
Delta-LoRA: Fine-Tuning High-Rank Parameters with the Delta of
Low-Rank Matrices

Anonymous ACL submission

Abstract

In this paper, we present Delta-LoRA, which001
is a novel parameter-efficient approach to fine-002
tune large language models (LLMs). In con-003
trast to LoRA and other low-rank adaptation004
methods such as AdaLoRA, Delta-LoRA not005
only updates the low-rank matrices A and006
B, but also propagate the learning to the pre-007
trained weights W via updates utilizing the008
delta of the product of two low-rank matrices009
(A(t+1)B(t+1) − A(t)B(t)). Such a strategy010
effectively addresses the limitation that the in-011
cremental update of low-rank matrices is inad-012
equate for learning representations capable for013
downstream tasks. Moreover, as the update of014
W does not need to compute the gradients of015
W and store their momentums, Delta-LoRA016
shares comparable memory requirements and017
computational costs with LoRA. Extensive ex-018
periments show that Delta-LoRA significantly019
outperforms existing low-rank adaptation meth-020
ods. We further support these results with com-021
prehensive analyses that underscore the effec-022
tiveness of Delta-LoRA.023

1 Introduction024

Large Language Models (LLMs) recently have at-025

tracted considerable attention due to their remark-026

able performance across a broad spectrum of down-027

stream tasks. Diverging from conventional Trans-028

formers characterized by a scale of millions of pa-029

rameters, modern LLMs typically scale up to bil-030

lions of parameters, endowing them with notable031

advantages such as emergent capabilities and ro-032

bust generalization as detailed in (Bubeck et al.,033

2023). Fine-tuning such highly capable LLMs034

on downstream tasks (Raffel et al., 2020; Devlin035

et al., 2019; Radford et al., 2019; He et al., 2021;036

Liu et al., 2019; Brown et al., 2020) has conse-037

quently become a mainstream paradigm to reduce038

the training time required for individual tasks, yet039

with superior performance compared with other040

methods (Lester et al., 2021; Li and Liang, 2021;041

Houlsby et al., 2019; Zhang et al., 2023a). 042

However, fine-tuning a LLM with all the learn- 043

able parameters (Full Fine-tuning) requires multi- 044

ple GPUs with high memory demand (Dettmers 045

et al., 2023; Hu et al., 2022), which is unattain- 046

able for many companies and research institutions. 047

Full fine-tuning poses exceptional challenges to 048

researchers: with massive parameter size, LLMs al- 049

ready demand more storage space than regular mod- 050

els; Further training exaggerates the GPU memory 051

requirement because common optimizers such as 052

AdamW (Loshchilov and Hutter, 2019) often main- 053

tain several copies of the model parameters, which 054

is 2-3 times of memory overhead. 055

To this end, a series of methods have been pro- 056

posed (Valipour et al., 2023; Zhang et al., 2022; Li 057

and Liang, 2021; Liu et al., 2022a; Lv et al., 2023; 058

Dettmers et al., 2023; Liu et al., 2022b; Zaken 059

et al., 2021; Pfeiffer et al., 2021; Guo et al., 2021; 060

Zhou et al., 2023; Zhang et al., 2023b; Houlsby 061

et al., 2019; Wang et al., 2022; Xu et al., 2024; Guo 062

et al., 2024; Kopiczko et al., 2024; Lialin et al., 063

2024; Liu et al., 2023a; Li et al., 2024; Wen and 064

Chaudhuri, 2024; Chen et al., 2024; Kopiczko et al., 065

2023) to reduce memory overhead at the training 066

stage. Some even accelerate the fine-tuning pro- 067

cess with only less than 1% trainable parameters. 068

Among these methods, LoRA (Hu et al., 2022) is 069

the most attractive for its stable performance on 070

broad downstream tasks (Ding et al., 2023), no ob- 071

served overfitting, as well as no extra memory and 072

computation cost at inference. 073

While LoRA and its successors (Zhang et al., 074

2022; Valipour et al., 2023) have indeed exhibited 075

superior performance in comparison to alternative 076

approaches within the realm of Parameter Efficient 077

Fine-Tuning (PEFT), a substantial performance 078

gap persists when compared to the full fine-tuning, 079

as highlighted in most scenarios (Ding et al., 2023). 080

This discrepancy is attributed to the inherent lim- 081

itation of updating only a fraction of the model’s 082

1

B

Dropout

W

A

B

E
W

A

B

(a) LoRA/DyLoRA (b) AdaLoRA (c) Delta-LoRA

W
A

Dropout

Figure 1: An overview of the proposed Delta-LoRA structure, compared to LoRA, DyLoRA and AdaLoRA.
Note that DyLoRA and LoRA basically share the same architecture. W is the pre-trained weight which is frozen
(signified by blue) when performing efficient-parameter fine-tuning in (a) and (b). Orange trapezoids A, B and E
denote the trainable parameters. In our proposed Delta-LoRA, the light orange rectangle means that pre-trained
weights can be updated via the delta. Note that our proposed Delta-LoRA removes the Dropout layer to ensure
reasonable delta for pre-trained matrix.

parameters, rendering it inadequate to fit the intri-083

cacies presented in the training data.084

To bridge this gap, a reasonable strategy is085

to introduce more parameters into the optimiza-086

tion process. In this paper, we introduce Delta-087

LoRA as shown in Fig. 1, a novel PEFT approach088

that simultaneously updates the pre-trained ma-089

trix and two low-rank matrices while maintain-090

ing the same memory consumption as the origi-091

nal LoRA. Specifically, the pre-trained matrix W092

is updated with the delta of the product of two093

low-rank matrices in two consecutive iterations094

(△AB = A(t+1)B(t+1) −A(t)B(t)), while two095

low-rank matrices are updated by the AdamW op-096

timizer automatically. This is based on the mathe-097

matical property that ∂L
∂W = ∂L

∂AB and△AB is a098

surrogate to direct the update of W (see Sec. 3 for099

details). Since we neither store the gradient of W100

nor use the optimizer to update the pre-trained ma-101

trix, the proposed method thus does not yield any102

extra memory overhead. This strategic integration103

effectively mitigates the sub-optimal representation104

learning stemming from only updating the two low-105

rank matrices. Moreover, our approach aligns the106

update direction of the pre-trained weights with107

that of the incremental update matrix. Furthermore,108

we discard the Dropout layer in low-rank branches109

to obtain a more reasonable delta for W , in or-110

der to ensure ∂L
∂W = ∂L

∂AB . The advantages of111

our proposed method are conspicuous: including112

the pre-trained weights in the optimization pro-113

cess engenders a broader integration of parameters, 114

thereby enhancing the potential for learning intri- 115

cate representations. 116

The main contributions of this paper can be sum- 117

marized as: 118

• We introduce Delta-LoRA, a novel PEFT method 119

that simultaneously updates the full weight ma- 120

trix and two low-rank matrices. Delta-LoRA 121

leverages the delta of the product of A and B to 122

update the pre-trained weights and thus prevent 123

storing the first and the second-order momentums 124

in the optimizer. 125

• We analyze the gradient flow of Delta-LoRA 126

and show that the Dropout layer in the low-rank 127

branch makes ∂L
∂W ̸= ∂L

∂AB . Thus, we remove 128

the Dropout layer in our proposed Delta-LoRA 129

to get reasonable delta for W . 130

• We conduct comprehensive experiments to show 131

that Delta-LoRA has consistent gains on a broad 132

range of NLP tasks. Additionally, we provide 133

thorough explanations to analyze its superiority 134

and the value contributed by each component. 135

2 Related Works 136

With the ever-growing parameter scale in current 137

Transformer-based models, fine-tuning such a large 138

language model (LLM) requires considerable num- 139

ber of GPUs equipped with high memory capacity. 140

2

This is mainly due to the fact that common opti-141

mizers such as AdamW (Loshchilov and Hutter,142

2019) requires maintaining three times of extra143

parameter size (gradients, first-order and second-144

order momentums). To bridge this gap, a series145

of Parameter-Efficient Fine-Tuning (PEFT) meth-146

ods have been proposed (Hu et al., 2022; Liu147

et al., 2022b; Shin et al., 2020; Houlsby et al.,148

2019). The Adapter (Houlsby et al., 2019) intro-149

duces lightweight trainable parameters between150

pre-trained layers while keeping the pre-trained151

weights fixed. Prompt-Tuning (Lester et al., 2021)152

aims to optimize the prompt to achieve compara-153

ble performance with fine-tuning for specific task,154

while Prefix-Tuning optimizes for trainable pre-155

fixes and prepends these trainable parameters to156

each hidden state (Li and Liang, 2021). Despite the157

notable performance achievements, these methods158

inevitably introduce extra overhead at the inference159

stage.160

Hu et al. (2022) proposed LoRA to utilize the161

multiplication of two low-rank matrices to model162

the incremental update of a full-rank matrix. LoRA163

merges the incremental updates to pre-trained164

weights after training, thereby avoiding any extra165

computation overhead during inference. Further-166

more, it stands out as one of the most effective167

PEFT techniques according to Ding et al. (2023);168

Xu et al. (2023)’s evaluation. Subsequent to its169

inception, a series of enhanced methods building170

upon LoRA was proposed. Notably, G-LoRA (Cha-171

van et al., 2023) leverages a generalized prompt172

module to fine-tune pre-trained weights resulting173

in better representations for computer vision tasks.174

DyLoRA (Valipour et al., 2023) aims to adjust the175

rank of two lightweight matrices after the train-176

ing stage. Differing from the conventional ap-177

proach of maintaining a static rank during training,178

DyLoRA introduces rank variations to its blocks.179

AdaLoRA (Zhang et al., 2022) emphasizes the dis-180

parate importance attributed to distinct weight pa-181

rameters. This technique intelligently allocates the182

parameter budget across weight matrices based on183

their respective importance scores. Additionally, Q-184

LoRA (Dettmers et al., 2023) was proposed to fur-185

ther reduce the average memory footprint by quan-186

tizing the pre-trained model with 4-bit NormalFloat.187

This quantization approach not only preserves the188

model’s efficacy but also effectively alleviates the189

resource-intensive nature of LLM training and ad-190

dresses a pertinent concern.191

3 Methodology 192

This section introduces the novel fine-tuning ap- 193

proach termed as Delta-LoRA. Delta-LoRA en- 194

compasses two pivotal designs as shown in Figure 1 195

and Figure 2: (i) It simultaneously updates the full 196

weight matrix (W) alongside the two low-rank 197

adaptation matrices (A and B), utilizing the delta 198

(A(t+1)B(t+1) − A(t)B(t)) resulting from incre- 199

mental updates to refine the pre-trained weights 200

(W); (ii) The Dropout layer as originally inte- 201

grated within the conventional LoRA module, is 202

excluded in Delta-LoRA. This omission stems from 203

the realization that its presence violates the required 204

assumption ∂L
∂W = ∂L

∂AB . 205

3.1 Update the Delta of Low-rank Matrices 206

on Pre-trained Weights 207

For an input x and its corresponding hidden state 208

h, LoRA optimizes two low-rank matrices A and 209

B to learn an incremental update AB for the pre- 210

trained and fixed weight matrix W . Different from 211

previous methods, we argue that W also needs to 212

be updated. In this way, we can introduce more 213

learnable parameters to the optimization process 214

for higher learning capability. However, acquiring 215

the normalized gradients (i.e. the gradients after 216

normalization in optimizer) to fine-tune the weight 217

matrix W is non-trivial, since the optimizer such 218

as AdamW must maintain at least three extra copies 219

of the parameters (i.e. gradients as well as the first- 220

order and the second-order moments of gradients) 221

in GPU memory. Intriguingly, we note that the 222

gradients of the loss L with respect to matrices 223

AB and W are precisely identical, under the pre- 224

sumption that the LoRA module exclusively retains 225

matrices A and B, while disregarding the Dropout 226

layer. This correspondence can be formally repre- 227

sented as: 228

gW =
∂L

∂hi+1
· ∂hi+1

∂W

⊤
=

∂L
∂hi+1

· h⊤
i ,

gAB =
∂L

∂hi+1
· ∂hi+1

∂AB

⊤
=

∂L
∂hi+1

· h⊤
i ,

=⇒ bgW = gAB,

(1) 229

where hi+1 = Whi + ABhi, hi and hi+1 are 230

the outputs of the i-th layer and the i+1-th layer 231

respectively. AB is the matrix product of the adap- 232

tation matrices A and B, L is the loss function, 233

while gW+AB , gW and gAB denote the gradients 234

of ∂L
∂(W+AB) , ∂L

∂W , and ∂L
∂AB respectively. 235

3

W

𝜆
𝛼

𝑟
∆𝐴𝐵

A

B

Forward pass

Update Parameters

Normalized 𝑔𝐴

Normalized 𝑔𝐵

W
A

B

Backward pass

(a) Forward and Backward Pass (b) Parameter Update

𝜂 ො𝑔𝐴

𝜂 ො𝑔𝐵
ො𝑔𝐴

ො𝑔𝐵

ℎ𝑖

ℎ𝑖+1

Figure 2: The framework of our proposed Delta-LoRA. The blue arrows represent forward pass while yellow dashed
arrows denote backward propagation. The black solid arrows in (b) represent the process of updating the low-rank
adaptation matrices A and B with normalized gradients ĝA and ĝB multiplied by the learning rate η, as well as
updating the pre-trained weights W with the delta matrix△AB multiplied by the update ratio λ.

Equation 1 inspires us to use gAB to assimi-236

late gW when learning the parameter updates for237

weight matrix W . Unfortunately, we are only able238

to obtain the gradients gA and gB rather than gW239

during the back-propagation process. Furthermore,240

the computation of the gradients for AB is as ex-241

pensive as for the matrix W , since both matrices242

share the same dimensions of d× k, consequently243

entailing an equivalent GPU memory overhead.244

Considering a typical optimization process, the245

model updates its parameters by applying the gradi-246

ent descent: W (t+1) = W (t) − ηgW , with the pa-247

rameter update denoted as△W = −ηgW , using248

the learning rate η. Similarly, we regard −△AB249

as the gradients for AB and utilize this matrix as a250

substitute for gW according to Equation 1. Here,251

we can compute△AB as:252

△AB = A(t+1)B(t+1) −A(t)B(t)

= ηA(t)gB + ηgAB(t) − η2gAgB,
(2)253

where A(t), B(t) and W (t) are the weights of A,254

B and W at the t-th step respectively, A(t+1) =255

A(t) − ηgA, B(t+1) = B(t) − ηgB and η is the256

learning rate. To be precise, −△AB does not257

equate directly to gAB and gW as elaborated in258

Appendix A.4.2. Nonetheless,△AB has the capa-259

bility to symbolize the genuine directions of update260

for the matrix AB. Based on this assumption, it is261

reasonable to employ −△AB as the gradient for262

directing the update of W .263

Therefore, during the training phase we intro-264

duce the matrix △AB to update the pre-trained265

weights W in the following manner: 266

W (t+1) = W (t) + λ · α
r
· △AB,

where △AB = A(t+1)B(t+1) −A(t)B(t),
(3) 267

where λ represents the hyper-parameter to trade off 268

the update ratio of AB and the pre-trained weights 269

W . The parameter updates for W commence after 270

K training iterations. The procedural details of the 271

algorithm are illustrated in Algorithm 1. 272

3.2 The structure of our Delta-LoRA 273

Both LoRA and its successor AdaLoRA put a 274

Dropout layer before two low-rank matrices A and 275

B. However, this arrangement results in a dispar- 276

ity between the gradient matrices gW and gAB (or 277

the matrix gAEB in the context of AdaLoRA). The 278

derivation of this disparity can be shown as: 279

gW =
∂L

∂hi+1
· h⊤

i ̸= gAB =
∂L

∂hi+1
· Drop(hi)

⊤,

(4)
280

where Drop(·) denotes the Dropout layer which 281

leads to gW ̸= gAB . A reasonable choice is to re- 282

move the Dropout layer in the low-rank module and 283

activate the Dropout layer between pre-trained lay- 284

ers if overfitting problem occurs. This modification 285

also brings additional benefits: (1) it can allevi- 286

ate under-fitting to some extent, thereby enhancing 287

the learned representations of the networks. The 288

rationale behind this improvement lies in the fact 289

that LoRA and its successors formulate low-rank 290

updates for pre-trained weights, involving less than 291

4

Table 1: The evaluation results of our proposed Delta-LoRA and other existing methods on E2E NLG Challenge
dataset. † indicates fine-tuning all layers except embedding layer. ‡ indicates only fine-tuning weights for query and
value. ¶ means we choose different settings with AdaLoRA: we only tune WQ and WV instead of all layers. The
best results of Fine-Tuning methods are underlined. The best results of PEFT methods are boldfaced.

Method Trainable Extra Updatable BLEU NIST METEOR ROUGE-L CIDErParameters Parameters

Full Fine-Tuning 354.92M % 69.70±0.20 8.81±0.05 46.21±0.17 71.88±0.30 2.45±0.03
Fine-Tuning† 305.84M % 69.54±0.24 8.79±0.03 46.12±0.06 71.65±0.28 2.42±0.02
Fine-Tuning‡ 48M % 69.81±0.09 8.82±0.02 46.16±0.17 71.85±0.10 2.44±0.04

LoRA (repr.) 0.375M % 69.13±0.49 8.79±0.01 45.82±0.30 71.41±0.30 2.40±0.05
DyLoRA 0.375M % 67.53±0.39 8.57±0.07 45.09±0.89 70.79±0.25 2.32±0.06

AdaLoRA¶ 0.375M % 68.47±0.38 8.69±0.10 45.40±1.13 70.81±0.15 2.39±0.04
Delta-LoRA (Ours) 0.375M ! 48M 70.90±0.09 8.91±0.02 46.42±0.09 72.11±0.11 2.53±0.01

Table 2: The evaluation results of our proposed Delta-LoRA and other existing methods on WebNLG Challenge
2017 dataset. † indicates fine-tuning all layers except embedding layer. ‡ indicates only fine-tuning weights for
query and value. ¶ means we choose different settings with AdaLoRA: we only tune WQ and WV instead of all
layers. The best results of Fine-Tuning methods are underlined. The best results of PEFT methods are boldfaced.

Method Trainable Extra Updatable BLEU↑ METEOR↑ TER↓
Parameters Parameters S U A S U A S U A

Full Fine-Tuning 354.92M % 61.35±0.15 45.64±0.64 54.38±0.14 0.44±0.00 0.38±0.00 0.41±0.00 0.36±0.01 0.50±0.03 0.41±0.01
Fine-Tuning† 305.84M % 63.20±0.47 47.17±0.72 55.94±0.03 0.45±0.00 0.39±0.00 0.42±0.00 0.34±0.00 0.49±0.01 0.41±0.01
Fine-Tuning‡ 48M % 64.40±0.21 47.81±0.35 56.66±0.59 0.45±0.01 0.38±0.01 0.43±0.01 0.34±0.01 0.47±0.01 0.40±0.00

LoRA (repr.) 0.375M % 61.78±0.52 47.01±0.70 55.07±0.03 0.44±0.00 0.38±0.01 0.41±0.01 0.35±0.01 0.49±0.01 0.41±0.01
DyLoRA 0.375M % 59.60±1.10 45.57±0.40 53.25±0.44 0.43±0.01 0.37±0.01 0.40±0.01 0.37±0.01 0.48±0.01 0.42±0.01

AdaLoRA¶ 0.375M % 57.37±1.38 44.26 ±0.17 51.42±0.85 0.42±0.01 0.37±0.00 0.40±0.01 0.39±0.01 0.49±0.00 0.44±0.01
Delta-LoRA (Ours) 0.375M !48M 62.56±0.45 47.94±0.36 55.99±0.04 0.46±0.01 0.40±0.01 0.43±0.01 0.34±0.01 0.48±0.01 0.40±0.01

1% of the complete parameters. However, relying292

solely on such a small fraction of parameters may293

not bestow an adequate representation capacity in294

most cases; (2) This alteration also yields memory-295

saving benefits. By negating the requirement to296

store intermediate features, the model curtails the297

memory consumption. Consequently, there is a298

reduction in activation memory employed during299

the back-propagation process.300

4 Experiments301

We evaluate our proposed model fine-tuning302

method Delta-LoRA with RoBERTa (Liu et al.,303

2019), GPT-2 (Radford et al., 2019) and304

BART (Lewis et al., 2019) on a broad set of305

datasets. Specifically, we train (1) RoBERTa on306

GLUE benchmark which consists of 8 NLP un-307

derstanding tasks; (2) GPT-2 on E2E Challenge308

and WebNLG Challenge 2017 following the set-309

ting of Hu et al. (2022); and (3) BART on XSum310

dataset by using the setting provided by Zhang et al.311

(2022). See Appendix A.6 for more training details312

on the datasets. The setups and detailed introduc-313

tions of baseline methods are shown in Appendix314

A.1. We use PyTorch to implement our experiments 315

and download the pre-trained weights as well as 316

configuration files from HuggingFace (Wolf et al., 317

2019). 318

4.1 Natural Language Generation 319

Models and Datasets. We use GPT2-Medium to 320

verify the effectiveness of our Delta-LoRA on two 321

datasets for data-to-text tasks, including the E2E 322

NLG Challenge (Puzikov and Gurevych, 2018) 323

and WebNLG Challenge 2017 (Gardent et al., 324

2017). The E2E NLG Challenge dataset com- 325

prises 42,000 samples for training, 4,600 for vali- 326

dation, and 4,600 for testing purposes. In contrast, 327

the WebNLG Challenge 2017 consists of 21,855 328

training samples across nine categories, expand- 329

ing to a total of 14 categories in the test set. For 330

the text summarization task, we employed BART- 331

Large (Lewis et al., 2019) to evaluate the efficacy 332

of our method using the XSum dataset (Narayan 333

et al., 2018). The XSum dataset is composed of 334

204,045 training samples, 11,332 validation sam- 335

ples, and 11,332 test samples. We also use LLaMA- 336

7B(Touvron et al., 2023), a popular pre-trained 337

5

Table 3: The evaluation results of our proposed Delta-LoRA and other existing methods on GLUE benchmark.
We report the overall (matched and mismatched) accuracy for MNLI, Matthew’s correlation for CoLA, Pearson
correlation for STS-B, and accuracy for other tasks. † indicates fine-tuning all layers except the embedding layer. ‡
indicates only fine-tuning weights for query and value. ¶ means we choose different settings with AdaLoRA: we
only tune WQ and WV instead of all layers. The best results of Fine-Tuning methods are underlined. The best
results of PEFT methods are boldfaced.

Method Trainable Extra Updatable MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B AVGParameters Parameters

Full Fine-Tuning 118.87M % 87.41±0.10 94.07±0.17 87.99±0.25 64.42±0.30 92.87±0.14 91.23±0.64 84.71±0.55 90.75±0.19 86.68
Fine-Tuning† 82.05M % 87.61±0.03 94.22±0.18 89.87±0.37 62.90±0.27 92.72±0.16 91.62±0.54 86.28±0.36 90.64±0.39 86.98
Fine-Tuning‡ 13.5M % 87.34±0.26 95.02±0.06 89.05±0.14 61.00±0.17 92.64±0.12 91.36±0.47 85.19±0.36 90.08±0.71 86.46

LoRA 0.28M % 87.32±0.10 94.61±0.12 89.70±0.65 63.28±0.75 92.91±0.10 90.63±0.05 86.28±0.36 91.51±0.06 87.03
DyLoRA 0.28M % 86.60±0.27 94.34±0.24 88.89±0.51 61.51±0.36 92.36±0.16 90.37±0.33 84.35±0.55 91.24±0.20 86.20

AdaLoRA¶ 0.28M % 87.35±0.04 94.49±0.12 90.11±0.14 61.68±0.37 92.98±0.12 90.24±0.13 85.80±0.56 91.31±0.16 86.74
Delta-LoRA (Ours) 0.28M !13.5M 87.62±0.21 95.29±0.23 90.60±0.14 64.64±0.86 93.09±0.15 91.01±0.06 87.00±0.36 91.61±0.04 87.60

large language model with 7 Billion parameters, to338

fine-tune on Alpaca dataset (Taori et al., 2023).339

Table 4: The evaluation results of Delta-LoRA with
LLaMA-7B on the Instruction-Tuning dataset provided
by Stanford Alpaca(Taori et al., 2023). We use GPT-4 to
choose from a. LoRA, b. Delta-LoRA or c. Both LoRA
and Delta-LoRA to decide the text from which method
is better.

Both LoRA Delta-LoRA Total

886 10 104 1,000

Implementation Details. In order to compare340

with LoRA and its successors fairly, we adopt the341

model setups from LoRA to implement our Delta-342

LoRA and three PEFT methods. We only learn the343

low-rank incremental update for WQ and W V in344

MHA module. For data-to-text datasets, we use the345

same training configurations as adopted by LoRA,346

including the number of training epochs, batch size347

and etc. We use update ratio λ = 2 and set start348

steps K = 500 for Delta-LoRA. More details about349

Delta-LoRA are listed in the Appendix A.6. For350

the text-summarization task, we use the implemen-351

tation of AdaLoRA and adopt the same training352

configurations. We set the update ratio λ = 0.5353

and the start steps K = 1000 for Delta-LoRA.354

Experimental Results. Table 1 shows the re-355

sults for E2E Challenge dataset on 5 evaluation met-356

rics, demonstrating that our method achieves state-357

of-the-art performance over 3 baselines and a set of358

fine-tuning methods. For the BLEU and ROUGE-359

L metrics, our method obtains 1.77 and 0.7 per-360

formance gains compared with LoRA, with 0.12,361

0.6 and 0.13 improvement on NIST, METEOR362

and CIDEr respectively. Table 2 demonstrates363

that Delta-LoRA outperforms baselines on BLEU364

score for WebNLG Challenge 2017 dataset, with365

0.78, 0.93 and 0.92 improvement on Seen, Unseen 366

and All test data, respectively. Additionally, for 367

the METEOR and TER evaluation metrics, Delta- 368

LoRA also achieves state-of-the-art performance, 369

with 0.02 and 0.01 improvement over LoRA on 370

all data. For the text-summarization task, the test 371

results are shown in Table 5, which demonstrates 372

that our method achieves state-of-the-art results 373

across 3 parameter-efficient methods on 4 evalu- 374

ation metrics. To fairly evaluate our method, we 375

utilized LLaMA-7B and compared it with LoRA. 376

We employed GPT-4 to generate 1,000 questions 377

and presented these questions to the parameter- 378

efficient fine-tuned LLaMA-7B. Subsequently, we 379

leveraged GPT-4 to compare the texts generated by 380

LoRA-tuned and Delta-LoRA-tuned LLMs. Addi- 381

tional details can be found in Appendix A.2. Ac- 382

cording to the findings in Table 4, Delta-LoRA 383

establishes state-of-the-art performance in the eval- 384

uation of Language Models (LLMs). GPT-4 identi- 385

fied 104 samples generated by Delta-LoRA as supe- 386

rior to LoRA, while only 10 samples generated by 387

LoRA exhibited higher quality than Delta-LoRA. 388

This underscores Delta-LoRA’s effectiveness even 389

when utilized within models containing billions of 390

parameters. 391

4.2 Natural Language Understanding 392

Models and Datasets. We use RoBERTa-base(Liu 393

et al., 2019) to evaluate the performance of our pro- 394

posed method, prior works and three fine-tuning 395

methods. We choose the GLUE benchmark con- 396

sisting of 8 datasets (Wang et al., 2019), including 397

classification tasks, similarity and paraphrase tasks 398

and natural language inference tasks. 399

Implementation Details. We use RoBERTa- 400

base with 118M parameters to conduct our exper- 401

iments and to compare our method with the base- 402

6

Table 5: The evaluation results of our proposed Delta-LoRA and other existing methods on XSum dataset. †
indicates fine-tuning all layers except the embedding layer. ‡ indicates only fine-tuning weights for query and value.
¶ means we choose different settings with AdaLoRA: we only tune WQ and WV instead of all layers. The best
results of Fine-Tuning methods are underlined. The best results of PEFT methods are boldfaced.

Method Trainable Extra Updatable Rouge-1 Rouge-2 Rouge-L Rouge-SumParameters Parameters

Full Fine-Tuning 387.5M % 45.18±0.17 22.08±0.08 37.19±0.05 37.2±0.05
Fine-Tuning† 338.4M % 44.87±0.23 21.94±0.16 36.74±0.20 36.76±0.20
Fine-Tuning‡ 72M % 44.67±0.27 21.29±0.14 36.23±0.12 36.24±0.13

LoRA 0.56M % 43.17±0.12 20.01±0.14 34.93±0.20 34.93±0.20
DyLoRA 0.56M % 42.08±0.32 19.01±0.27 33.83±0.32 33.85±0.33

AdaLoRA¶ 0.56M % 42.9±0.03 19.75±0.07 34.66±0.07 34.66±0.07
Delta-LoRA (Ours) 0.56M !72M 43.45±0.05 20.21±0.12 35.21±0.05 35.21±0.05

lines. We mostly adopt the same training configura-403

tions of LoRA, more details can get from Appendix404

A.6. We set the rank to 8 and the target rank to 6 for405

AdaLoRA and choose the rest of hyper-parameters406

according to the characteristics of different tasks.407

For Delta-LoRA, we set the update ratio λ to 0.5408

and choose different start steps K according to409

warmup steps used in individual tasks.410

Experimental Results. We compare our method411

with prior PEFT works. According to Table 3,412

our method outperforms existing methods on all 8413

tasks in GLUE benchmark. Among these tasks, our414

method demonstrates significant improvement on415

SST-2, CoLA and RTE. This is mainly due to the416

fact that these datasets contain less training data,417

which hinders the model’s capacity to effectively418

acquire a robust representation when using prior419

fine-tuning methods. Delta-LoRA also achieves de-420

cent performance on the rest of the datasets, includ-421

ing MNLI, MRPC, QNLI as well STS-B, which422

proves that our method is stable and reliable across423

different settings.424

4.3 Comprehensive Understanding of425

Delta-LoRA426

The Extra Updatable Parameters. We intro-427

duce the concept of extra updatable parameters to428

point out the superiority of Delta-LoRA. For most429

PEFT methods, they can only adjust the low-rank430

adapters, such as Adapter(Houlsby et al., 2019)431

and LoRA(Hu et al., 2022). Thus, they don’t have432

any extra parameters to update, which means their433

extra updatable parameters are 0. However, our434

Delta-LoRA can achieve the purpose of updating435

the W matrix without increasing the GPU mem-436

ory consumption, which means its extra updatable437

parameters are the parameter number of W .438

Ablation study. To better understand the contri-439

bution of our modified LoRA module (i.e. Delta- 440

LoRA module) and the effectiveness of our up- 441

date algorithm, we conduct studies on E2E Chal- 442

lenge dataset with GPT2-medium. As shown in Ta- 443

ble 6, only updating the pre-trained matrices with 444

delta of low-rank update can indeed achieve per- 445

formance improvement, while further discarding 446

the dropout in Delta-LoRA module obtains the best 447

performance. This observation confirms the indis- 448

pensable role played by each component within 449

our proposed methodology. We have devised an 450

experiment to further differentiate whether the per- 451

formance enhancement stems from the inherent 452

characteristics of our method rather than solely 453

from the substantial update magnitude. According 454

to our algorithm, we update the parameters of both 455

pre-trained and low-rank matrices, which can arose 456

the doubt of whether the improvement is caused by 457

updating larger △AB on the weights instead of 458

introducing more parameters into the optimization 459

process. To answer this question, we design an ex- 460

periment with results shown in Table 7 to prove the 461

effectiveness of our method. We scale the learning 462

rate of LoRA from 2e-4 to 6e-4 making sure that 463

W +AB can be updated with 3×△AB, which 464

is equivalent to Delta-LoRA when λ is set to 2. 465

We find that even by updating with 3×△AB on 466

AB, the performance is still not comparable with 467

Delta-LoRA. This experiment further proves that 468

introducing more parameters into the optimization 469

process can force to learn better representation. 470

The cosine similarity between fine-tuned and 471

the pre-trained parameters to measure learning 472

effects. We conduct a comparative analysis of three 473

methods including Fine-Tuning‡, LoRA and Delta- 474

LoRA, in order to elucidate the reasons behind 475

Delta-LoRA’s superior performance. We use the 476

last checkpoint trained on E2E Challenge dataset 477

7

Table 6: The ablation study of our proposed Delta-LoRA on E2E Challenge dataset demonstrates the importance of
each component. The best results are boldfaced.

Method Trainable Extra Updatable BLEU NIST METEOR ROUGE-L CIDErParameters Parameters

LoRA (repr.) 0.375M % 69.60 8.78 45.61 71.12 2.45
Delta-LoRA + LoRA Module 0.375M !48M 70.29 8.88 46.38 71.88 2.51

Delta-LoRA 0.375M !48M 70.84 8.91 46.47 72.24 2.53

Table 7: The ablation study of our proposed Delta-LoRA to eliminate the impact of hyper-parameter λ on E2E
Challenge dataset. The best results are boldfaced.

Method Learning
λ BLEU NIST METEOR ROUGE-L CIDErRate

LoRA (repr.) 2e-4 - 69.60 8.78 45.61 71.12 2.45
LoRA (repr.) 6e-4 - 69.63 8.79 45.70 71.55 2.39
Delta-LoRA 2e-4 2 70.84 8.91 46.47 72.24 2.53

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

layerC
o

si
n

e
 S

im
il

a
ri

ty

Fine-Tuning‡ LoRA Delta-LoRA

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

layerC
o

si
n

e
 S

im
il

a
ri

ty

(a) The Cosine Similarity between Fine-Tuned and Original 𝑾𝑸

(b) The Cosine Similarity between Fine-Tuned and Original 𝑾𝑽

Figure 3: The comparison of Fine-Tuning‡, LoRA as well as Delta-LoRA for the cosine similarity between the
fine-tuned parameters and the original pre-trained parameters in each transformer block. Higher value means higher
similarity.

to give understanding. As depicted in Figure 3, it478

is evident that LoRA exhibits the highest similarity479

across the majority of transformer blocks. This480

observation suggests that LoRA primarily modi-481

fies the matrix W ∗ = W +AB within a limited482

range. Nevertheless, Delta-LoRA showcases the483

lowest cosine similarity, underscoring that our ap-484

proach induces the most significant modifications485

to the final matrix W ∗. Due to this property, our486

approach can effectively stimulate the model to487

acquire better representations, leading to state-of-488

the-art performance across all four PEFT methods.489

This observation further aligns with the evaluation490

results in Table 1: Delta-LoRA achieves the best491

performance among the three methods, whereas492

LoRA is slightly worse than Fine-Tuning‡.493

5 Conclusion 494

In this paper, we have introduced Delta-LoRA, 495

a novel method to simultaneously update the 496

full weight matrix and two low-rank matrices. 497

Delta-LoRA leverages the delta (A(t+1)B(t+1) − 498

A(t)B(t)) to update the pre-trained weights (W). 499

In this way, we introduce more learnable param- 500

eters into the optimization process such that the 501

model can learn a better representation with com- 502

parable memory cost as LoRA. Meanwhile, we 503

identify the Dropout layer in the low-rank branch 504

to be unnecessary according to the gradient flow. 505

We also provide thorough analysis of our method to 506

understand its effectiveness and robustness. Exten- 507

sive experiments on a broad range of NLP tasks are 508

conducted to empirically verify the effectiveness 509

of our Delta-LoRA. 510

8

6 Limitations511

This work has several limitations. First, it involves512

a two-step process to compose the delta of two low-513

rank matrices into a gradient matrix, which is some-514

what time-consuming. Second, since this work was515

conducted in 2023, we could not compare it with516

subsequent advancements in the field. Third, our517

evaluation was limited to GPT-2 Medium, BART-518

Large, RoBERTa-Base, and LLaMA-7B models.519

Future work will focus on experimenting with other520

large language models.521

References522

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie523
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind524
Neelakantan, Pranav Shyam, Girish Sastry, Amanda525
Askell, Sandhini Agarwal, Ariel Herbert-Voss,526
Gretchen Krueger, Tom Henighan, Rewon Child,527
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,528
Clemens Winter, Christopher Hesse, Mark Chen, Eric529
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,530
Jack Clark, Christopher Berner, Sam McCandlish,531
Alec Radford, Ilya Sutskever, and Dario Amodei.532
2020. Language models are few-shot learners. In533
NeurIPS.534

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-535
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-536
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,537
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,538
and Yi Zhang. 2023. Sparks of artificial general in-539
telligence: Early experiments with gpt-4.540

Arnav Chavan, Zhuang Liu, Deepak Gupta, Eric Xing,541
and Zhiqiang Shen. 2023. One-for-all: General-542
ized lora for parameter-efficient fine-tuning. arXiv543
preprint arXiv:2306.07967.544

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,545
Zhijian Liu, Song Han, and Jiaya Jia. 2024. Lon-546
gloRA: Efficient fine-tuning of long-context large547
language models. In ICLR.548

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and549
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning550
of quantized llms. arXiv preprint arXiv:2305.14314.551

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and552
Kristina Toutanova. 2019. Bert: Pre-training of deep553
bidirectional transformers for language understand-554
ing. In NAACL.555

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-556
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,557
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,558
Zhiyuan Liu, Hai-Tao Zheng, Jianfei Chen, Yang559
Liu, Jie Tang, Juanzi Li, and Maosong Sun. 2023.560
Parameter-efficient fine-tuning of large-scale pre-561
trained language models. Nature Machine Intelli-562
gence.563

Claire Gardent, Anastasia Shimorina, Shashi Narayan, 564
and Laura Perez-Beltrachini. 2017. The WebNLG 565
challenge: Generating text from RDF data. In Pro- 566
ceedings of the 10th International Conference on 567
Natural Language Generation. 568

Demi Guo, Alexander M Rush, and Yoon Kim. 2021. 569
Parameter-efficient transfer learning with diff prun- 570
ing. In ACL. 571

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. 572
2024. LQ-loRA: Low-rank plus quantized matrix de- 573
composition for efficient language model finetuning. 574
In ICLR. 575

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021. 576
Debertav3: Improving deberta using electra-style pre- 577
training with gradient-disentangled embedding shar- 578
ing. arXiv preprint arXiv:2111.09543. 579

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 580
Bruna Morrone, Quentin De Laroussilhe, Andrea 581
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 582
Parameter-efficient transfer learning for nlp. In 583
ICML. 584

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 585
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 586
Chen. 2022. LoRA: Low-rank adaptation of large 587
language models. In ICLR. 588

Shaoyi Huang, Dongkuan Xu, Ian Yen, Yijue Wang, 589
Sung-En Chang, Bingbing Li, Shiyang Chen, Mimi 590
Xie, Sanguthevar Rajasekaran, Hang Liu, and Cai- 591
wen Ding. 2022. Sparse progressive distillation: 592
Resolving overfitting under pretrain-and-finetune 593
paradigm. In ACL. 594

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M 595
Asano. 2024. ELoRA: Efficient low-rank adaptation 596
with random matrices. In ICLR. 597

Dawid Jan Kopiczko, Tijmen Blankevoort, and 598
Yuki Markus Asano. 2023. Vera: Vector- 599
based random matrix adaptation. arXiv preprint 600
arXiv:2310.11454. 601

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 602
The power of scale for parameter-efficient prompt 603
tuning. In EMNLP. 604

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 605
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 606
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De- 607
noising sequence-to-sequence pre-training for natural 608
language generation, translation, and comprehension. 609
arXiv preprint arXiv:1910.13461. 610

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 611
Optimizing continuous prompts for generation. In 612
ACL. 613

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatzi- 614
akis, Pengcheng He, Weizhu Chen, and Tuo Zhao. 615
2024. Loftq: LoRA-fine-tuning-aware quantization 616
for large language models. In ICLR. 617

9

http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712

Vladislav Lialin, Sherin Muckatira, Namrata Shiva-618
gunde, and Anna Rumshisky. 2024. ReloRA: High-619
rank training through low-rank updates. In ICLR.620

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-621
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-622
fel. 2022a. Few-shot parameter-efficient fine-tuning623
is better and cheaper than in-context learning. In624
NeurIPS.625

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yux-626
uan Xue, Longhui Yu, Haiwen Feng, Zhen Liu,627
Juyeon Heo, Songyou Peng, et al. 2023a. Parameter-628
efficient orthogonal finetuning via butterfly factoriza-629
tion. arXiv preprint arXiv:2311.06243.630

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-631
iao Du, Zhilin Yang, and Jie Tang. 2022b. P-tuning:632
Prompt tuning can be comparable to fine-tuning633
across scales and tasks. In ACL.634

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,635
Ruochen Xu, and Chenguang Zhu. 2023b. Gpte-636
val: Nlg evaluation using gpt-4 with better human637
alignment. arXiv preprint arXiv:2303.16634.638

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-639
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,640
Luke Zettlemoyer, and Veselin Stoyanov. 2019.641
Roberta: A robustly optimized bert pretraining ap-642
proach. arXiv preprint arXiv:1907.11692.643

Ilya Loshchilov and Frank Hutter. 2019. Decoupled644
weight decay regularization. In ICLR.645

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao,646
Qipeng Guo, and Xipeng Qiu. 2023. Full parameter647
fine-tuning for large language models with limited648
resources.649

Shashi Narayan, Shay B Cohen, and Mirella Lap-650
ata. 2018. Don’t give me the details, just the651
summary! topic-aware convolutional neural net-652
works for extreme summarization. arXiv preprint653
arXiv:1808.08745.654

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,655
Kyunghyun Cho, and Iryna Gurevych. 2021.656
Adapterfusion: Non-destructive task composition for657
transfer learning. In EACL.658

Yevgeniy Puzikov and Iryna Gurevych. 2018. E2E659
NLG challenge: Neural models vs. templates. In660
Proceedings of the 11th International Conference on661
Natural Language Generation.662

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,663
Dario Amodei, Ilya Sutskever, et al. 2019. Language664
models are unsupervised multitask learners. OpenAI665
blog, 1(8):9.666

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine667
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,668
Wei Li, Peter J Liu, et al. 2020. Exploring the limits669
of transfer learning with a unified text-to-text trans-670
former. JMLR, 21(140):1–67.671

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, 672
Eric Wallace, and Sameer Singh. 2020. Autoprompt: 673
Eliciting knowledge from language models with au- 674
tomatically generated prompts. In EMNLP. 675

Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, 676
Chao Yang, and Chunfang Liu. 2018. A survey on 677
deep transfer learning. In ICANN. 678

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 679
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 680
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 681
An instruction-following llama model. https:// 682
github.com/tatsu-lab/stanford_alpaca. 683

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 684
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 685
Baptiste Rozière, Naman Goyal, Eric Hambro, 686
Faisal Azhar, et al. 2023. Llama: Open and effi- 687
cient foundation language models. arXiv preprint 688
arXiv:2302.13971. 689

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan 690
Kobyzev, and Ali Ghodsi. 2023. Dylora: Parameter- 691
efficient tuning of pre-trained models using dynamic 692
search-free low-rank adaptation. In EACL. 693

Alex Wang, Amanpreet Singh, Julian Michael, Felix 694
Hill, Omer Levy, and Samuel R. Bowman. 2019. 695
GLUE: A multi-task benchmark and analysis plat- 696
form for natural language understanding. In ICLR. 697

Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, 698
Jing Gao, Ahmed Hassan Awadallah, and Jian- 699
feng Gao. 2022. Adamix: Mixture-of-adapter for 700
parameter-efficient tuning of large language models. 701
In EMNLP. 702

Yeming Wen and Swarat Chaudhuri. 2024. Batched 703
low-rank adaptation of foundation models. In ICLR. 704

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 705
Chaumond, Clement Delangue, Anthony Moi, Pier- 706
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 707
et al. 2019. Huggingface’s transformers: State-of- 708
the-art natural language processing. arXiv preprint 709
arXiv:1910.03771. 710

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui 711
Tao, and Fu Lee Wang. 2023. Parameter-efficient 712
fine-tuning methods for pretrained language models: 713
A critical review and assessment. arXiv preprint 714
arXiv:2312.12148. 715

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, 716
Heng Chang, Hengheng Zhang, Zhengsu Chen, XI- 717
AOPENG ZHANG, and Qi Tian. 2024. QA-loRA: 718
Quantization-aware low-rank adaptation of large lan- 719
guage models. In ICLR. 720

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold- 721
berg. 2021. Bitfit: Simple parameter-efficient 722
fine-tuning for transformer-based masked language- 723
models. arXiv preprint arXiv:2106.10199. 724

10

http://arxiv.org/abs/2306.09782
http://arxiv.org/abs/2306.09782
http://arxiv.org/abs/2306.09782
http://arxiv.org/abs/2306.09782
http://arxiv.org/abs/2306.09782
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen725
Chu, and Bo Li. 2023a. Lora-fa: Memory-efficient726
low-rank adaptation for large language models fine-727
tuning.728

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen729
Chu, and Bo Li. 2023b. Lora-fa: Memory-efficient730
low-rank adaptation for large language models fine-731
tuning. arXiv preprint arXiv:2308.03303.732

Qingru Zhang, Minshuo Chen, Alexander Bukharin,733
Pengcheng He, Yu Cheng, Weizhu Chen, and734
Tuo Zhao. 2022. Adaptive budget allocation for735
parameter-efficient fine-tuning. In ICLR.736

Han Zhou, Xingchen Wan, Ivan Vulić, and Anna Korho-737
nen. 2023. Autopeft: Automatic configuration search738
for parameter-efficient fine-tuning. arXiv preprint739
arXiv:2301.12132.740

11

http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303

A Appendix741

A.1 Baselines742

We compare our proposed method Delta-LoRA743

with Fine-Tuning and prior works of LoRA,744

AdaLoRA, and DyLoRA. For PEFT methods, we745

only train the incremental updates for W V and746

WQ, following the setup as used in LoRA’s paper.747

For Fine-Tuning methods, we use two extra train-748

ing paradigms: (1) freeze the embedding and train749

all the other parameters as Fine-Tuning †; (2) train750

W V and WQ only as Fine-Tuning‡.751

Fine-Tuning. In the past few years, fine-tuning752

has become the mainstream paradigm for both NLP753

and CV tasks. However, fine-tuning full parameters754

is subject to potential drawbacks including overfit-755

ting and training instability (Huang et al., 2022).756

Therefore, freezing a subset of network layers and757

fine-tuning the rest has become a popular choice758

(Tan et al., 2018). In our experiments, we compare759

with full fine-tuning, fine-tuning with embedding760

layers frozen (Fine-tuning †) and fine-tuning query761

and value matrices only (Fine-tuning ‡).762

LoRA (Hu et al., 2022) uses multiplication of763

two low-rank matrices to learn the incremental up-764

dates with reduced GPU memory cost. We follow765

their setups to reproduce experimental results for766

fair comparison.767

DyLoRA (Valipour et al., 2023) randomly768

chooses a rank r for LoRA modules during learn-769

ing.770

AdaLoRA (Zhang et al., 2022) focuses on the771

challenge of determining the optimal rank for incre-772

mental updates. It employs an adaptive approach to773

singular value pruning, tailoring the rank selection774

to the magnitude of each singular value. Conse-775

quently, distinct ranks are employed for different776

layers.777

A.2 The Comparison between LoRA and778

Delta-LoRA with LLaMA-7B779

A.2.1 Training and Inference Arguments780

Used in Our Method and Baseline781

We choose LLaMA-7B to evaluate our method782

and LoRA. Here, we set the learning rate γ =1e-783

4, batch size to 128, r = 8, α =16, and train-784

ing epochs to 3 for both two methods. Follow-785

ing the LoRA’s paper, we only tune WQ andW V .786

For Delta-LoRA, we choose start steps K = 100787

and λ = 0.25. When inference, we set the788

no_repeat_ngram_size = 10, temperature = 0 and789

beam size = 4 to get a certain answer.790

A.2.2 The Evaluation for Our Method and 791

Baselines 792

Current LLMs obtain the training data from the In- 793

ternet, which may unintentionally cause data leak- 794

age. Therefore, using the mainstream NLP datasets 795

to evaluate the effectiveness of Large Language 796

Model is not reasonable and wisdom. Inspired by 797

evaluation approach proposed by Liu et al. (2023b), 798

we decided to use GPT-4 to judge the text generated 799

by which method is accurate. First, we ask GPT- 800

4 to generate 1,000 different questions. Second, 801

we use the LLaMA-7B trained by two methods to 802

generate the texts. Finally, we ask GPT-4 to give 803

decision to tell us which text is accurate. It can 804

choose from three options: a. Choice 1 (LoRA 805

generates accurate text), b. Choice 2 (Delta-LoRA 806

generates accurate text) and c. Both Choice 1 and 807

2 (Both LoRA and Delta-LoRA generate accurate 808

texts). The prompt we used for evaluation: 809

Help me to determine which text is accurate for the 810

given instruction and question. The answer can be 811

chosen from a. Choice 1 is accurate, b. Choice 812

2 is accurate or c. both Choice 1 and 2 are accu- 813

rate. Give me a certain answer and this is a choice 814

question. Please don’t give reasons and the answer 815

must be shorter than 20 words. 816

Question: "" 817

(Choice 1): "" 818

(Choice 2): "" 819

A.3 Algorithm of Delta-LoRA 820

Our Delta-LoRA can be found in Algorithm 1. 821

Compared to LoRA, we added a step to update 822

the pre-trained W without any extra GPU memory 823

consumption. 824

A.4 A Further Understanding of Delta-LoRA 825

A.4.1 The Differences between LoRA and 826

Delta-LoRA 827

There are some fundamental differences between 828

LoRA and Delta-LoRA. 829

• Given W + AB, W is fixed in LoRA, but 830

W will be updated in our Delta-LoRA. This is 831

the largest difference between LoRA and Delta- 832

LoRA. This modification can yield more training 833

differences between LoRA and Delta-LoRA in the 834

next few training steps. 835

• Rank(∆WDelta−LoRA) = Rank(W (T) − 836

W (0)+AB) > Rank(∆W LoRA) = Rank(AB). 837

The rank of the learned incremental weight matrix 838

in our Delta-LoRA is larger than that in the original 839

12

Algorithm 1: Delta-LoRA
Input: Learning rate η; weight decay β; total training iterations T ; low rank r; scale factor α; start
steps K; update ratio λ.
A is initialized by Kaiming Initialization, B = 0 and W is initialized with pre-trained weights.
for t = 0, ..., T − 1 do

Sample a mini-batch and compute gradients for {A,B} in each Delta-LoRA module.
Update the first and second moments maintained by the optimizer with the computed gradients, and

get the normalized gradients ĝA and ĝB .
A(t+1) ← A(t) − ηĝA − ηβA(t)

B(t+1) ← B(t) − ηĝB − ηβB(t)

if t > K do
W (t+1) ←W (t) + λ · αr · (A

(t+1)B(t+1) −A(t)B(t))
end if

end for
Output: the fine-tuned parameters {W (T),A(T),B(T)}

LoRA.840

• The gradient flow is different between LoRA841

and Delta-LoRA. Suppose that we have W ∈842

Rm×n, A ∈ Rm×r and B ∈ Rr×n, where843

r ≤ min(m,n). For LoRA, it keeps W frozen,844

so that W ∗ = W (0) + α
r · A

(t)B(t). For Delta-845

LoRA, it updates all matrices, and has W ∗ =846

W (t) + α
r ·A

(t)B(t).847

So, we have the following equation according to848

Figure 4:849

850
∂L

∂W (t) = (∂hi+3

∂W (t))
⊤ ∂L

∂hi+4
= h⊤

i
∂L

∂hi+4
851

852
∂L

∂A(t) = (∂hi+1

∂A(t))
⊤ ∂L

∂hi+4
· ∂hi+4

∂hi+2
· ∂hi+2

∂hi+1
853

= h⊤
i

∂L
∂hi+4

∂hi+2

∂hi+1
= h⊤

i
∂L

∂hi+4
B(t)⊤854

= ∂L
∂W (t)·B(t)⊤855

856
∂L

∂B(t) = (∂hi+1

∂B(t))
⊤ · ∂L

∂hi+4
· ∂hi+4

∂hi+2
857

= h⊤
i+2 · ∂L

∂hi+4
= (A(t))⊤ · h⊤

i · ∂L
∂hi+4

858

= (A(t))⊤ · ∂L
∂W (t)859

860

Here, we provide the back-propagation process of861

LoRA:862

863
∂L

∂A(t+1) = ∂L
∂W (t+1) · (B(t+1))⊤864

= ∂L
∂(W (0)+(A(t)+∆A(t))(B(t)+∆B(t)))

·865

(B(t) +∆B(t))⊤866

867
∂L

∂B(t+1) = (A(t+1))⊤ · ∂L
∂W (t+1)868

= (A(t) +∆A(t))⊤ ·869
∂L

∂(W (0)+(A(t)+∆A(t))(B(t)+∆B(t)))
870

871

872

This is the back-propagation process of Delta- 873

LoRA: 874

875
∂L

∂A(t+1) 876

= ∂L
∂W (t+1) · (B(t+1))⊤ 877

= ∂L
∂((W (t)+λ∆A(t)B(t))+(A(t)+∆A(t))(B(t)+∆B(t))

· 878

(B(t) +∆B(t))⊤ 879

880
∂L

∂B(t+1) 881

= (A(t+1))⊤ · ∂L
∂W (t+1) 882

= (A(t) +∆A(t))⊤· 883
∂L

∂((W (t)+λ∆A(t)B(t))+(A(t)+∆A(t))(B(t)+∆B(t)))
884

A.4.2 The Expansion of△ AB 885

In the real training process, we need to consider 886

a variety of training arguments, such as optimizer 887

and the regularization for△AB. Suppose that we 888

use the AdamW (Loshchilov and Hutter, 2019) and 889

L2 regularization, the △AB can be expanded in 890

13

W
A

B

𝒉𝒊

𝒉𝒊+𝟏

𝒉𝒊+𝟐𝒉𝒊+𝟑

𝒉𝒊+𝟒

𝒉𝒊+𝟏 = 𝒉𝒊𝑨

𝒉𝒊+𝟐 = 𝒉𝒊+𝟏𝑩

𝒉𝒊+𝟑 = 𝒉𝒊𝑾

𝒉𝒊+𝟏 ∈ ℝ
𝒃×𝒓

𝒉𝒊+𝟐 ∈ ℝ
𝒃×𝒏

𝒉𝒊+𝟑 ∈ ℝ
𝒃×𝒏

Figure 4: The backward propagation of Delta-LoRA.

the following equation:891

△AB = A(t+1)B(t+1) −A(t)B(t)

= (A(t) − ηĝA − ηβA(t)) · (B(t)

− ηĝB − ηβB(t))−A(t)B(t)

= A(t)B(t) − ηA(t)ĝB − ηβA(t)B(t)

− ηĝAB(t) + η2ĝAĝB + η2βĝAB(t)

− ηβA(t)B(t) + η2βA(t)ĝB

+ η2β2A(t)B(t) −A(t)B(t)

= −ηA(t)ĝB − ηβA(t)B(t) − ηĝAB(t)

+ η2ĝAĝB + η2βĝAB(t) − ηβA(t)B(t)

+ η2βA(t)ĝB + η2β2A(t)B(t)

≈ −ηA(t)ĝB − ηĝAB(t)

(5)

892

where η is the learning rate, β is weight decay.893

What’s more, for pre-trained weight W , △W =894

ηĝW + ηβW (t). As a consequence,△AB is not895

equal to△W in the training process.896

A.5 The Parameter Sensitivity Study897

Parameter Sensitivity. Here, we explore the hyper-898

parameter K in Algorithm 1 and λ in Equation 3.899

For the hyper-parameter K, we select it from 0 to900

1000 with the interval of 100. From Table 9, we901

find that our Delta-LoRA could not bring in any902

improvement before K = 400, and it will keep a903

relatively good performance when K is larger than904

500. What is more, we choose different numbers905

for λ, ranging from 0 to 5. According to Table 8,906

the 5 metrics rise rapidly after λ = 0 and reach best907

at λ = 2, while the performance has small drops908

on 5 evaluation scores if λ is chosen from 3 to 5.909

A.6 Hyper-Parameter Used in Our 910

Experiments 911

We report the hyper-parameter that used in our 912

experiments. Table 10 and Table 11 show the 913

hyper-parameter that we used for the training and 914

evaluation on E2E Challenge and WebNLG Chal- 915

lenge 2017 dataset. The Table 12 and Table 13 916

are the training and evaluation hyper parameter for 917

XSum dataset, and the Table 14 consists of hyper- 918

parameters for 8 datasets in GLUE benchmark. 919

14

Table 8: The parameter sensitivity study of update ratio λ for our proposed Delta-LoRA on E2E Challenge dataset.
The best results are boldfaced.

λ BLEU NIST METEOR ROUGE-L CIDEr
0 68.94 8.73 45.27 70.81 2.41
1 69.77 8.81 45.99 71.58 2.46
2 70.84 8.91 46.47 72.24 2.53
3 70.14 8.84 46.39 71.45 2.45
4 70.03 8.83 46.21 71.56 2.47
5 70.13 8.85 46.35 71.72 2.48

Table 9: The parameter sensitivity study of start steps K for our proposed Delta-LoRA on E2E Challenge dataset.
The best results are boldfaced.

K BLEU NIST METEOR ROUGE-L CIDEr
0 69.10 8.75 45.54 71.31 2.41

100 69.97 8.84 46.07 71.40 2.46
200 69.72 8.83 45.82 71.41 2.43
300 69.73 8.86 45.98 71.09 2.46
400 70.18 8.89 46.30 71.66 2.49
500 70.84 8.91 46.47 72.24 2.53
600 70.38 8.86 46.38 71.70 2.47
700 70.61 8.89 46.43 72.13 2.51
800 70.70 8.89 46.30 71.97 2.51
900 71.00 8.92 46.47 72.04 2.52
1000 70.87 8.89 46.31 72.06 2.50

Table 10: The training hyper-parameter used for E2E Challenge and WebNLG Challenge 2017 dataset.

Hyper-Parameter E2E Challenge WebNLG Challenge 2017
Learning Rate η 2e-4 2e-4

Batch Size 8 8
Number of Epochs 5 5

Weight Decay β 0.01 0.01
Resid_pdrop 0 0.09
Attn_pdrop 0 0.09

Embd_pdrop 0 0
Label Smooth 0 0
Start Steps K 500 500

Update Ratio λ 2 5
Rank r 4 4
Alpha α 32 32

Trainable Matrices WQ,W V WQ,W V

LR Scheduler Linear Linear
Warmup Steps 500 500

15

Table 11: The hyper-parameter for evaluation used for E2E Challenge and WebNLG Challenge 2017 dataset.

Hyper-Parameter E2E Challenge WebNLG Challenge 2017
Beam Size 10 5

Penalty 0.8 1.0
No Repeat Ngram Size 4 4

Table 12: The training hyper-parameter used for XSum dataset.

Hyper-Parameter Xsum
Learning Rate η 2e-4

Batch Size 64
Number of Epochs 25

Weight Decay β 0
Activation Dropout 0

Dropout 0
Classifier Dropout 0

Start Steps K 1000
Update Ratio λ 0.5

Rank r 4
Alpha α 32

Trainable Matrices WQ, W V

LR Scheduler Linear
Warmup Steps 3000

Table 13: The hyper-parameter for evaluation used for XSum dataset.

Hyper-Parameter Xsum
Beam Size 8

Penalty 1.0
No Repeat N-gram Size 4

Table 14: The training hyper-parameters of our proposed Delta-LoRA on GLUE benchmark. We adopt the most of
hyper-parameters in LoRA’s paper and implement our method based on the codes given by LoRA’s repository.

Hyper-Parameter MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Learning Rate η 4e-4 5e-4 5e-4 6e-4 3e-4 6e-4 4e-4 4e-4
Batch Size 128 128 128 64 256 128 128 128

Number of Epochs 30 60 30 80 25 25 80 40
Weight Decay β 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Max Sequence Length 256 256 256 256 256 256 512 256
Start Steps K 2000 400 10 200 600 400 200 200

Rank r 8 8 8 8 8 8 8 8
Alpha α 16 16 16 16 16 16 16 16

LR Scheduler Linear Linear Linear Linear Linear Linear Linear Linear
Update Ratio λ 0.5 0.5 0.5 1 1 0.5 0.5 0.5

Trainable Matrices WQ,W V WQ,W V WQ,W V WQ,W V WQ,W V WQ,W V WQ,W V WQ,W V

Warmup Ratio 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

Evaluation Metrics Accuracy Accuracy Accuracy Matthews Accuracy Accuracy Accuracy PearsonCorrelation

16

