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Abstract

Large language models (LLMs) built on existing reinforcement learning with
human feedback (RLHF) frameworks typically optimize immediate responses at
each turn. However, this can fail in multi-turn dialogue settings, like online math
tutoring, where a single-turn optimal tutor may give away answers instead of
guiding the student step by step. We introduce a method that enhances LLM-based
tutors by representing the dialogue history with a lower-dimensional (student) state
representation and optimizing a long-term policy to select high-level actions given
that state. This better aligns the tutor with the long-term objective of helping the
student solve the target math problem(s) independently. Our approach based on
lower-dimensional states and high-level actions is more computationally efficient
than training the tutor policy end-to-end to directly generate the tutor’s response. In
LLM-simulated tutoring scenarios evaluated on GSM8K, our approach improves
student’s long-term outcomes by 50% compared to prompting baselines.

1 Introduction

Large language models (LLMs) have achieved remarkable success in complex tasks, such as solving
math problems [28], summarization [24], and code generation [3]. These models can interact with
humans through open-ended text outputs and have been explored across a wide range of domains,
including education [31] and healthcare [S]. This widespread application is largely due to their
easily leveraged capabilities, including in-context learning from user-provided demonstrations [7]],
instruction-tuning [17], as well as reasoning [36]. A major area of research focuses on aligning the
behavior of language models with human preferences, a process referred to as reinforcement learning
with human feedback (RLHF) [20]].

However, one main limitation of the existing RLHF framework [20} 21] is that LLMs are optimized
only to generate the most preferred single-turn responses, rather than optimizing for conversation-
level outcomes. This is surprising given that many common use cases of LLMs involve multi-turn
interactions, as discussed in prior work [[11, 138} |22} 4f]. In particular, Hong et al. [[L1] highlights
that the default LLM’s response tends to be generic and verbose, which is sub-optimal in many
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(a) Our method optimizes the tutor’s behavior to im- (b) The policy is optimized via RL and then deployed
prove multi-turn student learning outcomes. to interact with the student.

Figure 1: Fig. (a) contrasts our proposed approach (purple) with a greedy baseline, in which the
tutor generates an immediately helpful response rather than a multi-turn-optimal response. In order
to generate multi-turn optimal response, we propose (1) embedding the conversation history with a
lower-dimensional vector representation, (2) planning with RL to map this state vector to a high-level
action choice, then (3) using few-shot examples to generate the most appropriate response given the
conversation history and the optimal action. In Fig (b), the tutor’s responses are optimized via RL to
map the student’s state to an appropriate high-level tutor action. During deployment, the tutor uses
the conversation history to contextualize the chosen action and generate a response.

goal-directed multi-turn conversations, such as teaching a new concept, or personalizing a travel
itinerary to specific user’s interests.

In this work, we focus on online math tutoring as an example of complex, goal-directed dialogue,
where multi-turn optimal behaviors (e.g., asking follow-up questions and giving hints) may differ
substantially from single-turn optimal behaviors (e.g., showing solutions). Tutoring students on math
problems requires planning for long horizons. Strategies like probing the student’s current math
level and encouraging them to make another attempt are important, but they do not naturally emerge
in chat-bots optimized for single-turn responses, as they are not designed to anticipate multi-turn
interactions with the student. Customized prompts (e.g., “Do not give the solution") may help mitigate
this issue, but prompt engineering often fails to produce pedagogically meaningful behaviors from
LLM tutors[31], and generation is harder to control reliably. To address the gap between single-turn
and multi-turn optimality, recent research trains language models using RL with objectives based
on long-term outcomes. [[L1} 23} 12} 38, 22]]. However, most existing works from RLHF frameworks
train token-level policies, which require substantial computational resources and training data. As
an alternative, we propose representing dialogue as a low-dimensional (student) state and learning a
policy over high-level actions, therefore avoiding direct token-level optimization.

To improve on the existing RL finetuning methods for LLMs and optimize for multi-turn outcomes,
we propose a novel decomposition of this problem into four parts:

1. Compact state representation. Representing the dialogue as a low-dimensional vector
representation,

2. Offline RL for policy learning. Selecting an optimal high-level action using offline RL
policy optimization,

3. Response generation. Generating the tutor’s next-turn response, conditioned on the selected
high-level action and the current conversation context using few-shot examples,

4. Data augmentation. Improving data for offline RL through optimism-based exploration.

While we use online math tutoring as a concrete example, our framework is broadly applicable to
other multi-turn dialogue settings where greedily optimizing LLLM assistant’s response at each turn
may not align with long-term outcomes across multiple turns. In summary, our main contributions
are:

* Proposing a multi-turn optimal RL policy framework based on low-dimensional student’s
state representation and high-level tutor’s actions,



* Introducing a new exploratory data collection strategy to simulate diverse tutoring scenarios,

* Demonstrating a 50% improvement in simulated students’ problem-solving rate over prompt-
ing baselines in GSM8K-based tutoring scenarios.

2 Related Work

RL for multi-turn dialogue optimization of LLMs: Prior works apply both RL and non-RL
methods to optimize LLM-based chat-bots for long-term outcomes. [30] propose sampling a set of
candidate responses from a base LLM and selecting the most optimal response based on the Q-value
estimates. Similarly, [35}14] use Monte Carlo Tree Search to simulate or predict the future outcomes
of each candidate response and select the highest scoring response. In contrast to sampling based
methods, [23] train a transformer-based value function and policy using offline RL. In contrast to
prior work, we optimize the policy using offline RL and evaluate on much more complex scenarios
often with more than ten turns per dialogue. While [38} 122] share the same motivation as our work,
they train token-level policies instead of policies defined over abstract states and high-level actions.

Hong et al. [[11} [12] improve prior work [23] by focusing on synthetic data augmentation. They
propose using an LLM-based critic [11]] or a hindsight controller [[12] to collect new actions that may
help improve downstream RL policy learning. We continue to improve this line of work by proposing
an optimism-guided approach for exploring potentially high-rewarding actions and training an offline
RL policy with the augmented data.

LLMs for supporting K-12 math education: Among many applications of multi-turn interaction,
we focus on education, specifically math tutoring for K-12, as a representative domain with broad
impact. The use of LLMs in K-12 math education has expanded from providing assistance to human
tutors with LLM-guided examples 31,133} [33]], evaluating the difficulty of educational content [10],
and various LLM-assisted tutoring services, such as Khanmigo and LearnLLM [34, (19, [26]]. As part
of efforts to design more pedagogically aligned LLM tutors, [[L6] evaluates differences in students’
learning outcomes across various tutoring dimensions, such as explanation type and quality and the
degree of support provided.

3 Setup

Following the notations in prior work [2], we denote the conversation between a teacher X and a
student Y as a sequence of turns C' = {U;X, U , ..., UX,UY }, where N represents the number of
dialogue turns (with the max length set to 20). Additionally, we include RY , an indicator of whether
the student in the n-th turn has solved the problem correctly or not, so the resulting C' becomes
{UX,UY,RY,..,UL,UY, RY}. The session ends either when the student solves the problem
correctly (reward +1) or when the maximum dialogue length is reached (penalty -1). The value
of a conversation (i.e., conversation-level outcome) is measured by the discounted sum of per-turn
rewards, 25:1 4™ RY . Note that with any « < 1, the value is higher if the student solves the problem
faster due to the smaller discounting amount. At each turn, the teacher generates U.X given the
conversation history so far, Y | = {U;X, U} ,...,UY_,}. The student responds to the teacher with
UY. We use mp (“tutor policy") to denote this mapping from HY ; to U;X.

Additionally, we introduce notations for the student’s state and the tutor’s high-level actions: SY
denotes the low-dimensional state vector representing the student extracted from the dialogue so far
HY and A denotes the tutor’s high-level action. We assume that there’s an one-to-one relationship
between UZ( (tutor’s utterance) and AX (tutor’s high-level action). For brevity, we drop the super-
scripts X and Y hereafter. The conversation is now represented as C = {S1, A1, R1, ..., Sn, An, Rn }-
The tutor policy is parameterized by a neural network and can be optimized via RL, and the goal is to
learn a good 7y maximizing the expected value of the multi-turn conversation between the student
and the (LLM) tutor.



Algorithm 1 Optimizing a tutor policy using RL

Input: conversation dataset D
D,=10
for C € Ddo
for n = 1)t/o max;urn -1 do
Map H) — S).
Map Ugf — A%.
Assign reward RY based on U} .
Add (5711/7 Ar)7,(7 Ri/7 S}zcrl) to Dﬂ"
end for
end for
: Run an offline RL algorithm on D,. with a discount factor 7.
: Return: the optimized tutor policy my. =0
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4 Synthetic Dialogue Generation

We follow the data generation protocol used by prior work [[11}22], where a single LLM is prompted
to generate the entire conversation between a teacher and a student on a particular topic. We use
Claude 3 Sonnet [[1] to simulate 3,000 conversation scenarios using SAT-level math problem from
Kumar et al. [16] (more details in appendix{9.1). To make the generated scenarios more realistic, we
include conversations between a real human student and an Al tutor from the algebra-level subset of
Khan Academy’s CoOMTA dataset [18 as few-shot examples in the prompt during generation. We
assign +1 for success and -1 for failure, and use a discount factor of 0.9.

S Approach

Our key distinction from prior RL-based work on multi-turn dialogue optimization is the use of
low-dimensional state representations and high-level actions. We first map each dialogue to a 25-
dimensional vector capturing different aspects of the student-tutor interaction and the student’s
learning progress. Then we use an offline RL-optimized policy to select a high-level action for the
tutor among the following options: (1) instruct, (2) encourage, (3) bring the student’s focus back to
the session, and (4) ask a question. Finally, the LLM tutor generates a response conditioned on the
selected action and the full conversation history for contextualization.

Our proposed tutor policy my maps lower-dimensional states S, to tutor’s high-level actions A,,.
Unlike the enormous token spaces of HY (full conversation history between the tutor and the student)
and U,)f (tutor’s token-level utterance), the state and action spaces are substantially lower dimensional,
making RL-based policy optimization more efficient even without GPUs or large training datasets.

5.1 Mapping dialogue to student state representation

Training a tutor policy typically experiences the challenge of increasing (dialogue) input length as the
conversation continues between the (LLM) tutor and the student. While Transformer models [29]
can accommodate long histories, they are computationally expensive to train. To learn a lightweight
tutor policy, we compress the dialogue history into a fixed, low-dimensional state and define the
policy over this reduced space. Concretely, for each dialogue, we prompt Claude 3 Sonnet [[1] to
answer a structured set of questions about the observed dialogue, then vectorize these answers to
obtain a 25-dimensional student state vector .S,,. We further augment this representation with model
outputs from [32]], which quantify mathematical reasoning and “math density" in K-12 level math
student discourse. Although the full conversation H,, grows with conversation turns n, the policy
always operates on a constant-sized state defined by S,,. Full experimental details, including the
question set for state representation, are in Appendix: [[T}

’This dataset contains 188 dialogues between an LLM tutor and deidentified students. The authors were
approved by the license owners to use this dataset.



5.2 Extracting high-level actions from tutor’s utterance in offline dataset

Inspired by prior work’s categorization of different teaching strategies [33]], we define the high-level
action space based on the following four actions: (1) instruct, (2) encourage, (3) bring the (distracted)
student’s focus back to tutoring, and (4) ask a question, so the optimal tutor policy 7y is a mapping
from the low-dimensional student state to one of the four actions.

5.3 Preparing data for offline RL

We first generate 3,000 conversations using Claude 3 Sonnet as described in Section 4: Synthetic
Dialogue Generation and map every student’s utterance into a low-dimensional state representation
and every tutor’s utterance into one of the four action categories using Claude 3 Sonnet. The prompt
used for extracting the high-level action from the tutor’s utterance is in Appendix{I2. To assign a
per-turn reward to the student, we extract the student’s most likely answer based on their most recent
utterance and check whether the extracted numerical value matches the correct answer. Given this
offline dataset, we use RL to optimize the existing policy which is likely sub-optimal. In Section 5.5,
we will discuss how to collect more diverse training samples by exploring tutoring strategies guided
by optimistic Q-value estimates, and our experiments evaluate whether the diverse data collection
improves the tutoring policy.

5.4 Optimizing a tutor policy with RL

Given the conversation dataset C', we optimize the tutor’s policy 7y based on the actions most likely
to yield higher expected rewards. Importantly, rather than optimizing the tutor for a single-step
reward, we aim to maximize the overall conversation-level outcome. This requires considering the
value of future student states, not just the current one. RL provides a computational framework for
optimizing future outcomes through the Q-value, which is defined as:

N
Q(Snaan) = Em) l Z 'Yth ‘ Sp = 3n7An = an] €))

t=n-+1

This represents the expected rewards of following the tutor policy prescribed by 7y from the n-th
turn. This Q-value is parameterized by p and learned to minimize the following loss over the offline
samples:

L= Y [(r0 7y mx Qu(s041.0)) — Qulsn0)] @

(8ns@n,Tn,8n+1)ED

Through the process of Q-iteration [8], we arrive at the resulting my which greedily chooses
arg max, Q,,(sn, a) for each student state during deployment to maximize the multi-turn objective.
Since offline RL is known to experience challenges due to out-of-distribution states and actions,
we choose Conservative Q-learning (CQL) [14], rather than Q-iteration. Many successful and
well-studied algorithms [[15} 27} [13]] exist for offline RL, and our framework can work with any
method.

One might ask: What’s the advantage of RL compared to supervised fine-tuning (i.e., behavioral
cloning)? Even if we had access to actual student and teacher dialogue, the effectiveness of teaching
may vary significantly between expert and beginner teachers [25]], so we cannot guarantee that the
data is always optimal. Moreover, our synthetic data is generated using the baseline LLM as the
tutor, which is likely sub-optimal. In fact, our experiment results show that RL-optimized policy
outperforms simple behavioral cloning.

5.5 Tutor’s response conditioned on the selected high-level action

For each tutor’s turn, the policy 7y chooses an optimal high-level action which guides how the tutor
should respond to the student. However, we still need to turn this action into tutor’s next turn response.
We leverage instruction-following capabilities of LLMs to transform the selected high-level action
into a context-appropriate response.



Hi Tutor, I'm struggling with this problem ... . .

Okay, let's start by breaking this down. What

information do you have? q@ﬁ()r

The car went from A to B at 30 miles per hour. And it e o
went from B back to A at 50 miles per hour.

: Conditioned on ‘question”: | Conditioned on ‘encourage”

| . :
You've got the key information
- well done! You're right ... 'm
confident you can solve this

| average speed problem.

| Got it ... Have you worked on
problems before that involve
calculating an overall or
average rate when given

| multiple rates?

.

Figure 2: Conditioning on different high-level actions, “question” vs. “encourage the student”, leads
to clearly distinct tutor responses.

Algorithm 2 Exploratory data collection

1: Input: annotated dataset D,;, N budget for data collection.
2: Deandidate = 0

3: Fitted Q-iteration using D, to obtain Q),,.

4: Behavioral cloning with D, to get my.

5: for (sn,a,) € Dy do

6:  val = max, Q. (Sn,a) — Qu(Sn, Toe(Sn))

7: a) = argmax, Qu(sn,a))

8: Add (val, Sna:) t0 Deandidate -

9: end for

10: for (Sn, CL,TL) S Dcandidate[: top N] do

11:  Query D with the matching student state s,,

12: Generate tutors’ response conditioned on a;, and the retrieved scenario from L11.
13:  Continue generating the rest of the conversation.

14:  Add this example to D.

15: end for=0

The tutor LLM is prompted to generate an appropriate response U.X conditioned on the dialogue and
the selected action (H,,_1, A,). To guide the generation, we provide a few-shot examples sampled
from the offline data that demonstrate the selected action A,,. Fig. 2]shows how conditioning on the
selected action shapes the tutor’s response. When the action is encourage, the tutor LLM responds
with positive, supportive remarks like ““You’ve got the key information — well done!" compared to the
ask a question action.

5.6 Optimism-guided data augmentation

As highlighted by Hong et al. [11}[12], data augmentation is crucial for improving the quality of
learned RL policies. While prior work largely rely on hand-designed prompts for data collection, we
propose a data collection method based on optimism in RL.

We first identify student states from the existing dataset D, where a different high-level action than
the one chosen by the baseline policy has a higher Q-value estimate. We use the Q-function ) ,
learned by minimizing the loss in Eq. (2). We can use the Q-value for each tuple (s, a) in the dataset
to test whether a better alternative a* to the baseline action a exists with a higher Q-value estimate,
as in Alg. 2]

3Instead of CQL, we use fitted Q-iteration because the offline RL algorithm relies on pessimism to handle
out-of-distribution data, and is therefore, less suitable for our optimism-guided search.



We select 500 tuples of (s, a,a™) with the highest expected value. For each tuple, we find examples
from D, where the student’s state in the example matches the state in the tuple. We generate the
tutor’s next response conditioned on the selected action a* and complete the rest of the dialogue
between the student and the tutor using the baseline LLM. We generate five scenarios for each tuple
and augment additional 2,500 examples from optimism-guided exploration to the original dataset.

To measure the benefit of exploration, we evaluate the tutor trained from both the original and the
augmented data in our experiments. We denote the original by D and its augmented version by D+,

6 Evaluation

We evaluate the proposed tutor’s conversation-level performance using a student simulator set up by
Claude 3 Sonnet [1]. We have one LLM as the tutor (following either a specific policy or prompt
engineering) and another LLM as the student. Each tutor is tested over 300 conversation samples and
assessed based on the average success rate of the student correctly solving the problem within the
maximum dialogue length.

The baseline models used for comparison are: (1) Prompt engineering (details in Appendix{I0.1]),
(2) Behavioral cloning, (3) Fitted Q-iteration, and (4) Conservative Q-learning (CQL). We test four
models on both the original and the augmented data, resulting in seven different tutors since prompt
engineering does not require any training. Behavioral cloning is our version of supervised fine-tuning.
Instead of matching the output token distribution, the behavioral cloning policy is trained to match
the baseline policy’s high-level action distribution.

7 Student Simulator Results

Our experiments are designed to answer two key questions: (1) Which tutor policies achieve better
multi-turn outcomes, and (2) How much improvement is made in the tutor’s policy through exploratory
data augmentation. Overall, we are interested in whether our proposed method (using CQL with the
augmented data) outperforms other baselines based on both RL and non-RL.

7.1 Does our method improve the simulated student’s problem-solving success rate?

Our experimental results with the simulated student show that our method (embedding the dialogue
history into a latent state representation and learning to select a long-term optimal action) outperforms
prompt engineering. This holds true for both CQL policies, whether trained on the original data or
the augmented data. FigureB] shows that CQL (D) and CQL (D) both achieve substantially higher
average success rates (48.67% and 60.33% respectively) than prompt engineering (36% success rate
on tutoring evaluations with sampled GSM8K problems). Notably, CQL on the augmented dataset
achieves 50% improvement over the prompting baseline. Fitted Q-iteration on both D and DT also
outperform the non-RL baseline, but the benefits are smaller than CQL with the largest improvements
of 25.81% made by fitted Q-iteration.

Interestingly, behavioral cloning on D under-performs, but the same model trained on DT outperforms
prompt engineering. The benefit of data augmentation will be further discussed in the following
section. We believe the main reason for this improvement is that the augmented data includes more
successful conversation examples. By intervening with promising tutor actions, data augmentation
effectively changes the baseline policy represented by the dataset. Since the goal of behavioral
cloning is to mimic the baseline policy’s action distribution, improving the baseline policy naturally
leads to better performance.

One might expect behavioral cloning on D to match the performance of prompt engineering since
D is also generated using prompt engineering (and therefore, the baseline policies should match).
Therefore, the baseline tutor policy should be the same in both settings. However, Fig. [3 shows
that behavioral cloning on D performs worse. We suspect this gap is due to information loss when
projecting the dialogue history into a lower-dimensional latent state representation. We learn a
deterministic behavioral policy that maps each latent state to the most likely high-level action based
on the action frequency observed in D. However, if two different dialogue histories are mapped to
the same latent state and are therefore, treated identically by the learned policy, this could create a
mismatch between the behavioral policy’s output and prompt engineering behavior. Additionally,



Dataset Success Diversity
Original D 74.64 38.53
82.83 39.35
Table 1: The original dataset contains 3,000 dialogue examples, and the augmented dataset contains
2,500 additional samples collected from optimism-guided action exploration.

prompt engineering has the advantage of selecting actions non-deterministically based on the full
dialogue history.

Despite the potential loss introduced by com-
pact state representation, RL-optimized poli-
cies achieve better outcomes than prompt en-
gineering. This supports our hypothesis that
the baseline policy from prompt engineering is
not optimized for conversation-level outcomes.
The results further show that our proposed tu-
tor (CQL+) achieves the highest average success
rate across 300 conversation examples compared
to other tutor models.

Tutor Evaluation on 300 Conversations

|
1

°
>

°
2
—

°
—

Success Rate

°

°

BC  BC+ + CQL CQL+ Prompt
7.2 How does exploratory data QTutosponcyQ QL+ Promp

augmentation help with policy learning? . .
Figure 3: Average success rates of prompt engi-

One of our main contributions is optimism- neering, behavioral cloning (BC), fitted Q-iteration
based data collection for exploring promising (Q), and Conservative Q-learning (CQL). The blue
tutor actions. Fig. [3]is designed to compare the results are trained with the original dataset and

policies trained on the original data (blue) and the orange results are trained with the augmented
those trained on the augmented data ( ). dataset. The evaluations are conducted with 300

Across all policies’ from behavioral Cloning to conversations and the error bars indicate 95% CI.
CQL, we observe that using the augmented data
improves the tutor’s performance.

Data augmentation improves the tutor in two
ways: first, by increasing the coverage of states
and actions, and second, by leading to more successful conversation examples, where the student
correctly solves the problem on their own. In Table|l, we compare the average success rate in the

- f success les . .
original and augmented data based on "“’:::Z]r ot ;x;i;‘f;‘s’ < (as before, success is determined by

whether the student solves the problem correctly within the maximum dialogue length). We also
measure the diversity of states and actions covered in both datasets by calculating the ratio of unique
states and actions to the total number of dialogue turns.

We expect the augmented data to have higher diversity because we design the data augmentation
process to explore student states and tutor actions not already observed in the existing data. However,
this does not guarantee higher success rates. If the Q-value function learned from the original data is
mis-specified or biased, the promising actions under the incorrect Q-function may result in worse
outcomes.

Promisingly, we observe that the augmented data also yields a higher average success rate. This
suggests that the Q-function learned from D is already an improvement to the baseline policy. This
aligns with our previous observation about the performance of Q-iteration in Fig. 3] (“Q" versus “BC"
and “Prompt"). Since the augmented data includes more successful dialogue examples, behavioral
cloning on the new data also achieves a higher success rate than the original behavioral cloning.

8 Conclusion

One limitation of RLHF is that the resulting model is optimized for a single turn. However, in many
realistic settings, such as tutoring, conversations between an LLM and a user or student span multiple
turns. Greedy optimization based on turn-level preferences fails to account for future outcomes.
There are settings where turn-level optimal responses (e.g., providing a solution) don’t align with the



overall objective (e.g., helping the student solve the problem on their own). To overcome this, we
propose an efficient, lightweight RL approach for designing a long-term optimal LLM tutor.

Our framework is applicable to many other multi-turn dialogue settings beyond tutoring. For example,
analysis by Zheng et al. [37] on 100K conversations across 25 state-of-the-art LLMs shows that
queries about technology and software are among the most frequent topics users ask LLMs. When
answering these questions, chat-bots can adopt long-term strategies for engaging with users over long
conversations.

Ethical Considerations

Concerns have been raised about using large language models to simulate students. To mitigate
potential biases in simulated students’ behaviors, we exclude demographic information from the
student profile and include only the potential mistakes a student might make while solving the target
math problem.

We understand that human teachers provide value to classrooms and individual students that is
irreplaceable by LLM-based tutors. While we believe in the potential of LLMs and Generative
Al to improve students’ learning experiences and outcomes, we are also mindful of potential risks
associated with deploying such systems to directly interface with students. In this work, we focus on
online math tutoring as a concrete example of multi-turn dialogue and propose a computationally
efficient approach based on RL that can be broadly applied to non-education-related contexts.
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Appendix

9 Data generation

For the reviewer’s easier parsing, we highlight parts of the prompts relevant to the student’s mistake,
the math problem description, and a few-shot dialogue examples from CoMTA dataset [18] in yellow,
high-level actions [iijilligents. and generated tutor and student dialogue snippets in lime.

9.1 Prompt for data generation

We use the following prompt to generate the full dialogue trajectory of a student and a tutor discussing
a target math problem. We use one LM to act as both the tutor and the student.

Generate a dialogue between an Al tutor and a sixth-grade student where the sixth-grade student
asks the tutor for an explanation of a math problem. The student is not good at math, so the student
struggles with the problem and makes a mistake. Insert a sampled student mistake. The
tutor should perform information-gathering to figure out the sixth-grade student’s math background
knowledge, by asking questions and engaging in dialogue with the sixth-grade student. In the
dialogue, the tutor’s utterances are prefaced by “Tutor:" and the sixth-grade student’s utterances
are prefaced by “Student:". The student is asking about the following problem: Insert the
target math problem. Below are some examples of the student asking the tutor about math
concepts. Insert examples of student-tutor dialogue from Khan Academy’s
CoMTA dataset . Make sure the dialogue ends when the student gives the correct answer. The
tutor should not give the solution explicitly but correct the student ‘s mistake if the student makes any
mistakes. The student is easily distracted and may lose interest in solving the problem, but the tutor
needs to help the student focus on the problem.

9.2 Prompt for exploratory data generation based on Q-value optimism

For exploratory data collection and augmentation, (for example, we want to collect trajectories of
executing a new action a,, from a latent state s,,), we first look in the existing dataset for a dialogue
example that includes the matching latent state s,, but with a different action than the identified
optimal action, a},. Next, we use the prompt in @ for a single turn intervention conditioned on the
desired action a,. Then, we continue generating the rest of the dialogue using the following prompt
with a single LLM:

Generate a dialogue between an Al tutor and a sixth-grade student where the sixth-grade student
asks the tutor for an explanation of a math problem. The student is not good at math, so the student
struggles with the problem and makes a mistake. The tutor should perform information-gathering to
figure out the sixth-grade student’s math background knowledge, by asking questions and engaging in
dialogue with the sixth-grade student. In the dialogue, the tutor’s utterances are prefaced by “Tutor:"
and the sixth-grade student’s utterances are prefaced by “Student:". The student is asking about
the following problem: Insert the math problem. Below are some examples of the student
asking the tutor about math concepts. Insert examples of student-tutor dialogue
from Khan Academy’s CoMTA dataset . Make sure the dialogue ends when the student gives
the correct answer. The tutor should not give the solution explicitly but correct the student ‘s mistake
if the student makes any mistakes. The student is easily distracted and may lose interest in solving the
problem, but the tutor needs to help the student focus on the problem. Note (d/30) + (d/50), d/30 +
d/50, and d/(30) + d/(50) are equivalent expressions, so the tutor need not correct the student if the
student gives any of these expressions. Also remember that the total distance traveled is 2d. Here’s
the dialogue you need to continue writing: Insert the partial dialogue generated so
far. Begin your response directly with “Student:" and continue writing the rest of the dialogue
until the student solves the problem.
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10 Prompts for generating LM tutors

10.1 Prompt engineering only tutor

You’re an online math tutor working with a sixth-grade student. Continue the following dialogue as
the tutor. You should perform information-gathering to figure out the sixth-grade student’s math
background knowledge, by asking questions and engaging in dialogue with the sixth-grade student.
You should not give the solution explicitly but correct the student’s mistakes if the student makes any
mistakes. The student is easily distracted and may lose interest in solving the problem, but the tutor
needs to help the student focus on the problem. In the dialogue below, the tutor’s utterances are
prefaced by Tutor:” and the sixth-grade student’s utterances are prefaced by Student:” Insert
the dialogue here. Begin your generation with “ [Generation] Tutor:” and make sure
to respond to the student’s last utterance, which is Insert student’s response. Keep your
response concise."”

10.2 High-level action conditioned tutor

You’re an online math tutor working with a sixth-grade student. Continue the following dialogue
with the goal of In the dialogue below, the
tutor’s utterances are prefaced by Tutor:” and the sixth-grade student’s utterances are prefaced by
Student:”. Insert the dialogue here.

Here are some examples of solving a different problem, but demonstrating the desired tutor’s action:

Now it’s your turn. Begin your generation with “[Generation] Tutor:" and respond to
the student’s utterance by {Insert the selected action}. Make sure to respond to the
student’s last utterance, which is Insert student’s response. Keep your response concise.

The action-conditioned prompt is used for both the behaviorally cloned tutor from the orig-
inal data and the optimistic Q-function-based tutor, as well as our proposed tutor based on
Conservative Q-learning on the augmented data. For the behavioral cloned tutor, the actions are not
optimized with reinforcement learning, but instead selected based on supervised learning.

11 Latent student state representation

One key idea is to map dialogue histories in natural language to low-dimensional vectors representing
the student states. Each element in the vector represents the following item. Most items are binary
responses (taking on either 1 for yes or 0 for no) to a single question, but some items use majority
votes from multiple questions to get the values.

1. Is the student producing math-related content?

2. Has the student solved the problem correctly?

9N}

. Is the student asking the tutor to re-explain a concept or clarify what the tutor has said
already?

. Is the student repeating or emphasizing what the tutor has already said?
. Is the student going off-topic?
. Is the student’s utterance unrelated to the math problem?

. Is the student explicitly asking the tutor a question?

0 N N L B~

. Is the student describing what they are stuck on or which part of the problem they are
confused about?

9. Has the student asked diagnostic questions to assess the student’s mathematical knowledge
or level?

10. Is the student expressing frustration?
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11. Is the student expressing uncertainty or lack of confidence about their ability to solve the
problem?

12. Is the student expressing positive sentiment?

13. Is the student asking the tutor for a break from the tutoring session?

14. TIs the student talking about the problem at hand?

15. Is the student talking about their general mathematical background?

16. Is the student talking about other math concepts related to the problem at hand?
17. Has the student written down an equation for the problem?

18. Is the tutor asking a question to the student?

19. Did the student make a mistake in the current turn? (Based on the majority vote from
answers to the following three questions):

(a) Did the student make any calculation mistake in the most recent utterance?

(b) Did the student make any mistake solving the problem? (Followed by examples of
student mistakes that are marked as “possible mistakes" students may make.)

(c) Did the student make any mistake solving the problem? (Followed by examples of
successful student solutions that are marked as “correct solutions.")

20. Has the tutor tried to bring the student’s focus back to the problem after the student is
distracted? (Based on whether any previous time steps has answered yes to the following
question: )

21. How many questions did the tutor ask the student so far? (Based on the cumulative count of
yes to Q18 from all previous time steps)

22. How many questions did the student ask the tutor so far? (Based on the cumulative count of
yes to Q7 from all previous time steps)

23. What is the current turn in the conversation? (Integer value between 1 and maximum
dialogue length)

24. Output of the classifier by Wang and Demszky [32]] representing ‘math density’

25. Output of the classifier by Wang and Demszky [32] representing the amount of student’s
mathematical reasoning

12 Inferring the high-level action from the tutor’s utterance

In order to create a dataset used for reinforcement learning, we need to turn the conversation data
into tuples of latent states s,, and high-level actions a,,. Appendix [IT describes how s,, is mapped
from the dialogue history. Here we describe how the high-level action s, is inferred from the tutor’s
utterance in natural language. For each tutor’s utterance in the conversation, we turn into one of the
high-level actions a,, by asking an LM the following prompt:

We are evaluating a dialogue between an online tutor and a sixth-grade student. In the dialogue, the
tutor’s utterances are prefaced by “Tutor:" and the student’s utterances are prefaced by “Student:".
Insert the dialogue here. Based on this dialogue, can you label the tutor’s utterance as one
of the following action types? The action types to choose from are: «I» teaching, «2» encouraging the
student, «3» assessing the student’s background knowledge, and «4» bringing the student’s focus back
to the lesson. Here are some examples.

EEBEEE Now it’s your turn to label this dialogue. Insert the dialogue here.

13 Details about evaluation using simulated student

We set up a sixth-grade student with the following prompt:

You are easily distracted and may lose interest in solving the problem, but the tutor needs to help
you focus. You might get distracted, ask questions, request more help from the tutor, or solve the
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problem correctly on your own if you understand it. Keep your responses short and respond like a
sixth-grader.

We also sample a potential mistake, which is chosen uniformly at random from a candidate of 10
mistakes. The candidate mistakes are the output to the prompt:

We are designing a task where an Al agent needs to teach a human student how to solve this problem.
Problem: Insert the target math problem. The student may make different mistakes that
require the agent to personalize their instruction. Can you provide a list of 10 different problems
that the student makes where the agent needs to change their teaching content for different mistakes?
Begin your generation with ‘List: ..

Then we sample one of the mistakes uniformly at random when initializing the student simulator
as follows: You are not good at math, so you struggle with the problem and make a mistake. One
common mistake a student like you might make is: sampled student mistake.

The reward is assigned based on whether the student correctly solves the problem or not. The tutor
and the student take turns producing a sequence of tokens, continuing until the student correctly
solves the problem — achieving the maximum reward of 1 — or until the maximum dialogue length
is reached — receiving a penalty of -1. Specifically, we take the student’s utterance at each dialogue
turn, extract the solution (if no solution is extracted, the reward is immediately 0), and check if the
extracted value matches the correct solution. To avoid giving a positive reward when the student
expresses confusion about the solution, even after correctly solving it, we also check whether the
student expresses confusion in their response. If so, the reward is nullified to 0.

14 Generalizability of the tutor: Can the tutor trained on a single problem
teach new, unseen math problems?

Another interesting question to explore is whether the same tutor policy, trained on a single math
problem, can generalize to many unseen problems. We generally do not expect policies to generalize
across tasks because the dialogue histories may differ significantly between problems. However, a
low-dimensional policy may still generalize across problems, as two different dialogue histories from
different problem contexts could be mapped to the same latent state representation. For example,
suppose there are two different problems, x and y, and two students working on each problem. Let
H, represent the dialogue from problem x and H, represent the dialogue from problem y. The
policy mapping from the dialogue history to the tutor’s utterance, 7w : H — U, is likely to view
H, and H, as different inputs. On the other hand, the low-dimensional policy, mg : S — A,
may receive the same low-dimensional latent state inputs mapped from H, +— s and H, — s.
Intuitively, if s represents a distracted student in both scenarios, then the optimal policy might be to
choose the action “bring the student’s focus back to the lesson" and therefore,
is applicable to both students. The tutor’s utterance, generated conditioned on the high-level action,
may still differ for the two scenarios since the generator LLM also takes into account the full dialogue
history including the problem contexts. Therefore, having the same high-level action a does not
necessarily imply the same tutor’s responses are generated as long as different contents are present in
the conversation window.

To test this hypothesis, we evaluate our tutor on seven new problems from the GSM8K test-dataset
[6]. The full list of problems used for evaluation is included in the next section. The success of
generalization relies on the key assumption that dialogue histories from different problems are mapped
to the same latent state, and that the latent state transition dynamics are problem-agnostic. Even
if the latent state representations are the same; if the same high-level action leads to two different
future (latent) states, then the optimal policy for one problem is likely not also optimal for the other
problem.

We observe that naively generalizing the tutor to new problems does not work in most cases. As
shown in Fig. [ our tutor based on CQL on the augmented data (dark blue) outperforms prompt
engineering (green) on some problems, but not consistently across all problems. Overall, across
the 7 different problems (each evaluated with 300 dialogue samples), our tutor achieves a mean
success rate of 27.48 with a standard deviation of 17.35. Prompt engineering-based tutor achieves
a slightly lower success rate of 26.90, but with a larger standard deviation of 22.78. These results
are not significant to conclude that our proposed method has generalizable performance, better than
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Tutor Evaluation on New Problems
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Figure 4: Each tutor is evaluated on 300 conversations about each target math problem. The error
bars show 95% confidence intervals. BC* is only trained on the exploratory data.

Tutor Success

Behavioral cloning with D*  36.23 £ 20.80
CQL with Dt 27.38 £ 17.35
Prompt engineering 26.90 £+ 22.78

Table 2: Evaluation of different tutors across 7 GSMS8K test problems. 300 tutoring trajectories are
sampled for evaluation of each problem. This table shows the mean and the standard deviation of the
average success rates across 7 math problems.

prompt engineering, on unseen math problems from the GSM8K benchmark dataset. It is possible
that each problem has its own latent state transition dynamics, which would make generalization
across new problems inherently difficult. In such a case, learning an optimal tutor policy tailored to
one problem’s transition dynamics would not transfer to new problems with different dynamics.

Surprisingly, we observe that instead of using the augmented data, performing behavioral cloning
with the exploratory data D* results in a tutor that outperforms both the RL-optimized tutor and
prompt engineering. As shown in Table[2, behavioral cloning with D* achieves an average success
rate of 36.23 + 20.80. The performance breakdown of each problem is shown in Fig. {f, where the
light blue represents behavioral cloning with D*, and the dark blue represents our proposed tutor
based on conservative Q-learning with the augmented data D,

On problems 20 and 46, behavioral cloning using the exploratory data performs especially well
compared to both prompt engineering and CQL. To understand the relative advantage of behavioral
cloning to the other methods, we compare the actions selected by each policy in the observed
trajectories. For both problems 20 and 46, the trajectories under the behavioral cloning policy contain
significantly more instances of instruction, while the CQL policy selects more evenly across the four
available actions: instruction, encouragement, questioning, and refocusing (Fig. E). It is important
to note that although behavioral cloning leads to the best performance on some of the new tasks, it
relies heavily on giving instructions, which may be sub-optimal from pedagogical perspectives.

An alternative approach to testing generalization would be to train on a smaller set of problems and
then evaluate the learned tutor on new problems that differ from the training set. This would help
determine whether the inconsistent performance of CQL+ observed in Fig. [ is due to the current
training data having too narrow coverage of the state and action tuples — which could be addressed by
including dialogue samples from a broader range of problem contexts and collecting more samples —
or whether each problem has its own latent transition dynamics that cannot be shared across different
problems. If the latter hypothesis is true, then we would need to learn a distinct tutor policy for
each problem, as one tutor policy will not generalize to other unseen problems that induce different
transition dynamics of student’s states.
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Figure 5: We compare the ratio of each high-level action observed in the tutoring conversations when
following different policies to solve the GSMS8K problems #20 and #46 to analyze how the overall
actions selected by BC and CQL policies differ. Notably, BC relies on a significantly higher amount
of “instruction" than CQL.

15 Problems from the GSMS8K benchmark for evaluation of the tutor’s

teaching strategy

We include new problems from the GSM8K dataset [6] as shown below, to evaluate the generalization
capabilities of the tutor trained with a single training problem given by Kumar et al. [16].

e Question 7: Carla is downloading a 200 GB file. Normally she can download 2 GB/minute,
but 40% of the way through the download, Windows forces a restart to install updates, which
takes 20 minutes. Then Carla has to restart the download from the beginning. How load
does it take to download the file? Answer: 160.

Question 12: Carlos is planting a lemon tree. The tree will cost $90 to plant. Each year it
will grow 7 lemons, which he can sell for $1.5 each. It costs $3 a year to water and feed
the tree. How many years will it take before he starts earning money on the lemon tree?
Answer: 13.

Question 13: Melanie is a door-to-door saleswoman. She sold a third of her vacuum
cleaners at the green house, 2 more to the red house, and half of what was left at the orange
house. If Melanie has 5 vacuum cleaners left, how many did she start with? Answer: 18

Question 15: A merchant wants to make a choice of purchase between 2 purchase plans:
Jewelry worth $5,000 or electronic gadgets worth $8,000. His financial advisor speculates
that the jewelry market will go up 2.5% while the electronic gadgets market will rise 1.2%
within the same month. If the merchant is looking to maximize profit at the end of this month
by making a choice, how much profit would this be? Answer: 125.
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Question 20: I have 10 liters of orange drink that are two-thirds water and I wish to add it
to 15 liters of pineapple drink that is three-fifths water. But as I pour it, I spill one liter of
the orange drink. How much water is in the remaining 24 liters? Answer: 15.

Question 37: John plans to sell all his toys and use the money to buy video games. He has
13 lego sets and he sells them for $15 each. He ends up buying 8 video games for $20 each
and has $5 left. How many lego sets does he still have? Answer: 2

Question 46: Candice put 80 post-it notes in her purse before she headed out to her job at
the coffee shop. On her way, she stopped off at the store and purchased a package of Post-it
notes; At work, she placed a single Post-it note on each of 220 different cups of coffee. If
she had 23 post-it notes remaining overall, how many Post-it notes were in the package that
she purchased? Answer: 163.

16 Training tutor policy using offline RL

We used d3r1py library for conservative Q-learning d3rlpy.algos.DiscreteCQL implemen-
tation with the following hyper-parameter set:

learning rate: 5e — 5,

Adam optimizer with epsilon: le — 2/32
Batch size: 32

Alpha: 4.0

Gamma: 0.9

Q function n quantiles: 200

Target update interval: 2000

Reward scaler to clip the reward values between -1 and 1 (our dataset already returns rewards
in this range)

Model fitted with n steps = 1000000, and n steps per epoch = 10000.

We also experimented with Batch-constrained Q learning [9] as an alternative algorithm for offline
RL, implemented using d3rlpy.algos.DiscreteBCQ, using the same hyper-parameters as
CQL but observed better performance with CQL. These offline RL algorithms available through
d3rlpy can be trained without GPU requirements.

17 Training Q function for exploratory data augmentation

Our proposal for data augmentation requires learning a behavioral cloning policy (to model the action
distribution captured in the existing dataset D or D), as well as a Q-value function (to optimistically
select latent student states and high-level actions that could be tried for exploratory data collection).

Behavioral cloning learns a policy mapping from SY to A:X, and is parameterized by a 2-layer neural
network implemented with pytorch. Additional training details include:

Hidden dimensions: [128, 128] with ReLLU activation

Adam optimizer with learning rate le-3 and weight decay le-1

Trained on cross entropy loss to predict A in the existing dataset (either D or DT)
Used 1:9 random split for validation and training.

Max training epochs = 1000, and selected a model from the lowest validation loss.

Q-value function is parameterized by sklearn.ensemble.ExtraTreesRegressor with the
following hyper-parameters:

n estimators: 25,
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* Minimum sample split: 2.

High-level actions are one-hot-encoded via sklearn.preprocessing OneHotEncoder and
concatenated with the 25-dimensional state vectors as inputs to the Q-function network. Q-function
is trained to minimize the loss in Eq. [5.4]over the entire training dataset with the following hyper-
parameters:

e Gamma: 0.9.

¢ Number of iterations over the entire dataset: 50
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