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Abstract

In many real-world applications, deep neural networks (DNNs) often perform poorly on
datasets with long-tailed distributions. To address this issue, a promising approach is to
propose an optimization objective to transform real majority samples into synthetic minority
samples. However, this objective is designed only from the classification perspective. To this
end, we propose a novel framework that synthesizes minority samples from the majority by
considering both classification and distribution matching. Specifically, our method adjusts
the distribution of synthetic minority samples to closely align with that of the true minority
class, while enforcing the synthetic samples to learn more generalizable and discrimina-
tive features of the minority class. Experimental results on several standard benchmark
datasets demonstrate the effectiveness of our method in both long-tailed classification and
synthesizing high-quality synthetic minority samples.

1 Introduction

The success of deep learning for supervised learning relies on high-quality large-scale datasets, which are often
assumed to have nearly balanced numbers of samples for each class (Russakovsky et al., 2015). However,
real-world datasets usually suffer from a long-tailed problem, where a few majority classes occupy most
data while many minority classes have very few samples (Zhou et al., 2017; Liu et al., 2015). Deep neural
networks (DNNs) trained on long-tailed datasets have poor generalization performance, especially in minority
classes (Zhou et al., 2020; Liu et al., 2019). Therefore, it is of practical importance to develop methods for
mitigating the long-tailed problem.

To alleviate the imbalanced issue, several kinds of methods have been proposed in the past decade, in which
the data-level approach has received significant attention due to the simplicity and effectiveness (Yang et al.,
2022). This approach usually aims to achieve a balanced training data distribution via re-sampling (i.e.,
under-sampling (He & Garcia, 2009), over-sampling (Van Hulse et al., 2007; Gao et al., 2023)) or data
augmentation (Chu et al., 2020; Hong et al., 2022; Li et al., 2021; Ahn et al., 2023; Gao et al., 2024b). In
the context of re-sampling, one representative method is the Synthetic Minority Over-sampling Technique
(SMOTE) (Chawla et al., 2002), which synthesizes minority samples by interpolating between existing minor-
ity samples and their nearest neighbor samples. Recently, Kim et al. (2020) have revisited the over-sampling
framework and proposed a new way of to synthesize minority samples, called Major-to-minor (M2m). A
unique advantage of M2m over SMOTE-based methods is that M2m utilizes the majority samples to generate
minority samples via an optimization process, thus can “cook with much more raw materials”. In this way,
M2m is able to “transform” majority samples into minority samples to achieve a balanced dataset.

Despite its initial success, M2m only focuses on optimizing the synthetic minority samples from the classifi-
cation perspective, whose similarity with the real samples in the concerned minority class is overlooked. In
other words, a synthetic sample x̂ initialized from a majority class k0 is viewed as a sample of the minority
class k if a pre-trained classifier g identifies it as class k confidently, and a target classifier f has low confi-
dence about it on k0, ignoring whether the synthetic sample upholds the genuine characteristics (i.e., feature
distribution) of the class k.
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In this work, we propose a novel framework for synthesizing minority samples via distribution matching.
Our insight is that a desired synthetic minority sample should not only satisfy the classification constraints
about g(x̂) and f(x̂), but also be distributionally close to real samples in the target minority class. To satisfy
these, we introduce a principled approach that optimizes the synthetic minority samples by enforcing them
to satisfy the classification constraints and being close to the distribution of real samples, by minimizing the
optimal transport (OT) distance (Peyré et al., 2019). Moreover, to mitigate the harmfulness of unreliable
synthetic samples, we define a sample rejection criteria based on the distance between synthetic minority
samples and real minority samples.

In order to enhance the generality of our method, we introduce an additional regularization term concerning
the “confusing class” within the minority class, which accounts for instances where minority samples are
frequently misclassified into a specific class rather than other classes. In this way, we relax the label require-
ment of majority samples and as a result, our proposed method can translate not only In-Distribution (ID)
majority samples but also Out-of-Distribution (OOD) samples (Wei et al., 2022) into synthetic minority
samples, making ours more applicable in practice. Similar to M2m, our method can be used as a plug-in ap-
proach to enhance the performance of other methods, e.g., reweighting loss. Moreover, we conduct extensive
experiments on standard benchmark datasets and our methods achieves improved long-tailed classification
performance. In conclusion, our contributions are summarized as follows:

1. To address long-tailed classification problem, we propose a general framework for synthesizing mi-
nority samples via distribution matching, where we formulate real samples and synthetic ones as
two distributions.

2. We optimize synthetic minority samples by enforcing them to satisfy the classification constraints
and keep close to the real representation distribution by minimizing the OT distance.

3. By introducing a novel constraint on confusion classes and a general sample rejection criteria based
on feature distance, our framework can simultaneously optimize ID and OOD samples to achieve
effective over-sampling in minority classes.

4. Extensive experiments on standard benchmarks demonstrate the effectiveness of our method, show-
ing that is a promising over-sampling framework for long-tailed classification problem.

2 Preliminaries

Optimal transport. OT is a widely used measurement for comparing distributions (Peyré et al., 2019),
where we only focus on the discrete situation that is more related to our framework. Assuming we have
two sets of points (features), we can formulate the discrete distributions as P =

∑N
n=1 unδxn

and Q =∑M
m=1 vmδym , where δ is Dirac function and u ∈ ∆N and v ∈ ∆M are the discrete probability vectors that

sum to 1. The discrete OT distance between distribution P and Q can be formulated as:

min
T∈Π(P,Q)

⟨T,C⟩ =
N∑
n

M∑
m

TnmCnm, (1)

where C∈Rn×m
>0 is the cost matrix whose each point denotes the distance between xn and ym and transport

probability matrix T ∈ Rn×m
>0 satisfies Π(P,Q) :=

{
T|

∑N
n=1 Tnm = vm,

∑M
m=1 Tnm = un

}
. As directly

optimizing 1 is always time-expensive, Sinkhorn algorithm (Cuturi, 2013) introduces an entropic constraint,
i.e.,H(T)=−

∑
nm Tnm lnTnm for fast optimization.

Long-tailed classification. Assume a training dataset Dtrain = {(xi, yi)}Ni=1, where xi ∈ Rd denotes the
i-th input and yi means its corresponding label over K classes. Let N denote the number of the entire
training data and Nk is that of class k, where we assume N1 ≥ N2 ≥ ... ≥ NK without loss of generality.
Denote f : Rd → RK as the target classifier, which can be learned by empirical risk minimization (ERM)
over the training set with an appropriate loss function L(f):

min
f

E(x,y)∼Dtrain [L(f ;x, y)]. (2)
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Eq. 2 optimized f usually performs poorly on the minority classes.

3 Method

3.1 Motivation

To motivate our method, we first review the most related work in the line of over-sampling, called Major-
to-minor (M2m) (Kim et al., 2020). M2m aims to construct a new balanced dataset Dbal from the original
dataset Dtrain by generating N1 − Nk synthetic samples for each class k, where the concerned classifier f
trained on Dbal is expected to perform better than that trained on Dtrain. Note that N1 ≥ N2 ≥ ... ≥ NK .
Therefore, generating N1−Nk synthetic samples for each class k enables a balanced dataset. Here, synthetic
samples in minority classes are generated by translating from other samples in majority classes.

In addition to the to-be-learned classifier f trained on Dbal, M2m assumes a baseline classifier g pre-trained
on the imbalanced dataset Dtrain with standard ERM training, where f and g have the same structure.
Although g may not achieve the optimal performance, it is expected to achieve reasonable performance on
the imbalanced training dataset. To obtain a synthetic sample x̂ for a minority class k, M2m uses a training
sample x0 of a major class k0 in Dtrain, where k0 < k, and then optimizes x̂ based on the gradient ascent.

Although M2m can achieve promising results, it translates x̂ from x0 purely in the view of classification and
ignores the similarity between x̂ and the corresponding real samples in the concerned minority class k. In
this scenario, the synthetic sample might mislead the model and cause inaccurate predictions.

3.2 Learning Synthetic Minority Samples with Distribution Matching

To address the above issue, we aim to learn high-quality synthetic samples that not only satisfy the classifi-
cation constraints about g(x̂) and f(x̂) but also follow the distribution of real samples in the target minority
class k. Following M2m, we achieve the first goal by solving the optimization problem below:

arg min
x̂:=x0+ϵ

L(g(x̂), k) + λfk0(x̂), (3)

where x̂ is initialized with x0 + ϵ and ϵ is standard Gaussian noise. Next, we focus on the second goal.
Taking the k-th class in Dtrain as an example, we denote Dk = {(xn, yn)}Nk

n=1 as the set of real samples, and
D̂k = {(x̂m, ŷm)}Mk

m=1 as the to-be-learned synthetic set, where Mk = N1 − Nk is the number of synthetic
samples of class k. Then the empirical distributions of Dk and D̂k can be formulated as:

Pk =
Nk∑
n=1

1
Nk

δxn
, Qk =

Mk∑
m=1

1
Mk

δx̂m
. (4)

Note that label is omitted since ŷm = yn = k. Moving beyond Eq. 3, which only utilizes the classification
loss to learn minority synthetic samples, we further introduce a distribution matching loss to enforce the
to-be-learned distribution Qk to stay close to the real distribution Pk of class k. Let Dist(Pk, Qk) denote
the distance between the distributions Pk and Qk. Here we adopt the principled approach of OT to define
Dist(Pk, Qk), although other approaches are also available, such as Maximum Mean Discrepancy (MMD)
(Gretton et al., 2012) and Energy Distance (ED) (Rizzo & Székely, 2016). We defer the implementation of
Dist(Pk, Qk) with other measures such as Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) and
Energy Distance (ED) (Rizzo & Székely, 2016) to Appendix A.

Since the training images are highly dimensional, minimizing the distribution distance in the image space is
expensive and inaccurate. Therefore, we assume an embedding function ψθ : Rd → Rd′ parameterized with
θ and compute the distribution distance Distθ(Pk, Qk) in the feature space. Specifically, we define it using
the entropic OT:

Distθ(Pk, Qk) = min
T∈Π(Pk,Qk)

⟨T,C⟩ − γH(T), (5)
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where γ > 0 is a hyper-parameter for the entropy constraint H(T). The transport plan satisfies:

Π(Pk, Qk) :=
{

T|
Nk∑
n=1

Tnm = 1/Mk,

Mk∑
m=1

Tnm = 1/Nk

}
, (6)

and the cost function Cnm measures the distance between the real sample xn and synthetic sample x̂m. Cnm
can be viewed as a distance metric in the embedding space. Although theoretically it is possible to use any
reasonable distance metric, we use the cosine similarity, i.e., Cnm = 1 − cos(ψθ(xn), ψθ(x̂m)), which gives
the best performance in this work.

3.3 Embedding Function ψθ and Optimization Problem

In order to achieve efficient computation of distribution distance, the parameterization of an embedding
function ψθ is necessary and important. Commonly, we can employ the feature extractor in g or f as the
embedding function. However, g is a biased model and f is learned during each training iteration, whose
parameters may not be optimal for computing the Distθ(Pk, Qk). Motivated by Zhao & Bilen (2023) that
computes feature distance based on a family of models, we also match Pk and Qk in many sampled embedding
spaces. Specifically, when computing Distθ(Pk, Qk) each time, we randomly sample the initialized network
parameter, i.e., θ ∼ Pθ, where Pθ denotes the probability distribution of θ, then use θ to parameterize the
embedding function. Moreover, we experimentally validate that the family of randomly initialized embedding
spaces can produce better results than using one embedding space.

To summarize, we can minimize Eθ∼Pθ
[Distθ(Pk, Qk)] such that the synthetic samples are optimized to

match the original data distribution in various embedding spaces. The overall optimization objective is
formulated as:

arg min
{x̂m:=x0,m+ϵm}Mk

m=1

Mk∑
m=1

[L(g(x̂m), k) + λ1fk0(x̂m)] + λ2Eθ∼Pθ
[Distθ(Pk, Qk)] , (7)

where x0,m denotes the randomly sampled image from the major class k0 for x̂m and ϵm is the randomly
sampled Gaussian noise.

3.4 Leveraging Out-of-Distribution Data

Beyond translating majority samples in the ID setting (e.g., samples in Dtrain) to achieve efficient over-
sampling and data augmentation for minority classes, it is more practical and valuable by leveraging OOD
data to achieve the balance of a long-tailed dataset. Let Dood = {xi}No

i=1 denote the OOD dataset, where
xi ∈ Rd denotes i-th sample. We assume that the OOD dataset is unlabeled or the label information is
not useful due to the large distribution shift from the ID dataset Dtrain. Now we can initialize the minority
sample as x̂m := xood,m + ϵm, where xood,m is a randomly sampled image from Dood for x̂m.

Recall that M2m restricts the target classifier f to have lower confidence on the original class k0 of x0 by
adding a regularization term in Eq. 3. However, the introduction of the OOD dataset brings a challenge as
there is no corresponding k0 for each xood,m in Dood. Therefore, we replace the constraint of the synthetic
samples about k0 by introducing a confusing class kc. Specifically, we obtain the confusion matrix A ∈ RK×K

using a randomly sampled balanced subset from Dtrain and the pre-trained classifier g, whose element Aij
denotes the probability that a sample belongs to class i but is predicted as class j. Then, for the target
minority class k, kc is its most confusing class if Ak,kc

≥ Ak,i, where i ∈ [1,K] and i ̸= k. Finally, we design
the constraint on the confusing class for an optimized sample x̂m as fkc

(x̂m) and rewrite Eq. 7 as:

arg min
{x̂m:=xood,m+ϵm}Mk

m=1

Mk∑
m=1

[L(g(x̂m), k) + λ1fkc(x̂m)] + λ2Eθ∼Pθ
[Distθ(Pk, Qk)] , (8)

where fkc(x̂m) restricts f to have lower confidence on the confusing class kc. That is to say, we should avoid
the synthetic samples to contain significant information of the confusing class in the viewpoint of target
classifier f . In addition to addressing the issue of exploiting Dood, this regularization term can not only
address the issue of exploiting OOD but also be added to the training loss in the ID scenario.

4



Under review as submission to TMLR

Algorithm 1: Oversampling Minority Samples via Our Method (In-Distribution).
Input : Dtrain, classifier f , pre-trained classifier g and hyper-parameters.

1 Initialize Dbal ← Dtrain;
2 for k = 2, ..., K do
3 Compute Mk ← N1 −Nk;
4 Initialize D̂k ← ∅;
5 for m = 1, ..., Mk do // Step 1. Sample selection
6 Sample a majority class k0 with p = 1− β(Nk0 −Nk)+;
7 Sample a x0,m from k0 ;
8 Initialize x̂m ← x0,m + ϵm with a Gaussian noise ϵm.;
9 Update D̂k ← D̂k ∪ {(x̂m, k)};

10 end
11 Build Qk =

∑Mk

m=1
1

Mk
δx̂m and Pk =

∑Nk

n=1
1

Nk
δxn according to Eq. 4;

12 for t = 1, ..., T do // Step 2. Optimize x̂

13 Update D̂k by solving arg min
{x̂m:=x0,m+ϵm}Mk

m=1

∑Mk

m=1 [L(g(x̂m), k) + λ1fk0 (x̂m)] + λ2Eθ∼Pθ [Distθ(Pk, Qk)]

according to Eq. 7;
14 end
15 for x̂m in D̂k do // Step 3. Sample rejection for x̂
16 if L(g(x̂m), k) ≥ τ or Reject = 1 then
17 x̂m ← with a random sample from class k in Dtrain;
18 end
19 Update Dbal ← Dbal ∪ {(x̂m, k)};
20 end
21 end

3.5 Implementation Details

Mini-batch learning. We adopt the stochastic gradient descent (SGD) (Ruder, 2016) to learn the target
classifier f and optimize the synthetic samples based on a batch-wise re-sampling following M2m. More
specifically, we use a standard over-sampling (Huang et al., 2016) to obtain a class-balanced mini-batch
{(xi, yi)Bi=1}. To stimulate the generation of N1−Nk samples for any k, for each sample xi in the mini-batch,
we use probability N1−Nyi

N1
to decide whether learning a synthetic sample x̂i to replace xi.

Sample selection criteria for x0. We choose a seed sample x0 to learn x̂i for xi with class k. In an
OOD setting, we just randomly sample an image from Dood as x0. In ID setting, we first choose k0 with
the probability k0 ∼ 1 − β(N0−Nk)+ in the current mini-batch, where (·)+ := max(·, 0), and β ∈ [0, 1) is a
hyper-parameter. After that, x0 is sampled uniformly among samples in class k0. Once we choose the seed
sample x0 for the minority class k, we start to learn x̂. Rather than using all Nk samples within class k, we
randomly sample a subset of the real samples from class k to construct Pk in each iteration for saving cost
consumption. Besides, we use the to-be-optimized samples for class k in the current mini-batch to build Qk.
Finally, we optimize x̂ using Eq. 7 or Eq. 8 by performing T iterations with a step size of η, depending on
ID or OOD, respectively.

Sample rejection criteria for x̂. To reduce the harmfulness of unreliable synthetic samples, it is neces-
sary to design sample rejection criteria to discard unsatisfactory synthetic samples. Here, we consider two
conditions that can determine a reliable synthetic sample. Following M2m, the first one is setting a threshold
τ > 0 and rejecting the resultant synthetic sample for k-th class if L (g; x̂, k) > τ for stability. For the second
factor, M2m designs the rejection probability as P (Reject x̂ | k0, k) ∝ β(Nk0 −Nk)+

.

Different from M2m that utilizes the class frequency of k0 and target class k to decide the reliability of x̂,
we introduce a more general sample-level criteria to reject x̂ (i.e.,Reject x̂=1) if it satisfies:

1
Nk

Nk∑
n=1

d(ψθ(x̂), ψθ(xn)) >
1

Nk
2

Nk∑
n=1

Nk∑
m=1

d(ψθ(xn), ψθ(xm)), (9)
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Table 1: Test top-1 errors (%) of ResNet-32 on CIFAR-LT-10 / CIFAR-LT-100 under different imbalance
factors on the ID setting, where †, ‡ and * denote the results from the original paper, our reproduction and
MetaSAug (Li et al., 2021), respectively. Results of SMOTE are from Kim et al. (2020). The methods are
trained with CE loss unless otherwise stated.

Method CIFAR-LT-10 CIFAR-LT-100
Imbalance Factor 200 100 50 10 200 100 50 10
CE Loss* 34.13 29.86 25.06 13.82 65.30 61.54 55.98 44.27
Focal Loss* (Lin et al., 2017) 34.71 29.62 23.29 13.34 64.38 61.59 55.68 44.22
CB,CE Loss* (Cui et al., 2019) 31.23 27.32 21.87 13.10 64.44 61.23 55.21 42.43
LDAM-DRW* (Cao et al., 2019) 25.26 21.88 18.73 11.63 61.55 57.11 52.03 41.22
MetaSAug† (Li et al., 2021) 23.11 19.46 15.97 10.56 60.06 53.13 48.10 38.27
RSG‡ (Wang et al., 2021) - 20.04 17.2 - - 55.4 51.5 -
MBJ‡ (Liu et al., 2022) - 19.0 13.4 11.2 - 54.2 47.4 39.3
CB-SAFA† (Hong et al., 2022) 27.18 23.68 19.79 12.07 60.34 54.13 52.04 39.77
CUDA† (Ahn et al., 2023) - - - - - 57.3±0.4 52.8±0.4 40.4±0.6
CMO‡ (Park et al., 2022) 25.43 19.59 16.47 11.50 63.47 56.13 51.71 40.49
OTMix‡ (Gao et al., 2024b) - 21.7 16.6 9.8 - 53.6 49.3 38.4
M2m† (Kim et al., 2020) 25.34±0.46‡ 21.7±0.16 18.81±0.76‡ 12.5±0.15‡ 63.77±0.33‡ 57.1±0.16 50.48±0.43‡ 44.8±0.05‡
OURS 22.85±0.12 18.20±0.21 12.96±0.11 9.34±0.11 61.28±0.21 52.95±0.18 47.02±0.26 37.57±0.32

where d(ψθ(x̂), ψθ(xn)) indicates the distance between x̂ and xn and can be defined by cosine similarity,
i.e., 1 − cos(ψθ(x̂), ψθ(xn)). This rejection criterion can avoid the requirement for Nk0 , which can also be
applied to the OOD scenario. The underlying intuition is that the synthetic samples are expected to have
a smaller distance with real samples in class k than the intra-class distance. We replace xi in the current
mini-batch by x̂ if it satisfies the above two factors. We summarize the synthetic process for the ID setting
in Algorithm 1.

4 Experiments

In this section, we present experimental results to show the effectiveness of the proposed method. The
detailed experiment settings and hyper-parameters are provided in Appendix C.1.

Datasets. We evaluate our method on CIFAR-LT-10 / CIFAR-LT-100, ImageNet-LT and Places-LT. We
build CIFAR-LT-10 / CIFAR-LT-100 from the standard CIFAR-10/CIFAR-100 datasets (Krizhevsky et al.,
2009) with IF ∈ {50, 100, 200} (Kim et al., 2020; Kang et al., 2019; Li et al., 2021). ImageNet-LT is a subset
of the ImageNet-2012 dataset (Deng et al., 2009) with 1000 classes and IF = 1280/5 (Kim et al., 2020; Ren
et al., 2020). Places-LT is a subset from the Places-365 dataset (Zhou et al., 2017) with 365 classes and
IF = 4980/5 (Cao et al., 2019; Ren et al., 2020).

Baselines. We compare with five types of baselines: (1) Cross-entropy (CE). (2) Re-weighting loss,
including Focal loss (Lin et al., 2017), Class-Balanced (CB) loss (Cui et al., 2019), Balanced-Softmax (BS)
loss (Ren et al., 2020) and LDAM-DRW loss (Cao et al., 2019). (3) Feature based augmentation methods,
including MetaSAug (Li et al., 2021), SAFA (Hong et al., 2022), CUDA (Ahn et al., 2023), RSG (Wang et al.,
2021) and MBJ (Liu et al., 2022). (4) Minority over-sampling methods, including SMOTE (Chawla
et al., 2002), M2m (Kim et al., 2020) and CMO (Park et al., 2022). (5) OOD methods, i.e., Open-
Sampling (Wei et al., 2022).

4.1 Experiments on Long-tailed CIFAR

Results with the ID setting. Table 1 summarizes the average results of our method for three independent
runs with standard deviation on CIFAR-LT-10 / CIFAR-LT-100 under different settings. We find that our
method outperforms the CE baseline and re-weighting methods by a large margin. Moreover, our method
achieves a significant improvement than both feature- and sample- based data augmentation methods, except
for IF = 200 with CIFAR-LT-100 when compared with MetaSAug. Remarkably, the comparison between ours
and the minority sample synthetic method, i.e., M2m, confirms the validity of introducing the distribution
matching loss when transferring the majority samples to the minority classes. Besides, we use MMD and
ED to implement Distθ and report results on CIFAR-LT-10 and time complexity in Section ??.
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Table 2: Test top-1 errors (%) of ResNet-32
on CIFAR-LT-10 / CIFAR-LT-100 with different
imbalance factors on the OOD setting, where †
denotes the results from the original paper, OS
indicates Open-Sampling (Wei et al., 2022).

Method CIFAR-LT-10 CIFAR-LT-100
IF 100 50 100 50

OS† 22.38±0.28 18.24±0.51 59.74±0.65 55.23±0.25
OURS 20.03±0.17 16.39±0.22 55.09±0.23 49.38±0.27

Results with the OOD setting. To validate whether
our proposed method can translate OOD instances, we
employ 300,000 random images1 (Hendrycks et al., 2018)
as the OOD dataset Dood for CIFAR-LT-10 / CIFAR-
LT-100 by following Open-Sampling (Wei et al., 2022).
We report the performance in the case of IF = 100 and
IF = 50. We find that our method is significantly better
than Open-Sampling, which utilizes open-set noisy labels
to re-balance the long-tailed training dataset. It is rea-
sonable since we optimize the OOD samples from the view
of classification and distribution matching rather than en-
dowing them with noisy labels without re-labeling OOD samples. Besides, we perform experiments by com-
bining both OOD and ID settings, which produce a better performance than that in the ID setting. The
detailed results are provided in the supplementary materials.

Table 3: Test top-1 errors (%) of ResNet-32
on CIFAR-LT-10 dataset under both ID and
OOD settings when combined with different re-
weighting methods.

Method CIFAR-LT-10 (ID) CIFAR-LT-10 (OOD)
IF 200 100 50 200 100 50
CE 34.13 29.86 25.06 - - -

+ M2m 25.34 21.70 18.81 - - -
+ OS - - - 28.28 22.38 18.24

+ OURS 22.85 18.20 15.96 23.43 20.03 16.39
∆ ↓ 2.49 ↓ 3.50 ↓ 2.15 ↓ 4.85 ↓ 2.35 ↓ 1.85

CB-DRW 31.23 27.32 21.87 - - -
+ M2m 25.24 19.33 18.25 - - -
+ OS - - - 29.77 24.23 19.90

+ OURS 21.19 18.07 16.30 22.69 20.16 16.70
∆ ↓ 4.95 ↓ 1.26 ↓ 1.95 ↓ 7.08 ↓ 4.07 ↓ 3.20
BS - 21.97 18.37 - - -

+ M2m 25.16 23.43 19.96 - - -
+ OS - - - 28.59 20.95 17.24

+ OURS 20.98 16.13 14.22 23.08 19.81 17.06
∆ ↓ 4.18 ↓ 7.30 ↓ 5.74 ↓ 5.51 ↓ 1.14 ↓ 0.08

Boosting other methods. To investigate whether our
method can be combined with other long-tailed methods
under ID and OOD settings, we consider several clas-
sical re-weighting losses, including CB loss (Cui et al.,
2019) and BS loss (Ren et al., 2020). As shown in Tab. 3,
our method significantly improves the performance of re-
weighting methods under the ID setting and performs bet-
ter than M2m. Under the OOD setting, M2m is not us-
able, while the performance of Open-Sampling is worse
than our method combined with different re-weighting
losses. These results indicate the effectiveness and flexi-
bility of our method when combined with other methods
under both ID and OOD settings.

4.2 Experiments on ImageNet-LT and Places-LT

Results. As summarized in Tab. 4, we perform experi-
ments on ImageNet-LT and Places-LT. We can see that
our method using CE loss outperforms the vanilla CE,
over-sampling and M2m, which indicates the effectiveness
of generating the minority samples from the view of the distribution matching. Furthermore, our method
can also be combined with other losses, where we take the BS loss as an example and obtain improvements
by 1.69% and 0.93% compared with the BS loss on ImageNet-LT and Places-LT, respectively. These re-
sults show that our proposed data augmentation method is effective on large-scale complicated long-tailed
datasets.

Table 4: Test top-1 errors (%) of ResNet-50 on ImageNet-LT and ResNet-152 on Places-LT.

Method ImageNet-LT Places-LT Method ImageNet-LT Places-LT
CE 58.4 70.1 FSA - 63.6
Focal Loss - 65.4 MBJ - 61.9
LDAM-DRW 50.2 - CMO + RIDE 43.8 -
BS 49.0 61.3 OTMix+CE 48.0 -
RIDE (3 experts) 45.1 - OTMix+BS 44.4 -
BCL 44.0 - OTMix+RIDE 42.7 -
M2m + CE 55.40 63.27 OURS+CE 53.77 61.68
Over-Sampling + CE* 55.34 64.27 OURS+BS 47.31 60.37
RSG + LDAM-DRW - 60.7 OURS+RIDE 43.22 -
MisLAS 47.3 - OURS+BCL 41.89 -

1https://github.com/hendrycks/outlier-exposure.
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Figure 1: Ablation experiments of our method on CIFAR-LT-10 with IF=100.

4.3 Ablation Study

We conduct a series of ablation studies on CIFAR-LT-10. Specifically, we use L(k), L(k0), L(kc) and L(D)
to represent the L(g(x̂m), k), fk0(x̂m), fk0(x̂m) and Eθ∼Pθ

[Distθ(Pk, Qk)], respectively.

Distribution matching loss L(D). To verify the effect of our proposed distribution matching loss, we first
compare M2m with L(k)+L(k0) and our method with L(k)+L(k0)+L(D) in Fig. 1(a) under the ID setting. It
is clear that our method consistently outperforms M2m with different imbalance factors. The reason is that
using distribution matching loss ensures the distribution of the synthetic samples to be close the distribution
of the real samples. Thereby, our method can generate more effective synthetic samples. Besides, considering
M2m cannot use OOD samples due to the regularization term L(k0), we adopt L(k), L(k)+L(D) to learn
the minority samples, where the latter achieves better performance as shown in Fig. 1(b).

Regularization about the confusing class L(kc). Recall that M2m is only available in the ID setting
and our method is applicable to the OOD setting by introducing the L(kc), where kc is the confusing class of
minority class k. As shown in Fig. 1(b), our method with L(k)+L(D)+L(kc) can achieve better performance
than using L(k)+L(D), under the OOD setting with different imbalance factors. Besides, it is worth noting
that the constraint can also be applied to the ID setting. As shown in Fig. 1(a), our method obtains additional
performance improvements with the help of L(kc). The phenomenon illustrates that the regularization term
on the confusing class kc can make our method applicable to the OOD setting and perform better in the ID
setting. The reason is that high-quality synthetic minority samples can be generated by ensuring that these
samples have low confidence in the confusing class kc.

Sample rejection in the OOD setting. As specified in previous section, the unreliable generation quality
of synthetic samples urges us to propose the sample rejection criteria, especially in the OOD setting. To
validate our proposed rejection strategy Eq. 9, we perform an ablation study on the CIFAR-LT-10 with
IF = 10. Results in Fig. 1(c) present that using our proposed rejection strategy consistently improves the
performance when leveraging the OOD samples for CIFAR-LT-10 with different imbalance factors. That is
to say, our method can fully use OOD samples to generate minority samples while alleviating the toxicity of
the distribution shift brought about by OOD samples.

Table 5: Test top-1 errors (%) with different embed-
dings.

Feature Extractor CIFAR-LT-10(ID)
200 100 50

Model g 25.60 21.24 16.55
Model f 25.72 20.03 16.88

A randomly initialized encoder 25.32 19.78 16.57
CLIP (RN50) 23.32 18.94 16.21

The family of random encoders 22.85 18.20 15.96

Embedding spaces Eθ∼Pθ
[·]. We investigate the

effect of the embedding for computing the distribu-
tion matching loss described in Eq. 7. We use the
encoder in the to-be-learned model f and that in the
pre-trained model g as the baselines, where we also
discuss the performance of a randomly initialized
encoder and a CLIP vision encoder (Radford et al.,
2021). All encoders have the same architecture for
a fair comparison, except for CLIP. As summarized
in Tab. 5, the encoder in f serves as the worst em-
bedding function. The possible reason behind this
phenomenon is the coupling between the loss of distribution matching that optimizes synthetic minority
samples and the training loss of the to-be-learned classifier f in each training iteration. Besides, using the
encoder in the imperfect pre-trained g also achieves inferior results. It is reasonable since g is a biased
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model and cannot extract satisfactory features. Interestingly, we find that only using a randomly initialized
encoder during the entire training process can produce acceptable performance, proving the effectiveness of
the appropriate and unbiased embedding function for the loss of distribution matching. Moreover, randomly
initializing the embedding function at each training iteration outperforms other settings. It shows that the
family of embedding spaces can be obtained by sampling randomly initialized DNNs, and is effective in
computing the distance between real and synthetic samples. Moreover, we find that even the CLIP (Radford
et al., 2021) visual encoder can be used for our distribution matching purposes.

4.4 Detailed ablation study on sample selection and rejection criteria

As shown in the left part of Table 6, the model performs worst under the ID setting when using only the
k0 selection criteria and no rejection criteria, regardless of IF values equals to 50 or 100. However, the
introduction of L(p) as a quality metric for synthesized samples results in a marked improvement, with test
errors decreasing from 31.16% to 20.73% for IF = 100 and from 27.25% to 20.86% for IF = 50. This finding
underscores the efficacy of L(p) in discerning and selecting more reliable synthesized samples, leading to
improved model performance. Furthermore, the subsequent incorporation of L(d) contributes to an even
more pronounced decrease in test errors, underscoring its effectiveness in refining the selection of high-
quality synthetic samples. These conclusions are corroborated by the OOD setting, which demonstrates that
our proposed sample rejection criteria effectively identify high-quality, credible samples for model training,
thereby catalyzing performance gains across different distribution settings. Finally, when maintaining L(p)+
L(d) as rejection criteria and evaluating the influence of different sample selection criteria, we observe that
k0 ∼ 1 − β(N0, Nk)+ demonstrates superior performance, surpassing the alternative approach of randomly
selecting a seed sample for initialization.

Table 6: Test top-1 errors (%) on CIFAR-LT-10 with IF ∈ [100, 50] under the ID and OOD settings. For the
left part, We evaluate the influence of sample rejection criteria and sample selection criteria, where τ = 0.9
and β = 0.999. For the right part, we evaluate the influence of different τ and β. All the experiments are
conducted by using sample selection criteria and sample rejection criteria.

- Selection Rejection 100 50 - τ β 100 50
ID k0 - 31.16 27.25 ID 0.9 0.999 18.20 15.96
ID k0 L(p) 20.73 20.86 ID 0.6 0.999 18.69 16.33
ID k0 L(p) + L(d) 18.20 15.96 ID 0.3 0.999 19.12 16.82
ID Random L(p) + L(d) 20.07 16.32 ID 0.9 0.888 18.53 16.27

OOD Random L(p) 20.32 16.56 ID 0.9 0.777 18.97 16.59
OOD Random L(p) + L(d) 20.03 16.39 ID 0.9 0.666 18.77 16.30

As shown in the right part of Table 6, we evaluate the influence of different τ and β on the performance using
L(p) + L(d) as rejection criteria. A larger τ results in more low-quality synthetic samples being used to train
the network, consequently leading to suboptimal classification performance. β controls the probability of
selecting k0, thereby influencing the diversity of the initialization of synthetic samples. When the β is fixed
by 0.999, the model gives lower test errors with the increase of τ from 0.3 to 0.9. This observation aligns
with the theoretical analysis of the impact of τ , indicating that our proposed sample rejection method, both
theoretically and experimentally, effectively filters the quality of synthetic samples. For the selection of β,
we can observe that the larger β gives the best performance when τ is fixed by 0.9, which indicates that the
introduction of more diversity for the initialization will help the model generalize on the long-tailed dataset.

4.5 Combining OOD and ID.

Beyond leveraging the OOD samples to replace the majority samples in our framework, further, we explore
whether combining the OOD setting and ID setting can produce better performance. To this end, we
conduct experiments on CIFAR-LT-10 with IF ∈ {200, 100, 50} on ResNet-32. Specifically, we firstly optimize

9



Under review as submission to TMLR

Table 7: Test top-1 errors (%) of ResNet-32 on CIFAR-LT-10 under different imbalance factors, where †and
‡denote the results from the original paper and our reproduction, respectively. The methods are trained
with CE loss unless otherwise stated.

Distribution Method CIFAR-LT-10
Imbalance Factor 200 100 50

ID M2m 25.34‡ 21.7† 18.81†
OOD Open-Sampling 28.28‡ 22.38† 18.24†
OOD OURS 23.43 20.03 16.39

ID OURS 22.85 18.20 15.96
OOD to ID OURS 21.83↓ 1.02 17.96↓ 0.24 15.32↓ 0.64

synthetic samples and train the target classifier f using Dood. Then we save the best checkpoint and employ
an additional 20 epochs to further train f under the ID setting, where we initialize the minority samples
with majority samples, using the Alg. 1. In other words, we first use the OOD setting to train the target
classifier f and then further train f under ID setting.

As shown in Tab. 7, our method in ID and OOD settings outperform the M2m and Open-Sampling, respec-
tively. Furthermore, introducing the OOD dataset into the ID setting, our method further achieves 1.02%,
0.24% and 0.64% gains with IF ∈ {200, 100, 50}, respectively. These demonstrate that our framework in ID
or OOD setting can achieve better performance than corresponding baselines. Besides, the OOD samples
can be utilized to further improve the performance of our proposed method under the ID setting.

4.6 Visualizations

Visualization of synthetic samples in feature space. As shown in Fig. 2, we visualize synthetic
minority samples and real minority samples in CIFAR-LT-10 (IF = 100) using t-SNE (Van der Maaten &
Hinton, 2008) in feature space. We show classes 7, 8, 9, and 10 (descend ranked by the numbers of their
samples), each of which has 232, 139, 83, and 50 real samples. We randomly select 50 synthetic samples for
each class after using the sample rejection criteria. In terms of M2m, synthetic samples from each class are
difficult to capture the corresponding real distribution. Besides, synthetic samples from different classes are
seriously coupled together. As expected, our synthetic samples can effectively capture the real distribution
of each class. Therefore, it reveals why our method can generate more beneficial synthetic minority samples
than M2m.

M2m OURS

class_7 class_8 class_9 class_10 Real Synthetic

Figure 2: Visualization of the features of synthetic sam-
ples and real samples on CIFAR-LT-10 (IF = 100) with
ResNet-32. where ’o’ and the star indicate real and syn-
thetic samples in the same class, respectively.

Visualization of synthetic samples in pixel
space. We use M2m and ours to optimize a sample
x0 with k0 = car to k = deer on the same pre-trained
model g. Figure 3 shows that x0 is correctly classi-
fied as a car with a probability of 0.99 on g. Then,
after optimization, ours and M2m produce different
synthetic samples x̂ and corresponding noise, even
though the two x̂ are visually indistinguishable. At
this time, the probability of x̂ optimized by ours be-
ing classified as its original class k0 on g is 0.07, and
the probability of being classified to k is 0.91, while
the corresponding probabilities of M2m are 0.19 and
0.73. This shows that ours successfully pushes the
synthesized sample away from its original label k0
on g, and makes it closer to our target label k. At
the same time, ours also makes f believe that x̂ is a
sample from k with a higher probability (0.57, 0.32
larger than M2m) on the target classifier f , and its classification probability on k0 is significantly lower than
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Figure 3: An illustration of a synthetic minority sample by our method and M2m, where g is assumed to be
ResNet-32 trained by standard ERM. The noise image is amplified by 20 for better visibility.

the corresponding results of M2m by 0.30. This shows that the samples synthesized by our method are more
credible and realistic for f .

In fact, we do not optimize a majority sample x0 into a picture that is similar to a minority sample in the
pixel space, like a generator. Instead, we simply optimize the sample x0 directly to confuse our models g and
f , making the models believe that our synthetic samples x̂ are indeed from real minority class, which helps
the network to generalize on the minority class. Recall the visualization of feature space, which shows that
the feature distributions of our synthetic samples x̂ are closer to real samples x of class k. This indicates
that the features of our synthetic samples are more realistic and credible, where f regards the features of
the real samples and the synthetic samples are from the same distribution. On the other hand, Section C.6
shows that the probability of our synthetic samples being correctly classified as the target class k on the
target classifier f is significantly higher than that of M2m. From the classification perspective, our method
can produce better synthetic minority samples and reduce the difficulty of the model learning from synthetic
samples.

In summary, our starting point is to generate synthetic samples that are more realistic and credible for the
model. From the perspective of pixel space, our method and M2m have no obvious difference. However, from
the classification probability and feature matching perspectives, our synthetic samples are more realistic and
credible for the network and, therefore, more effective than M2m.

4.7 Comparison of different implements of Distθ(Pk, Qk)

To prove the generality and effectiveness of our method, we conduct experiments on CIFAR-LT-10 and
CIFAR-LT-100 with different imbalanced factors (IF) by using different implements of Distθ(Pk, Qk), where
the results of different methods are summarized in Tab. 8. We implement Distθ(Pk, Qk) using MMD, ED
and OT, denoted as ours+MMD, ours+ED and ours+OT, respectively. We report the average results of our
method for three runs with standard deviation independently. We can find that all of them have superior
performance compared to the M2m baseline by a large margin. Besides, we can observe that ours+OT
performs best, which might benefit to the more accurate characterization and measurement of the distance
between distributions brought by OT. In other words, OT learns an optimal transport plan which endows
each cost element with corresponding importance Tij . These results demonstrate the effectiveness and
generality of our proposed method.

4.8 Convergence and time complexity

To fairly compare training time-consuming, we conduct an experiment on CIFAR-LT-10 with IF = 100 on
ResNet-32 in the same device environment with one Tesla-V100 GPU. As shown in Fig.??, although our
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Table 8: Test top-1 errors (%) of ResNet-32 on CIFAR-LT-10 / CIFAR-LT-100 under different imbalance factors,
where †and ‡denote the results from the original paper and our reproduction, respectively. The methods are trained
with CE loss unless otherwise stated.

Method CIFAR-LT-10 CIFAR-LT-100
Imbalance Factor 200 100 50 200 100 50

M2m† 25.34±0.46‡ 21.7±0.16 18.81±0.76‡ 63.77±0.33‡ 57.1±0.16 50.48±0.43‡
OURS+MMD 23.01±0.37 18.91±0.29 16.42±0.15 62.28±0.27 53.84±0.15 47.25±0.17

OURS+ED 22.93±0.24 18.75±0.15 16.16±0.22 61.97±0.10 53.01±0.22 47.33±0.28
OURS+OT 22.85±0.12 18.20±0.21 15.96±0.11 61.28±0.21 52.95±0.18 47.02±0.26

method takes a little bit more time than M2m. However, no matter using OT, MMD or ED for Distθ(Pk, Qk),
our proposed method with ID and OOD samples can outperform M2m given the same training time of M2m.

4.9 Additional Analysis

We analyze the influence of different OOD datasets in Appendix C.5, classification confidence of synthetic
samples on the target classifier f in Appendix C.6, influence of the pre-trained model g in Appendix C.7,
and visualization of the confusion matrix in Appendix C.8.

5 Related Work

Over-sampling methods for long-tailed problem. Data-based methods aim to solve the imbalance
problem by building relatively balanced classes from the perspective of data, including under-sampling
majority samples (He & Garcia, 2009; Drummond & Holte, 2003), over-sampling minority samples (Shen
et al., 2016; Buda et al., 2018; Barandela et al., 2004) and data augmentation (Ahn et al., 2023; Park et al.,
2022; Yan et al., 2019; Kim et al., 2020; Gao et al., 2023; 2024a; Li et al., 2025; Guo et al., 2022b). Our
method has a close connection with minority over-sampling methods. A related work is Optimal transport
over-sampling (OTOS) (Yan et al., 2019), which maps the noise to synthetic ones based on the Wasserstein
barycenter. Different from OTOS which generates samples by a mapping matrix and is limited to a binary
classification, we provide a more general and direct optimization objective for generating synthetic samples.
By minimizing this objective, we can obtain synthetic samples with reliable classification confidence and high
representation similarity, where we can handle multi-class classification task and leverage more practical OOD
setting. Another related work, M2m (Kim et al., 2020), translates majority samples to the target minority
class by maximizing the prediction probability. However, in our work, we optimize synthetic minority samples
from both perspectives of classification confidence and distribution matching, where we extend the ID to
OOD setting for further versatility.

Utilizing auxiliary dataset for long-tailed problem. In imbalanced learning, Yang & Xu (2020)
leverage unlabeled ID data as additional samples to compensate for the minority classes, while Su et al.
(2021) adopts a semi-supervised learning framework to incorporate out-of-class samples from related classes.
Open-Sampling (Wei et al., 2022) explores the benefit of using OOD data in the long-tailed problem. The
major difference between ours and Open-Sampling is that we translate OOD samples by introducing an
optimization phase and introducing a sample rejection strategy but Open-Sampling assigns a noisy label to
each OOD sample using a pre-defined label distribution without filtering the OOD data.

6 Conclusion

To address the long-tailed classification issue, we propose a novel framework for translating majority sam-
ples into synthetic minority samples by leveraging classification confidence and distribution matching. Our
method optimizes the synthetic minority samples by enforcing them to satisfy the classification constraints
and being close to the distribution of real samples in the target minority class. In addition, we introduce
an effective regularization term for confusing classes, enabling our framework to better utilize available and
rich OOD data to synthesize minority classes. Extensive experiments on benchmark datasets demonstrate
that our framework can generate effective minority samples and achieve the desired long-tailed classification
performance.
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Appendix For
Synthesizing Minority Samples for Long-tailed

Classification via Distribution Matching

A Alternatives for Distθ(Pk, Qk)

A.1 Maximum Mean Discrepancy (MMD)

Preliminaries. MMD is an effective non-parametric metric for comparing the distributions based on two
sets of data (Gretton et al., 2012), where the general MMD between two distributions P and Q is defined as

MMD2(P,Q) = sup
∥ϕ∥H≤1

∥Ex∼P [ϕ (x)]− Ey∼Q [ϕ (y)]∥2
H , (10)

where Ex∼P [·] denotes the expectation with regard to the distribution P , ϕ is the embedding function, and
∥ϕ∥H ≤ 1 defines a set of functions in the unit ball of a reproducing kernel Hilbert space (RKHS) H.

Define Distθ(Pk, Qk) with MMD. As we do not have access to ground-truth data distributions for syn-
thetic and real samples shown in Eq. 10, we can use a biased empirical estimate of the MMD by replacing
the population expectations with empirical expectations (Gretton et al., 2012), which are computed on the
synthetic and real samples in Pk and Qk and denoted as

Distθ(Pk, Qk) =
∥∥∥∥∥ 1
Nk

Nk∑
n=1

ψθ (xn)− 1
Mk

Mk∑
m=1

ψθ (x̂m)
∥∥∥∥∥

2

(11)

A.2 Energy Distance (ED)

Preliminaries. Drawing inspiration from the concept of potential energy between objects in a gravita-
tional field, Energy Distance (ED) (Rizzo & Székely, 2016) measures the similarity between two probability
distributions, P and Q. This can be mathematically expressed as follows:

ED2(P,Q) = 2Ex∼P,y∼Q||ϕ(x)− ϕ(y)||
− Ex∼P ||ϕ(x)− ϕ(x′)||
− Ey∼Q||ϕ(y)− ϕ(y′)||,

(12)

where Ex∼P [·] denotes the expectation with respect to the distribution P and || · || denotes the Euclidean
norm (length) of its argument. In addition, x′ and y′ are independent copies of x and y, respectively.

Define Distθ(Pk, Qk) with ED. Here, we can define Distθ(Pk, Qk) based on the energy distance (ED) as
follows:

Distθ(Pk, Qk) = 2
NkMk

Nk∑
n=1

Mk∑
m=1
||ψθ(xn)− ψθ(x̂m)||2

− 1
Nk

2

Nk∑
n,m=1

||ψθ(xn)− ψθ(xm)||2

− 1
Mk

2

Mk∑
n,m=1

||ψθ(x̂n)− ψθ(x̂m)||2

(13)
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Algorithm 2: Oversampling minority samples via our framework (Out-of-Distribution).

Input : Dataset Dtrain and Dood, classifier f and pre-trained classifier g, a confusion matrix A,
hyper-parameters:{λ1, λ2, γ, η, T , τ , β}

Output: A class-balanced dataset Dbal
1 Initialize Dbal ← Dtrain;
2 Randomly sample a balanced subset from Dtrain and obtain confusion matrix A by evaluate the

pre-trained model g using this subset;
3 for k = 2, ...,K do
4 Compute Mk ← N1 −Nk; Initialize D̂k ← ∅;
5 for m = 1, ...,Mk do // Step 1. Sample selection for x0
6 Sample a x0 from Dood randomly;
7 Initialize x̂m ← x0,m + ϵm with a standard Gaussian noise ϵm, then update D̂k ← D̂k ∪ {(x̂m, k)};
8 end
9 Use D̂k to build Qk and real training samples Dk in Dtrain to build Pk ;

10 Obtain kc if Ak,kc ≥ Ak,i where i ∈ [1,K] and i ̸= k ;
11 for t = 1, ..., T do // Step 2. Optimization for x̂

12 Update D̂k by minimizing
∑Mk

m=1 [L(g(x̂m), k) + λ1 · fkc
(x̂m)] + λ2 ·Distθ(Pk, Qk), where θ ∼ Pθ;

13 end
14 for x̂m in D̂k do // Step 3. Sample rejection for x̂
15 if L(g(x̂m), k) ≥ τ or Reject = 1 then
16 x̂m ← with a random sample from class k in Dtrain;
17 end
18 Update Dbal ← Dbal ∪ {(x̂m, k)};
19 end
20 end

B Algorithms of our framework

In this section, we give the algorithm processes 2 of our method under OOD settings as shown in Alg. 2.

C More details about datasets and experiments

C.1 Settings and Training details

Unless otherwise stated, we set the imbalance factor as IF = N1/NK and use T = 5 iterations with a step
size of η=0.1 to optimize the synthetic samples at each training iteration. The hyper-parameter for the OT
entropy constraint is γ=0.1 and the maximum iteration number in the Sinkhorn algorithm is 200. We use
SGD with momentum 0.9 and weight decay 5e−4 and conduct all the experiments on 8 Tesla-V100 GPUs.

C.2 CIFAR-10 and CIFAR-100 datasets

CIFAR-LT-10 / CIFAR-LT-100. The original CIFAR-10/CIFAR-100 datasets (Krizhevsky et al., 2009)
include 60,000 images and 10/100 classes with a size of 32× 32, where there are 50,000 images for training
and 10,000 for testing. By following (Kim et al., 2020), we create CIFAR-LT-10 and CIFAR-LT-100 by
randomly under-sampling in the original datasets with IF = {200, 100, 50}. We use the original test dataset
to evaluate our method. Training details. Following (Kim et al., 2020; Li et al., 2021; Guo et al., 2022a),
we use ResNet-32 (He et al., 2016) as the backbone. We employ 200 epochs for training f with an initial
learning rate α of 0.1, which is decayed by 1e−2 at 160-th epoch and 180-th epoch. We set batch size as 32
and start our method at 160-th epoch, where we set λ1 and λ2 as 0.5, β as 0.999 and τ as 0.9.
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C.3 ImageNet-LT and Places-LT

ImageNet-LT. The original ImageNet-2012 dataset (Deng et al., 2009) includes 1,281,167 images and 1000
classes with a max size of 1300 × 732. By following (Kim et al., 2020; Li et al., 2021; Liu et al., 2019), we
create ImageNet-LT with 115.8K samples in 1000 classes and IF = 1280/5. We adopt the original validation
dataset to test our method.

Places-LT The original Places-365 dataset(Zhou et al., 2017) includes 1,803,460 images and 365 classes
with a max size of 5000× 3068. By following (Liu et al., 2019), we create Places-LT with 62.5K samples in
1000 classes and the imbalance factor IF = 4980/5. We adopt the original test dataset to test our method.
Training details. Following previous works (Kim et al., 2020; Li et al., 2021; Kang et al., 2019), we use
ResNet-50 as the backbone for ImageNet-LT. We employ 200 epochs for training f with an initial learning
rate α as 0.1, which will be decayed by 1e−1 at the 160-th epoch and 180-th epoch. For Places-LT, we
employ ResNet-152 pre-trained on the full ImageNet dataset (Russakovsky et al., 2015) as the backbone
following (Guo et al., 2022a; Li et al., 2021). We set 200 epochs for training f with an initial learning rate α
as 0.1, decayed by 1e−1 every 40 epochs. We start our method at 160-th epoch for ImageNet-LT and 90-th
for Places-LT. We set λ1 and λ2 as 0.5, β as 0.999 and τ as 0.3. For all experiments, we initialize batch size
as 64 and set it as 32 after deploying our method for training stability.

C.4 Training details about pre-trained model g

CIFAR-LT-10 / CIFAR-LT-100. For CIFAR-LT-10 / CIFAR-LT-100, we use ResNet-32 (He et al., 2016)
as backbone network for pre-training. We employ 200 epochs for training g with an initial learning rate α
of 0.1, which will be decayed by 1e−2 at 160th epoch and 180th epoch. We use SGD with momentum 0.9
and weight decay 5e−4 and set batch size as 128. In the first 160 epochs, we use the original imbalanced
dataset to train the model g. For the last 40 epochs, we use the vanilla over-sample technique by inverse
class frequency to further train the model g. We save the best checkpoint as our pre-trained model g.

ImageNet-LT & Places-LT For ImageNet-LT, we use ResNet-50 (He et al., 2016) as backbone network
for pre-training. We employ 200 epochs for training g with an initial learning rate α of 0.1, which will be
decayed by 1e−2 at 160th epoch and 180th epoch. For Places-LT, we employ ResNet-152 pre-trained on
the full ImageNet dataset. We use 120 epochs for training g with an initial learning rate α as 0.1, which is
decayed by 1e−1 every 10 epochs. For both datasets, we use SGD with momentum 0.9 and weight decay
5e−4 and set batch size as 512. Similar to CIFAR-LT-10 / CIFAR-LT-100, before the 160− th and 90− th
epoch on ImageNet-LT and Places-LT, we use the original imbalanced dataset to train model g. For the last
epochs, we adopt the vanilla over-sample technique by inverse class frequency (Drummond & Holte, 2003)
to further train g. We save the best checkpoint as our pre-trained model g.

C.5 Different choice of OOD dataset

We further examine the impact of domain gap on Out-of-Distribution (OOD) scenarios, using medical
images and pure noise as synthetic sample initializations. We use OrganAMNIST (Bilic et al., 2023) as the
OOD dataset for CIFAR-LT-10. Results show that medical images outperformed the vanilla cross-entropy
baseline, confirming our method’s effectiveness. However, they underperform than the pure noise, likely
due to the large domain gap between medical images and CIFAR-LT-10. Both are inferior to random
images, indicating that the final performance is influenced by the domain gap between the OOD and target
datasets. We find natural images, which are not only closer to our target dataset but also more accessible
than medical images, to be a more effective choice. When we use natural images as the initialization, we
achieve significant performance improvements, demonstrating that a suitable choice of OOD dataset can
enhance performance. In our case, the downstream task in the long-tailed recognition benchmark usually
is natural image classification, making it beneficial to use an OOD dataset similar to natural images. We
believe that natural images from the OOD dataset, beyond initialization, share similar textures, styles, and
color information, aiding the model’s generalization ability by furnishing minority classes with their lacked
information.
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Table 9: Test top-1 errors (%) of ResNet-32 on CIFAR-LT-10 with IF ∈ [200, 100, 50] and different OOD
datasets. Distribution means the initialization of to-be-learned synthetic samples x̂, e.g., OOD denotes we
initialize x̂ with OOD samples. Domain indicates the corresponding domain of OOD dataset.

Distribution Domain 200 100 50
- CE-Baseline 34.13 29.86 25.06

OOD Pure Noise 23.93 20.40 16.75
OOD Medical 23.95 20.95 17.17
OOD Natural 23.43 20.03 16.39

C.6 Classification confidence of synthetic sample on target classifier f .

To prove the effectiveness of our method in enhancing the generation of high-quality synthetic samples, we
compare the classification performance of the synthetic samples on the target classifier f for CIFAR-LT-10
(ID) with IF = 100 on ResNet-32. Specifically, we use the target classifier to output the probability of the
synthetic samples in class k being correctly predicted as the k class, where we consider k ∈ {2, · · · , 10}. Then
we compute the average probability for all samples and express it as a percentage. Compared to M2m, Fig.
4 illustrates that the synthetic samples generated by our method (based on OT) have higher classification
confidence for the corresponding concerned class during the training of target classifier f , in both ID and
OOD settings. This finding suggests that the our synthetic samples can be predicted correctly. To prove
our effectiveness in enhancing the generation of high-quality synthetic samples, we compare the classification
performance of the synthetic samples on the target classifier f for CIFAR-LT-10 (ID) with IF = 100 on
ResNet-32. Specifically, we use the target classifier to output the probability of the synthetic samples in
class k being correctly predicted as the k class, where we consider k ∈ {2, · · · , 10}. Then we compute the
average probability for all samples and express it as a percentage. Compared to M2m, Fig. 4 illustrates that
the synthetic samples generated by our method (based on OT) have higher classification confidence for the
corresponding concerned class during the training of target classifier f , in both ID and OOD settings. This
finding suggests that the generated samples by ours are more credible.
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Figure 4: Probability of synthetic samples that are correctly classified as the concerned class k on target classifier f .
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C.7 Influence of pre-trained model g

In this section, we investigate whether the effectiveness of the proposed method is affected by the performance
of pre-trained g. We can see that the better the performance of the pre-trained classifier, the better the
final classification result of ours in general. Although the pre-trained classifier in the 100th epoch and
the best-performed classifier have different classification performance, they have similar impact on the final
classification result. Besides, the ensemble of three best-performed classifiers achieves better performance
than only using one best-performed classifier. In our work, we perform the experiments only using one best-
performed classifier. It demonstrates that the final classification results will increase if we use the ensemble
of the pre-trained classifiers to optimize the synthetic samples.

Table 10: Test top-1 errors (%) on CIFAR-LT-10 with IF = 100 under the in-distribution setting. Pre-trained
performance indicates the overall performance on the g and Final performance is the corresponding final
classification result.

g Pre-trained performance Final performance
1-th epoch 66.51 21.16
3-th epoch 59.75 20.23
10-th epoch 44.26 20.17
20-th epoch 41.71 19.07
100-th epoch 30.95 18.33
Best epoch 28.17 18.37
Ensemble 28.77, 30.23, 29.01 18.01

C.8 Visualization of confusion matrix

To demonstrate the effectiveness of our method in improving the performance of minority classes, we visualize
the confusion matrices of CE, M2m and OURS on CIFAR-LT-10 with IF=200. As shown in Fig.5, CE has
poor classification performance in minority classes. Therefore, it is necessary to solve the long-tailed problem.
Although M2m mitigates the problem, it still performs poorly on the rarest classes. Our proposed method
achieves better performance than CE and M2m. In particular, ours is superior to strong baseline M2m for
almost every class, thereby alleviating the imbalanced classification problem.
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Figure 5: Confusion matrices of the CE, M2m and OURS on CIFAR-LT-10 with the imbalance factor 200.
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