
Hiding-in-Plain-Sight (HiPS) Attack on CLIP for
Targetted Object Removal from Images

Arka Daw1∗ Megan Hong-Thanh Chung1∗ Maria Mahbub1 Amir Sadovnik1

1 Oak Ridge National Laboratory (ORNL)

Abstract
Machine learning models are known to be vulnerable to adversarial attacks, but
traditional attacks have mostly focused on single-modalities. With the rise of
large multi-modal models (LMMs) like CLIP, which combine vision and language
capabilities, new vulnerabilities have emerged. However, prior work in multimodal
targeted attacks aim to completely change the model’s output to what the adversary
wants. In many realistic scenarios, an adversary might seek to make only subtle
modifications to the output, so that the changes go unnoticed by downstream models
or even by humans. We introduce Hiding-in-Plain-Sight (HiPS) attacks, a novel
class of adversarial attacks that subtly modifies model predictions by selectively
concealing target object(s), as if the target object was absent from the scene. We
propose two HiPS attack variants, HiPS-cls and HiPS-cap, and demonstrate their
effectiveness in transferring to downstream image captioning models, such as
CLIP-Cap, for targeted object removal from image captions.

1 Introduction

The vulnerability of machine learning (ML) models to adversarial attacks—small perturbations in
input data that lead to incorrect predictions—has been extensively studied [1, 2] across various do-
mains, including image classification [3, 4] and biometrics [5, 6]. However, most existing adversarial
attacks have been designed for single modalities, primarily focusing on the image or, less frequently,
the text domain [7, 8]. The advent of large foundational models, such as large language models
(LLMs) [9] and large multi-modal models (LMMs) [10] (e.g., Chat-GPT [11], Gemini [12]), which
have shown great promise across a diverse range of tasks [13] (such as zero-shot classification, visual
question answering, and image captioning) has revolutionized the ML community and led to their
widespread adoption. Many of these models [14] integrate a pre-trained LLM with a large vision
encoder, such as CLIP [15] which is a foundational multimodal model trained on 400M image-text
pairs via contrastive learning. Typically, the vision encoder of such LMMs remains frozen during
training, and the vision embeddings are mapped into the shared embedding space of the LLM using a
simple projection layer. However, this introduces an obvious vulnerability [16]: adversarial attacks
developed against these open-source vision encoders (such as CLIP) can be directly transferred to
LMMs, compromising their integrity.

While generating adversarial attacks on LMMs (such as CLIP) [16, 17] has been explored, generally
termed as jailbreaking LMMs [18, 19], they have primarily focused on ‘completely’ changing the
output of the LMM to what the adversary wants, which is typically very different from the original
outputs (without any perturbation). However, in many real-world scenarios, an adversary might seek
to make only ‘subtle’ modifications to the output, so that the changes go unnoticed by downstream
models or even by humans. To this end, we introduce a novel class of adversarial attacks on images,
termed Hiding-in-Plain-Sight (HiPS) attacks. The primary goal of a HiPS attack is to generate an
adversarial image that subtly modifies the model’s predictions by selectively concealing a specific
target object while leaving the rest of the model’s functionality intact. For example, a HiPS adversarial
image designed to hide a particular object should cause an image captioning model to generate a
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Figure 1: A schematic illustration of the Hiding-in-Plain-Sight (HiPS-cap) Attack.

caption as if the target object(s) was never present, while the rest of the image content should stay in
tact. We propose two distinct types of HiPS attacks using the CLIP vision encoder: (1) HiPS-cls,
which generates the attack by leveraging only the class label information, and (2) HiPS-cap, which
utilizes the original image caption and a target caption to craft the attack. We demonstrate that our
HiPS attacks can effectively transfer to downstream image captioning models, such as CLIP-Cap
[20], enabling selective removal of target objects from image captions. Additionally, we introduce
several novel evaluation metrics to assess the performance of our proposed HiPS attacks in targeted
object removal.

2 Background and Related Works

Adversarial Robustness: One of the seminal methods for generating adversarial attacks is the
Fast Gradient Sign Method (FGSM) [1], a simple, single-step L∞-bounded attack, defined as:
Iadv = I + ϵsign(∇IL(I, y)), where Iadv is the adversarial image, I is the original image, ϵ is the
attack budget, and L is the loss function to be maximized for the attack. For an untargeted attack,
L is typically the cross-entropy loss with respect to the correct class y, and in a targeted attack,
the objective shifts to minimizing the loss with respect to a target class ỹ, making L the negative
cross-entropy loss for the target class. Another widely used technique is the Projected Gradient
Descent (PGD) attack [2], which is the strongest first-order attack. PGD is an iterative, first-order
optimization-based attack, defined as: It+1 = PI+S(I

t + αsign(∇IL(I, y))), where t denotes the
iteration number, P is a projection operation that maps the perturbed input back onto a Lp ball with
radius ϵ, with S representing the region defined by the Lp ball, and α is the step size.

Multi-modal Models: CLIP [15] is one of the seminal works in multi-modal modeling due to
its exceptional performance in zero-shot tasks. Recently, there has been growing popularity in
developing large multi-modal models (LMMs) [10] (GPT-4V [11], Gemini [12], LLaVA [14]) driven
by their impressive capabilities across a wide range of tasks and domains [13]. Many of these models
integrate a pre-trained large language model (LLM), such as Llama [21] or Vicuna [22], with a large
vision encoder like CLIP. For LLaVA, the vision encoder remains frozen during training, with a
simple projection layer mapping the vision embeddings to the shared embedding space of the LLM.

Adversarial Robustness of LMMs: With the advent of LMMs, investigating their vulnerabilities
has become an important research focus in AdvML, often referred to as jailbreaking LLMs and
LMMs [19, 18]. While previous studies have demonstrated that jailbreaking LLMs is feasible with
full access to model parameters, recent findings highlight that LMMs are particularly susceptible to
adversarial attacks targeting the vision modality [23]. In particular, even with access solely to the
vision encoder, such as the open-sourced CLIP model–adversaries can exploit these vulnerabilities to
jailbreak LMMs like LLaVA and OpenFlamingo[24], which rely on the frozen CLIP vision encoder.
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3 Hiding-in-Plain-Sight (HiPS) Attack

Traditional ‘targeted’ adversarial attacks on images are designed to drastically alter the behavior of a
downstream ML models (such as a Large Vision Language Model or an image classifier), forcing
them to produce outputs that align with the adversary’s objectives. In contrast, we introduce a novel
class of adversarial attacks on images, termed Hiding-in-Plain-Sight (HiPS) attacks. The primary goal
of a HiPS attack is to generate an adversarial image that can ‘subtly’ modify the model(s) predictions
by selectively concealing a specific ‘target’ object while leaving the rest of the model’s functionality
intact. For instance, a HiPS adversarial image designed to conceal (or ‘target’) a particular object
should cause an image captioning model to generate a caption as if the target object(s) was never
present while the rest of the image content should stay in tact. Similarly, when a HiPS adversarial
image is processed by a LMM, the model should respond to queries about the image as if the target
object were absent. Ideally, the adversarial images generated using the HiPS attacks should be
universal and transferable across a variety of downstream ML models. Therefore, generating the
HiPS attack using a ‘foundation’ multi-modal model that is already universally used for a variety
of downstream tasks is necessary for transferability. For simplicity, in this paper, we focus on
investigating the transferability of HiPS attacks specifically on image captioning models [25].

3.1 Problem Formulation

In this section, we introduce the formal notations used throughout this paper. Let I represent an input
image containing n different object classes, and let TI = {T1, T2, . . . , Tn} denote the set of objects
present in the image I , where Ti corresponds to the textual description (or simply, the class labels) of
the i-th object. The target object to be removed is denoted as Ttarget = Tj for some j ∈ {1, 2, . . . , n}.
We will utilize the CLIP model to generate the HiPS attack, which consists of an image encoder,
fImage : I → ZImage, and a text encoder, fText : T → ZText, where T is a textual input, ZImage ∈ RD

is the image embedding, ZText ∈ RD is the text embedding, and D is the embedding dimension.

In the context of image captioning, the objective of the HiPS attack is to generate an adversarial image
Iadv that is nearly indistinguishable from I . However, when this adversarial image Iadv is processed by
the downstream image captioning model, fcaption : I → T , the generated caption Ĉadv = fcaption(Iadv)
should omit the target object Ttarget while accurately describing all other objects in the image. In other
words, the adversarially generated caption, Ĉadv, should closely resemble the caption Ĉorig produced
from the original (unperturbed) image, with the exception that Ttarget is not mentioned. This approach
contrasts sharply with traditional targeted attacks, where typically the goal is to produce an output
that is significantly different from the correct one. While a traditional adversarial attack’s goal is to
make the perturbation imperceptible in the input space, in the HiPS attack, we want the difference in
the output space to also be minimal - the only difference should be the omission of the target class. In
this paper, we propose two different variants of the HiPS attack in the context of image captioning,
which are detailed below (See Figure 1 for a schematic representation of HiPS Attack).

3.2 HiPS-cls Attack using Class Labels

In this variant of HiPS attack, termed HiPS-cls, we utilize only the textual class labels TI to obtain
the adversarial image. Given an image I and its corresponding set of class labels TI , we compute the
cosine similarity scores Si for each class label Ti as follows:

Si = cos(fImage(I), fText(Ti)) =

〈
fImage(I)

∥fImage(I)∥2
,

fText(Ti)

∥fText(Ti)∥2

〉
(1)

The cosine similarity Si between the image I and class label Ti measures the alignment between their
respective image and text embeddings. A higher score Si indicates that the object with class label Ti

is likely present in the image I , while a lower score suggests its absence. Since the objective of the
HiPS attack is to remove the target object Ttarget = Tj , our goal is to perturb the image I in such a
way that the cosine similarity score for the target object, Sj , is reduced (as if it is absent), while the
scores for all other objects Ti (for all i ̸= j) are either increased or remain unchanged. To formalize
this, we define the HiPS-cls adversarial loss function as follows: LHiPS-cls = −λ1Sj + λ2

∑
i ̸=j Si.
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3.3 HiPS-cap Attack using Adversarial Captions

In this variant of the HiPS attack, termed HiPS-cap, rather than using class labels, we generate the
attack on CLIP by utilizing the original caption C and a target caption C̃. The target caption C̃ is
designed to be similar to C, but as if the target object Ttarget were not present in the image. In other
words, C̃ represents an ideal adversarial caption that a successful HiPS attack on a captioning model
should produce. Similar to the HiPS-cls approach, we calculate the cosine similarities between the
image I and both the original caption C and the target caption C̃ as follows:

SC = cos(fImage(I), fText(C)); SC̃ = cos(fImage(I), fText(C̃)) (2)

The corresponding adversarial loss can be computed as LHiPS-cap = −λ1SC + λ2SC̃ . LHiPS-cap aims
to reduce the score for the original caption SC while increase the score for the target caption SC̃ ,
where the target object is missing. The adversarial loss LHiPS-cls and LHiPS-cap can be optimized using
existing adversarial attacks such as FGSM and PGD attacks (See Section 2).

4 Experimental Setup

Setting: We develop HiPS-cls and HiPS-cap attacks using the CLIP model, where the vision encoder
is based on Vision Transformer architecture (ViT-B/32) [26]. To generate adversarial images for the
HiPS attack, we employ established techniques, including FGSM and PGD with L∞, L1, and L2

norms. For simplicity, we focus on images containing only two foreground objects: one serving as the
target object to be removed, and the other as the object to be retained in the adversarial caption. We
manually sampled 50 such images from the MS COCO dataset to test our two HiPS attack variants
(cap vs. cls). For the HiPS-cap attack, we use the original COCO captions as C, and manually
generate two target (adversarial) captions, one used for training (C̃), while the other one is reserved
for evaluation. For the downstream captioning model, we utilize the CLIP-Cap [20] model. CLIP-Cap
uses the vision encoder from CLIP and a mapping network to project the image embeddings into a
shared representation space, where a language model (GPT-2) [27] generates the captions.

Evaluation Metrics: In the context of assessing the success of HiPS attack, we introduce several
novel metric to measure attack success, where we consider two main criterions. First, the ability to
successfully remove references of the target object from the generated textual caption. We propose a
metric called Target Object Removal Rate (TORR) to capture this using similarity-based assessments
and string-matching comparisons between words. Second, the ability to measure if the remaining
objects are intact to ensure that perturbation does not inadvertently affect or remove references to the
objects other than the targeted one. We propose another metric called Remaining Objects Retention
Rate (RORR) for this purpose. Next, we utilize Attack Success Rate (ASR) that measures if both of
these criterions (TORR and RORR) are satisfied. We additionally utilize Caption Semantic Similarity
(CSS) which is essentially the cosine similarity between the ground truth adversarial caption, and
the generated adversarial caption (cos(C̃gt, Ĉadv)). CSS measures if the two are semantically close
to each other in the text embedding space. Additional details of computation of TORR, RORR and
ASR are provided in the Appendix. The image quality is another important metric to measure the
imperceptibility of the attack. We use standard metrics such as Mean Squared Error (MSE), Mean
Absolute Error (MAE), Signal-to-Noise Ratio (PSNR), and Structural Similarity metric (SSIM).

Baselines: We compare against two PGD (L∞) based attacks: targeted and untargeted. For the class-
labels variant, in the PGD (targeted) setting, we set λ1 = 1, λ2 = 0, focusing solely on removing the
target object. In the PGD (untargeted) setting, we set λ1 = 0, λ2 = 1, prioritizing the retention of
all other objects in the image. For adversarial captions variant, we only use PGD (targetted) setting,
where we optimize to maximize the similarity with target caption ( λ1 = 0, λ2 = 1).

5 Results
Quantitative Evaluation of HiPS-cls and HiPS-cap: In Tables 1 and 2, we compare the attack
success and image quality metrics of the two HiPS variants, using FGSM and PGD under L∞,
L1, and L2 norm constraints. We report results for the best-performing model in each case (see
hyper-parameter settings in Appendix). FGSM performs poorly across both HiPS variants, achieving
an ASR of only 36-38%. In contrast, the various PGD attacks demonstrate strong performance across
both variants, with the L∞ variant slightly outperforming the L1 and L2 norms. Specifically, for the
HiPS-cls attack, PGD achieves 100% RORR, indicating that the adversarial captions consistently
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retain the non-target objects, and TORR of 90% or higher, demonstrating effective removal of the
target object from the caption. However, the TORR, RORR, and ASR metrics for HiPS-cap are slightly
lower than those for HiPS-cls (across all PGD attack norms), while the CSS is significantly higher.
This indicates that while HiPS-cls is more effective at retaining non-target objects and removing target
objects, but it produces lower-quality captions, often resulting in grammatical errors and introducing
unnatural artifacts that negatively impact CSS (See Figure 2 for a qualitative comparison of different
methods). Further, we observe that the baseline method PGD (targeted) achieves a high TORR of
90% but a relatively low RORR of 78%, indicating that it primarily optimizes for the removal of
the target object. In contrast, PGD (untargeted) exhibits the opposite trend, prioritizing the retention
of non-target objects, achieving a 100% RORR and 76% TORR. For PGD (targeted) using the
adversarial caption, we observe that solely optimizing for similarity to the adversarial caption results
in a lower 66% ASR. This occurs because the adversarial caption is, by definition, already similar to
the original caption, making it less effective at removing the target object. To achieve a higher TORR,
it is necessary to move away from the original caption (i.e., λ1 > 0). Additionally, we compare the
image quality metrics in Table 2. As expected, FGSM utilizes the entire attack budget and introduces
significantly larger perturbations compared to the iterative PGD attack. We also observe that the
perturbations introduced by PGD under the L1 norm are slightly smaller when compared to L2 and
L∞, as the L1 norm favors localized perturbations with minimal overall change.

Table 1: Comparison of attack success metrics for HiPS-cls and HiPS-cap attacks, optimized using
FGSM and PGD under L∞, L1, and L2 norm constraints.

HiPS-cls (Class Labels) HiPS-cap (Adv. Caption)
TORR ↑ RORR ↑ ASR ↑ CSS ↑ TORR ↑ RORR ↑ ASR ↑ CSS ↑

FGSM 38.0 98.0 36.0 0.6907 40.0 96.0 38.0 0.7066
PGD (L1) 88.0 100.0 88.0 0.6898 84.0 98.0 84.0 0.7578
PGD (L2) 90.0 100.0 90.0 0.6701 88.0 96.0 86.0 0.7546
PGD (L∞) 94.0 100.0 94.0 0.6901 90.0 98.0 90.0 0.7673

PGD (untarget) 76.0 100.0 76.0 0.6790 - - - -
PGD (target) 90.0 78.0 72.0 0.6111 66.0 100.0 66.0 0.7499

Table 2: Comparison of image quality metrics for HiPS-cls and HiPS-cap attacks, optimized using
FGSM and PGD under L∞, L1, and L2 norm constraints.

HiPS-cls (Class Labels) HiPS-cap (Adv. Caption)
MSE ↓ MAE ↓ PSNR ↑ SSIM ↑ MSE ↓ MAE ↓ PSNR ↑ SSIM ↑

FGSM 61.56 7.81 30.25 79.39 61.56 7.81 30.25 79.46
PGD (L∞) 12.32 3.03 37.2 94.84 23.04 3.69 34.62 92.23
PGD (L1) 6.67 1.73 39.91 97.02 6.46 1.73 40.05 97.14
PGD (L2) 11.33 2.23 37.60 95.32 35.36 4.18 32.67 88.93

HiPS-capHiPS-clsPGD (targeted)PGD (untargeted)Original Image
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Figure 2: Qualitative Results comparing various methods with target shown as red words of caption.

Effect of Attack Budget: Figure 3 illustrates the impact of the attack budget ϵ on various attack
success metrics for HiPS-cls and HiPS-cap attacks using FGSM and PGD with the L∞ norm.
Consistent with previous observations, FGSM performs significantly worse than PGD across all
attack budgets for both HiPS variants. For PGD attacks, as expected, increasing the ϵ value leads to
an improvement in the ASR up to ϵ = 0.05, after which the ASR gradually saturates, with HiPS-cls
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Figure 3: Comparing the effect of attack budget ϵ on the different attack success metrics for HiPS-cls
and HiPS-cap attacks using FGSM and PGD with L∞ norm.

showing slightly better performance than HiPS-cap. However, it is noteworthy that as ϵ increases, the
CSS for HiPS-cls drops sharply, whereas HiPS-cap maintains a relatively stable CSS around 0.75.
Image quality metrics for the various attack budgets are presented in Appendix Figure 5.
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Figure 4: Comparing the sensitivity of hyperparameter λ1 on HiPS-cls and HiPS-cap attacks.

Sensitivity to Lambda: Figure 4 illustrates the effect of the hyperparameter λ1 on the performance
of different HiPS attacks while keeping λ2 fixed at 1.0 for different HiPS PGD variants. We observe
that as the magnitude of λ1 increases in HiPS-cls, both the ASR and CSS remain relatively high
(greater than 90%) across a wide range of λ1 values, from 0.3 to 1.8, across all PGD variants. This
stability is due to the increased emphasis on removing the target object as λ1 increases. In contrast,
for HiPS-cap, increasing λ1 places greater focus on reducing the score of the original caption while
maintaining the weight of the adversarial caption. As a result, when λ1 exceeds 0.5, both ASR and
CSS decline rapidly. See Appendix Figure 6 and 7 for TORR, RORR and image quality metrics.

6 Limitations, Discussion and Conclusion

In this work, we demonstrate promising results for the HiPS attack, showing that it is possible to
generate small perturbations which cause subtle differences in the output of a downstream task.
However, we recognize a few current limitations and future work needed to overcome them. First,
the metrics we use to measure success are not always correct. For example, the rule based metrics
(TORR and RORR) are biased towards only detecting the presence and absence of an object(s) from
a text caption, and does not consider if the sentence is grammatically correct or if additional objects
were added to the caption even though they do no exist in the image. In our small dataset this occurs
infrequently but can skew the results more on a large dataset. In addition, we find that the cosine
similarity metric is not precise enough to measure the small differences between cosine similarities
of our caption since they are all very close to each other (by design). In the future, we plan on using
a LMM to evaluate the results in a more accurate manner using custom prompts. In addition, in
this work we our experiment was restricted to 50 images due to the manual annotations required for
generating two adversarial captions for each image. We plan to conduct much larger experiments in
the future by automating this process using LMMs, prompting the model to generate a caption with
the target object missing. Finally, while in this work we focused on a single image captioning model,
we believe that this attack can be used for other multimodal models (LLaVa, OpenFlamingo) as well
as other downstream tasks (object detection, action recognition). The transferability of the attack can
be improved using an ensemble of multimodal models to generate the attack.
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A Additional Details of Evaluation Metrics

Attack Success Rate (ASR) metric is an aggregated evaluation of the success of modifying textual
captions to remove references to a target object while preserving mentions of remaining objects. The
aggregation constitutes of two measures: (1) Target Object Removal Rate (TORR) and (2) Remaining
Objects Retention Rate (RORR). TORR assesses whether references to a specific target object Ttarget

are effectively removed from the caption generated after the HiPS attack C̃, measuring how well the
perturbations obscure Ttarget from the model’s point-of-view. RORR, on the other hand, evaluates
whether references to the remaining objects Ti are preserved in C̃. This ensures that the perturbation
does not inadvertently affect or remove references to the objects other than the targeted one.

We calculate the TORR and RORR metrics in two steps: (i) word segmentation and cleaning, (ii)
semantic presence validation.

(i) Word segmentation and cleaning: To identify object references within C̃, we tokenize words
using spaCy [28], yielding a list of words WC̃ . We assume that specific words in WC̃ correspond
to object representations. We remove stop words and punctuation as they do not contribute to our
evaluation schema and help streamline the analysis by focusing on meaningful words that are critical
to understanding the content of C̃. We convert plurals in WC̃ to singular forms using the inflect
engine in Python. This normalization aids in matching terms more effectively, when compared to
Ttarget and Ti, during semantic presence validation. Finally, we filter WC̃ based on Part-of-Speech
tags using spaCy. We exclude determiners (DET) and pronouns (PRON) from our analysis as they
do not bear any significance to our analysis. This extensive processing within this step is integral to
transforming C̃ into a refined set of lexical units that accurately represent its meaningful content. It
allows the ASR metric to perform precise evaluations of object presence, enhancing the accuracy and
validity of the analysis and reducing the risk of misinterpretations due to irrelevant or misleading text
components.

(ii) Semantic presence validation: Provided WC̃ from step (i), we verify the absence of Ttarget and
the presence of Ti. This step involves both direct presence checks and similarity-based assessments.
For direct presence check, we perform string-matching comparisons between WC̃ and Ttarget, as well
as between WC̃ and Ti. If the direct presence check does not yield a clear result, we employ cosine
similarity between word embeddings to further validate the success of Ttarget removal and Ti retention.
Using an empirically established similarity threshold (0.7 in this case), we determine the boundary
for distinguishing between successful and unsuccessful removal/retention of the objects. Our ASR
metric offers multiple options for obtaining word embedding, including Word2Vec [29], GloVe [30],
FastText [31], and BERT [32], during semantic presence validation, enhancing its adaptability and
effectiveness across various downstream tasks and models. For our specific application, we found
GloVe to be the most effective choice.

The ASR metric, while robust for many scenarios, encounters challenges when dealing with multi-
word objects, such as "teddy bear." In these cases, the metric may struggle to effectively assess the
presence or removal of the entire phrase because it traditionally operates on individual word embed-
dings. Our workaround for this limitation involves averaging the embeddings for each word within the
multi-word phrase. Furthermore, the metric’s reliance on cosine similarity thresholds may not fully
account for the nuanced differences between conceptually related but distinct objects and vice-verse.
For example, while "hills" and "mountains" are closely related, they are not interchangeable. Our
experiments show that the ASR metric might fail to recognize this subtle distinction, leading to rare
but incorrect assessments of object removal success.

B Hyperparameter Details

We have used λ2 = 1, in all of our experiments. Additional details of other hyperparameters are
provided in Table 3.

C Additional Results

We present some additional results on image quality, TORR, and RORR for the effect of attack budget
and hyperparameter sensititivity.
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Table 3: Hyperparameter Details for Best Performing Models from Table 1
HiPS-cls (Class Labels) HiPS-cap (Adv. Caption)
α ϵ α ϵ

FGSM 2/255 0.03 2/255 0.03
PGD (L1) 500 1000 500 1000
PGD (L2) 5 5 5 10
PGD (L∞) 2/255 0.02 2/255 0.06
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Figure 5: Comparing the effect of attack budget ϵ on the different image quality metrics for HiPS-cls
and HiPS-cap attacks using FGSM and PGD with L∞ norm.
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Figure 6: Comparing the sensitivity of hyperparameter λ1 on HiPS-cls and HiPS-cap attacks.

0.5 1.0 1.5 2.0
Lambda1

0

5

10

15

20

25

M
SE

PGD (L1)
PGD (L2)

PGD (Linf)

0.5 1.0 1.5 2.0
Lambda1

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
AE

PGD (L1)
PGD (L2)

PGD (Linf)

0.5 1.0 1.5 2.0
Lambda1

36

38

40

42

44

PS
NR

 (i
n 

dB
)

PGD (L1)
PGD (L2)

PGD (Linf)

0.5 1.0 1.5 2.0
Lambda1

0.90

0.92

0.94

0.96

0.98

1.00

SS
IM

PGD (L1)
PGD (L2)

PGD (Linf)

(a) Classes

0.5 1.0 1.5 2.0
Lambda1

0

10

20

30

40

50

M
SE

PGD (L1)
PGD (L2)

PGD (Linf)

0.5 1.0 1.5 2.0
Lambda1

1

2

3

4

5

6

M
AE

PGD (L1)
PGD (L2)

PGD (Linf)

0.5 1.0 1.5 2.0
Lambda1

30.0

32.5

35.0

37.5

40.0

42.5

45.0

PS
NR

 (i
n 

dB
)

PGD (L1)
PGD (L2)

PGD (Linf)

0.5 1.0 1.5 2.0
Lambda1

0.80

0.85

0.90

0.95

1.00

SS
IM

PGD (L1)
PGD (L2)

PGD (Linf)

(b) Adversarial Captions

Figure 7: Comparing image quality metrics on the sensitivity of hyperparameter λ1 on HiPS-cls and
HiPS-cap attacks.

10


	Introduction
	Background and Related Works
	Hiding-in-Plain-Sight (HiPS) Attack
	Problem Formulation
	HiPS-cls Attack using Class Labels
	HiPS-cap Attack using Adversarial Captions

	Experimental Setup
	Results
	Limitations, Discussion and Conclusion
	Additional Details of Evaluation Metrics
	Hyperparameter Details
	Additional Results

