𝑖 ) (9)

where 𝜆 is a learning rate. This can be used to weight the newly
include reference images to control their degrees of influence to
the loss 𝐿𝑟𝑒𝑐 (Equation 2).

An additional outcome of Equation 9 is its potential to establish
an adaptive stopping criterion for GAL learning, in contrast to the
fixed number of iterations often set in DAL. The concept behind
this approach is to halt the learning process when there are fewer
directions left to explore than anticipated. The stopping criteria is
then simply written as���{Ω(a𝑖 ) | Ω(a𝑖 ) > 0, a𝑖 ∈ A}

��� < 𝑘. (10)

4 EXPERIMENTS
Datasets. To evaluate the performance of active learning in ISP,
we conduct experiments on two most representative tasks, style-
and object-driven personalization.

For style-driven ISP, we adopt the evaluation dataset used in
the StyleDrop [28]. This dataset comprises various styles, such
as watercolor painting, oil painting, 3D rendering, and cartoon
illustration. 190 basic text prompts sourced from the Parti prompts
dataset [40] are used to generate images, yielding 36,480 images.

For object-driven ISP, we adopt almost all concepts that have
been previously used in related studies [6, 13], comprising a total
of 10 categories including animals, furniture, containers, houses,
plants, and toys. We use the 20 prompts in [13], which cover a wide
range of test scenarios. In total, this process generates 6,400 images
for a complete training cycle.

Evaluation Metrics.We utilize three metrics: 1) Text-alignment
(TXT-ALN) assesses how well the generated images align with the
intended textual descriptions This can be implemented by calcu-
lating the similarity between the CLIP image feature and the text
feature. 2) Image-alignment (IMG-ALN) measures the extent to
which the generated images capture the content or style present in
the reference images. This can be implemented by the CLIP feature
similarity between reference images and generated images. 3) Over-
fit (OVF) evaluates the proportion of overfitting in the test samples
based on Equation 8. Lower scores indicate better performance in
terms of generalization and avoiding overfitting.

Base Model. DreamBooth [23] is a widely adopted method with
promising generation results. Thus, we utilize DreamBooth as our
baseline, with the first-round results derived directly from it without
synthetic training data. For our proposed method, we set the values
of𝑚 and 𝜆 to 10 and 0.005, respectively. The initial anchor directions
comprise 18 prompts. We select top-3, along with their associated
highest-fidelity images, to serve as additional training pairs. We
provide more implementation details in the Appendix.

4.1 Does generative active learning work in ISP?
To evaluate the performance of different strategies, we compare our
method with two commonly adopted querying strategies, including
Random Sampling and Human Sampling. To be fair and efficient, we
set a maximum number of rounds to 4 in all experiments. The initial
round is based on original references without any synthetic data.
The results are shown in Table 1. It is evident from the results that
both Random and Human strategies do not necessarily enhance the
baseline performance. Instead, these strategies show a degradation
on style-personalization of 22.3% (14.5%), 10.7% (10.4%), and 91.2%
(24.0%) on TXT-ALN, IMG-ALN, and OVF, respectively. The unex-
pected degradation observed in the Human strategy, which is often
considered an oracle in DAL, confirms the fundamental distinction
between discriminative and generative tasks: while human annota-
tors can easily differentiate between positive and negative samples,
evaluating generalizability is a more challenging aspect. Therefore,
we integrate human annotators with our balancing scheme to cre-
ate a run that combines their selections and fairly weighs them
for improved learning. The results are shown as the last row in
Table 1 which demonstrates an approaching optimal performance
and thus can be used as an oracle. Spuriously, our proposed method
(Uncertainty+Balance) achieves a comparable performance with
the oracle run. This validates its effectiveness.

4.2 How does the uncertainty sampling work?
To gain deeper insights, we conduct a case study to observe the
rationale behind the uncertainty sampling. Figure 3 shows the dis-
tribution of images generated by the anchor prompts. Within the
feature space, multiple sub-distributions can be observed. One par-
ticular distribution is centered around the reference, consisting of
poor-quality images that exhibit non-SoI of the reference, such as
the failure cases illustrated in Figure 3. In contrast, images that align
well are located far from the reference, forming smaller distribu-
tions that exclude non-SoI, like the successful samples of generated
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Figure 3: Examples of images generated by anchor prompts in round 2 with higher priority (left) and lower priority (right). Their
CLIP image features are highlighted in the tSNE [34] space (middle). Poor-quality images that exhibit non-SoI are distributed
near the reference, while high-quality images are located far from the reference.

Test Prompt: a dragon in style S*

Test Prompt: S* wearing sunglasses

Early Stopped

Round 1 Round 2 Round 3 Round 4Reference

S* on wooden stand

a person in style S*

Figure 4: Results of GAL over iterations. The images shown in the 1𝑠𝑡 and 2𝑛𝑑 groups are for style- and object-driven ISP,
respectively. The non-SoI and SoI are gradually disentangled and dragons or glasses are generated. Additional examples are
available in the Appendix.

Figure 5: The curves shown in the figure resemble clock arms
extending from the baseline performance points. As these
arms move in an anti-clockwise direction towards the top-
right corners, better performance is observed.

billboard, key, and candy images. Additionally, the distributions of
good and bad samples across these three directions demonstrate

significant diversity, suggesting a limited ability to generalize along
these directions. As a result, these directions are given higher pri-
ority for querying based on our uncertainty metric. On the other
hand, distributions at the directions of table and banana are homo-
geneous. Consequently, these directions exhibit lower entropy and
lower querying priority. This observation aligns with the rationale
we presented earlier.

4.3 How does GAL progress over iterations?
To examine the progress of GAL over iterations, we present the
performance in each round, as shown in Figure 5, and visualize the
evolution through the cases in Figure 4. One notable observation is
the dramatic and consistent decrease in performance of the Ran-
dom strategy due to the inferior samples by random selection. After
adopting a better querying strategy, the rate of decrease becomes
much slower, and Uncertainty sampling begins to outperform the
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Table 2: Comparison with SOTA methods for object-driven
ISP. Results marked with † indicate our re-implementation
using publicly available codebases.

Models TXT-ALN IMG-ALN OVF

IP-Adapter† 0.270 0.858 0.734
Textual Inversion† 0.277 0.778 0.441
Custom Diffusion† 0.301 0.776 0.287
DreamBooth 0.298 0.796 0.363
+ Uncertainty + Balance (R2) 0.304 0.781 0.300
+ Uncertainty + Balance (R3) 0.308 0.769 0.248
+ Uncertainty + Balance (R4) 0.309 0.771 0.268
+ Oracle + Bablance (R4) 0.307 0.772 0.254

Table 3: Comparison with SOTA methods for style-driven
ISP. Results marked with ‡ are obtained from [28].

Models TXT-ALN IMG-ALN OVF

Imagen‡ 0.337 0.569 -
DB on Imagen‡ 0.335 0.644 -
Muse‡ 0.323 0.556 -
StyleDrop‡ 0.313 0.705 -
StyleDrop-Random‡ 0.316 0.678 -
StyleDrop-CF‡ 0.329 0.673 -
StyleDrop-HF‡ 0.322 0.694 -
DreamBooth 0.318 0.694 0.171
+ Uncertainty + Balance (R2) 0.328 0.683 0.097
+ Uncertainty + Balance (R3) 0.336 0.671 0.059
+ Uncertainty + Balance (R4) 0.337 0.669 0.058
+ Oracle + Balance (R4) 0.342 0.650 0.023

baseline on TXT-ALN for object-driven personalization, which sug-
gests the effectiveness of valuable samples in enhancing generative
models. The best overall progress is achieved through the com-
bined strategies of Uncertainty sampling and the balancing scheme.
We can find that TXT-ALN consistently improves and reaches its
highest alignment in round 4, while IMG-ALN remains within a
reasonable range. This trend is evident in Figure 4, where the non-
SoI semantics gradually disappear, and the number of successful
generations of glasses placed on 𝑆∗ or dragon in style 𝑆∗ increases.
Meanwhile, the SoI is maintained throughout the iteration rounds.
These results indicate a progressive improvement by GAL as the it-
erations proceed. Additional comprehensive examples are available
in the Appendix.

4.4 Comparison with SOTA methods
For object driven-personalization, we compare 4 popular state-of-
the-art (SOTA) methods including Textual Inversion [6], Custom
Diffusion [13], DreamBooth [23], IP-Adapter [39]. The results are
shown in Table 2. Compared to IP-Adapter, Textual Inversion, and
Custom Diffusion, our method demonstrates significant improve-
ments on TXT-ALN and OVF throughout almost all rounds, achiev-
ing 14.4%(63.5%), 11.6%(39.2%), and 2.7%(6.6%) on TXT-ALN (OVF)
in terms of round 4. Since the non-SoI semantics dominate the out-
puts of the other approaches, our method exhibits a slight decrease
on IMG-ALN. Figure 6 provides visual evidence of our method’s

Table 4: The percentage of user preference on our pro-
posed method (Uncertainty + Balance) compared to Round 1
(DreamBooth) and Oracle feedback (Human + Balance).

Object Style
TXT-ALN IMG-ALN TXT-ALN IMG-ALN

Ours vs. Round 1 60.4 % 32.5 % 77.8% 59.8%
Ours vs. Oracle 53.8 % 46.2 % 47.0% 67.8%

superior text and object fidelity. The success in higher text fidelity
can be observed in the accurate placement of the cat statue in the
Grand Canyon and the realistic interaction between the marigold
flowers and the teapot. Furthermore, our method enhances object
fidelity by accurately reconstructing only one spout and better
preserving the color of the cat statue.

For style-driven personalization, we conduct a comparison be-
tween four variations of StyleDrop [28]: base model, random feed-
back (StyleDrop-Random), clip-based feedback (StyleDrop-CF), and
human feedback (StyleDrop-HF). Additionally, we include the re-
sults of DreamBooth on Imagen [24] as well as other pre-trained
models like Imagen and Muse [3], as reported by [28]. It is clear that
our method significantly outperforms the pre-trained models and
achieves superior performance in terms of 4.7% and 2.4% on TXT-
ALN compared to the dedicated human feedback and clip-based
feedback of StyleDrop. It is worth noting that the closed-source
StyleDrop is built on a more powerful backbone, Muse, compared
to Stable Diffusion. This indicates that the open-sourced ISP models
are able to achieve better performance with GAL.

4.5 User Study
We conduct a user study involving two comparison tasks. Partici-
pants are presented with reference images and a text prompt, and
are asked to choose the more faithful result in terms of object/style
and text fidelity. This process yields a total of 4800 responses from
8 participants. The results are shown in Table 4. It is clear that our
method significantly improves the text alignment, with particularly
notable gains in style-driven ISP where both text and style fidelity
surpass round 1. This indicates the superior performance of GAL
when users can only provide fewer samples. By comparing the ora-
cle feedback, our automatic uncertainty sampling strategy performs
comparable results. Notably, a majority of users prefer our style
renderings rather than those trained from human selection. This
further validates the effectiveness of our method. More details are
available in Appendix.

4.6 Ablations
Figure 7 presents ablation studies on style-driven ISP to evaluate
our model’s sensitivity to various hyperparameters. Details on the
ablations for object-driven ISP are provided in the Appendix.

Learning Rate 𝜆 on Openness. Subfigures (a) depicts the effect
of the learning rate 𝜆, which controls the scale of the openness
score in Equation 9. It is obvious that a relatively higher 𝜆 does not
exhibit promising results, particularly in scenarios with a single
reference for style-driven ISP. Additionally, a 𝜆 below 0.05 results
in stable performance.

Size of Anchor Set. As illustrated in subfigures (b), increasing
the size of the anchor embedding set enhances style fidelity but
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Figure 7: Illustration of ablation experiments on style-driven ISP. (a) Variation in performance with the parameter 𝜆. (b) Effects
of different anchor set sizes. (c) Impact of selecting the top-𝑘 prompts per iteration. (d) Results from varying the prompt
composition within the anchor set.

reduces text alignment. Conversely, a smaller anchor size exhibits
the opposite effect. Therefore, we consider a moderate size of 18 as
our default setting.

Top-𝑘 Anchor Prompts. Because of the trade-off between IMG-
ALN and TXT-ALN metrics, as shown in subfigures (c), there is no
globally optimal top-𝑘 setting. Consequently, we adopt the top-3
selection as a standard practice based on relative performance.

Anchor Set Variability. Finally, we change the prompts in
the anchor set, forming 3 distinct sets, each differing by at least
50%. As shown in subfigures (d), the results reveal our model’s
robustness against variations in anchor prompts. This indicates the
effectiveness of our uncertainty sampling method which selects the
most constructive direction for model training.

5 CONCLUSION
This paper presents a pilot study that investigates the application of
active learning to generative models, specifically focusing on image
synthesis personalization tasks. To solve the open-ended nature
of querying in generative active learning, this paper introduces
anchor directions, transforming the querying process into a semi-
open problem. An uncertainty sampling strategy is introduced to
select informative directions, and a balance scheme is proposed to
solve the exploitation-exploration dilemma. Through extensive ex-
periments, the effectiveness of the approach is validated, indicating
new possibilities for leveraging active learning techniques in the
context of generative models.
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