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I. INTRODUCTION

Birds have long fascinated humans with their ability to
navigate swiftly and precisely through cluttered environments,
demonstrating remarkable coordination and cooperation. Sim-
ilarly, multi-rotor micro air vehicles (MAVs)—among the
most agile robots ever created—can replicate bird-like flight
and collective behaviors. These capabilities offer promising
potential across a variety of applications, including logis-
tics [3], inspection [2], search and rescue [14], autonomous
exploration [20], and 3D reconstruction [21]. However, given
that MAVs typically have limited payloads, restricting the
sensors and computational units they can carry, leveraging
these constrained resources to enable advanced autonomy, and
even swarm behaviors, remains a significant challenge.

Over the past decade, vision-based navigation has been
widely adopted in autonomous MAVs due to the Small size,
light Weight, and low Power consumption (SWaP) of visual
sensors [23, 7, 22, 9, 15]. However, vision sensors come with
several limitations, including a limited sensing range (typically
3 to 5 meters), low dynamic range, and susceptibility to motion
blur. These drawbacks significantly restrict the achievable
flight speeds and overall safety of MAVs. Additionally, vision-
based systems are highly sensitive to lighting conditions,
creating further challenges in real-world applications with
insufficient or variable illumination.

In contrast, light detection and ranging (LiDAR) sensors
offer direct, accurate (centimeter-level), and long-range (tens
to hundreds of meters) depth measurements. The extended
range enables MAVs to detect and avoid obstacles from greater
distances, supporting high-speed flight. Furthermore, the pre-
cise measurements allow MAVs to navigate through tight
spaces in cluttered environments. LiDAR sensors operate at
extremely high point rate, ranging from hundreds of thousands
to millions of Hertz, allowing for the estimation of rapid MAV
movements [18]. Additionally their time-of-flight-based active
detection ensures robust performance across diverse lighting
conditions, including complete darkness.

With the advancement of LiDAR technology and the emer-
gence of new, lightweight, and compact LiDAR sensors, my
research focuses on designing a LiDAR-based autonomous
MAV system, along with planning and control algorithms, to
fully leverage the sensing capabilities of LiDAR and the agility
of multi-rotor MAVs. I aim to address the following two key
questions:
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Fig. 1: (A) High-speed and safe navigation in unknown environments.
(B1) Swarm intelligence in autonomous delivery application. (B2)
The online mutual state estimation and mapping for swarm robots.

Research Question 1: How can we fully leverage the agility
of MAVs to enable high-speed, agile, and safe navigation in
challenging environments?

Research Question 2: How can we achieve swarm intelli-
gence in multi-MAV systems for complex real-world scenarios?

II. CURRENT RESEARCH

A. High-speed, Agile and Safe Navigation for MAVs

In the first part of my research [12, 10, 11], I focus on
developing an advanced navigation system for a single MAV
to address Research Question 1 (Fig. 1A). Unlike existing
vision-based methods, we use LiDAR as the primary sensor.
As demonstrated in [18], LiDAR-IMU-Odometry achieves
accurate state estimation at over 100 Hz, enabling aggressive
movements during high-speed flight. We further develop a fast,
point-cloud-based mapping system that eliminates the need for
computationally heavy occupancy grid or Euclidean distance
field maps [23, 22, 15].

While using point-cloud maps for LiDAR sensors is intu-
itive, planning effectively on such maps is challenging. In [10],
we use an incremental K-dimensional tree (iKD-tree)[1] to
maintain obstacle point clouds and propose a novel method for



generating safe flight corridors (SFC) from the iKD-tree map.
Within the SFC, we apply an efficient spatiotemporal trajectory
optimization method[16] to generate high-quality trajectories
in just a few milliseconds. Our system achieves a flight speed
of 13.7 m/s in unknown wild forests, relying solely on onboard
sensing and computation.

We extend this work to enable real-time whole-body motion
planning for MAVs, allowing agile navigation through narrow
gaps in unknown environments [11]. Unlike existing methods
requiring offline computation [6] or prior knowledge of gap
features [4], our approach utilizes LiDAR measurements and a
novel problem decomposition strategy to achieve online, real-
time detection and motion planning for gap traversal without
prior environmental data.

Although previous methods enable relatively high-speed and
agile flights in unknown environments, most of them adopt
an optimistic strategy, treating unknown areas (due to sensor
range limitations or obstacle occlusion) as free. As a result,
these methods often have low success rates at high speeds.
Some strategies prioritize safety by enhancing the visibility of
unknown areas [22] or treating them as occupied [9], but these
tend to be overly conservative, compromising flight speed.

To achieve both high-speed and safe flight, we adopt two tra-
jectory planning frameworks [15] and propose a novel method
to efficiently distinguish known-free areas directly from point
clouds, enabling the use of an efficient point-cloud-based
mapping module. We also introduce a two-trajectory optimiza-
tion formulation using a differentiable trajectory optimization
tool [16]. As a result, our system [12] can leverage LiDAR’s
extended sensing range while maintaining low latency. The
system has been validated in unknown, cluttered environments,
achieving high-speed flights exceeding 20 m/s, relying solely
on onboard sensing and computation. Thanks to the advanced
sensing capabilities of LiDAR, the system can avoid thin wires
with diameter less than 2 mm and navigate through varying
lighting conditions, including total darkness. Additionally, our
method has been applied to other unmanned aerial vehicle
(UAV) types, such as in [8], where we enabled high-speed and
safe navigation for a tail-sitter UAV in unknown environments.
This advanced navigation capability for agile, high-speed, and
safe micro air vehicle (MAV) flight serves as a foundational
component for applications in delivery, inspection, and search
and rescue.

B. Swarm Intelligence in the Wild

In the second part of my research, I aim to extend our
MAV system to a swarm and address Research Question 2,
focusing on achieving swarm intelligence for MAVs in real-
world environments.

The first challenge we address in [24] is achieving accurate
and robust ego and mutual localization for swarm robots.
While existing methods have tackled localization for vision-
based swarm systems [17], they are not suitable for LiDAR-
based sensors and are constrained by the limitations of visual
sensors, which struggle in high-speed movements, large-scale
missions, and low-light conditions.

To overcome these challenges, we propose a novel LiDAR-
based online mutual state estimation and mapping system for
swarm robots (Fig. 1B2). To the best of our knowledge, this is
the first LiDAR-based odometry system specifically designed
for swarm robotics. Our system is fully decentralized and
includes an online initialization module that calibrates the
spatiotemporal extrinsics of each robot, and able to provide
centimeter-level ego and mutual state estimation. Addition-
ally, the system supports plug-and-play functionality for new
robots, making it highly scalable for large-scale missions.
Thanks to its decentralized architecture, our system is resilient
to single-point failures. After solving the localization and
mapping problem, we demonstrated in [24] and [19] that our
approach enables a wide range of swarm applications, includ-
ing autonomous navigation in wild forests, mutual collision
avoidance in cluttered environments, and multi-MAV target
tracking.

III. FUTURE WORK

My future research interests are centered around the goal
of developing field robotics that can operate effectively in
real-world scenarios. Two key directions for this research
are: (i) advancing higher-level swarm cooperation and (ii)
combining model-based with learning-based approaches to
achieve greater autonomy in complex tasks.

The first one focuses on advancing swarm intelligence
for real-world applications, such as our ongoing project on
autonomous delivery (Fig. 1B1). This task requires MAVs to
operate in a tightly coupled manner, as they are connected
by cables, meaning that any movement of one MAV directly
affects the entire swarm system. One potential solution is
to draw inspiration from bird flocks and develop smarter
individual MAVs capable of estimating external forces and
the mutual states of other MAVs with minimal communica-
tion. This approach would enhance the system’s resilience to
communication failures and enable operation in more complex
environments, even with larger swarm sizes. Beyond delivery
missions, this swarm system could also be applied to au-
tonomous exploration, target searching, and other tasks.

The second area one is combining model-based planning
and control methods with learning-based approaches, such
as imitation learning [7] and reinforcement learning [13].
Learning-based methods can effectively learn complex map-
pings from sensor data to control commands, achieving su-
perior performance in tasks that are difficult to model. How-
ever, these methods are often data-hungry and may struggle
with generalization in certain cases. In contrast, model-based
methods can provide physical constraints and optimal solutions
for simplified problems. Similar to [5], our ongoing project
demonstrates that by leveraging model-based methods as prior
knowledge and learning a residual model from the data to
compensate for the unmodeled aspects of the model-based
approach, we can combine the strengths of both methods,
resulting in a more robust and efficient system. By integrating
these approaches, we aim to develop a system that capitalizes
on the best of both worlds.
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