AMBER: Adaptive Mesh Generation by
Iterative Mesh Resolution Prediction

Niklas Freymuth'* Tobias Wiirth?> Nicolas Schreiber' Balazs Gyenes' Andreas Boltres' *
Johannes Mitsch? Aleksandar Taranovic' Tai Hoang' Philipp Dahlinger!
Philipp Becker' Luise Kiirger’ Gerhard Neumann'
! Autonomous Learning Robots, Karlsruhe Institute of Technology, Karlsruhe
?Institute of Vehicle System Technologjy, Karlsruhe Institute of Technology, Karlsruhe
SAP SE

Abstract

The cost and accuracy of simulating complex physical systems using the Finite
Element Method (FEM) scales with the resolution of the underlying mesh. Adaptive
meshes improve computational efficiency by refining resolution in critical regions,
but typically require task-specific heuristics or cumbersome manual design by a
human expert. We propose Adaptive Meshing By Expert Reconstruction (AMBER),
a supervised learning approach to mesh adaptation. Starting from a coarse mesh,
AMBER iteratively predicts the sizing field, i.e., a function mapping from the
geometry to the local element size of the target mesh, and uses this prediction to
produce a new intermediate mesh using an out-of-the-box mesh generator. This
process is enabled through a hierarchical graph neural network, and relies on data
augmentation by automatically projecting expert labels onto AMBER-generated
data during training. We evaluate AMBER on 2D and 3D datasets, including
classical physics problems, mechanical components, and real-world industrial
designs with human expert meshes. AMBER generalizes to unseen geometries and
consistently outperforms multiple recent baselines, including ones using Graph and
Convolutional Neural Networks, and Reinforcement Learning-based approaches.

1 Introduction

Physical simulations are a fundamental tool in a wide range of science and engineering applications.
As simulations become more complex, researchers and practitioners increasingly rely on numerical
solutions to intricate Partial Differential Equations (PDEs). The Finite Element Method (FEM)
discretizes complex geometries into simpler mesh elements and solves the resulting system of linear
equations [1-4]. The FEM is ubiquitous in numerical engineering, finding application in fluid flow
simulations [5], structural mechanics [6, 7], electromagnetics [8], and injection molding [9].

For such simulations, both the simulation cost and accuracy scale with mesh resolution. Therefore,
adaptive meshing, which assigns more mesh elements to key regions of the geometry, is essential
for efficient and accurate simulations [10, 11]. An example is structural analysis in the automotive
industry [7], where FEM is used to model complex components under varying forces and stresses.
Figure 1 shows such a component, a car seat crossmember, where a finer mesh is required near
bends and holes. Traditional Adaptive Mesh Refinement (AMR) techniques iteratively refine existing
meshes using predefined heuristics based on problem geometry and process conditions [12—14].
Similarly, Adaptive Mesh Generation (AMG) generates meshes from functions such as sizing fields,
which define local element sizes on the geometry [15, 16]. However, both methods are still limited in
efficiency and adaptability to new applications. As a result, adaptive meshing in practice requires

*correspondence to niklas.freymuth@kit.edu

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Replay
Buffer

->/ MPN /—)[Prediction]—>/ pesh
5 Generator,

N
Label Projected
Projection Sizing Field

Q Mo Q My
Figure 1: AMBER learns adaptive mesh generation on complex geometries for simulation applications
from an expert dataset. Left: During , AMBER predicts a sizing field, as indicated by the

mesh’s color, from labels projected from an expert mesh M*. AMBER continuously updates a replay
buffer with newly generated meshes to preserve a diverse and accurate training data distribution.
Right: During inference, AMBER starts from an initial mesh M, predicts a sizing field per element,
and feeds it into a mesh generator that refines the mesh using the underlying geometry €2. This
process is repeated until a final mesh M7 is produced. On the car seat crossmember shown above,
AMBER learns that the expert assigns more mesh elements to holes and sharp bends, which are
particularly interesting for strength and durability analyses.

significant manual input and domain expertise. Engineers often hand-tune local mesh resolutions
for each new geometry or problem [15, 17, 18]. This repetitive and time-consuming process creates
bottlenecks in applications like iterative design and process optimization.

To address this issue, we propose Adaptive Meshing By Expert Reconstruction (AMBER), a data-
driven method for iterative AMG. AMBER employs a Message Passing Network (MPN) [19, 20],
a class of Graph Neural Networks (GNNs) [21], to predict target element sizes across a sequence
of mesh refinement steps. Trained on small datasets, each consisting of roughly 20 geometries and
corresponding expert meshes, AMBER learns underlying meshing strategies and tackles the core
challenge of extreme local variation in element sizes. Unlike prior learned AMG approaches [22-24],
AMBER iteratively generates meshes using each intermediate mesh’s vertices as sampling points to
predict the next target sizing field. This iterative scheme, together with the MPN, enables adaptation
to non-uniform geometries, while simultaneously adjusting local sampling resolution in response
previous mesh generation steps. As a result, AMBER is highly effective in adaptive meshing, where
spatially varying target sizes necessitate correspondingly localized prediction densities.

Figure 1 shows an overview of our method. At inference time, AMBER starts from a coarse initial
mesh and iteratively predicts sizing fields to feed into an out-of-the-box mesh generator [25], which
generates an adapted mesh. During training, predicted sizing fields are supervised by projecting
element sizes from expert meshes onto intermediate meshes. To address the distribution shift intro-
duced by intermediate meshes during inference, we maintain a replay buffer populated with meshes
generated by the model itself. This strategy echoes online imitation learning approaches such as DAg-
ger [26], but replaces the human-in-the-loop with automatic data generation and labeling. In doing so,
AMBER bootstraps [27] its own training distribution, implicitly performing data augmentation [28]
by including meshes on different local scales, to stabilize learning and inference.

We evaluate our method on six novel datasets introduced in this work, covering a wide range of 2D
and 3D geometries meshed by human experts and heuristics>. These geometries vary in difficulty
and model a diverse set of common engineering problems. We compare AMBER against supervised
learning [22, 29, 30] and Reinforcement Learning (RL) [31] baselines. AMBER consistently produces
higher-quality meshes than all baselines, both in terms of visual quality and quantitative metrics. We
additionally explore the runtime of AMBER’s components. We find that AMBER’s cost is dominated
by the final mesh generation step, which is required for all mesh generation methods, and that the full
AMBER mesh generation process is faster and scales significantly better than classical iterative error
estimation methods. Furthermore, we present extensive ablations to show the effects of individual
design choices, such as loss, refinement steps, and sizing field parametrization.

?Project page, code and datasets are available at https://niklasfreymuth.github.io/AMBER.

https://niklasfreymuth.github.io/AMBER

To summarize our contributions, we (1) propose AMBER, a novel approach for Adaptive Mesh
Generation (AMG) that produces a sequence of meshes, using each intermediate mesh to predict
a target resolution for the next mesh, (2) introduce six new datasets spanning both 2D and 3D
geometries, designed to reflect realistic and diverse problem settings; two of these include human-
generated meshes, and (3) conduct extensive experiments demonstrating that AMBER produces
significantly better meshes than state-of-the-art supervised and RL methods on these datasets.

2 Related Work

Meshing for Simulation. Modern meshing approaches either use Adaptive Mesh Refinement (AMR),
which refines an existing mesh [10, 32], or Adaptive Mesh Generation (AMG), which generates
a new mesh [33-36]. Typical AMR techniques rely on heuristics [12] or error estimates [13, 14],
which can be inaccurate, unreliable, or computationally expensive [14, 37, 38]. In contrast, Adaptive
Mesh Generation (AMG) methods generate new meshes from geometric or solution-derived features
over the domain, such as curvature or Hessian information, to prescribe local element size and
potentially anisotropy [39, 40, 16]. While effective in practice [33, 11], they share the shortcomings
of AMR and also require task-specific metrics or a tediously hand-crafted target sizing field for each
domain [41, 11]. In contrast, we aim to learn scalar sizing fields directly from expert meshes.

Learning-Based Mesh Generation. Existing learning based AMG approaches train surrogate models
to either directly predict a sizing field or the local solution error, which is inverted to obtain a sizing
field. One line of work encodes the domain using a simple, parameterized representation, which is
fed to an Multilayer Perceptron (MLP) that either predicts coordinate-conditioned outputs [29, 23],
similar to NeRFs [42], or computes the sizing field on a fixed background mesh [43, 44] or as a set of
point sources [45]. Huang et al. [22] discretize the domain into a fixed-resolution image and process
it with a CNN to directly predict a sizing field. More recent methods use a Graph Convolutional
Network (GCN) to operate on the vertices of a coarse mesh. Of these, GraphMesh [24] generalizes to
arbitrary polygonal domains and improves over prior GCN-based models [46]. AMBER also predicts
a sizing field on a discrete mesh, but does so iteratively across a sequence of intermediate meshes.
This enables dynamic adaptation of the sizing field across scales, without being restricted to any
specific domain representation or discretization, allowing it to produce higher quality meshes.

Learning-Based Mesh Refinement. Several recent AMR approaches employ learning for mesh
refinement by subdivision, i.e., they train a model to iteratively decide which mesh elements to
divide into multiple smaller elements. In this class, supervised methods include learning refinement
strategies with recurrent networks [47], optimizing element anisotropy based on error estimates [48],
and using hand-crafted features to estimate error for adjoint-based refinement [49, 50]. Alternatively,
a recent line of work applies RL to AMR by element subdivision [31, 51-53], employing carefully
crafted reward functions to quantify the benefit of each refinement. These reward functions typically
require an underlying system of equations and either restrict the maximum mesh resolution [53, 31]
or encode a specific, heuristic refinement criterion [52]. Out of these methods, Adaptive Swarm Mesh
Refinement (ASMR) [31, 51] proposes local, element-wise rewards, improving scaling capability and
mesh quality over previous work. AMBER further improves over ASMR s scalability and mesh quality,
while avoiding the complicated reward design and the requirement for a Finite Element Method
(FEM) in the loop by using expert meshes. Another class of learning-based AMR methods employs
mesh movement [11] for refinement [54-56]. These methods start with a uniform mesh and deform
its elements, requiring a fixed starting resolution. In contrast, AMBER learns to produce a sequence
of sizing fields from a coarse uniform mesh, inducing meshes with different numbers of elements.
Other mesh movement based methods focus on highly specific tasks, such as fluid dynamics [57, 58],
while AMBER is task agnostic.

Graph Network Simulators. GNNs [21], particularly MPNs [19, 20], are widely popular for mesh-
based surrogate simulation [20, 59-63]. MPNs encompass the function class of several classical PDE
solvers [64], making them a popular choice for learning representations on meshes [20, 59, 65]. We
similarly use MPNs on meshes, but do not learn a simulator. Instead, we generate application-specific
adaptive meshes for efficient and robust FEM-based simulation.

Online Data Generation. Imitation learning approaches such as DAgger [26] address distribu-
tion shift by iteratively querying expert feedback on model rollouts. Bootstrapping methods like
pseudo-labeling [66] and Noisy Student [67] expand the training set using model-generated labels.

Replay buffers [68—70] mitigate covariate shift by combining past and current experiences, while
data augmentation [28, 71, 72] introduces synthetic variations to enhance generalization. Unlike
these approaches, AMBER stores model-generated meshes across resolutions in a replay buffer and
automatically projects labels onto them. This process effectively augments training data by provid-
ing meshes of different resolutions, improving distributional robustness without requiring external
supervision or expert relabeling.

3 Method

Our training datasets contain N tuples {(2, P, M*)}, each consisting of a geometry 2 C R? of
dimension d, an optional set of process conditions P, and a corresponding expert mesh M *. Each
geometry describes a closed physical body in 2D or 3D, which is discretized into simplical elements
M on the subdomain {2 C € by the mesh. We aim to learn a function that takes a geometry {2
and process conditions P from the dataset and generates a mesh M that minimizes a distance metric
d(M, M*) to the corresponding expert mesh M *. We make no further assumptions on the structure
of the meshes, and use both heuristically refined and human-generated meshes as expert data.

We factorize mesh generation into two parts. First, a learnable function consumes a geometry (2,
process conditions P and derived features, and outputs a spatially-varying, scalar-valued sizing field
Q — R+ . Second, a non-parametric function gney : (€2 X (2 = Rsg)) — M consumes a geometry
and a sizing field and returns a mesh approximately conforming to this sizing field. The sizing field
describes the desired average edge length of the generated mesh’s elements over the domain. We
consider isotropic meshes, i.e., meshes where the elements have a roughly equal aspect ratio. In this
case, the local sizing field is directly related to the desired volume of the resulting mesh elements.

Message Passing Network (MPN). We instantiate our backbone to predict sizing fields using an
MPN [19, 20]. An MPN iteratively updates the latent node and edge features over L message-passing
steps. We encode mesh vertices as nodes) and their neighborhood relations as edges £ C V x V of
a bidirectional graph Go: = G = (V, £). We assign process condition and domain-dependent vertex
features h,, and edge features h,. Using learned linear embeddings h? = h,M, and h? = h, M, of
the initial node and edge features, each step [computes features

hitt = hl + ¢L(h!, bl b)), withe = (u,v), hiT' =hl +¢}(hl, € hi™).
e=(v,u)€E

The permutation-invariant aggregation € can be realized via, e.g., a sum, mean, or maximum
operator. All 1/)fg and ¢€, are parameterized as learned MLPs. The output of the final layer is a learned
representation hZ for each node v € V. We feed this representation into a decoder MLP to yield a
prediction ; = MPN(G, h,,, h.), per node v; € V, which we abbreviate as MPN(v;).

Mesh Generation. We refer to the non-parametric function gy, as the mesh generator. It creates
a mesh that matches the desired sizing field under several criteria on the elements, such as their
aspect ratio and size gradation. This results in well-behaved elements and a smooth transition
between element sizes. While different mesh generators exist, we use the Frontal Delaunay algorithm
implemented in GMSH [25] for simplicity.

3.1 Iterative Mesh Generation with AMBER

Predicting a Sizing Field. Given a geometry () and task-specific process conditions P, a coarse,
uniform initial mesh is generated for the initial M* with ¢ = 0. This mesh is then encoded as a graph

and processed using an MPN to predict the discrete sizing field f (vj) over mesh vertices v;, with

f(v;) derived from the network’s output x; through a subsequent transformation.

We could alternatively predict sizing values per mesh element, yielding a piecewise constant sizing
field. However, since the MPN operates on an intermediate mesh with a different topology from the
target mesh, element-level predictions lack the granularity needed for effective refinement. Instead,

AMBER predicts sizing field values over mesh vertices and applies the interpolant Z(f) to yield a
sizing field that is piecewise linear. This interpolant weights the discrete sizing field at the vertices v;

by the mesh’s nodal basis functions ¢; [3], yielding a continuous sizing field. Given a point z € R4

we define the interpolant as
v
. f(v) ¢i(z), ifze Q; M; € N(v;) for some 7,
Tu(f)) =5 7 ’

f(vr), otherwise, where j' = arg mjin lz — p(v;)]

ey

where p(v;) € R? and N'(v;) C M are the position and element neighborhood of vertex v;,
respectively. The fallback to nearest-neighbor extrapolation ensures that the sizing field is defined
across all of 2, including regions outside the discretized mesh domain.

Iterative Generation. At step ¢, the mesh generator consumes the continuous sizing field given by

Zare(f) and its underlying geometry). Using the vertices of each mech as the sampling points for
the next continuous sizing field and repeating this process over 71" steps results in a final mesh M7
Intuitively, an accurately predicted intermediate sizing field results in a mesh that is more similar
to the expert mesh, and therefore provides better sampling points for the MPN to predict the next
sizing field even more accurately. Compared to one-step approaches that predict a sizing field on
an image [22] or a single coarse mesh [24], AMBER therefore automatically adapts its sampling
resolution, allowing it to output arbitrarily complex and highly non-uniform meshes where required.
We prove convergence of this process in the one-dimensional case under the assumption of perfect
predictions in Appendix B. The right part of Figure 1 visualizes this process.

3.2 Training AMBER

Predictions and Targets. Let V' (M;) be the volume of the d-dimensional simplicial element M/, of
the target mesh. We define the element-wise sizing field as the average edge length of that element

1
fe(M;) = (V(M) \/j’ﬁ) * . The union over the element’s sizing fields induces a piecewise-constant

sizing field. To compute the target value y; of the discrete sizing field at vertex v; of an intermediate
mesh M*, we evaluate the sizing field of the expert mesh M* at the vertex position p(v;). That
is, we assign targets y; = f.(M;) where M € M* and p(v;) € Q. If a vertex lies outside the
expert mesh due to, e.g., discretization of the domain, we project it to the nearest element. We could
alternatively obtain target values by interpolating the expert sizing field using Equation 1. However,
as we show in our experiments, due to AMBER’s iterative process, the local resolution of the expert
mesh is sufficient to adequately represent the granularity of the solution everywhere.

We train a single shared MPN to regress the target sizing field of the current mesh generation step
using a simple Mean Squared Error (MSE) loss. Since sizing fields are strictly positive, we add
a softplus transformation to the network’s output. To increase the weight of numerically smaller
elements in the loss function, we optimize in the untransformed space. Thus, given a prediction
x; = MPN(v;), our loss becomes

= % Z (xj — softplus_l(yj))2 . @
j=1

We then recover the discrete predicted sizing field as f (v;) = softplus(z;).

Replay Buffer. During inference, AMBER auto-regressively produces a series of intermediate meshes
M. The initial mesh M is coarse and uniform. However, the corresponding expert mesh M* is
generally finer and has highly varied topology. To prevent a distribution shift between the training
data and the data seen during inference, we therefore maintain a replay buffer [68, 70] of bootstrapped
data containing intermediate meshes that AMBER generates during training. The replay buffer is
initialized with one uniform coarse mesh per expert mesh. After each training epoch, we sample k
meshes from the replay buffer for producing new intermediate meshes. For each, we predict a discrete
sizing field, generate a new mesh from the induced continuous sizing field, annotate the vertices with
a target sizing field using the expert mesh, and store this new labeled mesh in the buffer. The full
training pipeline is shown on the left of Figure 1.

3.3 Empirical Improvements

Inspired by common best practices, we propose several algorithmic optimizations to further improve
AMBER’s applicability and efficiency.

' d

. '! =~
| F “. b

(a) Poisson (b) Laplace (c) Airfoil (d) Console (e) Mold
z
A N SN =
(f) Beam

Figure 2: Exemplary AMBER meshes for each dataset. The color represents the local element size,
with smaller elements being red. We propose six novel and challenging datasets for mesh generation.
(a) Poisson uses an L-shaped domain with a multimodal load function. (b) Laplace features
parameterized 2D lattices with complex Dirichlet boundaries. (c¢) Airfoil includes geometries
representative of aerodynamic flow setups. (d) Console consists of 3D car seat crossmembers. (e)
Mold includes complex 3D plates used in injection molding contexts. (f)Beam covers elongated,
perforated beams inducing long-range mesh dependencies.

Uniform Refinement Depth. During training, we assign each intermediate mesh a depth that
corresponds to the number of refinement steps it has undergone from the initial uniform mesh. To
reduce distribution shift between inference and training, we enforce a uniform distribution over mesh
depths in the replay buffer. When generating new intermediate meshes, we first uniformly sample a
target depth and then a mesh with the corresponding depth. We set the maximum depth to the number
of refinement steps used during evaluation, 7.

Adaptive Batch Size. Since the meshes in the replay buffer vary greatly in size, using a fixed number
of meshes per batch would sometimes lead to out-of-memory errors, or otherwise leave significant
available memory unused. Instead, we set a maximum total size over all graphs in a batch, and
greedily fill a batch with the least-sampled meshes until it is reached. We define the size of graph as
the sum of its number of nodes and edges s(G) = |V| + |£].

Hierarchical Architecture. The receptive field of an MPN is determined by the number of message
passing steps. As a mesh undergoes iterative refinement, the receptive field can vary significantly
across the domain. This makes it challenging to choose appropriate hyperparameters and hinders
long-range communication between regions of the graph during the later refinement steps. To ensure a
consistent, resolution-invariant receptive field, we employ a hierarchical graph structure that combines
the graph G° = (V°, £9) corresponding to the initial coarse mesh M with that of the current interme-
diate mesh M for all ¢ > 0. The hierarchical graph is defined as Gyier = (VO U VY, E0 U EF U £
where £ = {(v, 7(v)), (7(v),v) | v € V!} contains bidirectional edges between each interme-
diate vertex v € V' and its closest vertex in the coarse mesh 7(v) = arg min,cyo [|p(v) — p(u)]2.
We provide a binary node feature indicating the current mesh M?, and mask all node-level features of
the initial mesh, using it solely to provide consistent topological connectivity.

Input/Output Normalization. We normalize all network inputs, i.e., all node and edge features, to
have zero mean and unit variance. The labels are normalized similarly, and the inverse normalization
is applied to map predictions back to the original scale. Since the data distribution evolves as new
meshes are added to the replay buffer, we maintain running statistics for each input and target feature.

Residual Prediction. We improve training stability by predicting the residual between the target
sizing field y; = f.(M;) and the current discrete sizing field b; = f(v;). Given the element
neighborhood NV (v;) of vertex v; and element-based sizing fields f.();), we compute the current
discrete sizing field b; at v; from the current mesh as the convex combination

V(M)
bj = f(Uj) =
M;eN (vj) ZMiEN(Uj) V(M’L)

fe(M;). 3)

We now recover the predicted sizing fields by f (v;) = softplus(z; + softplus " (b;)), and adapt the
loss in Equation 2 accordingly.

AMBER
= AMBER (1-Step)
—— [mage (Var.)

Poisson (easy) Poisson (medium) Poisson (hard)

GraphMesh (Var.)
. Image [22]
' GraphMesh [24]
Laplace Airfoil Beam Console Mold
035 03 02 bl 06 0.4 |
0.3 :
) 0.2 0.15
Q 0.55 0.35
2 0.25 I) |
02 0.1 4 0.1 0.5 03

Figure 3: Mean and two times standard error of expert mesh similarity evaluated by Density-Aware
Chamfer Distance (DCD) (lower is better). AMBER achieves the best results across all datasets,
demonstrating its ability to generate highly accurate meshes on diverse and challenging domains. All
methods perform well on Poisson (easy). As task complexity increases, the baselines and eventually
variants become less reliable. AMBER (1-Step) remains strong across tasks, while the full model
achieves further improvements through iterative refinement.

Scaling Sizing Fields. We can scale the resolution of generated meshes by introducing a simple
refinement constant ¢; depending on the generation step ¢, such that the next generated mesh

is Mt = guan(Q, ¢:Zare(f)(z)). While the predicted intermediate meshes allow AMBER to
adaptively refine its sampling resolution, reaching the full resolution of the expert mesh is unnecessary
and computationally expensive. To mitigate this, we set ¢;>1 for t < 1" — 1 to coarsen intermediate
meshes, starting at the first step t=0. Here, setting an exponentially decaying c; reduces the number of
elements for intermediate meshes without reducing the accuracy of the final mesh M 7. Additionally,
during inference, we can also set cy—1 <1 to generate meshes that have a higher resolution than
the expert. This adaptation allows the model to flexibly adapt to a given element budget without
retraining, which enables zero-shot generalization through a single scalar parameter.

4 Experiments

Datasets and Features. We introduce six novel datasets representing realistic FEM problems that
need adaptive meshing to meet common efficiency and accuracy requirements. The datasets span 2D
and 3D domains, as well as diverse applications in physics-based simulation, structural mechanics,
and industrial design. Depending on the dataset, we generate geometries procedurally, or source
them from openly available or custom datasets. For datasets without a concrete underlying system of
equations, we generate meshes from human experts and manually designed, specialized heuristics.
Other datasets consider a concrete problem, where we employ an iterative refinement heuristic that
utilizes a FEM error indicator. Using this heuristic, we create easy, medium, and hard variants
of the Poisson dataset to provide expert meshes on different scales. Here, more refinement steps
results in an expert mesh with more elements and a larger difference between the largest and smallest
elements increases, making the dataset more challenging. Figure 2 illustrates representative AMBER
meshes from the test set of each dataset. Across datasets, mesh resolution ranges from 1 042 to 65 191
elements.

Appendix D provides training details for AMBER and Appendix E details the mesh generation process.
We derive dataset-specific features as a function of the process conditions P for Poisson, Laplace
and Mold, as detailed in Appendix C. The Poisson and Laplace datasets use a FEM solver in the
loop for expert mesh generation via an iterative refinement heuristic. For these datasets, we therefore
provide FEM solutions as a vertex-level input feature for each mesh. For all datasets, we add several
geometric features, as detailed in Appendix D.3.

Evaluation. We evaluate the generated meshes by comparing their local resolution to that of an
unseen expert reference mesh on the same geometry and process conditions, using five random seeds
per experiment. First, we use the Density-Aware Chamfer Distance (DCD) [73] over both mesh’s
vertices. The DCD is a symmetric, exponentiated variant of the Chamfer distance that allows multiple

points in one set to match a single point in the other. Semantically, it treats both vertex sets as samples
from an unknown density. Second, we compute a symmetric relative projected L? error between
the sizing fields induced by the evaluated and expert meshes. In contrast to the DCD, this metric
captures discrepancies in local element sizes. The combination of these two metrics with different
semantic interpretations is robust against potential artifacts in the generated meshes. Finally, we
evaluate downstream simulation quality versus number of mesh elements for the Poisson task by
using the norm of the error indicator of Equation 10. Appendix F details all metrics.

Baselines and Variants. We compare to GraphMesh [24], which is based on a two-step GCN.
GraphMesh relies on mean value coordinates [74] and is limited to polygonal domains, only allowing
us to evaluate it on the Poisson dataset. Image [22] predicts either pixel- or voxel-wise sizing
fields from binary geometry masks of a discretized domain using a 2D or 3D Convolutional Neural
Network (CNN), respectively. We adapt both baselines to use softplus-transformed predictions. This
transformation is omitted in the original works, which focus on relatively simple problems where
training instabilities are less pronounced. Without it, models tend to diverge, producing overly
fine meshes. To disentangle training and algorithmic design, we additionally introduce Variants of
each baseline that incorporate our loss (Equation 2) and normalization. Additionally, we compare
against AMBER (1-Step). This variant runs a single AMBER generation step by setting 7'=1, which
demonstrates the benefit of iterative mesh generation.

We compare against Adaptive Swarm Mesh Refinement (ASMR) [51] as an RL baseline. ASMR learns
a policy to iteratively mark elements for AMR, optimizing a reward function tied to the improvement
of a specific FEM solution. This reward requires a fine-grained uniform reference mesh to compare
to, whose resolution bounds the maximum number of refinements. In Appendix H.9, we also explore
a variant that omits the reference mesh in favor of using the error indicator from Equation 10. This
modification enables deeper refinement and mesh resolutions comparable to those of the expert. We
evaluate ASMR on the Poisson task. Appendix G details all baselines and variants.

Runtime and Cross-Dataset Generalization. We measure the runtime of AMBER and its individual
components for Poisson (easy/hard) and compare it to the expert heuristic used to generate the data.
We additionally explore AMBER’s ability to generalize across datasets by training a single model on
joint data of Poisson (hard), Laplace and Airfoil. We concatenate the 20 expert meshes per task
into 60 total training meshes, using a shared replay buffer for the data. We one-hot encode the task in
the node features, and zero out task-specific features when unavailable. We do not change any other
training or inference hyperparameters. We call this variant AMBER (Mixed).

Additional Experiments. For AMBER, we explore the loss in Equation 2 and the components from

Section 3.3. We also vary training data size and test alternative sizing field parameterizations for f.
For the Image (Variant) baseline, we explore lower input resolutions and versions that omit either the
loss or input/output normalization. Appendix H provides additional details.

5 Results

Quantitative Results. Figure 3 evaluates Density-Aware Chamfer Distance (DCD) over vertex sets
to the expert mesh across datasets. On Poisson (easy), all methods perform well. As complexity
increases for, e.g., Poisson (medium/hard), our training procedure shows more significant benefits,
causing both variants to significantly outperform their published baselines. Across datasets, the
AMBER (1-Step) produces accurate sizing field predictions and high-quality meshes closely matching
the expert. It also generalizes to 3D, where the Image methods struggle. AMBER further improves
mesh quality, likely due to its iterative mesh generation. Here, multiple generation steps allow the
intermediate meshes, which govern the prediction resolution, to adapt dynamically to the underlying
geometry, improving mesh quality in complex regions. Appendix H.1 shows consistent trends using
a symmetric L? error, supporting AMBER’s ability to generate high-quality meshes. Appendix H.2
matches these results on Poisson (hard) and Laplace for the norm of the error indicator of Equa-
tion 10, which requires a concrete system of equations to evaluate. This strong correlation between
the error indicator and DCD across methods supports the use of DCD as a reliable proxy on datasets
where downstream simulation error is not directly available.

Figure 4 compares AMBER, ASMR, and the expert meshes using the per-mesh norm of the same
indicator for Poisson (easy/medium/hard). We obtain Pareto fronts by varying ASMR’s element
penalty and scaling AMBER’s predicted sizing field at inference between 0.5 and 2.0. All methods

L}
é 03 a4 :*11.'1 :L;'
o _ Toiv, L L Wy ey .
— Am
g o1+ Lk “‘ﬂ‘!m
B R i |, —— ASMR
E 0059 i AW a2 Expert
. 0.03 . .
5 0.02 | Difficulty:
T T ‘ ‘ ‘ e casy
300 1000 10000 30000 100 000 m medium
Number of Elements ¢+ hard

Figure 4: Log-log plot of error indicator norm versus number of mesh elements (lower left is better)
for AMBER, ASMR and the expert across Poisson (easy, medium, hard). Each marker shows the
mean over the test set for a given seed. AMBER and ASMR evaluations are obtained by scaling the
final predicted sizing field and tuning the element penalty, respectively. AMBER closely matches or
even exceeds expert performance in terms of indicator error, and generalizes to meshes that are more
than 3 x finer, maintaining the expected error-element trend beyond 100 000 elements.

Table 1: Generalization across datasets. Comparison between AMBER trained individually per dataset
and AMBER (Mixed) trained jointly on all datasets. The mixed model achieves nearly identical
performance, indicating strong generalization and potential for multi-task learned mesh generation.

Method Poisson (hard) Laplace Airfoil

AMBER 0.224 £0.004 0.222+£0.003 0.103 = 0.002
AMBER (Mixed) 0.226 £0.011 0.222£0.005 0.102 £ 0.002

follow the expected log-log error—element trend [75]. Markers show test-set averages per target
resolution and random seed. ASMR exhibits high variance across seeds and degrades beyond ~30 000
elements due to its fixed-depth reference mesh. In contrast, AMBER closely matches and slightly
surpasses expert performance on fine meshes, likely due to smoother mesh generation. It also
generalizes to >100 000 elements, even though the largest expert mesh has only 31 510 elements.
This generalization only requires adjusting a single scalar, enabling zero-shot, budget-aware mesh
generation without retraining.

Runtime and Cross-Dataset Generalization. Appendix H.3 compares AMBER’s runtime with
that of the expert heuristic used to generate Poisson data. For the same number of elements, both
methods achieve a similar error indicator norm. Yet AMBER is significantly faster on finer meshes,
outperforming the iterative expert heuristic by more than an order of magnitude on meshes with more
than 30 000 elements. We additionally find in Table 6 that AMBER’s runtime is dominated by its last
mesh generation step, which is needed for any mesh generation method.

Table 1 explores AMBER’s ability to train on multiple datasets at the same time. AMBER (Mixed)
shows the approximately equal performance to AMBER on all considered tasks, opening up interesting
avenues for multi-task and general-purpose learned mesh generation algorithms in future work.

Qualitative Results. Figure 2 shows a final AMBER mesh per dataset and Figure 5 shows a close-up
of generated meshes for different supervised methods on Console. Both figures show that AMBER
produces accurate sizing fields on diverse domains and geometries and produces high-quality meshes,
closely resembling the expert. In contrast, the Image baselines only learn general, low-frequency
features of the expert’s sizing field, but fail to capture finer details. The result is a comparatively more
uniform, less adaptive mesh. Figure 6 provides a full AMBER rollout on Console, showcasing the
iterative generation process. In each step, AMBER consumes the previous mesh, using it to predict
an increasingly accurate sizing field. We provide further visualizations for AMBER rollouts and
generated meshes for all baselines in Appendix I.

Additional Experiments. Appendix H.4 validates the algorithmic improvements from Section 3.3.
In particular, the hierarchical architecture, the loss and normalization are critical for performance.
Appendix H.5 finds piecewise-linear sizing fields work better than piecewise-constant ones. Ap-
pendix H.6 shows that AMBER benefits modestly from additional data, and generalizes well from

Expert AMBER (1-Step)

Figure 5: Full views and close-ups of generated Mold test meshes. The element size is denoted
by color, with red indicating small elements. AMBER closely matches the expert mesh, producing
finer elements near the hole and coarser elements near the mesh’s border. In comparison, the Image
baselines have less variation in the element size, matching the expert less closely.

Image (Variant) Image

K15
Full View
Figure 6: Close-ups of intermediate and final AMBER meshes on Mold, contrasted with the expert

mesh. The color for intermediate meshes denotes the predicted sizing field (red is small), which is
given to a mesh generator to produce the next mesh. The final mesh’s color denotes its element size.

Expert

only five training samples on several datasets. This data-efficiency likely stems from AMBER’s
Euclidean-invariant MPN architecture and implicit data augmentation. We find in Appendix H.7 that
AMBER improves for more mesh generation steps, converging at around three steps. Appendix H.8
explores different configurations of Image (Variant), showing the importance of image resolution,
loss function, and normalization. Finally, Appendix H.9 introduces an ASMR variant with the error
indicator as reward. While this version avoids ASMR’s degradation on fine meshes, it performs worse
overall, likely due to a weaker reward signal.

6 Conclusion

We introduce AMBER, a novel method for iterative Adaptive Mesh Generation (AMG) that combines
a replay buffer of bootstrapped data with Message Passing Graph Neural Networks operating on
intermediate meshes. At each step, AMBER consumes the current mesh to predict a target resolu-
tion for the next one, allowing fine-grained adaptation to complex geometries. AMBER generates
high-quality adaptive meshes across six novel datasets spanning diverse and realistic 2D and 3D
geometries, consistently outperforming supervised and reinforcement learning baselines. These
results demonstrate the effectiveness of learning-based approaches in reducing manual meshing effort,
contributing toward more efficient and scalable simulation workflows in engineering applications.
Appendix A discusses the broader impact of our work.

Limitations and Future Work. AMBER predicts scalar-valued, piecewise-linear sizing fields, which
limits expressiveness in scenarios requiring extreme variation in local mesh density, or anisotropic
refinement. Predicting tensor-valued sizing fields or using higher-order polynomials is a promising
direction for future work. Furthermore, our experiments indicate that the same model can be trained
on different datasets, showing that there is potential to train a general-purpose model across a vast
amount of datasets. Lastly, assessing the performance of AMBER directly through simulation error
metrics on real-world scenarios is an interesting avenue for future research.

10

Acknowledgements

This work is part of the DFG AI Resarch Unit 5339 regarding the combination of physics-based
simulation with Al-based methodologies for the fast maturation of manufacturing processes. The
financial support by German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) is
gratefully acknowledged. This work is additionally funded by the German Research Foundation
(DFG, German Research Foundation) - SFB-1574 — 471687386. The authors acknowledge support
by the state of Baden-Wiirttemberg through bwHPC, as well as the HoreKa supercomputer funded
by the Ministry of Science, Research and the Arts Baden-Wiirttemberg and by the German Federal
Ministry of Education and Research.

References

[1] Susanne C Brenner and L Ridgway Scott. The mathematical theory of finite element methods,
volume 3. Springer, 2008.

[2] Junuthula Narasimha Reddy. Introduction to the finite element method. McGraw-Hill Education,
2019.

[3] Mats G. Larson and Fredrik Bengzon. The Finite Element Method: Theory, Implemen-
tation, and Applications, volume 10 of Texts in Computational Science and Engineering.
Springer, Berlin, Heidelberg, 2013. ISBN 978-3-642-33286-9 978-3-642-33287-6. doi:
10.1007/978-3-642-33287-6.

[4] Wing Kam Liu, Shaofan Li, and Harold S Park. Eighty years of the finite element method:
Birth, evolution, and future. Archives of Computational Methods in Engineering, pages 1-23,
2022.

[5] Jerome J Connor and Carlos Alberto Brebbia. Finite element techniques for fluid flow. Newnes,
2013.

[6] Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis.
Courier Corporation, 2003.

[7] S Abdullah, NA Al-Asady, AK Ariffin, and MM Rahman. A review on finite element analysis

approaches in durability assessment of automotive components. Journal of Applied Sciences, 8
(12):2192-2201, 2008.

[8] Jian-Ming Jin. The finite element method in electromagnetics. John Wiley & Sons, 2015.

[9] Markus Baum, Denis Anders, and Tamara Reinicke. Approaches for numerical modeling and
simulation of the filling phase in injection molding: A review. Polymers, 15(21):4220, 2023.

[10] Tomasz Plewa, Timur Linde, V Gregory Weirs, et al. Adaptive mesh refinement-theory and
applications. Springer, 2005.

[11] Weizhang Huang and Robert D Russell. Adaptive moving mesh methods, volume 174. Springer
Science & Business Media, 2010.

[12] Olgierd Cecil Zienkiewicz and Jian Zhong Zhu. The superconvergent patch recovery and a
posteriori error estimates. part 1: The recovery technique. International Journal for Numerical
Methods in Engineering, 33(7):1331-1364, 1992.

[13] Marian Nemec, Michael Aftosmis, and Mathias Wintzer. Adjoint-based adaptive mesh refine-
ment for complex geometries. 46th AIAA Aerospace Sciences Meeting and Exhibit, page 725,
2008.

[14] Wolfgang Bangerth and Rolf Rannacher. Adaptive Finite Element Methods for Differential
Equations. Birkhauser, 2013.

[15] Daniel SH Lo. Finite element mesh generation. CRC press, 2014.

[16] David Marcum and Frédéric Alauzet. Aligned metric-based anisotropic solution adaptive mesh
generation. Procedia Engineering, 82:428-444,2014.

11

[17] Kenji Shimada. Current trends and issues in automatic mesh generation. Computer-Aided
Design and Applications, 3(6):741-750, 2006.

[18] Timothy J Baker. Mesh generation: Art or science? Progress in aerospace sciences, 41(1):
29-63, 2005.

[19] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. Proceedings of the 34th International Conference on
Machine Learning (ICML), 70:1263-1272, 0611 Aug 2017. URL https://proceedings.
mlr.press/v70/gilmeri7a.html.

[20] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning
mesh-based simulation with graph networks. International Conference on Learning Representa-
tions (ICLR), 2021.

[21] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. CoRR, abs/2104.13478, 2021.

[22] Keefe Huang, Moritz Kriigener, Alistair Brown, Friedrich Menhorn, Hans-Joachim Bungartz,
and Dirk Hartmann. Machine learning-based optimal mesh generation in computational fluid
dynamics. arXiv preprint arXiv:2102.12923, 2021.

[23] Zheyan Zhang, Peter K. Jimack, and He Wang. MeshingNet3D: Efficient generation of adapted
tetrahedral meshes for computational mechanics. Advances in Engineering Software, 157-158:
103021, July 2021. ISSN 0965-9978. doi: 10.1016/j.advengsoft.2021.103021.

[24] Ainulla Khan, Moyuru Yamada, Abhishek Chikane, and Manohar Kaul. GraphMesh: Geomet-
rically generalized mesh refinement using gnns. International Conference on Computational
Science, pages 120-134, 2024.

[25] Christophe Geuzaine and Jean-Frangois Remacle. Gmsh: A 3-d finite element mesh generator
with built-in pre-and post-processing facilities. International Journal for Numerical Methods in
Engineering, 79(11):1309-1331, 2009.

[26] Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics (AISTATS), 15:627-635, 11-13 Apr 2011.
URL https://proceedings.mlr.press/v15/rosslla.html.

[27] Anthony Christopher Davison and David Victor Hinkley. Bootstrap methods and their applica-
tion. Cambridge university press, 1997.

[28] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of Big Data, 6(1):1-48, 2019.

[29] Zheyan Zhang, Yongxing Wang, Peter K Jimack, and He Wang. Meshingnet: A new mesh
generation method based on deep learning. Computational Science—ICCS 2020: 20th Inter-
national Conference, Amsterdam, The Netherlands, June 35, 2020, Proceedings, Part 111 20,
pages 186-198, 2020.

[30] Callum Lock, Oubay Hassan, Ruben Sevilla, and Jason Jones. Predicting the Near-Optimal
Mesh Spacing for a Simulation Using Machine Learning. In Eloi Ruiz-Gironés, Rubén Sevilla,
and David Moxey, editors, SIAM International Meshing Roundtable 2023, volume 147, pages
115-136. Springer Nature Switzerland, Cham, 2024. ISBN 978-3-031-40593-8 978-3-031-
40594-5. doi: 10.1007/978-3-031-40594-5_6.

[31] Niklas Freymuth, Philipp Dahlinger, Tobias Wiirth, Simon Reisch, Luise Kirger, and Gerhard
Neumann. Swarm reinforcement learning for adaptive mesh refinement. Advances in Neural
Information Processing Systems (NeurlPS), 36, 2023.

[32] Krzysztof J Fidkowski and David L Darmofal. Review of output-based error estimation and
mesh adaptation in computational fluid dynamics. AIAA journal, 49(4):673-694, 2011.

12

https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.mlr.press/v15/ross11a.html

[33] Pascal Jean Frey and Paul-Louis George. Mesh generation: application to finite elements. Iste,
2007. doi: 10.1002/9780470611166.

[34] Masayuki Yano and David L Darmofal. An optimization-based framework for anisotropic
simplex mesh adaptation. Journal of Computational Physics, 231(22):7626-7649, 2012.

[35] J-F Remacle, Frangois Henrotte, T Carrier-Baudouin, Eric Béchet, E Marchandise, Christophe
Geuzaine, and Thibaud Mouton. A frontal delaunay quad mesh generator using the l-infinity
norm. International Journal for Numerical Methods in Engineering, 94(5):494-512, 2013.

[36] Hang Si. Adaptive tetrahedral mesh generation by constrained delaunay refinement. Interna-
tional Journal for Numerical Methods in Engineering, 75(7):856-880, 2008.

[37] Jakub Cerveny, Veselin Dobrev, and Tzanio Kolev. Nonconforming mesh refinement for
high-order finite elements. SIAM Journal on Scientific Computing, 41(4):C367-C392, 2019.

[38] Joseph Gregory Wallwork. Mesh adaptation and adjoint methods for finite element coastal
ocean modelling. PhD thesis, Imperial College London, 2021.

[39] Houman Borouchaki, Frederic Hecht, and Pascal J Frey. Mesh gradation control. International
Journal for Numerical Methods in Engineering, 43(6):1143—-1165, 1998.

[40] Eduardo F D’Azevedo and R Bruce Simpson. On optimal triangular meshes for minimizing the
gradient error. Numerische Mathematik, 59(1):321-348, 1991.

[41] Adrien Loseille and Frédéric Alauzet. Continuous mesh framework part I: well-posed continuous
interpolation error. SIAM Journal on Numerical Analysis, 49(1):38-60, 2011.

[42] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi,
and Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. European
Conference on Computer Vision (ECCV), pages 405-421, 2020.

[43] Callum Lock, Oubay Hassan, Ruben Sevilla, and Jason Jones. Predicting the near-optimal mesh
spacing for a simulation using machine learning. International Meshing Roundtable, pages
115-136, 2023.

[44] Sergi Sanchez-Gamero, Oubay Hassan, and Ruben Sevilla. A machine learning approach to
predict near-optimal meshes for turbulent compressible flow simulations. International Journal
of Computational Fluid Dynamics, 38(2-3):221-245, 2024.

[45] Callum Lock, Oubay Hassan, Ruben Sevilla, and Jason Jones. Meshing using neural networks
for improving the efficiency of computer modelling. Engineering with Computers, 39(6):
3791-3820, 2023.

[46] Minseong Kim, Jaeseung Lee, and Jibum Kim. GMR-Net: GCN-based mesh refinement
framework for elliptic PDE problems. Engineering with Computers, 39(5):3721-3737, 2023.

[47] Jan Bohn and Michael Feischl. Recurrent neural networks as optimal mesh refinement strategies.
Computers & Mathematics with Applications, 97:61-76, 2021.

[48] Krzysztof J Fidkowski and Guodong Chen. Metric-based, goal-oriented mesh adaptation using
machine learning. Journal of Computational Physics, 426:109957, 2021.

[49] Julian Roth, Max Schroder, and Thomas Wick. Neural network guided adjoint computations in
dual weighted residual error estimation. SN Applied Sciences, 4(2):62, 2022.

[50] Joseph Gregory Wallwork, Jingyi Lu, Mingrui Zhang, and Matthew D Piggott. E2N: Error
estimation networks for goal-oriented mesh adaptation. arXiv preprint arXiv:2207.11233,2022.

[51] Niklas Freymuth, Philipp Dahlinger, Tobias Wiirth, Simon Reisch, Luise Kirger, and Gerhard
Neumann. Adaptive swarm mesh refinement using deep reinforcement learning with local
rewards. arXiv preprint arXiv:2406.08440, 2024.

[52] Corbin Foucart, Aaron Charous, and Pierre FJ Lermusiaux. Deep reinforcement learning for
adaptive mesh refinement. Journal of Computational Physics, 491:112381, 2023.

13

[53] Jiachen Yang, Tarik Dzanic, Brenden K Petersen, Jun Kudo, Ketan Mittal, Vladimir Tomov,
Jean-Sylvain Camier, Tuo Zhao, Hongyuan Zha, Tzanio Kolev, Robert Anderson, and Daniel
Faissol. Reinforcement learning for adaptive mesh refinement. International Conference on
Artificial Intelligence and Statistics (AISTATS), 2023.

[54] Wenbin Song, Mingrui Zhang, Joseph G Wallwork, Junpeng Gao, Zheng Tian, Fanglei Sun,
Matthew Piggott, Junqing Chen, Zuogiang Shi, Xiang Chen, et al. M2N: Mesh movement
networks for pde solvers. Advances in Neural Information Processing Systems (NeurIPS), 35:
7199-7210, 2022.

[55] Peiyan Hu, Yue Wang, and Zhi-Ming Ma. Better neural PDE solvers through data-free mesh
movers. The Twelfth International Conference on Learning Representations (ICLR), 2024.

[56] Mingrui Zhang, Chunyang Wang, Stephan Kramer, Joseph G Wallwork, Siyi Li, Jiancheng Liu,
Xiang Chen, and Matthew D Piggott. UM2N: Towards universal mesh movement networks.
arXiv e-prints, pages arXiv—2407, 2024.

[57] Jian Yu, Honggiang Lyu, Ran Xu, Wenxuan Ouyang, and Xuejun Liu. Flow2Mesh: A flow-
guided data-driven mesh adaptation framework. Physics of Fluids, 36(3), 2024.

[58] YU Jian, LYU Honggiang, XU Ran, LIU Xuejun, et al. Para2Mesh: A dual diffusion framework
for moving mesh adaptation. Chinese Journal of Aeronautics, page 103441, 2025.

[59] Jonas Linkerhédgner, Niklas Freymuth, Paul Maria Scheikl, Franziska Mathis-Ullrich, and
Gerhard Neumann. Grounding graph network simulators using physical sensor observations.
The Eleventh International Conference on Learning Representations (ICLR), 2023.

[60] Kelsey R Allen, Tatiana Lopez Guevara, Yulia Rubanova, Kimberly Stachenfeld, Alvaro
Sanchez-Gonzalez, Peter Battaglia, and Tobias Pfaff. Graph network simulators can learn
discontinuous, rigid contact dynamics. Conference on Robot Learning (CoRL), 2022.

[61] Kelsey R Allen, Yulia Rubanova, Tatiana Lopez-Guevara, William F Whitney, Alvaro Sanchez-
Gonzalez, Peter Battaglia, and Tobias Pfaff. Learning rigid dynamics with face interaction
graph networks. International Conference on Learning Representations (ICLR), 2023.

[62] Tatiana Lopez-Guevara, Yulia Rubanova, William F Whitney, Tobias Pfaff, Kimberly Stachen-
feld, and Kelsey R Allen. Scaling face interaction graph networks to real world scenes. arXiv
preprint arXiv:2401.11985, 2024.

[63] Tai Hoang, Huy Le, Philipp Becker, Vien Anh Ngo, and Gerhard Neumann. Geometry-aware
RL for manipulation of varying shapes and deformable objects. International Conference on
Learning Representations (ICLR), 2025.

[64] Johannes Brandstetter, Daniel E Worrall, and Max Welling. Message passing neural PDE
solvers. International Conference on Learning Representations (ICLR), 2022.

[65] Tobias Wiirth, Niklas Freymuth, Clemens Zimmerling, Gerhard Neumann, and Luise Kérger.
Physics-informed meshgraphnets (PI-MGNs): Neural finite element solvers for non-stationary
and nonlinear simulations on arbitrary meshes. Computer Methods in Applied Mechanics and
Engineering, 429:117102, 2024.

[66] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks. In Workshop on challenges in representation learning, ICML,
volume 3, page 896. Atlanta, 2013.

[67] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10687-10698, 2020.

[68] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine Learning, 8:293-321, 1992.

[69] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

14

[70] William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle,
Mark Rowland, and Will Dabney. Revisiting fundamentals of experience replay. International
Conference on Machine Learning (ICML), pages 3061-3071, 2020.

[71] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. In International Conference on Learning Representations, 2018.

[72] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages
23-30. IEEE, 2017.

[73] Tong Wu, Liang Pan, Junzhe Zhang, Tai Wang, Ziwei Liu, and Dahua Lin. Density-aware
chamfer distance as a comprehensive metric for point cloud completion. Proceedings of the
35th International Conference on Neural Information Processing Systems (NeurIPS), 2021.

[74] Michael S Floater. Mean value coordinates. Computer Aided Geometric Design, 20(1):19-27,
2003.

[75] Willy Dorfler. A convergent adaptive algorithm for poisson’s equation. SIAM Journal on
Numerical Analysis, 33(3):1106-1124, 1996.

[76] Tom Gustafsson and Geordie Drummond Mcbain. scikit-fem: A python package for finite
element assembly. Journal of Open Source Software, 5(52):2369, 2020.

[77] Peter Binev, Wolfgang Dahmen, and Ron DeVore. Adaptive finite element methods with
convergence rates. Numerische Mathematik, 97:219-268, 2004.

[78] Wolfgang Bangerth, Carsten Burstedde, Timo Heister, and Martin Kronbichler. Algorithms and
data structures for massively parallel generic adaptive finite element codes. ACM Transactions
on Mathematical Software (TOMS), 38(2):1-28, 2012.

[79] Carsten Carstensen. An adaptive mesh-refining algorithm allowing for an H* stable L? projection
onto courant finite element spaces. Constructive Approximation, 20:549-564, 2004.

[80] Claire Lestringant, Basile Audoly, and Dennis M Kochmann. A discrete, geometrically exact
method for simulating nonlinear, elastic and inelastic beams. Computer Methods in Applied
Mechanics and Engineering, 361:112741, 2020.

[81] Stuart S Antman. Problems in nonlinear elasticity. Nonlinear Problems of Elasticity, pages
513-584, 2005.

[82] Dominick V Rosato and Marlene G Rosato. Injection molding handbook. Springer Science &
Business Media, 2012.

[83] Donald F Heaney. Handbook of metal injection molding. Woodhead Publishing, 2018.

[84] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny
Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. ABC: A big CAD model dataset for
geometric deep learning. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 9601-9611, 2019.

[85] Michael Smith. ABAQUS/Standard User’s Manual, Version 6.9. Dassault Systeémes Simulia
Corp, United States, 2009.

[86] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in Neural Information Processing
Systems (NeurIPS), 32, 2019.

[87] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International

Conference on Learning Representations (ICLR), 2015. URL http://arxiv.org/abs/1412.
6980.

15

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

[88] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450:21, 2016.

[89] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770-778, 2016.

[90] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. DropEdge: Towards deep
graph convolutional networks on node classification. International Conference on Learning
Representations (ICLR), 2019.

[91] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. International Conference on Learning Representations (ICLR), 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

[92] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. Medical Image Computing and Computer-Assisted
Intervention—-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9,
2015, Proceedings, Part 111 18, pages 234-241, 2015.

[93] Nils Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper deep reinforcement
learning with spectral normalization. Advances in Neural Information Processing Systems
(NeurlIPS), 34:8242-8255, 2021.

[94] Michal Nauman and Marek Cygan. On the theory of risk-aware agents: Bridging actor-critic
and economics. In ICML 2024 Workshop: Aligning Reinforcement Learning Experimentalists
and Theorists, 2024.

16

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As stated in the abstract and introduction, Section 5 provides qualitative and
quantitative results on the experiments as introduced in Section 4, supporting the claims
made in the abstract and introduction. Additionally, more detailed results can be found in
Appendix H and Appendix I.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section 6 discusses the limitations of AMBER, both in terms of assumptions
made and the scope of the evaluations in the paper.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

17

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a convergence proof of the iterative mesh generation process of
AMBER in a simplified one-dimensional setting in Appendix B, assuming perfect predictions.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide an overview of our proposed method AMBER and its training
process in Section 3. Additionally, we provide implementation details and hyperparameters
for AMBER and the included baselines in Appendix D, with additional information on
the baselines provided in Appendix G. We describe the setups used in our experiments in
Section 4 and provide details on mesh generation and used datasets in Appendix C and E.
Finally provide our source code and data as supplementary material. We ensure that the
source code is well documented to facilitate reproduction of our experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

18

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide our source code and data as supplementary material upon submis-
sion. We ensure that the source code is well documented and able to runs out of the box to
facilitate reproduction of our experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 4 we provide an overview of the training and test setups that lead
to the results presented in Section 5. For brevity, the complete description of the training
setting and task/baseline setups is provided in Appendix C, D and G.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeat all experiments for five random seeds. We report mean and two
times standard error for all bar charts. For the Pareto plot evaluations, we instead report all
individual seeds without aggregation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide additional information on the used compute resources in Ap-
pendix D.1.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and made sure our research is fully
compliant with it.

Guidelines:

20

https://neurips.cc/public/EthicsGuidelines

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We include a brief discussion on broader impact in Appendix A.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: We do not use scraped datasets, and we perceive the risk for misuse of our mesh
refinement architecture to be substantially lower than e.g. for pretrained language models.
Nevertheless, we briefly discuss potential avenues of questionable use in Appendix A.

Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

21

12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the original code base for ASMR to implement this baseline. We credit
this use in the paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce six novel datasets. Each dataset consists of geometries, expert
meshes, and potentially process conditions. We integrate them in our codebase, which
provides documentation for the dataset usage.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

22

paperswithcode.com/datasets

15.

16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: This research does not involve LLMs as any important, original, or non-
standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

A Broader Impact

The proposed method, Adaptive Meshing By Expert Reconstruction (AMBER), has the potential to
benefit numerous domains that depend on computational modeling and simulation by significantly
reducing computational costs without compromising accuracy. This efficiency can expand the scope
of feasible simulations in engineering design, and support the deployment of simulation-based
tools in resource-constrained environments. Nonetheless, as common with advanced computational
tools, there is a risk of misuse in contexts such as weapons development or unsustainable resource
exploitation.

B Theoretical Convergence of the Iterative Mesh Generation Process

In this section, we provide a convergence proof of the iterative mesh generation process of AMBER
in a simplified one-dimensional setting. We consider the unit interval as the domain of interest:

Q=1[0,1] CR.

A one-dimensional mesh M is defined as a set of points

M:{vl,...mN}

such that v; = 0, vy = 1, and v; < v;4; foralli = 1,..., N — 1. The sizing field f.(M)
induced by the mesh is directly related to the spacing between points and is defined for z such that
v; <z < ’U1'+13 as

fe(M)(2) = vit1 — vi, 4)
which is defined for the general setting in Section 3.2.

We construct a mesh generator gy, that, given a sizing field f : [0,1] — Ry, generates a mesh as
follows: set v; := 0, and define

Vi1 = min(v; + f(v;),1).

We terminate the process when v; 11 = 1, resulting in a mesh g (f) = {v1,...,vn}. Itis easy to
see that ‘
3
vier = fvy), o)
j=1

for intermediate points ¢ < [N — 1. Note that this generator acts as an inverse to the sizing field in the
sense that

gmsh(fe(M)) = M

Given a mesh M* = {v!,... v’} and a target mesh M*, we assume perfect predictions and define
an interpolated sizing field as
Tage (f)(2) := (1= d) fo(MP)(0]) +d fe (M) (0] 4,), ©)

forz = (1—d)vl +dvl, , with0 <d<1.

Under these assumptions, we can prove the following:

Theorem 1. Let M' = {v},... v}, } be an initial mesh and M* = {v},... vy} a target mesh. For
a given mesh M?, define one iteration of AMBER by
M = gua(Zare (f))- @)

Then, it holds that MY = M*.

Proof. We prove this by induction showing that the first k vertices of the k-th output {vf,...vF} C
M* are equal to the target vertices {v},...v;} C M*.

3For z = un = 1, we set fe(M)(2) =vn — vN—1.

24

Table 2: Overview of dataset characteristics.

Name Dim. Application Geometries Online FEM Expert Meshes Process Conditions
Poisson 2D Electrostatics Procedurally generated Yes Error indicator Load function
Laplace 2D Heat or fluid flow Procedurally generated Yes Error indicator Dirichlet boundary
Airfoil 2D Fluid dynamics Open-source dataset No Task-specific heuristic None

Beam 2D Mechanical load Procedurally generated No Task-specific heuristic None
Console 3D Durability analysis ~ Closed-source dataset No Human labeled None

Mold 3D Injection molding Open-source dataset No Human labeled Inlet position

The case for k = 1 is trivial. Consider now the k£ 4 1-th AMBER step. It holds for i < k:

Toge (F)(0F) = fe(MP)(0f) = fo(M7)(0]) = viyy =], ®

using Eq. 6 for the first equality, the induction proposition for the second equality, and Eq. 4 for the
last equality. From Eq. 5 and using the result from above, we get

Ufjﬁl = ZIM’v(f)(Uf) = Zv;ﬂ — vy =V,)
=1 =1
for all ¢ < k which proves the desired result. O

C Datasets

We propose a total of six novel and varied datasets. Poisson features L-shaped domains with a
Gaussian Mixture Model as the load function and zero Dirichlet boundaries, adapted from ASMR [31].
We vary the resolution of the expert mesh to define easy, medium, and hard variants. Laplace
contains parameterized 2D lattices governed by the Laplace equation with complex Dirichlet boundary
conditions, representative of structures used in, e.g., materials design. Airfoil includes flow
simulations around airfoil-like shapes, as commonly encountered in aerodynamic engineering. Beam
captures elasticity problems in mechanical engineering, using elongated beams with internal circular
holes. The elongated beams induce long-range dependencies across the mesh. Console consists of
3D car seat crossmember geometries, parameterized and meshed by a human expert. The resulting
meshes are optimized for downstream strength and durability analyses. Mold represents injection
molding setups with complex 3D plates, varying inlet positions, and handcrafted expert meshes.

Table 2 summarizes dataset metadata. Poisson and Laplace solve a concrete system of equations
to yield a FEM solution over the mesh. This solution is used for expert mesh creation, and as features
for the graph that we input into the MPN. For the Mo1d task, the process conditions P of each data
point are comprised of the inlet position for the molding process, which always lies on the surface of
the geometry. As such, we re-use each Mold geometry multiple times with different inlet positions,
and generate a suitable expert mesh for each of them.

Table 3 provides detailed statistics on mesh resolution for the training sets. Meshes range from 705 to
116 704 elements in the training data. The 3D datasets, i.e., Console and Mold, have a higher ratio
of elements to vertices, as they use tetrahedral instead of triangular elements.

The sections below describe the construction of each dataset, including geometry generation and
expert mesh creation. We implement the FEM Poisson and Laplace in SCIKIT-FEM [76]. For these
datasets, we generate separate training data for each seed during training, but evaluate on a fixed set
of validation and test data points. For the other datasets, we created a fixed set of training, validation
and testing data points.

C.1 Poisson

We consider adaptive, problem-specific meshes for Poisson’s equation with zero Dirichlet boundary
conditions, given in weak form as

Vu-Vvd:c:/quzc Yv e V.

Q Q

25

Table 3: Number of data points per split and min/mean/max number of vertices and elements per
mesh in the training data. TFor Mold, each geometry is paired with multiple inlet positions and
corresponding expert meshes. Each of the 18 training geometries is used with 3 inlet positions. We
reserve 5 Mold geometries for validation and test, using 1 and 2 inlet positions, respectively.

Data Points # Vertices # Elements
Name Train Val Test Min Mean Max Min Mean Max
Poisson (easy) 20 20 20 387 549 674 705 1042 1292
Poisson (medium) 20 20 20 1562 2234 2736 2985 4358 5365
Poisson (hard) 20 20 20 9951 13224 15884 | 19563 26185 31510
Laplace 20 20 20 10161 13840 18193 | 19308 26341 34414
Airfoil 20 5 5 20229 20942 22152 | 39995 41425 43842
Beam 20 10 20 13011 27727 42306 | 25161 53804 82521
Console 19 2 5 2222 6606 10130 | 7800 25769 41856
Moldt 3x18 1x5 2x5 | 7369 13208 22871 | 33308 65191 116704
Each domain is a randomly generated L-shaped geometry of the form © = (0,1)? \

([pg”, 1] x 2, 1]) , with po = (05, p'?)) sampled from U/(0.2,0.8)%. The load function
q: 2 — R is a Gaussian Mixture Model (GMM) with three components. Means are drawn from
U(0.0,1.0)? and re-sampled if they fall within 0.01 of the domain boundary or outside the domain.
Covariances are initialized diagonally with log-uniform entries in exp(U (log 0.0001, log 0.0005)),
and then randomly rotated to obtain full covariance matrices. Component weights follow
exp(N(0,1)) + 1, normalized across components, to provide meaningful weight to each component.

Expert meshes are constructed by refining a uniform coarse mesh with element volume 0.01 using
a threshold-based heuristic that accounts for the load function and gradient jumps across element
facets [77, 78, 52]. The local error indicator for element M; is given by

2
err(M;) = hillall 22 (ar,) + hi [TV 072001, - (10)

where h; denotes the characteristic length of M;, and [Vu - n] denotes the jump in the normal
derivative of u across facets of M;, where n is the outward unit normal. This estimator highlights
regions with strong source terms or large inter-element gradient discontinuities. Elements are marked
for refinement if err(M;) > 6 - max; err(M;) with = 0.85 fixed across all data points. Marked
elements are refined via a conforming red-green-blue scheme [79], followed by Laplacian smoothing
after each refinement step.

Each data point comprises a random domain, source term, and corresponding expert mesh. Addi-
tionally, we vary task difficulty by controlling the number of refinement steps. We use 25 steps for
an easy variant, 50 steps for medium, and 100 for hard. We solve the equation on each intermediate
mesh and extract the solution per vertex as a vertex-level input feature to our MPN. In addition, we
use the evaluation of ¢ at each vertex as a node feature. We use analogous features evaluated at pixel
positions for the image baselines.

C.2 Laplace

The Laplace dataset emulates heat conduction or fluid transport through lattice structures during,
e.g., compression-based manufacturing processes. It follows the same setup and refinement procedure
as Poisson (cf. Appendix C.1), but solves the Laplace equation

/Vu-Vvdw:O Yv e V.
Q

We impose a complex Dirichlet boundary condition based on a GMM, applied only to the inner
boundary (i.e., the boundaries of the holes). The GMM has means sampled from U (0.1,0.9)? and
covariances with diagonal entries drawn from exp(U (log 0.005,log 0.01)), followed by random rota-
tion. The domain consists of a parameterized family of lattice-like geometries. Each instance contains
a uniform grid of k x k square holes, with k£ € [5,10] and hole sizes drawn from U (0.04, 0.075).
Holes are placed evenly, ensuring uniform ligament thickness throughout the lattice.

26

The refinement procedure is identical to that used in Poisson. Since there is no load function, i.e.,
g = 0 for the Laplace equation, the local error indicator simplifies to

err(M;) = h; |[[Vu - n]]||i2(3M7;) . (11)

We use a fixed number of 100 refinement steps for all data points, corresponding to the hard setup
of Poisson. Each data point consists of a domain, boundary condition, and expert mesh. We solve
the equation on each intermediate mesh and use the solution at each vertex as an input feature to our
MPN.

C.3 Airfoil

We sample airfoil geometries from the UITUC AIRFOIL COORDINATES DATABASE?, each with a
randomly selected angle of attack. Meshing is performed using GMSH-AIRFOIL-2D?, which utilizes
a task-specific heuristic to generate high-quality meshes with large inflow/outflow regions and fine
resolution near the airfoil. We generate 30 meshes, each placing the airfoil at the center of a circular
domain within [0, 1]2. The mesh size is set to 0.01 near the airfoil and 0.25 at the outer boundary,
yielding approximately 20 000 vertices per mesh.

C.4 Beanm

Beam geometries are widely used in mechanical engineering to study structural responses under load,
for example in the context of non-linear elasticity [80, 81]. We generate adaptive beam geometries in
GMSH [25]. We start with elongated rectangular domains, sampled from height h and length [

h ~ N(0.5,0.05), [~ N(10.0,1.0).
Randomly placed disks are subtracted from the domain. The ¢-th disk has radius
r; ~U(0.25h, 2.0h),
and its center is placed at
x; ~U(xi—1 + 1.5r;, xi—1 +20.0r;), y; ~U(0,h),

using an initial reference position x¢y = 0.1/ to sample the first disk. Disk placement proceeds
sequentially until the beam end is reached. A minimum part thickness of 0.001 is enforced. Meshing
uses a manually crafted and carefully tuned heuristic that ensures fine resolution near disks and in
thin regions of the geometry.

C.5 Console

Console uses data obtained from a real-world scenario in the automotive industry. We have a
parameterized family of 3D geometries representing a car’s seat crossmembers. The geometries
are obtained using ONSHAPE® and feature various sharp bends as well as up to two circular holes.
Tetrahedral meshes for this dataset are generated by a human expert using ANSA’. The expert is
initially presented with a coarse mesh, on which they iteratively select regions to refine, specifying
the target element size of each selected region. The resulting meshes are optimized for downstream
strength and durability analyses, but our experiments are conducted solely on the meshes and their
underlying geometry.

C.6 Mold

Injection molding is a key process for manufacturing thin, complex components in high-volume
industrial settings [82, 83]. We select plane-like geometries from the ABC: A Bic CAD MODEL
dataset [84], aligning them such that the longest dimension lies along x and the shortest along z.
This standardization does not affect the rotation-invariant AMBER, but helps the Image baselines.

4https://m—selig.ae.illinois.edu/ads/coord_database.html
https://github.com/cfsengineering/GMSH-Airfoil-2D/tree/main
https://www.onshape.com/

"https://www.beta-cae.com/ansa.htm

27

https://m-selig.ae.illinois.edu/ads/coord_database.html
https://github.com/cfsengineering/GMSH-Airfoil-2D/tree/main
https://www.onshape.com/
https://www.beta-cae.com/ansa.htm

Geometries are normalized so that the longest in-plane dimension is 1, and their thickness is rescaled
to z ~ U(0.06,0.09). Each geometry is duplicated three times with varying injection point locations,
which are provided as process conditions and influence the meshing strategy. Geometries are
imported into ABAQUS [85] and manually meshed by an expert using the standard tetrahedral
meshing algorithm. Meshes are tailored for injection molding, with 4—6 elements across thickness
and local refinement at holes, edges, and injection points. Mesh generation takes approximately 20
minutes per geometry, depending on complexity.

D Training Setup and Hyperparameters

D.1 Hardware and Compute

All graph-based methods are trained on an NVIDIA 3090 GPU. The image-based methods are instead
trained on an NVIDIA A100 GPU to accommodate the memory requirement of the comparatively
high-resolution images. Each method is given a computational budget of up to 36 hours, although most
methods, including AMBER, usually converge after 4-12 hours, depending on the considered dataset.
We train every method for five seeds. We evaluate four methods on eight datasets, counting Poisson
(easy/medium/hard) separately, and four additional methods on three datasets. We additionally have
a total of 31 additional experiments across three datasets. Combined, this yields an estimated total
compute of 8[hours] x 5[seeds] x (8 x 4 + 4 x 3+ 31) = 3000[hours]. A comparable amount was
used for preliminary runs and hyperparameter tuning.

D.2 Training

We implement all neural networks in PyTorch [86] and optimize using ADAM [87]. We use a learning
rate of 1.0e-3 and a linear learning rate scheduler with a warmup from 0 to the full learning rate
during the first 10 % of training. We apply weight decay of 1.0e-6. We train for a total of 25 600
mini-batches for Poisson and Laplace, Airfoil, and 51 200 mini-batches for Beam, Console and
Mold.

D.3 Node and Edge Features

In addition to the dataset-specific features, as described in Appendix C each node is assigned features
for the average sizing field of adjacent elements, as provided in Equation 3, and the vertex degree. As
edge features, we use the Euclidean distance between vertex positions and an approximate curvature,
defined as the signed angle between the averaged surface normals of the edge’s endpoints. The
curvature lies in [—1, 1], with positive values for convex and negative values for concave regions.
Since all features are invariant to Euclidean transformations, the architecture is invariant to rotation,
translation, reflection, and vertex permutation [21].

D.4 AMBER Hyperparameters

The MPN of AMBER consists of 20 separate message passing steps for all datasets. Each message
passing step uses separate two-layer MLPs and LeakyReLU activations for its node and edge updates.
We apply Layer Normalization [88] and Residual Connections [89] independently after each node
and edge feature update, and use Edge Dropout [90] of 0.1 during training. The final node features
are fed into a two-layer MLP decoder. All MLPs use a latent dimension of 64. We experimented
with slightly different parameterizations in preliminary experiments, finding that AMBER is relatively
insensitive to the details of the underlying MPN. We provide an overview of AMBER hyperparameters
in Table 4.

E Mesh Generation

We use GMSH [25] for mesh generation. For simplicity, we clip the predicted sizing fields during
mesh generation to (0.8 min{ fo(M;)}, 1.25 max{fe(M;})}), with M} C M*, M* €D, ie.,to
a range around the most extreme values seen during training. Here, f. is the element-wise sizing field
introduced in Section 3.2. This is only done during mesh generation, and does not impact the model
predictions or the loss of Equation 2. We further constrain the mesh generation process of AMBER to

28

Table 4: AMBER parameters and experiment configuration (variable names as used in the main text)

Section Parameter Variable Value
Optimizer ADAM

Optimization Learning rate 1.0 x 1073

P Learning rate scheduler linear with 10 % warm-up

Weight decay 1.0 x 1076
Aggregation function &P mean
MPN steps L 20
Activation function Leaky ReLU

MPN Edge dropout 0.1
MLP layers 2
Latent dimension 64
Refinement steps T 3
Maximum buffer size 500 meshes

AMBER Buffer addition frequency & 8 samples every 128 batches
Training steps 25600 or 51 200 (task-dependent)
Batch size 500 000 graph nodes plus edges
Sizing field scaling c 1.6187—t—1

a budget of 1.5 max{|M}|, M; C M*, M* € D} elements, i.e., to 150 % of the mesh elements of
the largest mesh in the training dataset. To ensure that this budget is met, we employ a conservative
heuristic that estimates the number of elements in a newly generated mesh from a given sizing field,
and then computes a scaling factor such that the new mesh does not exceed the available number of
elements. This constraint makes training more predictable by preventing very large meshes and thus
unexpected peaks in runtime between training epochs. While this constraint is also active during
inference, we find that it practically never activates after the training has converged.

F Metrics

F.1 Density-Aware Chamfer Distance (DCD)

We evaluate mesh similarity using the DCD [73], a symmetric, exponentiated variant of the Chamfer
distance that accounts for multiple points in one set matching a single point in the other. Given vertex
sets V1 and Vs, the DCD is defined as

1 1 1 N
[_ = —lp()—p(2(v,V2))ll2
doen(V1, Vi) 2[vl| Z (1 nf)

—HP(“) pP(0(v,V1))ll2
\V2| 2 ()]7

vEV2

12)

where (v, V') = argmin, ¢y ||p(v) — p(v’)]|2 is the nearest neighbor, and n, is the number of
points in the other set for which v is the nearest neighbor. The DCD is a purely geometric metric that
treats both vertex sets as samples from an unknown density over the domain.

F.2 L2 Error

We additionally evaluate mesh similarity using a symmetric relative projected L? error between
the vertex-based sizing fields of the evaluated and expert meshes. This metric complements the
purely geometric DCD by quantifying discrepancies in local element sizes. Let f and f* denote the
vertex-based sizing fields of Equation 3 on the evaluated mesh M and expert mesh M*, respectively.
We use the interpolant Z from Equation 1 to evaluate each sizing field at the vertex positions of the
opposite mesh. The symmetric relative projected L? error is then defined as

(ﬁ)—zM Dl , 15) - (f*)(p(vj))||2> (13)

2

o1
dra(M, M*) = (1 Zae- (£)(|| 1 Zar (f*)(P(vi)ll5

29

where || - ||2 denotes the discrete £2 norm over vertices.

F.3 Error Indicator Norm

For Poisson, we evaluate ASMR and AMBER using the norm of the error indicator of Equation 10,
i.e.,

(M) = |lerr(M;)[la = [> err(M;)2. (14)
M;,eM

In contrast to the above metrics, the error indicator norm approximates the remaining simulation error
for a given mesh, independent of some reference mesh or vertex set. It naturally decreases for finer
meshes, but quantifies how well a given mesh works for downstream simulation for its budget. We
thus evaluate the Expert, ASMR and AMBER for different target mesh granularities on a Pareto front
of number of mesh elements compared to this norm.

G Baselines and Variants

The following sections provide detailed setups for all baselines and variants used in our experi-
ments. Unless mentioned otherwise, the baseline and variant experiments follow the setup and
hyperparameters described in Appendix D.

G.1 GraphMesh

GraphMesh [24] uses a two-stage GCN [91] to extract geometric information from polygonal domains.
It constructs a local copy of the boundary graph for each coarse mesh vertex, encoding relative features
to all boundary vertices. These features are mean value coordinates [74], spatial distances, and mesh-
hop counts. Thus, each coarse vertex is represented by an individual boundary graph that contains
features of the boundary relative to this vertex. This construction limits GraphMesh to polygonal
domains, which in our case restricts it to the Poisson datasets. These graphs are processed by a
single-layer GCN, and the resulting embeddings are pooled to yield one latent vector per coarse
vertex of the original mesh. To enable load-specific sizing field prediction, the same vertex-level
features used in AMBER are appended to these embeddings. For the Poisson datasets, these features
include vertex degree, interpolated sizing field, load function value, and solution value at the vertex
position. The combined features are used as node inputs to a second GCN stage consisting of 6
residual graph convolutional layers with 128 dimensional hidden states. GraphMesh is trained using
a Mean Average Error to the target sizing field and does not apply normalization. We find that
GraphMesh quickly starts to overfit, especially on Poisson (easy), likely due to poor generalization
capabilities of its GCN and the construction of the geometry embedding. To compensate, we reduce
the number of training steps to 3200,/6 400/12 800 for Poisson (easy/medium/hard). We tune the
resolution of the underlying mesh by dataset for optimal validation performance.

In GraphMesh (Variant), we instead apply the loss in the inverse-softplus space, as in Equation 2, and
add input/output normalization. We also use 20 layers with dimension 64 to match AMBER’s MPN.

G.2 Image Baseline

The Image baseline [22] operates on discretized domain images. In 2D, we use 512 pixels along
the longest axis. We evaluate other resolutions in Appendix H.8. In 3D, we use 96 voxels along
the longest axis. We follow the original setup and use a U-Net [92] with 64 initial channels and 5
down- and up-convolution blocks. Each block contains 2 convolutions with kernel size 3, followed
by batch normalization and a ReLU activation. After each down-convolution, we apply max-pooling
with kernel size and stride 2 to halve the resolution and double the number of channels. The up-
convolutions reverse this process, and skip connections are added between corresponding depths.
We use 2D and 3D convolutions, batch normalization and pooling operations for the 2D and 3D
datasets, respectively. For task-specific datasets, i.e., Poisson and Laplace, we generate a uniform
background mesh with roughly one element per pixel and compute an FEM solution on this mesh to
yield our input features. For Poisson, we additionally include the load function evaluated at each
pixel. Finally, for all datasets, we add a binary mask that indicates if a given pixel or voxel is inside

30

the domain as an input feature. We also mask the loss accordingly, only predicting and training
on pixels within the domain. The Image baseline is trained on a regular MSE loss over pixel-wise
predicted and target sizing fields.

The Image (Variant) extends the Image baseline to the loss of Equation 2 and input/output normaliza-
tion. We evaluate both choices individually in Appendix H.8.

G.3 AMBER (I-Step)

We experiment with a variant of AMBER that only uses a single mesh generation step, i.e., that
predicts vertex-level sizing field on a uniform mesh, and uses this to generate the adaptive mesh.
This variant explores AMBER without the ability to generate and act on an intermediate meshes, i.e.,
on a fixed sampling resolution for the predicted sizing field. We keep all AMBER hyperparameters
the same, but omit all parts of the method that depend on iterative mesh generation. Since AMBER
(1-Step) heavily depends on the resolution of its input mesh, we tune this resolution separately for
each dataset for optimal validation performance.

G.4 Adaptive Swarm Mesh Refinement (ASMR)

For ASMR [31, 51] we integrate the Poisson dataset into the provided codebase®, replacing the
original mesh generator with GMSH and adapting the dataset parameters to match Appendix C.1. We
also adapt the batching scheme to that used for AMBER to prevent too-large batches, sampling from
the RL replay buffer until the combined number of graph nodes and edges reaches 500 000.

We adopt the MPN architecture and training schedule proposed by ASMR, using 2 MPN steps. Pre-
liminary experiments with more message passing steps showed no improvement, which is consistent
with prior observations on RL model scaling [93, 94].

We use the reward function proposed by ASMR [31]. Given an element M/ at refinement step ¢, the
reward is

1
r(M}) = Vo erf(M) =Y " Qlerr(M/™) | —a [D I(MIT C M —1, (15
v J J

where « is a scalar that controls the trade-off between accuracy and mesh complexity, and is given
to the policy as context, and Q maps refined elements to their parents. The local error err(M}) is
computed by integrating the element-wise solution against a reference solution on a high-resolution
mesh. This reference mesh is obtained by uniformly refining the initial mesh six times. Further
refinement was found to be computationally infeasible.

The reward function includes a 1/V (M}) scaling term. In ASMR, both reward and evaluation
are based on integration against a fine reference mesh, making the scaling consistent with the
objective. We adopt the same reward and optimization, limiting ASMR to 6 uniform refinement steps.
Appendix H.9 explores a variant that replaces the integrated error with the error indicator, allowing
deeper refinement. In both cases, we evaluate using the error indicator, as a sufficiently fine uniform
reference mesh is infeasible for our datasets. Under this metric, the scaling biases refinement toward
small elements and can lead to a gap to expert performance. In preliminary experiments, we tried to
remove the scaling term, which led to unstable training and non-convergence.

We apply an adaptive element penalty during training by sampling « from a predefined range that
yields mesh sizes comparable to Poisson (easy/medium/hard). At inference time, we evaluate
across a range of 20 geometrically spaced « values, producing meshes of varying resolution and
corresponding indicator error for a full comparison.

H Extended Results

H.1 L? Error Evaluations

Throughout our experiments, we primarily assess supervised approaches using the Density-Aware
Chamfer Distance (DCD) to the expert mesh. Here, we complement this with evaluations based on

Shttps://github.com/niklasfreymuth/asmr

31

https://github.com/niklasfreymuth/asmr

Poisson (easy) Poisson (medium) Poisson (hard)

0.65 AMBER
_ 055 = AMBER (1-Step)
g 045 | —— Image (Var.)
OEU | = GraphMesh (Var.)
0.35
s | — [mage [22]
0.25 | I | GraphMesh [24]
Laplace Airfoil Beam Console Mold

L? Error

0.4 0.4
0.35 0.3
0.3 | 0.2

Figure 7: L? error across datasets and supervised methods. Overall trends are consistent with
Figure 3. AMBER shows larger relative improvements on datasets like Poisson and Beam compared
to baselines. On Console, AMBER (1-Step) slightly outperforms AMBER, but with overlapping error
bounds.

the L? error defined in Appendix F.2. Figure 7 reports L? errors across all datasets and supervised
methods. While scales are different across datasets, the general trends closely mirror those in Figure 3,
with only minor differences in relative performance. On the L? error, AMBER outperforms published
baselines on all datasets, and shows a slightly larger advantage over the variants compared to the
DCD on, e.g., Poisson and Beam. For Console, AMBER (1-Step) performs well on the L? metric,
slightly improving over AMBER, although error bounds overlap.

H.2 Error Indicator Evaluations

We evaluate the norm of the error indicator of Equation 14 for Poisson (hard) and Laplace, i.e., for
tasks that use a concrete underlying system of equations. Table 5 shows this error indicator norm and
the number of used mesh elements, to account for the norm naturally decreasing with higher element
budgets. We find that AMBER closely adheres to the element budget of the expert heuristic that was
used to generate the data, and that it matches the expert in terms of error indicator. In contrast, many
other supervised methods either fail to produce meshes with similar numbers of elements, or have
worse error indicator norms, suggesting poor refinements and sub-optimal downstream simulation.
These trends highlight AMBER’s utility for downstream simulations and validate the use of DCD as a
proxy for downstream simulation error.

Table 5: Error indicator norm for Poisson (hard) and Laplace for the expert heuristic and different
supervised methods. Overall trends are consistent with Figure 3, validating the use of DCD as a
proxy for downstream simulation error.

Poisson Laplace
Method Err. Norm #Elements Err. Norm #Elements
AMBER 0.031 +0.001 27859.7 4+ 1583.1 2.555 +0.050 27622.5 £943.1
AMBER (1-Step) 0.032 +0.001 28780.9 4 2196.8 2.568 +£0.039 27488.7 £ 706.0
Image (Var.) 0.034 4+ 0.001 24836.3 +1213.0 2.697 +£0.062 26745.2 £ 866.7
Image 0.082 +£0.071 130571.3 £119228.3 3.235+0.174 29297.8 4+ 8065.7
GraphMesh (Var.) 0.042 + 0.007 46841.7 +15014.0 - -
GraphMesh 0.034 £+ 0.001 31378.2 £ 4776.3 - -
Expert 0.033 25625.2 2.766 25130.5

32

AMBER s Expert

A
A
0.3 % 03| ™
g *’%‘* ‘ Ak
S 02+ 02 —
z i
St e ™
2 01 0.1 |
=
.2 Sy
2 005 Do 0.05
Ll R
£ 003 - »5% 0.03 |
43 S
0.02 | 0.02 |

T T T T T T T T T T T T
300 1000 3000 10000 30000 100000 0.03 0.1 0.3 1.0 3.0 10.0

Number of Elements Runtime [s]

Figure 8: Log-log plot of error indicator norm versus number of mesh elements (left) and runtime
(right) for AMBER and the expert across Poisson (easy/medium/hard). Lower left is better. Each
marker shows the mean over the test set for a given seed and target mesh resolution. Left: As
in Figure 4, AMBER achieves comparable error to the expert heuristic for a given element budget.
Right: For a given training dataset, i.e., any of Poisson (easy/medium/hard), AMBER produces
roughly the same intermediate meshes, only adapting to the element budget via the scaling constant
e € [0.5,2.0] at the last step. This process causes a distinct runtime curve for each training dataset.
AMBER scales better with the element budget than the expert heuristic, eventually achieving a speed-
up of more than 10x for meshes with more than 30 000 elements.

Table 6: Runtime breakdown of Poisson (easy/hard) in milliseconds. Mesh generation is the most
expensive step, and becomes more costly as the number of mesh elements increases.

C Poisson (easy) Poisson (hard)
ategory

Mean runtime (ms) % of total Mean runtime (ms) % of total
Mesh to graph conversion 15.815 8.91 94.620 8.37
Adding hierarchical graph 11.219 6.32 12.606 1.11
Model forward 59.963 33.80 155.915 13.79
Mesh generation 90.406 50.96 867.760 76.73

H.3 Runtime Experiments

We explore AMBER’s runtime behavior across different mesh granularities by training on Poisson
(easy/medium/hard) datasets. We evaluate each trained model by setting the last step’s scaling constant
er € [0.5,2.0], as also done in Figure 4. Figure 8 compares the error indicator norm against both the
number of mesh elements and the total runtime for AMBER and the expert heuristic. Since the scaling
constant only comes into effect at the last mesh generation step, the training dataset significantly
influences runtime, with distinct curves for models trained with Poisson (easy/medium/hard).
AMBER attains an error comparable to the expert heuristic for all element budgets. However, AMBER
scales significantly better with larger numbers of elements. For large meshes, AMBER eventually
outperforms the heuristic by more than an order of magnitude, taking less than 3 seconds to generate
a mesh with more than 100 000 elements. We similarly find that AMBER takes less than 5 seconds to
accurately imitate a 3D mesh on both Console and Mold, where a human expert needs roughly 15 to
20 minutes for refinement.

Considering the cost of the individual components of AMBER, Table 6 shows that, for ¢ = 1, mesh
generation quickly dominates runtime, taking up more than 50 % of total cost for Poisson (easy)
and jumping to more than 75 % for Poisson (hard). This relative increase in cost is explained by the
O(N log N) scaling of the mesh generation step, which outscales the linear graph-related operations,
including the MPN forward, especially for finer meshes. Notably, AMBER acts on coarse intermediate
meshes, and that the expensive last generation step is also required for the one-step baselines.

33

AMBER =—— Non Hierachical === No Sizing Field Scaling No Prediction Offset

—— MSE Loss No Normalization Random Buffer Sampling
Laplace Beam Console
0.35
0.3
a
R 025
0.2

Figure 9: Ablation study on AMBER using Density-Aware Chamfer Distance (DCD) across three
datasets. Each bar represents a variant of the model with one component removed or modified.
Using a non-hierarchical MPN, omitting the prediction offset, or sampling newly generated meshes
randomly degrades performance moderately, depending on the task. Omitting normalization or using
a regular MSE loss leads to substantially worse generated meshes.

H.4 Algorithm Design

We evaluate the importance of several of AMBER’s components on Laplace, Beam and Console.
To evaluate the impact of the loss of Equation 2, we compare against an AMBER (MSE Loss) variant
using a direct MSE loss between the softplus-transformed predictions and the sizing field targets, i.e.,

\4

1
(log(1+€"7) — y;)*. (16)
j=1

L=—
V]

For the algorithmic components, we first replace the stratified sampling for the replay buffer with
uniform sampling over all intermediate meshes (AMBER (Random Buffer Sampling)). This results in
an over-representation of meshes with many prior refinements, leading to a skewed and unbalanced
training distribution. Next, we disable the hierarchical mesh representation, feeding only the non-
hierarchical graph G into the MPN (AMBER (Non-hierarchical)). This reduces consistency in the
receptive field across and within meshes, as regions with higher local resolution require more message
passing steps. We also ablate the normalization (AMBER (No Normalization)) and the offset term b
of Section 3.3 (AMBER (No Prediction Offset)). Finally, we remove the scaling of sizing fields for
intermediate meshes by setting the refinement constant of Section 3.3 to ¢,=1 for all t (AMBER (No
Sizing Field Scaling)). While this does not directly impact optimization, it significantly increases
intermediate mesh sizes, slowing down mesh generation during training inference, and reducing
the number of meshes that fit in a training batch. Figure 9 presents the results of aforementioned
algorithmic variants. We find that AMBER consistently performs on par with or better than its
variations across all datasets. Replacing our loss with a regular MSE leads to the largest degradation
in performance, consistently yielding worse meshes than AMBER across datasets. Depending on the
dataset, different algorithmic components have different impact. The hierarchical graph representation
is crucial on Beam, as it requires long-range message passing to capture the spatial dependencies
of the elongated geometry. The softplus-transformed loss is essential for Laplace given its high
element scale variation. The sizing field scaling only improves mesh quality slightly, but decreases
the size of intermediate meshes, speeding up training and inference. Other factors like normalization
and buffer sampling have smaller effects, but still generally yield modest benefits.

H.5 Sizing Field Parameterization

We experiment with different parameterizations of the predicted sizing field on Laplace, Beam
and Console. Given an expert mesh M *, we consider using the vertex-interpolated expert sizing
field f(v;), as defined in Equation 3 to define labels y; = Zas+(f)(p(v;)) using the interpolant of
Equation H.5. We call this variant AMBER (Interpolated Labels).

Additionally, we consider a version that predicts a piecewise-constant sizing field fe(Mz) on the ele-

ments M, instead of a piecewise-linear sizing field f (v;) on the vertices v;. Here, the corresponding
interpolant Zy/(f.) is just the union over the element’s predictions evaluated at their subdomain, i.e.,

34

Laplace Beam Console

0.35

03 0.6
03
o 0.2
Q 0s 03 AMBER
' . —— Element Sizing Field
02 0.1 0.5 —— Interpolated Labels

Figure 10: DCD comparison across tasks for different sizing field parameterizations. Interpolating
the labels closely matches AMBER’s parameterization, reflecting similar optimization objectives. In
contrast, using a piecewise-constant sizing field on the elements yields worse meshes on Beam and
Console, likely due to reduced expressiveness.

fe(M;), ifz € Q; for some i,
T (fe)(2) = fe(M;/), otherwise, where i’ = argmin ||z — p(M;)

s

where p(M;) denotes the position of the element’s midpoint. We assign each element the integrated
sizing field of all expert elements that it contains, i.e., we compute a volume-weighted average of the
sizing field values from the fine mesh elements whose midpoints lie within the coarse element. Let
fX (M) be the sizing field on the fine elements and V' (M) their volume. For each element M, of
the current mesh, we compute the target sizing field as

V(M) ,
* fe(M*)7]f‘-7l7é®a
yi = ked; Zkej,- V(Mk) F
C) fe(p), if p(M;) € Qi for some M,
fe(M}), otherwise, where k' = argminy, ||p(M;) — p(M;)]|,

where J; = {j | p(M};) € M,} is the set of expert elements whose midpoints lie within the element
M. If there are no such elements, we first attempt to find an expert element M that contains the
midpoint of M;. If that also fails, the meshes represent different discretizations of the underlying
domain. Here, we fall back to nearest-neighbor interpolation using the element midpoint positions.
We adapt the MPN input accordingly, constructing the graph G over mesh elements and element
neighborhood. We use the same graph node and edge features, except for the neighborhood size, and
always evaluate position-dependent features at the element midpoint. This process yields a variant
AMBER (Element Sizing Field).

Figure 10 visualizes results. We find that AMBER (Interpolated Labels) performs very similarly
to AMBER, likely because both optimize a similar objective. While there are small differences
in the concrete sizing field targets, especially for early generation steps and coarser input meshes,
both parameterizations work well. Here, both parameterizations provide targets that aim to coarsen
too-fine regions, while increasing the resolution in too-coarse regions of the current mesh, eventually
converging to very similar generated meshes. In contrast, AMBER Element Sizing Field predicts a
piecewise-constant sizing field over mesh elements. While this works well on Laplace, the reduced
expressiveness of this parameterization compared to the piecewise-linear interpolant of Equation 1
yields significantly worse meshes on both Beam and Console.

H.6 Data Efficiency

Figure 11 assesses AMBER’s data efficiency. All other training settings are held constant, and
evaluation is performed on the original test set. Accurate mesh generation is achieved with as few
as five training meshes and corresponding geometries. Using more samples consistently improves
performance. On Laplace, where training data can be easily generated via the expert heuristic, there
are additional improvements for 100 instead of 20 meshes.

AMBER’s efficient use of data likely stems from the local, per-node loss in Equation 2 and the
symmetry-preserving features and structure of the MPN architecture.

35

Laplace Beam Console
5 Samples
0.24 016 9, 0-55 10 Samples
A 15 Samples
S 022 0.14 7 | 0-54 20 Samples
' | (AMBER)
0.2 7 012 7 053 7 —— 100 Samples

Figure 11: DCD comparison for AMBER with different numbers of training samples for Laplace,
Beam and Console. AMBER performs well with as little as 5 samples, but steadily improves for up
to 20 samples. On Laplace, where additional training data is easy to generate, there is a moderate
improvement for 100 instead of 20 train meshes and geometries.

Laplace Beam Console
1 Step
0.16
0.23 | | 0.54 (AMBER (1-Step))
a 0147 2 Steps
8 | 0.12 - (- 0.53 3 Steps
0-22 7 (AMBER)
0.1 1 0.52 | —— 4 Steps

Figure 12: DCD comparison for AMBER with different numbers of mesh generation steps for
Laplace, Beam and Console. AMBER improves for more mesh generation steps, and converges
at around three steps. A single mesh generation step is insufficient for accurate generations, likely
because it acts on a fixed mesh resolution. Results for AMBER and AMBER (1-Step) are taken from
Figure 3.

H.7 Mesh Generation Steps

We evaluate how AMBER behaves for different numbers of mesh generation steps. In particular, we
use three generation steps in all main experiments, and have a single step for AMBER (1-Step) as
a baseline that acts on a tuned but fixed mesh resolution per task. Figure 12 shows that AMBER
improves for more mesh generation steps, converging at roughly three steps. Despite tuning the
initial mesh size, a single mesh generation step is insufficient for optimal performance, presumably
because it does not allow for arbitrarily fine sizing field resolution. In contrast, starting from two
mesh generation steps, AMBER learns to predict the sizing field used to generate its intermediate
meshes, allowing for a flexible, adaptive sizing field representations.

H.8 Image Ablations

We explore the behavior of the Image (Variant) baseline on the Laplace task. We vary image
resolution and remove either input/output normalization (Image (No Normalization)) or the loss from
Equation 2, replacing the latter with the MSE loss over the pixel-wise sizing fields (Image (MSE
Loss)). Omitting both components recovers the original Image baseline. In all cases, we still use a
softplus to transform the predictions, as we find that directly predicting a sizing field leads to worse
performance and unstable mesh generation. Figure 13 shows that performance improves with image
resolution, although gains diminish at finer scales. Since the Image (Variant) enforces a uniform
resolution by design, adapting to high-detail regions becomes prohibitively expensive, leading to
substantial waste in less sensitive areas. In contrast, AMBER allows for variable sampling resolutions
of the predicted sizing field by design, ensuring a more efficient prediction process, especially for
highly adaptive meshes. Other than that, both normalization and our loss are crucial for accurate
mesh generation, which is consistent with the AMBER ablations in Section H.4.

H.9 ASMR (Error Indicator)
We experiment with a version of ASMR that uses the error indicator in its reward function, i.e.,

sets err(M/) in Equation 15 to Equation 10, leaving the rest of the reward unchanged. To further
adapt the resulting ASMR (Error Indicator) version to our setup, we disable normalization of the

36

Image (Var.)
(512 x 512)
MSE Loss
No Norm.
256 x 256
128 x 128
64 x 64

Laplace

Figure 13: DCD comparison for different Image (Variant) ablations. Both the loss of Equation 2 and
normalization are crucial for Image (Variant). Performance improves with higher image resolutions,
although the rate of improvement eventually slows down.

Method: AMBER =— ASMR =—— ASMR (Error Indicator) a Expert
Difficulty: e easy m medium ¢ hard
a s e ! -
03 " afy etig ey —
' g .«’\“ > ,":" T 7-..-'

E 0.2 T e, FaGs -
z gy 4
=00 4 e, o ‘&W*L
13 Ran, iy »
S o IETI 3
S 0.05 “W
t‘: 'qu“
M 0.03

0.02 —

\ \ \ \ \ \
300 1000 3000 10000 30000 100 000

Number of Elements

Figure 14: Log-log plot of error indicator norm versus number of mesh elements (lower left is better)
for AMBER, ASMR, ASMR (Error Indicator) and the expert across Poisson (easy, medium, hard).
Each marker shows the mean over the test set for a given seed and target mesh resolution. This figure
overlays Figure 4 with ASMR (Error Indicator). We find that training ASMR on the indicator error
yields less reliable, more noisy policies. However, as this ASMR variant is no longer constrained to a
fixed refinement depth, it does not degrade as strongly for high-resolution meshes.

initial errors, as we found this to be unstable when using the indicator, and adapt the MPN architecture
to 10 message passing steps. We then increase the number of refinement steps to 7/9/11 for Poisson
(easylmedium/hard), allowing for elements with maximum refinement depth to be of the same size as
the minimum expert elements.

Figure 14 overlays Figure 4 with ASMR (Error Indicator). We find that this method performs worse
than ASMR, presumably because the error indicator is less expressive than the integrated reward.
In comparison to the integrated reward, the indicator is noiser, yielding low relative contrast for
elements of the same scale. This imbalance makes the reward function harder to optimize, reducing
the consistency of the resulting policy. Yet, the indicator does not constraint the refinement depth,
allowing for higher mesh resolutions and thus less saturation in simulation quality for finer meshes.

I Visualizations

We provide additional visualizations for AMBER on all datasets, and for all methods on Poisson
(hard). We visualize the first test data point on the first trained seed for all methods. All visualizations
include the expert mesh for reference, and zoom in on a representative region of the geometry.

37

QY

O
AN AT
s

X

KR
X
T
08K

X

Vavavaars

KL
0y
AVAVaY

vy

XK

2

N
o
vy,
o
o

o
%
5
VAVAVAVA
X
00K
o
OO0
A%
A

7
X
N

AVAVAVAY)
SO
vavavatiisTol ',41;'
S
AVAVAVAS
“AVAVAY

R

K
OB
XE

AR OKRIK
OOOIASIIHRRIINN
o

XXX

PATATAVAATATa7 8 6 AT

Poisson (Expert, full view) Expert AMBER AMBER (1-Step)

Ead >

g

s
XA\
\/

vava
AVAVAV

P
94
AVAN

Y D
KOSIRY

VaYA)

\WAVAVAY
A

\ 7
XOIN
IAVAVAVA

R
X
AR

vy

VAVAVAVAVAVAVAY

0y
VAVAVATAN
VAVAVA G
VAVAN
SO
§ AAV;VAVA 2
<l

N
<

KR
LVAVAVAY

X

AVAVAVAVAVAVAVAVAN
74}
K

KRR
VAVALOATLS

a
pVAVAVAVAAAVIVATAVAVAY

et
XX
K50
VAvS,
AVAV .y
VAV
VAVA

ﬂ‘

X
AV4

%X

BRRER
00

VaY
Vs

O

4
2
B
&
X
Kt
S
&
X
X

2
0

va¥ aY
LA VAYAVAY
AVAVAVAVAVAVA

ASMR Image (Variant) GraphMesh (Variant) Image [22] GraphMesh [24]

Figure 15: Expert mesh and generated meshes for all baseline methods and AMBER on the
Poisson (hard) dataset. The enlarged view of the expert mesh shows the FEM solution, while
other plots show the element size, with red indicating smaller elements. AMBER yields more accurate
and adaptive meshes, especially in regions with high resolution variability. ASMR has a constrained
depth, leading to too-uniform refinements, and both Image [22] and GraphMesh [24] fail to correctly
estimate sizing fields in local regions.

YAV
VA

L1 Baseline Comparisons

Figure 15 visualizes mesh outputs from all baseline methods and AMBER on the Poisson (hard)
dataset. AMBER produces more accurate and adaptive meshes, particularly in regions requiring fine
detail and large variation in local mesh resolution. In contrast, the baseline methods exhibit artifacts
or provide overly smooth or uniform sizing fields. For example, ASMR is constrained by the depth
of its reference mesh, leading to too-uniform meshes, while GraphMesh [24] and the Image [22]
baseline greatly over- and under-estimate local regions.

1.2 Full Rollouts

Figures 16 and 17 illustrate full AMBER rollouts, showing the iterative mesh generation process
from t=0 to t=T'=3 across all datasets. Figure 16 also visualizes the FEM solution on the expert for
reference. Across datasets, each generation step incrementally refines the mesh, adding geometric
detail and improving alignment with the target solution. The refinement constant ¢; introduced in
Section 3.3 ensures that early iterations produce coarser meshes, reducing computational cost in the
initial stages.

38

Y
\

\
V<
K s
<
KRS
SRS
=K
K] KIS
KIS R
D) S SREEED
RO ONNSININI RS R B K Xy
A S PSRBT DO
AAVAY, .
YAVAY, I
/ ARy
| S .AV%VAVAVA
AT
Ay
A
\ / "ﬁé‘hv

t=0 t=1 t=2 t=3 Expert Expert Solution Solution
Figure 16: Close-ups of AMBER rollouts on the Poisson (easy/medium/hard) and Laplace datasets
from t=0 to t=T=3. Left, middle: For t<3, the colorscale denotes the prediction, otherwise the
element size. Right: The colorscale shows the FEM solution on the zoomed-in and full domain for
the expert. Successive AMBER steps produce increasingly refined meshes that better match the expert,
improving sampling resolution for the next sizing field prediction. The refinement constant ¢; from
Section 3.3 controls mesh granularity over time, enabling coarse and efficient early steps.

o

AVAVAVR, K]
SRR
m@%ﬁmﬁsﬂ‘gggxﬁvygy‘
SRR
5

o
KRR

KRRKE

O '4{#
LR BSOOKINIAORT
AVAVAYAVav.r,

B
oo

\ O
Rl

ALK

eyl
5

RN

KRk

e

K
S5
LRSS

5,
RS

CRRKL

ORISR
ORISR
KPS
QAR

> D
D A
NN , _
t=0 t=1 t=2 t=3 Expert Expert (full view)
Figure 17: AMBER rollouts across the Airfoil, Console, Mold and Beam. The colorscale denotes
predictions for <3, and element size otherwise, with red indicating smaller values. As in Figure 16,
each step provides an increasingly detailed mesh, improving the next prediction’s sampling resolution.

39

	Introduction
	Related Work
	Method
	Iterative Mesh Generation with AMBER
	Training AMBER
	Empirical Improvements

	Experiments
	Results
	Conclusion
	Broader Impact
	Theoretical Convergence of the Iterative Mesh Generation Process
	Datasets
	Poisson
	Laplace
	Airfoil
	Beam
	Console
	Mold

	Training Setup and Hyperparameters
	Hardware and Compute
	Training
	Node and Edge Features
	AMBER Hyperparameters

	Mesh Generation
	Metrics
	Density-Aware Chamfer Distance (DCD)
	 Error
	Error Indicator Norm

	Baselines and Variants
	GraphMesh
	Image Baseline
	AMBER (1-Step)
	Adaptive Swarm Mesh Refinement (ASMR)

	Extended Results
	 Error Evaluations
	Error Indicator Evaluations
	Runtime Experiments
	Algorithm Design
	Sizing Field Parameterization
	Data Efficiency
	Mesh Generation Steps
	Image Ablations
	ASMR (Error Indicator)

	Visualizations
	Baseline Comparisons
	Full Rollouts

