Delta-LoRA: Fine-Tuning High-Rank Parameters with the Delta of
Low-Rank Matrices

Anonymous ACL submission

Abstract

In this paper, we present Delta-LoRA, which
is a novel parameter-efficient approach to fine-
tune large language models (LLMs). In con-
trast to LoRA and other low-rank adaptation
methods such as AdalLoRA, Delta-LoRA not
only updates the low-rank matrices A and
B, but also propagate the learning to the pre-
trained weights W' via updates utilizing the
delta of the product of two low-rank matrices
AN B _ A B®) Such a strategy
effectively addresses the limitation that the in-
cremental update of low-rank matrices is inad-
equate for learning representations capable for
downstream tasks. Moreover, as the update of
W does not need to compute the gradients of
W and store their momentums, Delta-LoRA
shares comparable memory requirements and
computational costs with LoRA. Extensive ex-
periments show that Delta-LoRA significantly
outperforms existing low-rank adaptation meth-
ods. We further support these results with com-
prehensive analyses that underscore the effec-
tiveness of Delta-LoRA.

1 Introduction

Large Language Models (LLMs) recently have at-
tracted considerable attention due to their remark-
able performance across a broad spectrum of down-
stream tasks. Diverging from conventional Trans-
formers characterized by a scale of millions of pa-
rameters, modern LL.Ms typically scale up to bil-
lions of parameters, endowing them with notable
advantages such as emergent capabilities and ro-
bust generalization as detailed in (Bubeck et al.,
2023). Fine-tuning such highly capable LLMs
on downstream tasks (Raffel et al., 2020; Devlin
et al., 2019; Radford et al., 2019; He et al., 2021;
Liu et al., 2019; Brown et al., 2020) has conse-
quently become a mainstream paradigm to reduce
the training time required for individual tasks, yet
with superior performance compared with other
methods (Lester et al., 2021; Li and Liang, 2021;

Houlsby et al., 2019; Zhang et al., 2023a).

However, fine-tuning a LLM with all the learn-
able parameters (Full Fine-tuning) requires multi-
ple GPUs with high memory demand (Dettmers
et al., 2023; Hu et al., 2022), which is unattain-
able for many companies and research institutions.
Full fine-tuning poses exceptional challenges to
researchers: with massive parameter size, LLMs al-
ready demand more storage space than regular mod-
els; Further training exaggerates the GPU memory
requirement because common optimizers such as
AdamW (Loshchilov and Hutter, 2019) often main-
tain several copies of the model parameters, which
is 2-3 times of memory overhead.

To this end, a series of methods have been pro-
posed (Valipour et al., 2023; Zhang et al., 2022; Li
and Liang, 2021; Liu et al., 2022a; Lv et al., 2023;
Dettmers et al., 2023; Liu et al., 2022b; Zaken
et al., 2021; Pfeiffer et al., 2021; Guo et al., 2021;
Zhou et al., 2023; Zhang et al., 2023b; Houlsby
et al., 2019; Wang et al., 2022; Xu et al., 2024; Guo
et al., 2024; Kopiczko et al., 2024; Lialin et al.,
2024; Liu et al., 2023a; Li et al., 2024; Wen and
Chaudhuri, 2024; Chen et al., 2024; Kopiczko et al.,
2023) to reduce memory overhead at the training
stage. Some even accelerate the fine-tuning pro-
cess with only less than 1% trainable parameters.
Among these methods, LoRA (Hu et al., 2022) is
the most attractive for its stable performance on
broad downstream tasks (Ding et al., 2023), no ob-
served overfitting, as well as no extra memory and
computation cost at inference.

While LoRA and its successors (Zhang et al.,
2022; Valipour et al., 2023) have indeed exhibited
superior performance in comparison to alternative
approaches within the realm of Parameter Efficient
Fine-Tuning (PEFT), a substantial performance
gap persists when compared to the full fine-tuning,
as highlighted in most scenarios (Ding et al., 2023).
This discrepancy is attributed to the inherent lim-
itation of updating only a fraction of the model’s

HE

v v

(a) LoRA/DyLoRA

(b) AdaLoRA

e
<

!

(c) Delta-LoRA

Figure 1: An overview of the proposed Delta-LoRA structure, compared to LoRA, DyLoRA and AdaLoRA.
Note that DyLoRA and LoRA basically share the same architecture. W is the pre-trained weight which is frozen

(signified by

) when performing efficient-parameter fine-tuning in (a) and (b).
denote the trainable parameters. In our proposed Delta-LoRA, the

trapezoids A, B and E
rectangle means that pre-trained

weights can be updated via the delta. Note that our proposed Delta-LoRA removes the Dropout layer to ensure

reasonable delta for pre-trained matrix.

parameters, rendering it inadequate to fit the intri-
cacies presented in the training data.

To bridge this gap, a reasonable strategy is
to introduce more parameters into the optimiza-
tion process. In this paper, we introduce Delta-
LoRA as shown in Fig. 1, a novel PEFT approach
that simultaneously updates the pre-trained ma-
trix and two low-rank matrices while maintain-
ing the same memory consumption as the origi-
nal LoRA. Specifically, the pre-trained matrix W
is updated with the delta of the product of two
low-rank matrices in two consecutive iterations
(AAB = AU BUD _ A6 By while two
low-rank matrices are updated by the AdamW op-
timizer automatically. This is based on the mathe-
matical property that % = % and NABisa
surrogate to direct the update of W (see Sec. 3 for
details). Since we neither store the gradient of W
nor use the optimizer to update the pre-trained ma-
trix, the proposed method thus does not yield any
extra memory overhead. This strategic integration
effectively mitigates the sub-optimal representation
learning stemming from only updating the two low-
rank matrices. Moreover, our approach aligns the
update direction of the pre-trained weights with
that of the incremental update matrix. Furthermore,
we discard the Dropout layer in low-rank branches
to obtain a more reasonable delta for W, in or-

oL _ oL
der to ensure 55> 745+ The advantages of

ow
our proposed method are conspicuous: including

the pre-trained weights in the optimization pro-

cess engenders a broader integration of parameters,
thereby enhancing the potential for learning intri-
cate representations.

The main contributions of this paper can be sum-
marized as:

* We introduce Delta-LoRA, a novel PEFT method
that simultaneously updates the full weight ma-
trix and two low-rank matrices. Delta-LoRA
leverages the delta of the product of A and B to
update the pre-trained weights and thus prevent
storing the first and the second-order momentums
in the optimizer.

* We analyze the gradient flow of Delta-LoRA

and show that the Dropout layer in the low-rank
branch makes ;—‘f‘:, 8‘?4—%3. Thus, we remove
the Dropout layer in our proposed Delta-LoRA
to get reasonable delta for W.

* We conduct comprehensive experiments to show
that Delta-LoRA has consistent gains on a broad
range of NLP tasks. Additionally, we provide
thorough explanations to analyze its superiority
and the value contributed by each component.

2 Related Works

With the ever-growing parameter scale in current
Transformer-based models, fine-tuning such a large
language model (LLM) requires considerable num-
ber of GPUs equipped with high memory capacity.

This is mainly due to the fact that common opti-
mizers such as AdamW (Loshchilov and Hutter,
2019) requires maintaining three times of extra
parameter size (gradients, first-order and second-
order momentums). To bridge this gap, a series
of Parameter-Efficient Fine-Tuning (PEFT) meth-
ods have been proposed (Hu et al., 2022; Liu
et al., 2022b; Shin et al., 2020; Houlsby et al.,
2019). The Adapter (Houlsby et al., 2019) intro-
duces lightweight trainable parameters between
pre-trained layers while keeping the pre-trained
weights fixed. Prompt-Tuning (Lester et al., 2021)
aims to optimize the prompt to achieve compara-
ble performance with fine-tuning for specific task,
while Prefix-Tuning optimizes for trainable pre-
fixes and prepends these trainable parameters to
each hidden state (Li and Liang, 2021). Despite the
notable performance achievements, these methods
inevitably introduce extra overhead at the inference
stage.

Hu et al. (2022) proposed LoRA to utilize the
multiplication of two low-rank matrices to model
the incremental update of a full-rank matrix. LoRA
merges the incremental updates to pre-trained
weights after training, thereby avoiding any extra
computation overhead during inference. Further-
more, it stands out as one of the most effective
PEFT techniques according to Ding et al. (2023);
Xu et al. (2023)’s evaluation. Subsequent to its
inception, a series of enhanced methods building
upon LoRA was proposed. Notably, G-LoRA (Cha-
van et al., 2023) leverages a generalized prompt
module to fine-tune pre-trained weights resulting
in better representations for computer vision tasks.
DyLoRA (Valipour et al., 2023) aims to adjust the
rank of two lightweight matrices after the train-
ing stage. Differing from the conventional ap-
proach of maintaining a static rank during training,
DyLoRA introduces rank variations to its blocks.
AdalLoRA (Zhang et al., 2022) emphasizes the dis-
parate importance attributed to distinct weight pa-
rameters. This technique intelligently allocates the
parameter budget across weight matrices based on
their respective importance scores. Additionally, Q-
LoRA (Dettmers et al., 2023) was proposed to fur-
ther reduce the average memory footprint by quan-
tizing the pre-trained model with 4-bit NormalFloat.
This quantization approach not only preserves the
model’s efficacy but also effectively alleviates the
resource-intensive nature of LLM training and ad-
dresses a pertinent concern.

3 Methodology

This section introduces the novel fine-tuning ap-
proach termed as Delta-LoRA. Delta-LoRA en-
compasses two pivotal designs as shown in Figure 1
and Figure 2: (i) It simultaneously updates the full
weight matrix (W) alongside the two low-rank
adaptation matrices (A and B), utilizing the delta
(A B _ A BM) resulting from incre-
mental updates to refine the pre-trained weights
(W); (ii) The Dropout layer as originally inte-
grated within the conventional LoRA module, is
excluded in Delta-LoRA. This omission stems from
the realization that its presence violates the required
assumption% = 8(?47£B‘

3.1 Update the Delta of Low-rank Matrices

on Pre-trained Weights

For an input « and its corresponding hidden state
h, LoRA optimizes two low-rank matrices A and
B to learn an incremental update A B for the pre-
trained and fixed weight matrix W . Different from
previous methods, we argue that W also needs to
be updated. In this way, we can introduce more
learnable parameters to the optimization process
for higher learning capability. However, acquiring
the normalized gradients (i.e. the gradients after
normalization in optimizer) to fine-tune the weight
matrix W is non-trivial, since the optimizer such
as AdamW must maintain at least three extra copies
of the parameters (i.e. gradients as well as the first-
order and the second-order moments of gradients)
in GPU memory. Intriguingly, we note that the
gradients of the loss £ with respect to matrices
AB and W are precisely identical, under the pre-
sumption that the LoORA module exclusively retains
matrices A and B, while disregarding the Dropout
layer. This correspondence can be formally repre-
sented as:

oL Ohi ' OL

= . -h!
w Ohiy1 OW Ohiy1
o oL .8hi+1T: oL v
AB ™ Hh,., OAB Ohipr 7

— bgw = 9aB,

where h;.1 = Wh; + ABh,;, h; and h;; are
the outputs of the ¢-th layer and the i+1-th layer
respectively. A B is the matrix product of the adap-
tation matrices A and B, L is the loss function,

while gy B, gw and g 4 g denote the gradients
0

oL ;
of AWLAB) OW > and 5% respectively.

—

Forward pass

Backward pass
—>
Update Parameters

9a

Normalized g4

gs

hiyy
v v

(a) Forward and Backward Pass

&
< <

Normalized gp

(b) Parameter Update

Figure 2: The framework of our proposed Delta-LoRA. The blue arrows represent forward pass while yellow dashed
arrows denote backward propagation. The black solid arrows in (b) represent the process of updating the low-rank
adaptation matrices A and B with normalized gradients g 4 and g 5 multiplied by the learning rate 7, as well as
updating the pre-trained weights W with the delta matrix A A B multiplied by the update ratio A.

Equation 1 inspires us to use g, pg to assimi-
late gy when learning the parameter updates for
weight matrix W. Unfortunately, we are only able
to obtain the gradients g 4 and g g rather than gy
during the back-propagation process. Furthermore,
the computation of the gradients for AB is as ex-
pensive as for the matrix W, since both matrices
share the same dimensions of d x k, consequently
entailing an equivalent GPU memory overhead.

Considering a typical optimization process, the
model updates its parameters by applying the gradi-
ent descent: W+ = W) _ pgoo with the pa-
rameter update denoted as AW = —ngy,, using
the learning rate 7. Similarly, we regard —AAB
as the gradients for A B and utilize this matrix as a
substitute for gy according to Equation 1. Here,
we can compute AAB as:

AAB = AFD B+ _ A®) g(®)

2
—1AOgg +1g4BO — Pgags,
where A(t), B® and W® are the weights of A,
B and W at the ¢-th step respectively, A+ =
AW — ye B+ — O _ ngg and 7 is the
learning rate. To be precise, —AAB does not
equate directly to g 4 g and gy as elaborated in
Appendix A.4.2. Nonetheless, A A B has the capa-
bility to symbolize the genuine directions of update
for the matrix AB. Based on this assumption, it is
reasonable to employ —/AA A B as the gradient for
directing the update of W'.
Therefore, during the training phase we intro-
duce the matrix A AB to update the pre-trained

weights W in the following manner:

w) —w® L \. = . AAB,

RS

3

~

where AAB = AT BEHD _ A0 B®)

where A represents the hyper-parameter to trade off
the update ratio of A B and the pre-trained weights
W . The parameter updates for W commence after
K training iterations. The procedural details of the
algorithm are illustrated in Algorithm 1.

3.2 The structure of our Delta-LoRA

Both LoRA and its successor AdaLoRA put a
Dropout layer before two low-rank matrices A and
B. However, this arrangement results in a dispar-
ity between the gradient matrices gy and g 4 g (or
the matrix g 4 g in the context of AdaLoRA). The
derivation of this disparity can be shown as:

oc
w = Oh;yq

oL
‘hz‘T #9AB = Ohyt 'Drop(hi)Ta

Oy
4)

where Drop(-) denotes the Dropout layer which
leads to gy, # g o g- A reasonable choice is to re-
move the Dropout layer in the low-rank module and
activate the Dropout layer between pre-trained lay-
ers if overfitting problem occurs. This modification
also brings additional benefits: (1) it can allevi-
ate under-fitting to some extent, thereby enhancing
the learned representations of the networks. The
rationale behind this improvement lies in the fact
that LoRA and its successors formulate low-rank
updates for pre-trained weights, involving less than

Table 1: The evaluation results of our proposed Delta-LoRA and other existing methods on E2E NLG Challenge
dataset. T indicates fine-tuning all layers except embedding layer. I indicates only fine-tuning weights for query and
value. 9 means we choose different settings with AdaLoRA: we only tune W g and W'y, instead of all layers. The
best results of Fine-Tuning methods are underlined. The best results of PEFT methods are boldfaced.

Method Trainable | Extra Updatable | - 5y ¢y NIST METEOR ROUGE-L CIDEr
Parameters Parameters

Full Fine-Tuning | 354.92M X 69.7040.20 8.814+0.05 46.21-0.17 71.8840.30 2.4540.03
Fine-Tuningt | 305.84M X 69.5440.24 8.79+0.03 46.12+0.06 71.65+0.28 2.4240.02
Fine-Tuning} 48M X 69.8140.09 8.824+0.02 46.16+0.17 71.85+0.10 2.44-0.04
LoRA (repr.) 0.375M X 69.1310.49 8.79+0.01 45824030 71414030 2.40+0.05
DyLoRA 0.375M X 67.5340.39 8.574+0.07 45.09+0.89 70.79+0.25 2.32-40.06
AdaLoRAq 0.375M X 68.47+0.38 8.69+0.10 45.40+1.13 70.8140.15 2.39+0.04
Delta-LoRA (Ours)| 0.375M vV 48M [70.90-£0.09 8.91+0.02 46.42+0.09 72.11-0.11 2.53--0.01

Table 2: The evaluation results of our proposed Delta-LoRA and other existing methods on WebNLG Challenge
2017 dataset. t indicates fine-tuning all layers except embedding layer. | indicates only fine-tuning weights for
query and value. 9 means we choose different settings with AdaLoRA: we only tune W g and Wy, instead of all
layers. The best results of Fine-Tuning methods are underlined. The best results of PEFT methods are boldfaced.

Method Trainable |Extra Updatable BLEUT METEOR? TERJ
ctho Parameters| Parameters S U A S U A S U A

Full Fine-Tuning | 354.92M X 61.3540.15 45.64+0.64 54.38+0.14|0.44+0.00 0.38+0.00 0.4140.00|0.364-0.01 0.50+0.03 0.4140.01
Fine-Tuning 305.84M X 63.204-0.47 47.17£0.72 55.9440.03|0.454+0.00 0.3940.00 0.4240.00|0.344-0.00 0.49+0.01 0.4140.01
Fine-Tuning} 48M X 64.4040.21 47.81£0.35 56.66+0.59(0.4540.01 0.38+0.01 0.434-0.01]0.344-0.01 0.4740.01 0.404-0.00
LoRA (repr.) 0.375M X 61.7840.52 47.01£0.70 55.07+0.03|0.44+0.00 0.38+0.01 0.4140.01|0.354-0.01 0.49+0.01 0.4140.01
DyLoRA 0.375M X 59.6041.10 45.5740.40 53.254+0.44|0.43+0.01 0.37£0.01 0.4040.01|0.374-0.01 0.48+0.01 0.4240.01
AdaLoRAY 0.375M X 57.3741.38 44.26 +0.17 51.42+0.85(0.424+0.01 0.37£0.00 0.4040.01|0.3940.01 0.49+0.00 0.444-0.01
Delta-LoRA (Ours)| 0.375M v 48M 62.561+0.45 47.94+0.36 55.99+0.04|0.46+0.01 0.40+0.01 0.43+0.01|0.341-0.01 0.48+0.01 0.404-0.01

1% of the complete parameters. However, relying
solely on such a small fraction of parameters may
not bestow an adequate representation capacity in
most cases; (2) This alteration also yields memory-
saving benefits. By negating the requirement to
store intermediate features, the model curtails the
memory consumption. Consequently, there is a
reduction in activation memory employed during
the back-propagation process.

4 Experiments

We evaluate our proposed model fine-tuning
method Delta-LoRA with RoBERTa (Liu et al.,
2019), GPT-2 (Radford et al.,, 2019) and
BART (Lewis et al., 2019) on a broad set of
datasets. Specifically, we train (1) RoOBERTa on
GLUE benchmark which consists of 8 NLP un-
derstanding tasks; (2) GPT-2 on E2E Challenge
and WebNLG Challenge 2017 following the set-
ting of Hu et al. (2022); and (3) BART on XSum
dataset by using the setting provided by Zhang et al.
(2022). See Appendix A.6 for more training details
on the datasets. The setups and detailed introduc-
tions of baseline methods are shown in Appendix

A.1. We use PyTorch to implement our experiments
and download the pre-trained weights as well as
configuration files from HuggingFace (Wolf et al.,
2019).

4.1 Natural Language Generation

Models and Datasets. We use GPT2-Medium to
verify the effectiveness of our Delta-LoRA on two
datasets for data-to-text tasks, including the E2E
NLG Challenge (Puzikov and Gurevych, 2018)
and WebNLG Challenge 2017 (Gardent et al.,
2017). The E2E NLG Challenge dataset com-
prises 42,000 samples for training, 4,600 for vali-
dation, and 4,600 for testing purposes. In contrast,
the WebNLG Challenge 2017 consists of 21,855
training samples across nine categories, expand-
ing to a total of 14 categories in the test set. For
the text summarization task, we employed BART-
Large (Lewis et al., 2019) to evaluate the efficacy
of our method using the XSum dataset (Narayan
et al., 2018). The XSum dataset is composed of
204,045 training samples, 11,332 validation sam-
ples, and 11,332 test samples. We also use LLaMA-
7B(Touvron et al., 2023), a popular pre-trained

Table 3: The evaluation results of our proposed Delta-LoRA and other existing methods on GLUE benchmark.
We report the overall (matched and mismatched) accuracy for MNLI, Matthew’s correlation for CoLA, Pearson
correlation for STS-B, and accuracy for other tasks. { indicates fine-tuning all layers except the embedding layer. I
indicates only fine-tuning weights for query and value. § means we choose different settings with AdaLoRA: we
only tune W g and Wy instead of all layers. The best results of Fine-Tuning methods are underlined. The best

results of PEFT methods are boldfaced.

Trainable
Parameters

Extra Updatable

Method Parameters

MNLI SST-2

MRPC

CoLA QNLI QQP RTE STS-B AVG

Full Fine-Tuning | 118.87M X 87.4140.10 94.07£0.17 87.994+0.25 64.42+0.30 92.8740.14 91.23£0.64 84.714+0.55 90.7540.19 86.68
Fine-Tuning 82.05M X 87.6140.03 94.22+0.18 89.8740.37 62.90£0.27 92.724+0.16 91.62+0.54 86.284+0.36 90.64+0.39 86.98
Fine-Tuning} 13.5M X 87.34£0.26 95.02£0.06 89.05+0.14 61.00£0.17 92.6440.12 91.3640.47 85.194+0.36 90.08-£0.71 86.46

LoRA 0.28M X 87.3240.10 94.61£0.12 89.7010.65 63.28£0.75 92.9140.10 90.63£0.05 86.28+0.36 91.51£0.06 87.03
DyLoRA 0.28M X 86.6010.27 94.34£0.24 88.891+0.51 61.51£0.36 92.361+0.16 90.37£0.33 84.351+0.55 91.2440.20 86.20
AdaLoRAY 0.28M X 87.351+0.04 94.49+£0.12 90.1140.14 61.68+0.37 92.984+0.12 90.24+0.13 85.801+0.56 91.31+0.16 86.74
Delta-LoRA (Ours)| 0.28M v'13.5M 87.62+£0.21 95.2940.23 90.60+£0.14 64.641-0.86 93.09+£0.15 91.011+0.06 87.00£0.36 91.611+-0.04 87.60

large language model with 7 Billion parameters, to
fine-tune on Alpaca dataset (Taori et al., 2023).

Table 4: The evaluation results of Delta-LoRA with
LLaMA-7B on the Instruction-Tuning dataset provided
by Stanford Alpaca(Taori et al., 2023). We use GPT-4 to
choose from a. LoRA, b. Delta-LoRA or c. Both LoRA
and Delta-LoRA to decide the text from which method
is better.

Both LoRA Delta-LoRA
886 10 104

Total
1,000

Implementation Details. In order to compare
with LoRA and its successors fairly, we adopt the
model setups from LoRA to implement our Delta-
LoRA and three PEFT methods. We only learn the
low-rank incremental update for W g and Wy, in
MHA module. For data-to-text datasets, we use the
same training configurations as adopted by LoRA,
including the number of training epochs, batch size
and etc. We use update ratio A = 2 and set start
steps K = 500 for Delta-LoRA. More details about
Delta-LoRA are listed in the Appendix A.6. For
the text-summarization task, we use the implemen-
tation of AdaLLoRA and adopt the same training
configurations. We set the update ratio A = 0.5
and the start steps K = 1000 for Delta-LoRA.

Experimental Results. Table 1 shows the re-
sults for E2E Challenge dataset on 5 evaluation met-
rics, demonstrating that our method achieves state-
of-the-art performance over 3 baselines and a set of
fine-tuning methods. For the BLEU and ROUGE-
L metrics, our method obtains 1.77 and 0.7 per-
formance gains compared with LoRA, with 0.12,
0.6 and 0.13 improvement on NIST, METEOR
and CIDEr respectively. Table 2 demonstrates
that Delta-LLoRA outperforms baselines on BLEU
score for WebNLG Challenge 2017 dataset, with

0.78, 0.93 and 0.92 improvement on Seen, Unseen
and All test data, respectively. Additionally, for
the METEOR and TER evaluation metrics, Delta-
LoRA also achieves state-of-the-art performance,
with 0.02 and 0.01 improvement over LoRA on
all data. For the text-summarization task, the test
results are shown in Table 5, which demonstrates
that our method achieves state-of-the-art results
across 3 parameter-efficient methods on 4 evalu-
ation metrics. To fairly evaluate our method, we
utilized LLaMA-7B and compared it with LoRA.
We employed GPT-4 to generate 1,000 questions
and presented these questions to the parameter-
efficient fine-tuned LLaMA-7B. Subsequently, we
leveraged GPT-4 to compare the texts generated by
LoRA-tuned and Delta-LoRA-tuned LLMs. Addi-
tional details can be found in Appendix A.2. Ac-
cording to the findings in Table 4, Delta-LoRA
establishes state-of-the-art performance in the eval-
uation of Language Models (LLMs). GPT-4 identi-
fied 104 samples generated by Delta-L.oRA as supe-
rior to LoRA, while only 10 samples generated by
LoRA exhibited higher quality than Delta-LoRA.
This underscores Delta-LoRA’s effectiveness even
when utilized within models containing billions of
parameters.

4.2 Natural Language Understanding

Models and Datasets. We use RoBERTa-base(Liu
et al., 2019) to evaluate the performance of our pro-
posed method, prior works and three fine-tuning
methods. We choose the GLUE benchmark con-
sisting of 8 datasets (Wang et al., 2019), including
classification tasks, similarity and paraphrase tasks
and natural language inference tasks.
Implementation Details. We use RoBERTa-
base with 118M parameters to conduct our exper-
iments and to compare our method with the base-

Table 5: The evaluation results of our proposed Delta-LLoRA and other existing methods on XSum dataset. |
indicates fine-tuning all layers except the embedding layer. I indicates only fine-tuning weights for query and value.
9 means we choose different settings with AdaLoRA: we only tune W g and W'y, instead of all layers. The best
results of Fine-Tuning methods are underlined. The best results of PEFT methods are boldfaced.

Trainable | Extra Updatable

Method Parameters | Parameters Rouge-1 Rouge-2 Rouge-L. Rouge-Sum

Full Fine-Tuning | 387.5M X 45.184+0.17 22.08+0.08 37.19£0.05 37.2+0.05
Fine-Tuning? 338.4M X 44.87+0.23 21.94+0.16 36.74+0.20 36.76+0.20
Fine-Tuning? 72M X 44.67£0.27 21.29+0.14 36.23+0.12 36.24£0.13
LoRA 0.56M X 43.174+0.12 20.01+£0.14 34.93£0.20 34.934+0.20
DyLoRA 0.56M X 42.084+0.32 19.01+0.27 33.83+0.32 33.851+0.33
AdaLoRAY 0.56M X 42.9£0.03 19.754+0.07 34.66£0.07 34.66+0.07
Delta-LoRA (Ours) | 0.56M v'12M 43.45+0.05 20.21+£0.12 35.214+0.05 35.21+0.05

lines. We mostly adopt the same training configura-
tions of LoRA, more details can get from Appendix
A.6. We set the rank to 8 and the target rank to 6 for
AdalLoRA and choose the rest of hyper-parameters
according to the characteristics of different tasks.
For Delta-LoRA, we set the update ratio A to 0.5
and choose different start steps K according to
warmup steps used in individual tasks.

Experimental Results. We compare our method
with prior PEFT works. According to Table 3,
our method outperforms existing methods on all 8
tasks in GLUE benchmark. Among these tasks, our
method demonstrates significant improvement on
SST-2, CoL A and RTE. This is mainly due to the
fact that these datasets contain less training data,
which hinders the model’s capacity to effectively
acquire a robust representation when using prior
fine-tuning methods. Delta-LoRA also achieves de-
cent performance on the rest of the datasets, includ-
ing MNLI, MRPC, QNLI as well STS-B, which
proves that our method is stable and reliable across
different settings.

4.3 Comprehensive Understanding of
Delta-LoRA

The Extra Updatable Parameters. We intro-
duce the concept of extra updatable parameters to
point out the superiority of Delta-LoRA. For most
PEFT methods, they can only adjust the low-rank
adapters, such as Adapter(Houlsby et al., 2019)
and LoRA(Hu et al., 2022). Thus, they don’t have
any extra parameters to update, which means their
extra updatable parameters are 0. However, our
Delta-LoRA can achieve the purpose of updating
the W matrix without increasing the GPU mem-
ory consumption, which means its extra updatable
parameters are the parameter number of W.
Ablation study. To better understand the contri-

bution of our modified LoRA module (i.e. Delta-
LoRA module) and the effectiveness of our up-
date algorithm, we conduct studies on E2E Chal-
lenge dataset with GPT2-medium. As shown in Ta-
ble 6, only updating the pre-trained matrices with
delta of low-rank update can indeed achieve per-
formance improvement, while further discarding
the dropout in Delta-LoRA module obtains the best
performance. This observation confirms the indis-
pensable role played by each component within
our proposed methodology. We have devised an
experiment to further differentiate whether the per-
formance enhancement stems from the inherent
characteristics of our method rather than solely
from the substantial update magnitude. According
to our algorithm, we update the parameters of both
pre-trained and low-rank matrices, which can arose
the doubt of whether the improvement is caused by
updating larger A AB on the weights instead of
introducing more parameters into the optimization
process. To answer this question, we design an ex-
periment with results shown in Table 7 to prove the
effectiveness of our method. We scale the learning
rate of LoRA from 2e-4 to 6e-4 making sure that
W + AB can be updated with 3 x A A B, which
is equivalent to Delta-LoRA when X is set to 2.
We find that even by updating with 3 x A AB on
A B, the performance is still not comparable with
Delta-LoRA. This experiment further proves that
introducing more parameters into the optimization
process can force to learn better representation.

The cosine similarity between fine-tuned and
the pre-trained parameters to measure learning
effects. We conduct a comparative analysis of three
methods including Fine-Tuning?, LoRA and Delta-
LoRA, in order to elucidate the reasons behind
Delta-LoRA’s superior performance. We use the
last checkpoint trained on E2E Challenge dataset

Table 6: The ablation study of our proposed Delta-LoRA on E2E Challenge dataset demonstrates the importance of

each component. The best results are boldfaced.

Method Trainable | Extra Updatable | o) 115 NigT METEOR ROUGE-L CIDEr
Parameters Parameters
LoRA (repr.) 0.375M X 69.60 878 4561 7112 245
Delta-LoRA + LoRA Module| 0.375M V4sM 7029 888 4638 7188 251
Delta-LoRA 0.375M V4SM | 7084 891 4647 7224 253

Table 7: The ablation study of our proposed Delta-LoRA to eliminate the impact of hyper-parameter A\ on E2E

Challenge dataset. The best results are boldfaced.

Method ‘Lelg:;;“g A ‘BLEU NIST METEOR ROUGE-L CIDEr

LoRA (repr.)| 2e-4 - 69.60 8.78 45.61 71.12 2.45

LoRA (repr.)| 6e-4 - 69.63 8.79 45.70 71.55 2.39

Delta-LoRA 2e-4 2 70.84 8.91 46.47 72.24 2.53

Fine-Tuning# LoRA Delta-LoRA
g
& 099
E o098 |
v
£ 097 |
S 096 layer
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
(a) The Cosine Similarity between Fine-Tuned and Original W,

2 17
S 099 |
-E 098 |
)
£ 097 1
=}
© 096 layer

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(b) The Cosine Similarity between Fine-Tuned and Original Wy,

Figure 3: The comparison of Fine-Tuning}, LoRA as well as Delta-LoRA for the cosine similarity between the
fine-tuned parameters and the original pre-trained parameters in each transformer block. Higher value means higher

similarity.

to give understanding. As depicted in Figure 3, it
is evident that LoRA exhibits the highest similarity
across the majority of transformer blocks. This
observation suggests that LORA primarily modi-
fies the matrix W* = W + A B within a limited
range. Nevertheless, Delta-LoRA showcases the
lowest cosine similarity, underscoring that our ap-
proach induces the most significant modifications
to the final matrix W*. Due to this property, our
approach can effectively stimulate the model to
acquire better representations, leading to state-of-
the-art performance across all four PEFT methods.
This observation further aligns with the evaluation
results in Table 1: Delta-LoRA achieves the best
performance among the three methods, whereas
LoRA is slightly worse than Fine-Tuning?.

5 Conclusion

In this paper, we have introduced Delta-LoRA,
a novel method to simultaneously update the
full weight matrix and two low-rank matrices.
Delta-LoRA leverages the delta (A(t“)B (t+1)
A® B®) o update the pre-trained weights (W).
In this way, we introduce more learnable param-
eters into the optimization process such that the
model can learn a better representation with com-
parable memory cost as LoRA. Meanwhile, we
identify the Dropout layer in the low-rank branch
to be unnecessary according to the gradient flow.
We also provide thorough analysis of our method to
understand its effectiveness and robustness. Exten-
sive experiments on a broad range of NLP tasks are
conducted to empirically verify the effectiveness
of our Delta-LoRA.

6 Limitations

This work has several limitations. First, it involves
a two-step process to compose the delta of two low-
rank matrices into a gradient matrix, which is some-
what time-consuming. Second, since this work was
conducted in 2023, we could not compare it with
subsequent advancements in the field. Third, our
evaluation was limited to GPT-2 Medium, BART-
Large, RoBERTa-Base, and LLaMA-7B models.
Future work will focus on experimenting with other
large language models.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurlPS.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general in-
telligence: Early experiments with gpt-4.

Arnav Chavan, Zhuang Liu, Deepak Gupta, Eric Xing,
and Zhigiang Shen. 2023. One-for-all: General-
ized lora for parameter-efficient fine-tuning. arXiv
preprint arXiv:2306.07967.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2024. Lon-
gloRA: Efficient fine-tuning of long-context large
language models. In ICLR.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,
Zhiyuan Liu, Hai-Tao Zheng, Jianfei Chen, Yang
Liu, Jie Tang, Juanzi Li, and Maosong Sun. 2023.
Parameter-efficient fine-tuning of large-scale pre-
trained language models. Nature Machine Intelli-
gence.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation.

Demi Guo, Alexander M Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. In ACL.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim.
2024. LQ-loRA: Low-rank plus quantized matrix de-
composition for efficient language model finetuning.
In ICLR.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In
ICML.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In ICLR.

Shaoyi Huang, Dongkuan Xu, Ian Yen, Yijue Wang,
Sung-En Chang, Bingbing Li, Shiyang Chen, Mimi
Xie, Sanguthevar Rajasekaran, Hang Liu, and Cai-
wen Ding. 2022. Sparse progressive distillation:
Resolving overfitting under pretrain-and-finetune
paradigm. In ACL.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M
Asano. 2024. ELoRA: Efficient low-rank adaptation
with random matrices. In ICLR.

Dawid Jan Kopiczko, Tijmen Blankevoort, and
Yuki Markus Asano. 2023. Vera: Vector-
based random matrix adaptation. arXiv preprint
arXiv:2310.11454.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In EMNLP.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
ACL.

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatzi-
akis, Pengcheng He, Weizhu Chen, and Tuo Zhao.
2024. Loftq: LoRA-fine-tuning-aware quantization
for large language models. In ICLR.

http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712

Vladislav Lialin, Sherin Muckatira, Namrata Shiva-
gunde, and Anna Rumshisky. 2024. ReloRA: High-
rank training through low-rank updates. In ICLR.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022a. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. In
NeurlPS.

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yux-
uan Xue, Longhui Yu, Haiwen Feng, Zhen Liu,
Juyeon Heo, Songyou Peng, et al. 2023a. Parameter-
efficient orthogonal finetuning via butterfly factoriza-
tion. arXiv preprint arXiv:2311.06243.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022b. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In ACL.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023b. Gpte-
val: Nlg evaluation using gpt-4 with better human
alignment. arXiv preprint arXiv:2303.16634.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao,
Qipeng Guo, and Xipeng Qiu. 2023. Full parameter
fine-tuning for large language models with limited
resources.

Shashi Narayan, Shay B Cohen, and Mirella Lap-
ata. 2018. Don’t give me the details, just the
summary! topic-aware convolutional neural net-
works for extreme summarization. arXiv preprint
arXiv:1808.08745.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for
transfer learning. In FACL.

Yevgeniy Puzikov and Iryna Gurevych. 2018. E2E
NLG challenge: Neural models vs. templates. In
Proceedings of the 11th International Conference on
Natural Language Generation.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR, 21(140):1-67.

10

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In EMNLP.

Chuangqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang,
Chao Yang, and Chunfang Liu. 2018. A survey on
deep transfer learning. In ICANN.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan
Kobyzev, and Ali Ghodsi. 2023. Dylora: Parameter-
efficient tuning of pre-trained models using dynamic
search-free low-rank adaptation. In EACL.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In /CLR.

Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu,
Jing Gao, Ahmed Hassan Awadallah, and Jian-
feng Gao. 2022. Adamix: Mixture-of-adapter for
parameter-efficient tuning of large language models.
In EMNLP.

Yeming Wen and Swarat Chaudhuri. 2024. Batched
low-rank adaptation of foundation models. In /CLR.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui
Tao, and Fu Lee Wang. 2023. Parameter-efficient
fine-tuning methods for pretrained language models:
A critical review and assessment. arXiv preprint
arXiv:2312.12148.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen,
Heng Chang, Hengheng Zhang, Zhengsu Chen, XI-
AOPENG ZHANG, and Qi Tian. 2024. QA-loRA:
Quantization-aware low-rank adaptation of large lan-
guage models. In ICLR.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

http://arxiv.org/abs/2306.09782
http://arxiv.org/abs/2306.09782
http://arxiv.org/abs/2306.09782
http://arxiv.org/abs/2306.09782
http://arxiv.org/abs/2306.09782
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen
Chu, and Bo Li. 2023a. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-
tuning.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen
Chu, and Bo Li. 2023b. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-
tuning. arXiv preprint arXiv:2308.03303.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2022. Adaptive budget allocation for
parameter-efficient fine-tuning. In /CLR.

Han Zhou, Xingchen Wan, Ivan Vuli¢, and Anna Korho-
nen. 2023. Autopeft: Automatic configuration search
for parameter-efficient fine-tuning. arXiv preprint
arXiv:2301.12132.

11

http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303

A Appendix

A.1 Baselines

We compare our proposed method Delta-LoRA
with Fine-Tuning and prior works of LoRA,
AdalLoRA, and DyLoRA. For PEFT methods, we
only train the incremental updates for Wy, and
W q, following the setup as used in LoRA’s paper.
For Fine-Tuning methods, we use two extra train-
ing paradigms: (1) freeze the embedding and train
all the other parameters as Fine-Tuning T; (2) train
Wy and W g only as Fine-Tuning].

Fine-Tuning. In the past few years, fine-tuning
has become the mainstream paradigm for both NLP
and CV tasks. Howeyver, fine-tuning full parameters
is subject to potential drawbacks including overfit-
ting and training instability (Huang et al., 2022).
Therefore, freezing a subset of network layers and
fine-tuning the rest has become a popular choice
(Tan et al., 2018). In our experiments, we compare
with full fine-tuning, fine-tuning with embedding
layers frozen (Fine-tuning t) and fine-tuning query
and value matrices only (Fine-tuning I).

LoRA (Hu et al., 2022) uses multiplication of
two low-rank matrices to learn the incremental up-
dates with reduced GPU memory cost. We follow
their setups to reproduce experimental results for
fair comparison.

DyLoRA (Valipour et al., 2023) randomly
chooses a rank r for LORA modules during learn-
ing.

AdaLoRA (Zhang et al., 2022) focuses on the
challenge of determining the optimal rank for incre-
mental updates. It employs an adaptive approach to
singular value pruning, tailoring the rank selection
to the magnitude of each singular value. Conse-
quently, distinct ranks are employed for different
layers.

A.2 The Comparison between LoRA and
Delta-LoRA with LLaMA-7B

A.2.1 Training and Inference Arguments
Used in Our Method and Baseline

We choose LLaMA-7B to evaluate our method
and LoRA. Here, we set the learning rate v =1le-
4, batch size to 128, r = 8, a =16, and train-
ing epochs to 3 for both two methods. Follow-
ing the LoRA’s paper, we only tune W andWy .
For Delta-LoRA, we choose start steps K = 100
and A\ 0.25. When inference, we set the
no_repeat_ngram_size = 10, temperature = 0 and
beam size = 4 to get a certain answer.

12

A.2.2 The Evaluation for Our Method and
Baselines

Current LLMs obtain the training data from the In-
ternet, which may unintentionally cause data leak-
age. Therefore, using the mainstream NLP datasets
to evaluate the effectiveness of Large Language
Model is not reasonable and wisdom. Inspired by
evaluation approach proposed by Liu et al. (2023b),
we decided to use GPT-4 to judge the text generated
by which method is accurate. First, we ask GPT-
4 to generate 1,000 different questions. Second,
we use the LLaMA-7B trained by two methods to
generate the texts. Finally, we ask GPT-4 to give
decision to tell us which text is accurate. It can
choose from three options: a. Choice 1 (LoORA
generates accurate text), b. Choice 2 (Delta-LoRA
generates accurate text) and c¢. Both Choice 1 and
2 (Both LoRA and Delta-LoRA generate accurate
texts). The prompt we used for evaluation:

Help me to determine which text is accurate for the
given instruction and question. The answer can be
chosen from a. Choice 1 is accurate, b. Choice
2 is accurate or c. both Choice I and 2 are accu-
rate. Give me a certain answer and this is a choice
question. Please don’t give reasons and the answer
must be shorter than 20 words.

Question:
(Choice 1): ""
(Choice 2): ""

"

A.3 Algorithm of Delta-LoRA

Our Delta-LoRA can be found in Algorithm 1.
Compared to LoRA, we added a step to update
the pre-trained W without any extra GPU memory
consumption.

A.4 A Further Understanding of Delta-LoRA

A.4.1 The Differences between LoRA and
Delta-LoRA

There are some fundamental differences between
LoRA and Delta-LoRA.

e Given W + AB, W is fixed in LoRA, but
W will be updated in our Delta-LoRA. This is
the largest difference between LoRA and Delta-
LoRA. This modification can yield more training
differences between LoRA and Delta-LoRA in the
next few training steps.

L] Rank(AWDelm_LoRA) = Rank(W(T) —
WO 4+ AB) > Rank(AW ,r4) = Rank(AB).
The rank of the learned incremental weight matrix
in our Delta-LoRA is larger than that in the original

Algorithm 1: Delta-LoRA

Input: Learning rate n; weight decay [3; total training iterations 7'; low rank r; scale factor «; start

steps K; update ratio \.

A is initialized by Kaiming Initialization, B = 0 and W is initialized with pre-trained weights.

fort=0,....,7 —1do

Sample a mini-batch and compute gradients for { A,B} in each Delta-LoRA module.
Update the first and second moments maintained by the optimizer with the computed gradients, and

get the normalized gradients g4 and gp.
AUD AW _ 5, —nBAD
Bt « BO _ pygp — ngB®
ift > K do

WD WO 4). 2. (A B _ 40 B0)

end if
end for

Output: the fine-tuned parameters {W(T), A(T)7 B (T)}

LoRA.

e The gradient flow is different between LoRA
and Delta-LoRA. Suppose that we have W ¢
R™" A € R™" and B € R™", where
r < min(m,n). For LoRA, it keeps W frozen,
so that W* = W© o AW B® For Delta-
LoRA, it updates all matrices, and has W*
w® 4 a. A B®)

So, we have the following equation according to
Figure 4:

oL __ (ahi+3)T oL T_0L
ow) — 8W(t> 8hi+4 - 8h7;+4
0L (8hi+1)T 9L Ohita Ohiyo
0A1®) T L ga) Oh;+4 Ohijta Oh;yq
_ pl 0L Ohits _ pT 0L BT
T "% Ohiyq Ohiyr T T Ohyqy
= aﬁiawwg(m

oL _ (8hi+1)T 0L Ohiyy

a8® — (30 Bhisa Ohiso
3T 9L (A(NT BT . oL
=hito ans =(A"Y)" - h; Ohya
_(ANT oL

Here, we provide the back-propagation process of
LoRA:

oL

oL t+1)\T
8A(t+1) - 8w(t+1) ’ (B())
— oL .

oW O +(AD+AAW)(BHO+ABW))
(BY + ABM)T

0L - — (AT 0L
OBt ow (¢
:m@+AAQT.

WO +(ADLAADYBH LABM))

13

This is the back-propagation process of Delta-
LoRA:

oL
8A(t+1)

= % . (B(t+1))T

_ oL .
T A((WBHAAAD BB (AW LAAD Y BB LAB®)
(BY) + ABM)T

oL
oB(t+1)
_ t+1)\T oL
- (A()) : ow (t+1)

- (A(t) + AA(t))T.

c
(WO LAAAND BB (ABDLAAM B L ABM))

A.4.2 The Expansion of A AB

In the real training process, we need to consider
a variety of training arguments, such as optimizer
and the regularization for A A B. Suppose that we
use the AdamW (Loshchilov and Hutter, 2019) and
L, regularization, the A A B can be expanded in

hi+3

-
i

v hi+4

hiiq

hiy1 =hA hyq € R
hiiz = hi1B hyyp € RPT

hii3 = hiW hiz € R

Figure 4: The backward propagation of Delta-LoRA.

the following equation:

AAB = A+ gt+l) 4@ g®)
= (A —nga —nsA") . (BY
—ngs —nBBY) — AU B
=AUBY _ nAWGE — npA® BW
—ngaBY + n*Gagn +1°BaBY
—nBAYB® 4+ n23AWG,
+ 022 AOBO — A BM)
= -—nAWgp — A BY —yg, B
+ 11”9498 + 1°6gaB"Y — nsAY BY
+1°AYgp + 2 5° AV BY

~ -nAYgp — ngaBY
(5)

where 7 is the learning rate, 3 is weight decay.
What’s more, for pre-trained weight W, AW =
ngw +nBW® . As a consequence, AAB is not
equal to AW in the training process.

A.5 The Parameter Sensitivity Study

Parameter Sensitivity. Here, we explore the hyper-
parameter K in Algorithm 1 and X in Equation 3.
For the hyper-parameter K, we select it from O to
1000 with the interval of 100. From Table 9, we
find that our Delta-LoRA could not bring in any
improvement before K = 400, and it will keep a
relatively good performance when K is larger than
500. What is more, we choose different numbers
for)\, ranging from O to 5. According to Table 8,
the 5 metrics rise rapidly after A = 0 and reach best
at A\ = 2, while the performance has small drops
on 5 evaluation scores if A is chosen from 3 to 5.

14

A.6 Hyper-Parameter Used in Our
Experiments

We report the hyper-parameter that used in our
experiments. Table 10 and Table 11 show the
hyper-parameter that we used for the training and
evaluation on E2E Challenge and WebNLG Chal-
lenge 2017 dataset. The Table 12 and Table 13
are the training and evaluation hyper parameter for
XSum dataset, and the Table 14 consists of hyper-
parameters for 8 datasets in GLUE benchmark.

Table 8: The parameter sensitivity study of update ratio A for our proposed Delta-LoRA on E2E Challenge dataset.
The best results are boldfaced.

A BLEU NIST METEOR ROUGE-L CIDEr
0 68.94 8.73 45.27 70.81 241
1 69.77 8.81 45.99 71.58 2.46
2 70.84 8.91 46.47 72.24 2.53
3 70.14 8.84 46.39 71.45 245
4 70.03 8.83 46.21 71.56 247
5 70.13 8.85 46.35 71.72 2.48

Table 9: The parameter sensitivity study of start steps K for our proposed Delta-LoRA on E2E Challenge dataset.
The best results are boldfaced.

K BLEU NIST METEOR ROUGE-L CIDEr

0 69.10 8.75 45.54 71.31 241
100 69.97 8.84 46.07 71.40 2.46
200 69.72 8.83 45.82 71.41 243
300 69.73 8.86 45.98 71.09 2.46
400 70.18 8.89 46.30 71.66 2.49
500 70.84 8.91 46.47 72.24 2.53
600 70.38 8.86 46.38 71.70 247
700 70.61 8.89 46.43 72.13 2.51
800 70.70 8.89 46.30 71.97 2.51
900 71.00 8.92 46.47 72.04 2.52
1000 70.87 8.89 46.31 72.06 2.50

Table 10: The training hyper-parameter used for E2E Challenge and WebNLG Challenge 2017 dataset.

Hyper-Parameter | E2E Challenge WebNLG Challenge 2017

Learning Rate n 2e-4 2e-4
Batch Size 8 8
Number of Epochs 5 5
Weight Decay 0.01 0.01
Resid_pdrop 0 0.09
Attn_pdrop 0 0.09
Embd_pdrop 0 0
Label Smooth 0 0
Start Steps K 500 500
Update Ratio A 2 5
Rank r 4 4
Alpha o 32 32
Trainable Matrices Wo Wy Wao Wy
LR Scheduler Linear Linear
Warmup Steps 500 500

15

Table 11: The hyper-parameter for evaluation used for E2E Challenge and WebNLG Challenge 2017 dataset.

Hyper-Parameter E2E Challenge WebNLG Challenge 2017

Beam Size 10 5
Penalty 0.8 1.0
No Repeat Ngram Size 4 4

Table 12: The training hyper-parameter used for XSum dataset.

Hyper-Parameter Xsum
Learning Rate n 2e-4
Batch Size 64
Number of Epochs 25
Weight Decay 3 0
Activation Dropout 0
Dropout 0
Classifier Dropout 0
Start Steps K 1000
Update Ratio A 0.5
Rank r 4
Alpha o 32
Trainable Matrices Wao, Wy
LR Scheduler Linear
Warmup Steps 3000

Table 13: The hyper-parameter for evaluation used for XSum dataset.

Hyper-Parameter Xsum
Beam Size 8
Penalty 1.0
No Repeat N-gram Size 4

Table 14: The training hyper-parameters of our proposed Delta-LoRA on GLUE benchmark. We adopt the most of
hyper-parameters in LoRA’s paper and implement our method based on the codes given by LoRA’s repository.

Hyper-Parameter \ MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B
Learning Rate n 4e-4 Se-4 Se-4 6e-4 3e-4 6e-4 4e-4 4e-4
Batch Size 128 128 128 64 256 128 128 128
Number of Epochs 30 60 30 80 25 25 80 40
Weight Decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Max Sequence Length 256 256 256 256 256 256 512 256
Start Steps K 2000 400 10 200 600 400 200 200
Rank r 8 8 8 8 8 8 8 8
Alpha o 16 16 16 16 16 16 16 16
LR Scheduler Linear Linear Linear Linear Linear Linear Linear Linear
Update Ratio A 0.5 0.5 0.5 1 1 0.5 0.5 0.5
Trainable Matrices |Wqo, Wy W Wy Wo Wy W Wy W Wy W Wy W Wy W Wy
Warmup Ratio 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
Evaluation Metrics | Accuracy Accuracy Accuracy é\:)[?rtft:lll;?z)sn Accuracy Accuracy Accuracy Pearson

16

