Under review as a conference paper at ICLR 2025

C INFCYCLE: LEARNING TO USE TOOLS VIA INFER-
ENCE COMPUTE AND CYCLE CONSISTENCY

Anonymous authors
Paper under double-blind review

ABSTRACT

The scaling of inference-time computation in large language models (LLMs) has
emerged as a promising approach for enhancing reasoning capabilities by trad-
ing off inference-time and pre-training compute. The practice of how to enable
LLMs to utilize additional computation at test time to improve response accuracy
is crucial for both academia and industry. Proposer-Verifier, as a typical paradigm
of inference scaling, often fails to generalize to various scenarios. Specifically,
in tool use tasks, LLM face the risk of lacking effective verifiers, leading to er-
ror accumulation across multiple reasoning steps. In this work, we address these
challenges by introducing InfCycle, a multi-stage data synthesis strategy that em-
ploys LLMs as a data synthesizer and cycle consistency verification to ensure
high-quality trajectory generation. This approach utilizes step-wise cycle consis-
tency among synthesized trajectories for a given tool, providing effective process
supervision that has advantages over outcome supervision. Extensive experiments
on multiple tool use and reasoning tasks demonstrate that InfCycle efficiently en-
ables self-improvement. It outperforms state-of-the-art baselines on StableTool-
Bench, achieving a 75.4% pass rate and a 79.6% win rate using small models (7B),
without relying on external supervision or expert trajectories for warm-up.

1 INTRODUCTION

Tool use is a critical capability for LLMs, enabling them to perform complex reasoning tasks through
multi-step inference, and interact with real-world environments (Mallen et al., 2022; Wang et al.,
2023b;|Zeng et al.| [2023; | Xu et al.| [2023b; [Huang et al.,2024). While many studies have focused on
the challenges of tool use, they often rely heavily on imitation learning (Hussein et al.,2017), such as
learning from teacher models (Yang et al., 2024;|Qin et al., 2023a) (the OpenAl GPT series (Achiam;
et al.,2023))) or human-annotated execution trajectories. Moreover, tool invocation scenarios require
LLMs to perform very complex multi-step reasoning, posing a great challenge to ensure the accuracy
of intermediate steps, especially when lacking of reliable verification. Consequently, the high cost
of data synthesis in imitation learning and the requirements for reliable verifiers hinder the progress
of tool use by LLMs. This research focuses on exploring how LLMs can autonomously learn tool
use capabilities from scratch, without relying on any external supervision.

Recently, leveraging inference-time compute (Brown et al., 2024; Wu et al. 2024} |Chen et al.,
2024a)) to enhance model capabilities has become an effective method for enhancing model capa-
bilities and facilitating self-improvement. The Proposer-Verifier (Snell et al., 2024) strategy is a
common method that increases the sampling cost of the LLM and selects the highest score accord-
ing to a verifier, thereby trading off inference cost for performance improvement. However, in most
tool use scenarios, the lack of a reliable verifier undermines the effectiveness of inference-time
scaling (Liu et al.l [2024c; Mekala et al [2024; [Liu et al.| [2024a; |Ye et al., 2024). Additionally, in
multi-step reasoning scenarios, error accumulation may hinder small size models from identifying
the correct execution path, significantly reducing the effectiveness of data sampling.

To address these issues, we first decompose the tool use process into multi-step reasoning tasks,
enabling models with limited capabilities to be integrated into our data synthesis pipeline. Crucially,
we develop two modules for data synthesis: the Generator and Simulator, which generate interme-
diate steps for tool invocation as training data for the LLM. As illustrated in Figure [T} the principle
of cycle consistency (Zhu et al.,|2017) ensures that inconsistent intermediate steps are less likely to

Under review as a conference paper at ICLR 2025

— ¥ —
— @ —

Filter

[Query J % [Trajectories]

Figure 1: The Generator can leverage the LLM to create potential user queries based on the available
API information. The Simulator can interact with the environment using these queries to achieve
API response results. The cycle consistency constraint between them can extract high-quality syn-
thetic execution trajectories in the absence of explicit human supervision.

form reasonable execution trajectories, significantly reducing the effects of LLM hallucinations (J1
et al.| 2023). Since this approach does not rely on additional supervision, it serves as an efficient
verifier, enabling scalable data generation.

Furthermore, we need to tackle the challenges of error accumulation and long-distance tool rea-
soning, which are caused by model hallucinations and inherent limitations. Frequent trial-and-error
processes are not suitable for data synthesis, leading to inefficiencies and hindering scalability. Thus,
we propose InfCycle, a multi-stage synthesis strategy that alternates between model inference and
training to achieve self-improvement. We integrate the A* search algorithm (Zhuang et al., 2023)
to enhance sampling efficiency and employ preference learning algorithms to improve the model’s
generalization ability (Chen et al., 2024b)). This strategy progressively addresses the following prob-
lems: 1) the model’s inability to handle JSON-formatted context and outputs (Yuan et al.,|[2024); 2)
inefficiencies in the Simulator when searching for execution trajectories from the Generator; and 3)
the LLM’s tendency to accumulate errors during multi-step execution. In summary, our approach
ensures two critical factors in data scaling: the Precision and Coverage (Brown et al., [2024) of
correct execution trajectories, effectively unlocking the potential of inference-time computation.

Our main contributions are as follows:

* In tool use scenarios, we investigate how to effectively leverage additional computation
at test time to enhance accuracy, enabling LLMs to improve their capability through self-
improvement from scratch.

* We propose InfCycle, which employs a multi-stage trained model to act as a Proposer,
and utilizes a cycle consistency mechanism to serve as a Verifier. Overall, this approach
significantly boosts data sampling efficiency and model performance.

* We validate our method using multiple models with varying capabilities on the StableTool-
bench, such as Qwen2.5-7B, which surpasses GPT-4, achieving a 75.4% Pass Rate and
a 79.6% Win Rate, as well as the Berkeley Function Calling Benchmark, where Meta-
LLaMA3-8B achieve an improvement of over 16.31 points. Additionally, extensive exper-
imental results and analyses confirm the effectiveness and scalability of our approach.

2 RELATED WORKS

Tool Use As pioneers, Toolformer (Schick et al.| [2024), Gorilla (Patil et al., [2023)), and ToolAl-
paca (Tang et al.| 2023) have explored the potential of LLMs in tool use. ToolLlama Qin et al.
(2023Db)) notably expanded the number of available tools, exceeding 10,000 APIs, and investigated
the possibilities of data scaling. Many related works primarily seek improvements through two
approaches: Inherent Abilities: This involves manipulating prompts or enhancing the execution
framework. [Xu et al.| (2023b)) utilize examples, in-context demonstrations, and generation styles to
explore the potential of LLMs. AutoAct (Qiao et al.l [2024) employed a multi-agent collaboration
framework to complete reasoning tasks. RestGPT (Song et al., |2023) introduced a coarse-to-fine
online planning mechanism by using three main modules (Planner, API Selector, and Executor).
Synthetic Data: This strategy empowers model capabilities through synthetic data. ToolVeri-
fier (Mekala et al., [2024) leveraged the LLaMA-2 70B model to verify the accuracy of synthetic
data. APIGen (Liu et al., | 2024c) used a strong model to filter API calls based on rules and seman-
tics, ensuring data accuracy. In contrast, our approach combines the strengths of both methods, and
our setups do not rely on any teacher LLM or external supervision.

Under review as a conference paper at ICLR 2025

Qwen2.5-7B-Instruct Llama3-8B-Instruct —— Mistral-7B-Instruct Mistral-7B-Instruct + F Verifier

Python Dataset Multiple Dataset Parallel Dataset Parallel_Multiple Dataset

0.95 0.9

o
©
&

0.90 08 08

)
©
S

0.85 0.7
0.6

0.6

(AST Evaluation)

0.4 05

o
N
o
o
3
o

y
°
3
°
3

0.4
0.2
0.65 /__,—-————-—— 0.3
0.60 0.0 0.2
[2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Number of Samples Number of Samples Number of Samples Number of Samples

Accurac!
o o
3 2

Figure 2: The figure shows experiments on the BFCL, comparing accuracy curves with limited
sampling (< 10). The green area indicates performance improvement via Format Verifier Vy.

Inference Scaling LLM:s can utilize techniques such as CoT (Wei et al.,|2022) or Reflection |Shinn
et al.| (2024) to enhance their reasoning capabilities during testing. However, many studies show
that these methods often have limited effectiveness for complex tasks (Huang et al., [2023}; [Stechly
et al., 2023 [Valmeekam et al., [2023)). Nevertheless, this research direction remains crucial for the
future, particularly in exploring the trade-offs between inference time and pre-training computing.
Brown et al.|(2024) demonstrate that scaling inference computing through repeated sampling leads to
significant improvements in coverage across various tasks and models. [Snell et al.| (2024) introduce
a compute-optimal strategy that enhances the efficiency of test-time compute scaling compared to a
best-of-N methods. In contrast, we are the first to employ trajectory cycle consistency in tool use to
construct a verifier, thereby mitigating the requirements for inference precision.

3 MOTIVATIONS

Problem Formulation In tool use scenarios, the LLM receives a user query Q along with a set
of candidate API functions, represented as A = {APIo,APIy,...,APT|4 }. The goal of the LLM
is to fulfill the user’s intent by executing a specific sequence of API function calls. The decision
process can be described as y ~ 7(y|so, a1, ag, - - -), where 7(-) represents the policy, so denotes
the initial task state, and a represents the actions taken by the model, such as selecting or executing
a specific API function from .A. Each action may update the state s;, guiding subsequent decisions.

Preliminary Experiments We conduct investigations to evaluate the impact of increasing reason-
ing steps on the Berkeley Function-Calling benchmark. Specifically, we use the LLM as a Proposer
and combine it with two Veriﬁers[ﬂto explore inference-time scaling: the Correct Verifier V., which
checks if the model output matches the expected correct answer, and the Format Verifier Vy, which
ensures that the output conforms to JSON format or the specified API parameter types, for example,
distinguishing between numeric types such as floats and integers.

Specifically, we sample multiple outputs using the LLM as 7(+) and select the results that pass the
verification process: y* = argmaxy, ¢y, ys,....ym} 1[Ve(¥i) = 1]. Here, y; represents the generated
results obtained through sampling. For both LLaMA3-8B-Instruct and Qwen2.5-7B-Instruct, we
conduct experiments using their official inference frameworks [} As illustrated in Figure [2| the
LLMs demonstrate significant performance improvements across different datasets, suggesting that
better data trajectory samples exist within a limited search space for open-source LLMs. In the case
of Mistral-7B-Instruct-v0.2, the model struggles to generate JSON formatted outputs, making it
nearly impossible to complete user queries on the benchmark. Therefore, we utilize the framework
proposed in Section for inference. We observe conclusions similar to those previously noted.
When we introduce the Format Verifier using V.(V¢(y;)), the model’s performance significantly
exceeds that of using only the Correct Verifier V,(y;) alone.

'Note: The verifier uses test set ground truth to validate outputs and is not applied in other sections
2https ://github.com/ShishirPatil/gorilla/tree/main/
berkeley-function-call-leaderboard

https://github.com/ShishirPatil/gorilla/tree/main/berkeley-function-call-leaderboard
https://github.com/ShishirPatil/gorilla/tree/main/berkeley-function-call-leaderboard

Under review as a conference paper at ICLR 2025

Given an API that claims to solve ! ; :
%9 definite integrals, I need to I need input this problem into the 2742
S . To test it, I need to select API and then review the returned
figure out whether it actually s . result to check if it’s accurate. \
delivers on that promise. a suitable integral problem.
Collector Sampler Generator Simulator

R (

leetCode @ Rapid

train_
Success!
s

Success! — o
o=

|+ +— Model Trainning — O=—=

=

"method": “trapezoid @f

gi +
Failed! over [1,4]." Failed! Training
! datasets

result = ("result": 22.0}

Step 1: Gather the massive Step 2: Identify and filter out the Step 3: i Step4: Employ a LLM to detect
potential APIs from real-world. executable APIs. such as queries or plans. successful API executions

Figure 3: The data synthesizer can sequentially run four modules to transform JSON-formatted API
information into multi-step execution trajectory data for model training. This process is designed to
mimic how humans learn to use APIs: individuals first hypothesize that an API can solve a specific
problem and then validate this hypothesis by executing the APIL.

Critical Insight From the experiments, we can draw the following key conclusions: (1) Increasing
the inference cost leads to significant improvements in model performance for both single-step and
multi-step reasoning tasks, regardless of the model’s capabilities. (2) Task decomposition simplifies
complex problems, allowing models to tackle previously challenging issues, as shown by Mistral’s
poor performance without decomposition. (3) Our proposed reasoning framework, combined with
the Format Verifier V; for process validation, enables small-size models to outperform stronger
models in certain tasks. These findings indicate that process verifiers are more effective than
solely outcome verifiers in enhancing long-range reasoning capabilities and assisting models
in identifying high-quality execution trajectories.

4 METHODS

In this section, we first build a holistic data synthesis pipeline to generate training data of tool
invocation trajectories, as shown in Figure 8] Then, we discuss how to utilize cycle consistency
to filter the data synthesized by the Generator and Simulator. Finally, we introduce InfCycle, a
multi-stage synthesis strategy designed to help LLMs learn the ability of tool use from scratch.

4.1 THE PIPELINE OF DATA SYNTHESIZER

To validate data scalability in large-scale tool use, we select real-world APIs as our tool candi-
dates. To support this, we create and deploy an execution environment for these APIs, enabling type
checking and providing execution feedback. For more details, please refer to Section 3]

Collector The execution environment naturally acts as a verifier, ensuring that the API request can
be executed successfully while filtering out invalid requests. We collect the available APIs as tool
candidates from the environment and maintain input consistency through a unified format.

Sampler Considering the complexity of user intent, multiple tools are often needed to achieve a
solution. Thus, we categorize the tool collection into three types: Simple: Users utilize a single tool.
Farallel: Users make multiple calls to the same tool. Multiple: Users employ multiple tools. The
sampled tool cases include *API definitions’, ‘request parameters’, and ’execution results’, which
we use to build tool-invocation trajectory data.

Generator Based on the sampled API execution parameters and results, we can use LLMs to gen-
erate potential user queries Q = {q1,qz2, - - ,q|o|}. To ensure accuracy, we use LLMs as semantic
checkers (Liu et al., 2024c). They filter out unsuitable examples by evaluating whether the user
query originates from the real world and whether the response adequately meets the user’s intent.
For each example, we construct execution paths for task planning based on the order of calls. Specif-
ically, we obtain synthesized action trajectories {gq, ,, s, G. }, where a, represents task planning,
as denotes the selected API and parameters, and a. indicates the execution results.

Under review as a conference paper at ICLR 2025

Table 1: The table shows two types of errors that are present in the filtered samples.

Mistake Content

Query: I have an equation that describes a signal over time, given by
Internal Logical Error x(t) = Re (Ae?™Pt) + Re (Dei™E*), where A and D are constants.
If A=3, D=0.5, E=5, and B=4, what are the values of B and E in this equation?

Sub-Plan: Since find_triplet_equal_sum is supposed to solve the user’s query directly,
skip calling the twosum function for now.

Planning Error

Simulator To adapt models with limited capabilities, we decompose the reasoning process of tool
invocation into five steps: 1) Task Planning: The model starts by analyzing the user query ¢ and
decomposing it into sub-tasks a,, similar to ReWoo (Xu et al., 2023a). 2) Tool Selection: Based
on the planned sub-tasks, the model takes action a to choose the appropriate tools and parameters.
3) Tool Execution: The model then interacts with the environment to gather results a.; 4) Tool
Reflection, Through action a,., the model evaluates execution feedback to determine if the sub-plan
is complete or if the API needs re-execution. 5) Task Reflection, Finally, the model uses a;, to
assess if the task is completed and, if necessary, re-planed based on its execution history. Through
the aforementioned steps, we derive the sequential action trajectory {ap = a5 = Qe = Ay — A4},
respectively. For simplicity, we omit the explicit states on which the model’s predictions are based.
However, these states are implicitly derived from the outcomes of previous actions, such as as ~
(S0, ap) Or a, ~ m(sg, ap, as, ac). More inference details refer to Appendix [A.5]

This multi-step execution process effectively addresses two key challenges in model reasoning:
First, it bridges the gap between natural language and JSON format. Many general models struggle
to handle JSON context (Tam et al.|[2024), which can impair their performance on tasks that require
this format. Second, it simplifies decision-making processes. In methods like ReACT (Yao et al.,
2022), the model must choose the next action from multiple options, which can be challenging for
models with limited reasoning abilities.

4.2 THE STEP-WISE CYCLE CONSISTENCY

Given candidate APIs, the Generator filters out semantically incorrect trajectories, while the Simu-
lator excludes user queries that cannot be executed successfully. Furthermore, we verify the cycle
consistency of trajectories between {a,, i, a.}7) and {a,,as,a.};, where S represents the total
number of reasoning steps. We ensure that each action in the multi-step reasoning process is consis-
tent and executed sequentially.

Why is the cycle consistency verifier effective? The Generator may overlook numerous errors,
even when selecting the prompt carefully. These issues are unpredictable, as illustrated in Table[T} 1)
Internal logical issues within the user query: These issues can lead to synthesized queries that lack
executable trajectories. 2) Semantic problems in planned sub-tasks: Such problems can result in
synthesized trajectories that are fundamentally unreasonable. Unlike recent approaches (Qin et al.,
2023bj |Liu et al.| [2024c) that use an outcome verifier to filter samples, step-wise cycle consistency
as a process verifier ensures the accuracy of the reasoning process, thereby guaranteeing the high
quality of the synthesized data.

4.3 MULTI-STAGE SYNTHESIS STRATEGY

A* search We define the entire reasoning process starting from sg as an expansion into a decision
tree 7, with all actions being represented as nodes V(T). The successors of each node are generated
by using temperature sampling. Specifically, we first select a node n from the frontiers of the tree
(denoted as F(T) C V(T)) according to the cost function. Then, we expand node n using the LLM
to generate k subsequent actions, which are used to update F (7).

The A* algorithm aims to search for an appropriate path that minimizes the cost function ¢(n) =
g(n) + h(n), where n is the current node, g(n) represents the cost of the path from the start node
to n, and h(n) is a heuristic function estimating the cost of the cheapest path from 7 to the goal. In
practice, we define ¢(n) as the total number of reasoning steps required to complete the user query,

Under review as a conference paper at ICLR 2025

Task

Planning t t /.\ O
i g 2 c(1,3) g @3 ./
Tool & g Y T s / \
% Selection B) P4 c(2,2) @ {e2,3) @he(2,2) & »
o = = 7\ <\ 7\
o) 2 y 5 c(3,2) % dhe(3,1) L 1e(3,2) 3 e(3,2) ‘.
g ..o 8 & ~ . i %
Tool 5 g 1 g 7\
Execution g'o X 2 c(a,1){; 3 e(4,0) 3 (S

Tool

Reflection § SFT Data DPO Data
o
=

Task =

Stage 1 Stage 2 Stage 3

Inference framework

Figure 4: Left: The inference framework decomposes the tool use task into a multi-step reasoning
process, where each step represents a distinct action. Right: Each circular node corresponds to
a specific reasoning step, visualizing actions as part of the overall decision-making process. We
leverage both Chain and Tree structures for reasoning (the ¢(h(n), g(n)) represents cost function).
This tree-based approach also facilitates the creation of pairwise preference data for learning tasks.

g(n) as the number of steps executed so far, and h(n) as the remaining steps needed to reach the
goal. To simplify the design of the heuristic function, we use the number of remaining elements
obtained by subtracting the intersection of the trajectory sets generated by the Generator from the
total set. Considering the issue of diversity in temperature sampling, we enhance the diversity of
candidates in the A* algorithm by adding a beam. Specifically, we select k& nodes (default k& = 2)
from F(7) as candidates for expansion in each iteration.

Using A* search serves two purposes: 1) It enables quicker identification of a reasonable path by
utilizing reference paths provided by the Generator, which guide the search process towards viable
solutions more efficiently, As shown in Figure [5] 2) It facilitates the synthesis of DPO data, as
pairwise data relies on a consistent context to ensure suitable comparisons.

Synthesis and learning We apply the simulator for data mem Tree WM Chain
synthesis in three stages. Stage 1: We use an open-source
instruct model to interact with the environment and gen-
erate chain of thought trajectories. Stage 2: Leveraging

the Stage 1 synthesized data, we train an initial model ' —
and use a tree-search method to produce new trajectories,

filtering out unreasonable samples through cycle consis-

tency. This iterative process facilitates effective data scal-

ing. Stage 3: From the tree structure’s synthesized trajec- - ‘

tories, we compare sibling nodes to identify correct and)
incorrect pairs for preference learning training data. We
then apply Direct Preference Optimization (DPO) to en-
hance the model’s ability to more effectively distinguish
between competing trajectories.

88.0

API F1

12-Cat

Figure 5: The figure compares API F1
Scores on the testset using Tree-search
and CoT for different tool invocation.

5 EXPERIMENTS

We chose StableToolBench (Guo et al.}[2024) and the Berkeley Function-Calling (BFCL)

[2024) benchmark to evaluate the effectiveness of our proposed method. StableToolBench requires
real-time interaction with the RapidAPI E| to gather feedback, primarily evaluating the model’s per-
formance in a dynamic environment. In contrast, BFCL employs a static evaluation set that em-
phasizes the model’s ability to extract complex APIs and parameters. To achieve this, we collected
6k APIs from RapidAPI and converted 2k code problems from LeetCode into usable APIs. For
additional statistics and experimental details, please refer to the Appendix [A]

*https://rapidapi.com/hub

https://rapidapi.com/hub

Under review as a conference paper at ICLR 2025

Table 2: We calculate the pass rates (%) by averaging the results of each model over three trials. All
evaluations are conducted using GPT-4 Turbo, following official guidelines, to ensure comparability.

Method Model Inf I1-Ins I1-Cat 11-Tool 12-Cat 12-Ins I3-Ins Avg.
ToolLLaMA Q0 CoT 51.8404 53.1u06 464410 51.6411 4894104 3724105 482
ToolLLaMA 00 DFS 61.04;5 588106 45.6410 603411 535404 48.140g 54.6
GPT4-Turbo @ CoT 52.8i13 56.6i()‘9 51-9i05 51.911.1 52.8i0,4 52-5i0A8 53.1
GPT4-Turbo @ DFS 59~2i0.5 61.7:{:0‘7 65.7:‘:1‘0 55-6i0.6 55~2i0.4 52.5:(:4‘3 60.6
TP-LLaMA x DFS 55.040.0 65.0400 80.0100 75.0+00 67.0400 61.0490 65.0
Tool-Planner @ P&S 66.0i0'0 78.5:{:0‘0 75.02‘:0‘0 83.5:(:0‘() 77~5j:0.0 83.0i0.0 77.3

Tool-Planner L P&S 64.0:{:0'0 77.01040 59.5:‘:0‘0 79.5:‘:0.0 76.5:{:0'0 78.010,0 72.4

InfCycle Wi P&S 686104 57.Tios 445116 503408 691i19 63.7143 59.0
Innycle x P&S 70.6:{:1'8 69.310,0 70.7:‘:0‘5 55.8:‘:0.6 71.8:{:0'7 70.811,0 68.2
Innycle G;' P&S 71.2:‘:1‘4 80.8:‘:0.9 78.3:‘:0‘4 63.2:‘:0.7 80.811‘2 77.910,7 75.4
Table 3: The results of win rates (%) for different models S —
are calculated by comparing with the GPT-3.5-Turbo. (single)

I1-Ins I1-Cat
(Multipie) (Single)

Methods Model Inf I1-I I1-C I1I-T 12-C I2-I I3-I Avg.

ToolLLaMA 00 CoT 417 451 323 528 468 262 408

ToolLLaMA 00 DFS 423 510 310 670 540 311 540 s ...
GPT4-Turbo 6] CoT 712 771 614 792 718 672 713 {Multig (Fingte)
GPT4-Turbo &) DFES 730 752 684 774 669 60.7 70.2

TP-LLaMA x DFS 560 59.0 540 700 64.0 86.0 65.0

Tool-Planner G P&S 755 758 71.8 79.8 703 920 775 1 { A
Tool-Planner &) P&S 738 763 738 793 683 875 765 Muitiple) ouitile)
InfCycle 51 P&S 620 62.1 544 70.8 653 623 628 12-Ins (Multiple)

InfCycle (2] P&S 785 758 778 745 782 656 75.1

InfCycle % P&S 761 869 741 811 758 836 79.6 Figure 6: API F1 Score Results.

5.1 STABLETOOLBENCH

Evaluation Setup In this experiment, I1 represents intra-category multi-tool instructions, 12 de-
notes intra-collection multi-tool instructions, and I3 includes unseen instructions for the same tools
as those in the training data. We categorized unseen tools into three groups: (1) Ins for unseen
instructions related to the same tools, (2) Tool for unseen tools within the same (seen) category, and
(3) Cat for unseen tools in a different category. We compared the performance of different models
based on the official evaluation metrics: Pass Rate: This metric measures the proportion of success-
fully completed instructions within limited budgets, indicating the executability of instructions for
LLM. Win Rate: This metric involves providing an instruction along with two solution paths to a
GPT evaluator, which determines the preferred solution.

Baselines We compared several strong baselines. ToolLLaMA |Qin et al.| (2023b) is trained using
distilled data from ChatGPT and uses depth-first tree search (DFS) for reasoning. TP-LLaMA (Chen
et al.| (2024b) employs reinforcement learning through synthesized preference pairs. ToolPlan-
ner [Liu et al.| (2024b) utilizes a unique scheduling approach, focusing on Plan-and-Solve Wang
et al.| (2024) (P&S) by organizing tasks before invoking functions. This planning-centric research
necessitates models with strong reasoning capabilities, often relying on closed-source models. In
contrast, our study synthesizes data using less powerful models to improve reasoning abilities.

5.1.1 RESULTS

As shown in Table [2] and Table [3] when interacting with RapidAPI, InfCycle significantly out-
performs previous models across six different test sets, achieving higher Pass Rates and Win
Rates. With different backbones (Mistral-7B-Instruct-v0.2, LLaMA3-8B-Instruct, and Qwen2.5-
7B-Instruct), our approach demonstrates outstanding tool invocation capabilities. Our data synthesis
method relies solely on open-source models, with our 7B model outperforming GPT-4-based strate-
gies such as ToolPlanner, illustrating the effectiveness and compatibility of our approach. Although
TP-LLaMA also uses an open-source model for its Tree Search algorithm and generates DPO data,
merely enhancing the model through preference learning does not fully exploit its tool invocation

Under review as a conference paper at ICLR 2025

Table 4: The model performance on BFCL. InfP represents the Inference Pattern, where FC directly
returns JSON, while Prompt requires post-processing for results. Mistral-7B* uses the inference
framework with InfCycle because the official scripts fail to produce effective calls.

Abstract Syntax Tree (AST) Evaluation

Method InfP Model Simple Multiple Parallel Parallel Multiple Avg
GPT-40 Prompt ® 73.58 92.50 91.50 84.50 85.52
GPT-40-mini Prompt ® 79.67 89.50 89.00 88.00 86.54
ol-mini Prompt ® 68.92 89.00 73.50 70.50 75.48
Command-R-Plus FC = 71.10 85.00 80.00 66.00 75.54
Open-Mixtral-8x22 Prompt (] 50.50 95.00 8.50 70.50 56.12
Mistral-7B Prompt (] 0.70 0.00 0.00 0.00 0.18
Mistral-7B* Prompt (] 19.83 60.50 2.00 22.00 26.08
InfCycle Prompt Wi 655014567 79.50110 72.00470 61.50139 5 69.63
Meta-LLaMA-3-8B Prompt x 58.53 78.00 59.50 53.25 62.32
Innycle Prompt x 6700¢847 QOOOTH 81'00T21-5 76.50A23,25 78.63

capability. This discrepancy highlights the gap between synthesized data and real data, emphasizing
the importance of reliable verifiers to filter data and ensure accuracy.

5.1.2 HUMAN EVALUATION

Given that the evaluations in the main results rely on model judgments, which can often be unre-
liable (Wang et al., |2023a), we enhance accuracy by conducting human annotation of the Stable-
ToolBench test set. First, we remove inaccessible and invalid samples by interacting with Rapid API
Website and supplement them with new user queries from the same tool candidates of StableTool-
Bench. Next, we categorize the collected samples into two groups: those that can fulfill the user’s
intent with a single API and those that require multiple APIs. Finally, we manually annotate the
actual execution trajectories for these samples to ensure precision.

We examine InfCycle performance trends across various data synthesis stages (denoted as S1, S2,
and S3) using the API F1 score as our evaluation metric. This score evaluates the alignment be-
tween predicted and ground truth APIs, showcasing the model’s ability to select appropriate tools.
We deliberately use a small-size model (Mistral-7B-Instruct) as the backbone to determine if it can
gradually synthesize higher-quality data. As Figure[6]illustrates, there is a clear improvement in per-
formance throughout different stages. Notably, the most significant gains appear in testsets requiring
multiple APIs because of the initial limitations of the small-size model in handling only simple tasks.
Our multi-stage synthesis strategy enables the model to progressively acquire the capability to tackle
complex scenarios and tasks.

5.2 BERKELEY FUNCTION-CALLING BENCHMARK

Evaluation Setup BFCL includes various types of test sets: Simple: Involves one API candidate
and calls a single function. Multiple: Calls one function using 2 to 4 API candidates based on the
user query. Parallel: Invokes multiple functions simultaneously from a user query. Parallel Mul-
tiple: Combines the previous two, allowing multiple calls to be made from several API candidate.
It uses Abstract Syntax Tree (AST) Evaluation to effectively measure function-calling abilities and
identify specific model errors, such as incorrect function names, missing required parameters, or
inappropriate data types.

5.3 RESULTS

We compare multiple models, including the GPT series and open-source models like Command R-
plus and Open-Mistral 8x22B. These models have significantly more parameters than our 7B model.
As shown in Table] InfCycle achieves performance comparable to these robust models. Notably,
our approach significantly enhances the performance of small-size models, enabling Mistral (who
struggles with the instruction following) to handle tool-calling tasks effectively. For stronger models
LLaMA, our method improves its performance in complex scenarios involving multiple tool calls.

Under review as a conference paper at ICLR 2025

Stage 1 Stage 2 Stage 1 Stage 2

BAL H/E/E\a

90- -
(X) /E/E——E\E =
— Generator %
o E/ &
©
[} 0
2 w0 o
g [] S
@ Generator S 4s5-
~ 75- o !
L / Error i @ i
o //. \.\\\ v Generator -
/ oo o] " —&.\v\.\'ErmrM;cumullllnn
[. y ~o.__
e
60 ; " " " s " " ‘ ;
0 1 2 3 4 0 i 2 3 4
Iteration Step Iteration Step

Figure 7: The figure illustrates the average API and Parameter F1 Scores on the human-annotated
StableToolBench testset across different data synthesis iterations.

6 ANALYSIS

6.1 THE IMPACT OF DATA SCALING AND SYNTHESIS NOISE

Is the Simulator necessary as the data synthesizer? As shown in Figure[d] models that integrate
the Simulator with the Generator for iterative data synthesis demonstrate consistent improvements
in performance. In the initial stages of synthesis, models often filter out substantial amounts of
usable data due to their inherent difficulty in identifying correct execution trajectories. However,
as the synthesized data grows, both Mistral and LLaMA effectively leverage this data, eventually
outperforming models that rely solely on Generator-based synthesis.

Is the Cycle Consistency mechanism necessary? We conduct iterative experiments without ap-
plying cycle consistency filtering. It can be observed that as the number of synthesis iterations in-
creases, the performance gap gradually expands. This highlights the critical role of reliable verifiers
in enhancing model capabilities through inference-time computation.

B QwenGen mmm MistralGen

6.2 THE IMPACT OF DIFFERENT SYNTHESIZED DATA -

We compare the differences in synthesized data between © L
using Mistral and Qwen as the backbone for training the
Mistral model. Figure [§]shows that the performance dif-
ferences are not significant, indicating that variations in N 0
the quality of synthesized data from different models are Y =
insufficient to bridge the performance gap between them.

This suggests that although the quality of synthesized
data can influence training outcomes, the inherent capa-
bilities of the model primarily determine performance in
specific tasks.

F1 Score

Pl Parameter

Figure 8: The average API and Parame-
ter F1 scores for models trained on dif-
ferent datasets.

7 CONCLUSION AND FUTURE WORK

In this work, we enhance the model’s tool use capabilities without relying on external supervision.
Inspired by inference-time scaling, which increases the sampling space to enhance performance, this
approach is particularly suitable for small models to facilitate self-improvement. We demonstrate
that InfCycle effectively synthesizes high-quality data using the LLM as a proposer for inference
sampling, and cycle consistency acting as process verifiers.

In the future, we plan to incorporate more tools and parameters into our research. This includes
integrating various types of APIs and adjusting parameter scales to continuously enhance model
performance. The trade-off between the number of parameters and inference cost remains a key
focus, as it directly impacts the efficiency and applicability of our approach. Additionally, we plan
to conduct more experiments to investigate further scalability factors.

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James
Zou. Are more llm calls all you need? towards scaling laws of compound inference systems.
arXiv preprint arXiv:2403.02419, 2024a.

Sijia Chen, Yibo Wang, Yi-Feng Wu, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and
Lijun Zhang. Advancing tool-augmented large language models: Integrating insights from errors
in inference trees. arXiv preprint arXiv:2406.07115, 2024b.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning
of large language models, 2024.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan
Zeng, Yasheng Wang, Lifeng Shang, et al. Planning, creation, usage: Benchmarking llms for
comprehensive tool utilization in real-world complex scenarios. arXiv preprint arXiv:2401.17167,
2024.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1-35, 2017.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1-38, 2023.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, et al. Toolace: Winning the points of llm function calling.
arXiv preprint arXiv:2409.00920, 2024a.

Yanming Liu, Xinyue Peng, Yuwei Zhang, Jiannan Cao, Xuhong Zhang, Sheng Cheng, Xun Wang,
Jianwei Yin, and Tianyu Du. Tool-planner: Dynamic solution tree planning for large language
model with tool clustering. arXiv preprint arXiv:2406.03807, 2024b.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, et al. Apigen: Automated pipeline for generating verifiable and
diverse function-calling datasets. arXiv preprint arXiv:2406.18518, 2024c.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
When not to trust language models: Investigating effectiveness of parametric and non-parametric
memories. arXiv preprint arXiv:2212.10511, 2022.

Dheeraj Mekala, Jason Weston, Jack Lanchantin, Roberta Raileanu, Maria Lomeli, Jingbo Shang,
and Jane Dwivedi-Yu. Toolverifier: Generalization to new tools via self-verification. arXiv
preprint arXiv:2402.14158, 2024.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou, Yuchen Eleanor Jiang,
Chengfei Lv, and Huajun Chen. Autoact: Automatic agent learning from scratch via self-
planning. arXiv preprint arXiv:2401.05268, 2024.

10

Under review as a conference paper at ICLR 2025

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei
Huang, Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu
Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li,
Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao,
Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang
Wu, Heng Ji, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models, 2023a.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023b.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling 1lm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu, Han Qian, Mingbo Song, Hailiang Huang,
Cheng Li, Ke Wang, Rong Yao, et al. Restgpt: Connecting large language models with real-world
restful apis. arXiv preprint arXiv:2306.06624, 2023.

Kaya Stechly, Matthew Marquez, and Subbarao Kambhampati. Gpt-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning problems. arXiv preprint arXiv:2310.12397, 2023.

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh-Yen Lin, Hung-yi Lee, and Yun-Nung Chen.
Let me speak freely? a study on the impact of format restrictions on performance of large language
models. arXiv preprint arXiv:2408.02442, 2024.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. Toolal-
paca: Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can large language models
really improve by self-critiquing their own plans? arXiv preprint arXiv:2310.08118, 2023.

L Wang, W Xu, Y Lan, Z Hu, Y Lan, RK Lee, and E Lim. Plan-and-solve prompting: im-
proving zero-shot chain-of-thought reasoning by large language models (2023). arXiv preprint
arXiv:2305.04091, 2024.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu,
Tianyu Liu, and Zhifang Sui. Large language models are not fair evaluators. arXiv preprint
arXiv:2305.17926, 2023a.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents. arXiv preprint arXiv:2302.01560, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical anal-
ysis of compute-optimal inference for problem-solving with language models. arXiv preprint
arXiv:2408.00724, 2024.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata Mukherjee, Yuchen Liu, and Dongkuan Xu.
Rewoo: Decoupling reasoning from observations for efficient augmented language models. arXiv
preprint arXiv:2305.18323, 2023a.

11

Under review as a conference paper at ICLR 2025

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models. arXiv preprint arXiv:2305.16504,
2023b.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica,
and Joseph E. Gonzalez. Berkeley function calling leaderboard. https://gorilla.cs.
berkeley.edu/blogs/8_berkeley_function_calling_ leaderboard.html,
2024.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: Teaching
large language model to use tools via self-instruction. Advances in Neural Information Processing
Systems, 36, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang, Yilong Wu, Sixian Li, Xiaoran Fan, Shihan
Dou, Qi Zhang, Tao Gui, et al. Tooleyes: Fine-grained evaluation for tool learning capabilities of
large language models in real-world scenarios. arXiv preprint arXiv:2401.00741, 2024.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Ren Kan, Dongsheng Li, and
Deqing Yang. Easytool: Enhancing llm-based agents with concise tool instruction. arXiv preprint
arXiv:2401.06201, 2024.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttun-
ing: Enabling generalized agent abilities for llms. arXiv preprint arXiv:2310.12823, 2023.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223-2232,2017.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, Victor Bursztyn, Ryan A Rossi, Somdeb
Sarkhel, and Chao Zhang. Toolchain*: Efficient action space navigation in large language models
with a* search. arXiv preprint arXiv:2310.13227, 2023.

12

https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html

Under review as a conference paper at ICLR 2025

A DATASET AND EXPERIMENT DETAILS

A.1 STABLETOOLBENCH DATASET

In this study, we use the StableToolBench |Guo et al.| (2024) environment and test set for method
validation, rather than ToolBench |Qin et al.| (2023b)). StableToolBench applies manual filtering and
caching of HTTP requests to reduce API failures. As shown in Table[5] ToolBench has a significantly
higher proportion of failed APIs, making StableToolBench more reliable for ensuring comparability
and enabling a fair evaluation of model performance.

However, it’s important to note that StableToolBench generates virtual request results using GPT-4,
which can introduce biases during data synthesis. Therefore, we do not use the StableToolBench
environment for synthesizing training data.

Table 5: This table illustrates the proportion of solvable data filtered out by StableToolBench.

Benchmark I1-Ins I1-Cat 1I1-Tool I2-Ins I2-Cat 1I3-Ins Sum.
ToolBench 200 200 200 200 200 200 1100
StableToolBench 163 153 158 106 124 61 765

A.2 HUMAN ANNOTATED STABLETOOLBENCH DATASET

For each user query, we conducted real-time access to the RapidAPI website and constructed the
following testset, which includes both Single and Multiple types of user queries. As shown in
Table[6] each sample includes the required API, corresponding parameters, and the access sequence.

Table 6: Statistics on the sample counts for different datasets (S represents Single samples, and M
represents Multiple samples).

Benchmark I1-Ins (S) I1-Cat (S) I1-Tool (S) Il1-Ins(M) Sum.
151 64 113 28

StableToolBench vy ot M) I1-Tool (M) I2-Ins (M) I2-Cat (M) 00
36 46 2 46

A.3 BERKELEY FUNCTION CALLING DATASET

We also gathered data statistics on the Berkeley Function Calling in Table This evaluation
dataset primarily focuses on Python but includes other programming languages (such as Java and
JavaScript), which increases the performance requirements for base models, as many models may
not be proficient in languages beyond Python.

Table 7: This table shows the distribution of different types of data.

Python Java JavaScript Multiple Parallel Parallel Multiple Sum.
400 100 50 200 200 200 1150

A.4 TRAINING DETAILS

In our experiments, we utilize Mistral-7B-Instruct-v0.2, LLaMA3-8B-Instruct, and Qwen2.5-7B-
Instruct as the foundation models, and the training process is conducted based on the alignment-
handbook framework in a multi-round conversation mode. During the 1-epoch supervised fine-
tuning (SFT) phase, we use a total batch size of 8, a learning rate of 7.0e-06, and a maximum
sequence length of 4096. For the 1-epoch direct preference optimization (DPO) phase, we maintain
a total batch size of 2, a learning rate of 5.0e-7, and a maximum sequence length of 1024, with the 3
parameter set to 0.01. All experiments are conducted on a single machine equipped with 8§ NVIDIA
A100 GPUs, each with 40GB of memory.

13

Under review as a conference paper at ICLR 2025

e §§ _' Gegzree\rt}gon

Response

Generation

Plan
Generation

Figure 9: The figure illustrates the steps in the Generator data synthesis process, showing how to

Generator

transform API results into usable tool training trajectory data.

A.5 GENERATOR AND SIMULATOR DETAILS

As shown in Figure 0] Generator sequen-
tially executes three components: Query
synthesis, Response synthesis, and Plan
synthesis, in the data synthesis process.
In each part, the model independently as-
sesses plausibility to enhance trajectory
accuracy. Given that we use a small-sized
model, semantic checks may not filter out
all errors. Effective filtering still relies on
the cycle consistency mechanism.

As shown in Figure [T0] we illustrate the
potential intermediate results at each step
of the Simulator. Unlike previous works
like ReACT, which use historical informa-
tion as the context for the current action,
our approach relies solely on effective re-
sults from previous steps. This reduces the
context length, ensuring the model is not
constrained by long text processing capa-

bilities. For multi-step tasks in StableToolBench, we summarize each plan into a Response, which

serves as the final result.

A.6 PROMPTS

In this section, we present the key prompt templates we use in our data synthesis process, as shown in
Figure[TT} [T2] and[I3] We do not carefully select these prompts, as we focus on leveraging iterative
synthesis techniques to generate data, rather than employing them for reasoning during inference.

Figure 10: The figure depicts the Simulator’s specific

Task
Planning

|

|

}

Tool
Reflection

|

Task
Reflection

— | Trajectories

Tool R
Selection

N Parameter

Tool s
Execution

|
v
JSON
Observation
|

¥

Summary

— Reflection

'
|
v

Response

— Reflection

execution steps and intermediate results.

This approach emphasizes data generation while ensuring modeling flexibility.

14

Under review as a conference paper at ICLR 2025

Prompt for the Generator to Generate Query

Simple Query

You are a query generator tasked with creating realistic and natural queries based on a provided API call.
Please generate a specific and complex user query based on the given API information.

Requirements:

- Realistic: The query should reflect what actual users might inquire about when trying to understand or
utilize the function in real scenarios.

- Fluent: The query should be well-structured, clear, and free of grammatical errors.

- Parameter Reasoning: The generated query should demonstrate an understanding of the function’s
parameters, reasoning about how they should be correctly used or what their values should be.

Please don’t mention API in the user query, but it needs to contain the parameters required to call the APIs.
Now generate query description for given API function call.

Input: function calling = {}

Parallel Query

You are a query generator tasked with creating realistic and natural query based on provided API call
which necessitates multiple times using different parameter-value pairs.

The query should align with realistic user needs, structuring a scenario where the function’s application is
clearly required.

Requirements:

- Logical Flow: The query should be logically structured to necessitate multiple API calls, with the
sequence of calls matching the order of parameters provided.

- Parameter Inclusion: Incorporate all necessary parameters into the query. The query should allow each
paramerter for API call to be logically derived from the context.

- Clarity and Realism: The user query must be clear, grammatically correct, and realistically framed,
resembling a genuine request that might prompt such an API interaction in a real-world application.
Please don’t mention API in the user query, but it needs to contain the parameters required to call the APIs.
Now generate query description for given API function call chain.

Input: function calling = {}

Multiple Query

You are a query generator tasked with creating realistic and natural queries based on a provided API call.
Using the provided list of APIs, select and combine given APIs to create a specific and complex user query.
Requirements:

- Establish Logical Relationships: Ensure that the API calls are logically related and form a coherent
sequence. The query should reflect a natural flow where the output of one API informs the next, or where
multiple APIs are combined to achieve a complex objective.

- Parameter Validity: Construct the query so that valid parameters for each API call can be inferred from
the context. Ensure the query provides sufficient information to logically deduce the required parameters
where applicable.

- Clarity and Realism: The user query must be clear, grammatically correct, and realistically framed,
resembling a genuine request that might prompt such an API interaction in a real-world application.
Please don’t mention API in the user query, but it needs to contain the parameters required to call the APIs.
Now generate query description for given API function call chain.

Input: function calling = {}

Figure 11: Instruction prompt for query generation.

15

Under review as a conference paper at ICLR 2025

Prompt for the Generator to Generate Golden Trajectory

Simple Plan
Given [User Query], [Function call] that can be used to solve the query, your task is to provide a concise,
logical, and well-organized task plan centered around API function call to address the query

RTEEY)

Provide the task plan without any “execution details”, “result handling”, or “error management”.
sksksk
Input:

[User Query]:{query}
[Function Call]:{function_call }
sksksk

Please generate a plan in one sentence:

Simple Answer

Given [User Query], [Function call] with returned response used to resolve the query, your task is to
generate a concise, coherent, and reasonable answer based on the available information from the function.
Requirements:

- Ensure fluency and clarity: The answer should be well-structured and articulated in a clear, fluent, and
natural manner.

- Match the function response: The answer must directly reflect the response of the function call. Avoid
adding any outside knowledge or assumptions not provided by the function. - Correct details: The answer
must fulfill the user’s requirements and resolve the query satisfactorily. Now generate an answer for the
given query and function call.

skeksk

Input:

[User Query]:{query}
[Function Call]:{function_call}
skeksk

Please generate an answer:

Final answer Given [User Query] and [Subtask with Subanswer], your task is to summarize the
results of executing all subtasks and effectively consolidate these results to provide a comprehensive and
accurate answer to the user query. The final answer should be detailed, complete, and well-structured,
directly addressing the user query.

Requirements:

- Subanswer Utilization: The final answer must be based entirely on the subanswer, without incorporating
any external knowledge or assumptions.

- Answer Resolution: Ensure that the final answer fulfills the user’s requirements and resolves the query
satisfactorily.

- Answer Quality: The final answer should be clear, detailed, and logically structured, providing a
high-quality solution to the user query.

sksksk

Input:

[User Query]:{query}
[Subtask with Subanswer]:{context}
sksksk

Please generate a summary answer:

Figure 12: Instruction prompt for trajectory generation.

16

Under review as a conference paper at ICLR 2025

Prompt for the Generator Semantic Checker

query check

Please compare the given query with the target function call parameter and determine if they match. The
evaluation criteria include:

- Query Clarity and Coherence: Assess whether the query is articulated in a clear, fluent, and natural
manner.

- Parameter Derivability: Ensure that all parameter values required for the function call can be either
directly extracted from the query or logically inferred based on the provided information. Please note that
common sense knowledge can be used to infer parameters from problems.

If all the above criteria are met please first output YES/NO, and then give reasons for the judgment.

skeksk

Input:

[query]: {query}
[parameters]: {parameters }
skskok

Output:

single answer check

Please evaluate if the current answer effectively addresses the user query based on the information
provided by the function response. The evaluation criteria include:

- Response Utilization: Check if the answer is obtained based on the given function response.

- Query Resolution: Determine whether the answer fulfills the user’s requirements and resolves the query
satisfactorily.

- Clarity and Coherence: Assess whether the answer is articulated in a clear, fluent, and natural manner.

If all the above criteria are met please first output YES/NO, and then give reasons for the judgment.

skeksk

Input:

[query]: {query}

[function response]: {function_resp}

[answer]:{answer }

sksksk

Output:

final answer check

Please assess whether the given answer effectively solves the user’s problem and whether the language is
smooth, fluent, accurate, and concise. Please consider whether the answer responds directly to the query,
is complete, and is clearly expressed.

If all the above criteria are met please first output YES/NO, and then give reasons for the judgment.

sksksk

Input:

[query]:{query}
[answer]:{answer }
sksksk

Output:

Figure 13: Instruction prompt for semantic checker

17

	INTRODUCTION
	Related Works
	Motivations
	Methods
	The pipeline of data synthesizer
	The Step-wise Cycle Consistency
	Multi-stage synthesis strategy

	EXPERIMENTS
	StableToolBench
	Results
	Human Evaluation

	Berkeley Function-Calling Benchmark
	Results

	Analysis
	the Impact of Data Scaling and Synthesis Noise
	The impact of different synthesized data

	Conclusion and Future Work
	Dataset and Experiment Details
	StableToolBench Dataset
	Human Annotated StableToolBench Dataset
	Berkeley Function Calling Dataset
	Training Details
	Generator and Simulator Details
	Prompts

