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Abstract

Recent advances in neural decoding have enabled the reconstruction of visual
experiences from brain activity, positioning fMRI-to-image reconstruction as a
promising bridge between neuroscience and computer vision. However, current
methods predominantly rely on subject-specific models or require subject-specific
fine-tuning, limiting their scalability and real-world applicability. In this work, we
introduce ZEBRA, the first zero-shot brain visual decoding framework that elimi-
nates the need for subject-specific adaptation. ZEBRA is built on the key insight that
fMRI representations can be decomposed into subject-related and semantic-related
components. By leveraging adversarial training, our method explicitly disentangles
these components to isolate subject-invariant, semantic-specific representations.
This disentanglement allows ZEBRA to generalize to unseen subjects without any
additional fMRI data or retraining. Extensive experiments show that ZEBRA sig-
nificantly outperforms zero-shot baselines and achieves performance comparable
to fully finetuned models on several metrics. Our work represents a scalable and
practical step toward universal neural decoding. Code and model weights are
available at: https://github.com/xmed-lab/ZEBRA.

1 Introduction

The compelling connection between neural decoding and visual understanding has positioned fMRI-
to-image reconstruction [1, 2, 3, 4, 5, 6, 7] at the forefront of computational neuroscience and
computer vision. As a non-invasive method for observing activity in the brain’s visual cortex, fMRI
signals offer the intriguing possibility of reverse-engineering human perception—translating blood-
oxygen-level-dependent (BOLD) responses into detailed visual reconstructions of what a person sees.
This ability, often described as a "brain camera," marks a major shift, with potential applications in
mental state interpretation [8] and advanced brain-computer interfaces [9, 10].

Despite remarkable progress in reconstructing images from individual brain data, the field faces a
critical challenge: current models struggle to generalize across individuals. This limitation risks
confining such breakthroughs to research labs rather than enabling real-world applications. Recent
efforts [4, 6] have attempted to address this issue by developing cross-subject reconstruction through
a two-step approach: first, pretraining a unified model on multi-subject data, followed by subject-
specific finetuning, as illustrated in Fig. 1a. However, subject-specific finetuning imposes significant
barriers to practical clinical use due to several limitations: (1) Clinicians and neuroscientists must
still depend on AI experts to fine-tune models for each new patient. (2) The fine-tuning process is
time-intensive, often taking around a day, which hampers real-time applications in brain-computer
interfaces [9, 10] and neurorehabilitation [11]. (3) There is no universal feature space capable of
learning neural representations across human subjects, restricting broader exploration in cognitive
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Figure 1: (a) Previous methods [4, 5, 6] typically involve two training stages: (1) pretraining a brain
model with multiple subjects, and (2) fine-tuning the model for a specific subject. In this approach,
the test subject is known to the model, which limits its zero-shot capability for new subjects. (b)
In contrast, ZEBRA eliminates the fine-tuning stage, requiring training only once with the training
subjects. This allows it to perform zero-shot inference on unseen subjects, achieving comparable
performance to the fine-tuned approaches.

functions and variability. Thus, while developing zero-shot cross-subject generalization methods
for brain visual decoding is critical, this area remains largely unexplored.

A straightforward approach would be to evaluate the previous state-of-the-art method, MindTuner [6],
in a zero-shot setting and attempt to improve upon it. However, this is infeasible due to its subject-
specific design, which is tailored to certain information content of representations across subjects.
As a result, it fails when tested on a new subject whose representation carries a different amount
of information. NeuroPictor [5] offers valuable insights by transforming fMRI data from different
subjects into uniformly shaped 2D representations with spatial information preserved, facilitating the
learning of a shared latent space. Nonetheless, its zero-shot performance remains limited since it is
sensitive to subject noise, as shown in Fig. 6, and thus fails to learn invariant representations across
subjects. Motivated by these observations, one may consider combining NeuroPictor’s powerful
unified brain encoding with the powerful decoding of MindTuner. Yet, even this possibly strongest
baseline fails to achieve satisfactory results, as evidenced by the “Our baseline” and “NeuroPictorω”
rows in Table 1.
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Figure 2: Core idea of ZEBRA. Fs is used as
diffusion prior guidance.

To pave the way for zero-shot brain visual decoding,
build on this baseline, we propose ZEBRA—the first
zero-shot brain visual decoding framework—that
enables direct generalization to unseen subjects with-
out requiring additional fMRI data or model retrain-
ing (Fig. 1b). As illustrated in Fig. 2, the core idea
of ZEBRA is to disentangle fMRI-derived features
into four complementary components, with a focus
on learning subject-invariant and semantic-specific

representations. This design is motivated by neuro-
scientific evidence that, despite inter-individual vari-
ability in brain activity, the human cortex encodes
semantic information in a consistent and topograph-
ically organized manner across subjects [12, 13, 14].
For a reconstruction framework to generalize effec-
tively across individuals, it should preserve subject-
invariant (universal brain representations) and semantic-specific (class-discriminative) components,
while suppressing subject-specific [15, 16] and semantically irrelevant variations. To this end, ZEBRA
first extracts subject-invariant features by removing subject-specific noise via residual decomposition
and adversarial training. In parallel, semantic-specific features are projected into a shared visual-
semantic space and aligned with CLIP embeddings, ensuring semantic-level discriminability while
remaining agnostic to subject identity. This disentanglement strategy enables robust cross-subject
generalization and facilitates scalable fMRI-to-image decoding.
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Extensive experiments validate the effectiveness of ZEBRA, particularly on low-level perceptual
and pixel-wise metrics. ZEBRA achieves a substantial improvement in PixCorr, with a gain of
+0.084 (0.153 vs. 0.069 of NeuroPictor), and an average improvement of +6.4 percentage points
(81.8% vs. 75.4%) on Alex (5). More importantly, ZEBRA shows performance that is comparable to
fully-finetuned methods in several metrics. For instance, it achieves an SSIM of 0.384, close to 0.375
of NeuroPictor (fully finetuned), despite not using any test subject data. Qualitative results further
confirm that the visual reconstructions generated by ZEBRA are competitive with those produced by
fully finetuned subject-specific models.

Our contributions can be summarized as follows: (1) We propose ZEBRA, the first zero-shot brain
visual decoding framework that generalizes to unseen subjects without requiring additional fMRI data
or finetuning; (2) We introduce a novel disentanglement strategy combining adversarial training and
residual decomposition to learn subject-invariant and semantic-specific representations from fMRI
signals; (3) We demonstrate that ZEBRA achieves competitive performance compared to few-shot and
fully fine-tuned subject-specific methods across multiple quantitative and qualitative benchmarks.

2 Related Works

2.1 fMRI-to-Image Reconstruction

In recent years, with the rapid advancement and widespread adoption of functional magnetic resonance
imaging (fMRI), researchers have increasingly recognized the critical value of fMRI signals for
neuroscience research. Leveraging advanced technological tools, several datasets linking fMRI signals
to images have emerged [17, 18, 19], with the Natural Scenes Dataset (NSD) being an exemplary
instance [17]. Utilizing these datasets, the task of fMRI-to-image reconstruction has undergone
significant development. Early research predominantly employed neural networks such as Variational
Autoencoders (VAEs) and Generative Adversarial Networks (GANs) for reconstructing images
from fMRI signals [20, 21, 22, 23]. However, these studies were either restricted to reconstructing
simplistic digit images or lacked the capability to effectively represent both high-level and low-
level semantic details clearly. The advent of diffusion models marked a transformative milestone,
catalyzing numerous novel studies [4, 6, 24, 25, 26, 27, 5, 28]. Diffusion-based methods excel
in capturing complex, high-dimensional semantic information. To effectively represent low-level
spatial details, some approaches have incorporated blurry images as control inputs [4, 6], while
others have utilized contours or masks [25, 28]. Moreover, certain studies have further refined
high-dimensional semantic content by leveraging captions or labels [4, 6, 26]. By integrating both
high-level semantic guidance and low-level spatial control, many recent approaches have produced
intuitive and compelling reconstruction outcomes.

2.2 Cross-Subject fMRI-to-Image Reconstruction

In the medical domain, fMRI signals exhibit substantial variability across individuals due to differ-
ences in anatomical and physiological structures. Given the challenges associated with acquiring
fMRI data, research focusing on cross-subject adaptation is profoundly significant. Central to cross-
subject studies is the alignment of fMRI signals across different subjects. While anatomical alignment
provides a foundational step, numerous studies emphasize the greater importance of functional
alignment [29, 30] Numerous studies tried to address this issue [31, 32, 33, 34, 35, 36, 3]. Initial
approaches typically trained separate models for each subject, resulting in poor generalizability and
substantial data dependency issues [3]. Subsequent methodologies, such as MindBridge [31] and
MindEye2 [4], sought to develop subject-agnostic networks by constructing shared latent space.
However, these models often require extensive fine-tuning when encountering new subjects. While
MindTuner [6] partially mitigates this requirement, it does not fundamentally resolve the persistent
reliance on subject-specific data in cross-subject fMRI research.

3 Method

As illustrated in Fig. 3, based on a baseline with a ViT-based brain encoding backbone and a unCLIP
generative model §3.1, ZEBRA improves this with two main components: (1) a Subject-Invariant
Feature Extraction module that maps brain visual representations to shared latent space by exploring
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Figure 3: ZEBRA consists of two key components: (1) Subject-Invariant Feature Extraction,
which disentangles subject-invariant representations from brain activity using adversarial learning
and residual decomposition (§3.2); and (2) Semantic-Specific Feature Extraction, which aligns
semantic information in brain features with vision-language embeddings via supervised learning
and gradient reversal (§3.3). During inference, only the invariant projection path is used, enabling
zero-shot generalization to unseen subjects.

subject-invariant features (§3.2), and (2) a Semantic-Specific Feature Extraction module that injects
semantic features into the shared latent space. (§3.3).

3.1 Baseline Framework

Our baseline framework primarily consists of a ViT-based fMRI encoder (fMRI-PTE [35], pretrained
on the UK Biobank dataset [37]) that maps fMRI data from different subjects into a shared latent
space, and a diffusion prior network that converts the latent brain embeddings into vision features
for image generation using Stable Diffusion. Given an fMRI scan and its corresponding visual
stimulus y, we first transform the fMRI data into a unified 2D brain activation map [35], resulting in
a single-channel image x → R256↑256. The fMRI encoder then converts this 2D surface map into
a latent representation E → RB↑L↑C1 , where B is the batch size, L is the number of tokens, and
C1 is the brain feature dimension. Then the latent representation E is converted to embeddings in
CLIP space F → RB↑L↑C2 as guidance for reconstruction. Following MindEye2 [4], we utilize a
diffusion prior [38] to transform the fMRI-CLIP embedding F into a reconstructed OpenCLIP vision
embedding Fy of the corresponding visual stimulus. Similar to DALL·E 2 [38], the diffusion prior is
trained to minimize the mean squared error (MSE) between predicted and target embeddings:

Lprior = EFy,F ε↓N (0,1) ↑ω(F )↓ Fy↑2 . (1)

The training of the baseline model involves three losses: (1) a contrastive loss LCLIPt between the
predicted CLIP text embedding F t and the ground truth F t

y ; (2) a contrastive loss LCLIPv between
the predicted CLIP vision embedding F → RB↑N↑C and the ground truth F v

y ; and (3) the diffusion
prior loss Lprior. Both LCLIPt and LCLIPy adopt the BiMixCo loss, which aligns video frames
and corresponding fMRI signals using a bidirectional contrastive objective and MixCo-based data
augmentation, detailed in the Supplementary.
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3.2 Subject-Invariant Feature Extraction

Residual Decomposition & Adversarial Training. fMRI signals are highly idiosyncratic across
individuals, making direct modeling challenging. To enable generalization, it is essential to filter
out subject-specific noise and retain only invariant, stimulus-relevant components. The goal of
Subject-Invariant Feature Extraction (SIFE) is to disentangle general brain representations into
two components: subject-invariant features and subject-specific features. This disentanglement is
achieved via residual decomposition, where we employ self-attention blocks Fi(·) as the invariant
feature extractor to derive subject-invariant features: Ei = Fi(E). The choice of self-attention
is not essential to enforcing invariance—which is primarily driven by the gradient reversal layer
(GRL) and the associated adversarial losses—but serves to maintain architectural consistency with the
brain encoder based on ViT. Subsequently, the subject-specific features are obtained as the residual
difference: Es = E ↓ Ei. This residual decomposition ensures that the extracted Ei captures
components common across subjects, while Es accounts for individual variability. The decomposition
is further regularized by adversarial and supervised objectives to enforce disentanglement constraints
and semantic consistency. To ensure that Ei is truly invariant to subject identity, we apply an
adversarial training strategy [39]. Specifically, a subject discriminator Ddis is trained to maximize its
ability to predict the subject label from Ei, while the invariant extractor Fi aims to produce features
that prevent Ddis from correctly identifying the subject. This adversarial objective is formulated as
the following min-max game:

min
ϑE ,ϑF

max
ϑDdis

{
LE
dis := ↓Ex,s↓X ,S [s logDdis(E(Fi(E))]

}
, (2)

where s denotes the subject label. To guide the learning of subject-specific features Es, we introduce
a subject classifier Dcls, which is trained to predict the subject identity from Es. Its parameters εDcls

are optimized via the following classification loss:

min
ϑDcls

{
LE
cls := ↓Ex,s↓X ,S [s logDcls(Es)]

}
. (3)

The residual decomposition mechanism inherently reduces the subject-specific signal in Ei, thereby
promoting the inclusion of subject-invariant content. We assume that subject-irrelevant features
largely overlap with shared semantic representations. Thus, enforcing Ei to be adversarially invariant
ensures that it encodes generalizable brain features across individuals.

Representation Preservation Anchor. While adversarial training promotes subject-invariant repre-
sentation learning, it may inadvertently distort the original high-dimensional brain feature space E.
To counteract this, we introduce a representation preservation anchor via an auxiliary fMRI recon-
struction task. Specifically, we employ a masked decoder Drec(·)—comprising two deconvolution
layers followed by a linear prediction head—to reconstruct the input signal as x̂ = Drec(E). We
adopt the mean absolute error (MAE) as the reconstruction loss, defined as:

Lrec = E(x,x̂)↓X [|x̂↓ x|] . (4)

This reconstruction task serves as an anchor to preserve essential neural information in the latent
space, ensuring E retains both biological fidelity and semantic coherence under adversarial training.

3.3 Semantic-Specific Feature Extraction

Given the subject-invariant brain representation Ei from SIFE, we further inject semantic information
from stimuli to enhance semantic-specific alignment. Similar to SIFE, the Semantic-Specific Feature

Extraction (SSFE) module consists of two components: Adversarial Training and a Representation
Preservation Anchor.

Adversarial Training. We project brain features into the CLIP vision space using vision projectors
composed of three linear layers with GELU activation [40], yielding three types of CLIP-aligned
embeddings: semantic-specific features Fs = Ps(Ei), semantic-invariant features Fi = Pi(Es), and
general representations F = P(E). The disentanglement between Fs and Fi is driven by the residual
decomposition in the brain feature space. To ensure Fs captures meaningful semantic information,
we directly align it with OpenCLIP vision embeddings Fy , using the BiMixCo loss LF

spe, detailed in
the Supplementary.
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Figure 4: Representation Preservation Anchor of SSFE.

To reinforce the semantic purity of
Fs, we apply adversarial training to
Fi, encouraging it to encode minimal
semantic content. As a result of the
residual structure, this pushes more
semantic information into Fs. Specif-
ically, we prepend a gradient rever-
sal layer [41] before the projection:
Fi = Pi[GRL(Es)], discouraging Es

from aligning with CLIP target fea-
tures. The corresponding adversarial
loss LF

inv is also a BiMixCo loss with min-max game similar to Eq. (2) and omitted here.

Representation Preservation Anchor. Similar to SIFE, to ensure semantic consistency in the latent
space, we introduce a preservation anchor by aligning CLIP embeddings across three perspectives:
classification, vision, and text. We employ a linear classifier C(·) on the E to predict the image
label ĉ, with a cross-entropy loss Lcls. For vision and text alignments, we adopt BiMixCo losses
LCLIPv and LCLIPt to align to CLIP image and text embeddings. The total semantic loss is Lsem =
Lcls + LCLIPv + LCLIPt . The overall training loss can be described as:

L = Lrec + LE
dis + LE

cls + LF
inv + LF

spe + Lsem + ϑLprior, (5)

where ϑ is set to 30 following previous methods [4].

4 Experiments

4.1 Experimental Setup

Dataset. We use the Natural Scenes Dataset (NSD) [17] for both training and evaluation. NSD
contains visual image stimulus and corresponding fMRI recordings of 8 subjects, with each subject
viewing 8,000-9,000 images. The original images are collected from MS-COCO dataset [42], which
are consisted of complex natural images. Following [2], we use the corresponding captions of the
images in COCO dataset for training. For both training and evaluation, we average three trials of
fMRI signal of the same images following [5]. The final results were tested on subjects 1, 2, 5 or 7,
since these subjects complete all scanning sessions, sharing the same 982 images as testing data. For
each test subject, we use all other 7 subjects to train the model and tested on the unseen subject with
unseen test split.

Evaluation Metrics. We follow the metrics of Mindeye2 [3] to evaluate both high-level and low-level
consistency. On the low-level aspect, we use pixelwise correlation, Structural Similarity Index Metric
(SSIM) [43], AlexNet(2), and AlexNet(5). High-level metrics are calculated by extracting features
using specific networks, including EffNet-B [44], SwAV [45], Inception [46], and CLIP [47]. Please
refer to the Supplementary for more details.

Implementation Details. All experiments were conducted for 60 epochs using 8 NVIDIA RTX H800
GPUs with a total batch size of 128 (16 samples per GPU). We adopt the AdamW optimizer [48] with
a learning rate of 1e-4, following the OneCycle learning rate schedule [49]. In the inference stage,
we follow MindEye2’s two-stage decoding process. First, the predicted image latents are decoded
into coarse images using SDXL unCLIP. These coarse outputs are then refined using base SDXL in
image-to-image mode, guided by predicted captions. The refinement starts from a noised version of
the coarse image, skipping the first 50% of diffusion steps.

4.2 Main Results

Quantitative Results. We evaluate ZEBRA against representative methods across various training
regimes on the Natural Scenes Dataset, with results averaged over subjects 1, 2, 5, and 7. As
shown in Table 1, ZEBRA achieves competitive performance without using any subject-specific data,
highlighting its strong generalization ability in the zero-shot setting. Compared to the only other
zero-shot-compatible baseline, NeuroPictorω, ZEBRA achieves substantial improvements across all
metrics. On low-level similarity metrics, ZEBRA improves PixCorr from 0.057 to 0.131 and SSIM
from 0.297 to 0.375. Similarly, high-level perceptual metrics show consistent gains: ZEBRA achieves
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Table 1: Quantitative comparison of ZEBRA against representative methods under different training
regimes. Results are averaged over subjects 1, 2, 5, and 7 from the Natural Scenes Dataset. Fully

fine-tuned methods are trained on 40-hour data from the test subject, few-shot methods use only
1-hour recordings, while zero-shot methods do not use any data from the test subjects. “NeuroPictor†”
denotes a version pretrained on 40-hour data from all subjects without fine-tuning on the test subjects.
“NeuroPictorω” represents our implementation in a zero-shot setting (pretrained on the other 7
subjects). Previous methods—excluding NeuroPictor—are fundamentally infeasible in zero-shot
scenarios because their architectures depend on subject-specific linear mappings. “Our baseline”
refers to the strong baseline (§3.1) combining NeuroPictor and MindTuner.

Method Low-Level High-Level

PixCorr↔ SSIM↔ Alex(2)↔ Alex(5)↔ Incep↔ CLIP↔ Eff↗ SwAV↗
Fully fine-tuned

Takagi... [1] [CVPR’23] 0.246 0.410 78.9% 85.6% 83.8% 82.1% 0.811 0.504
Ozcelik... [2] [Sci. Rep.’23] 0.273 0.365 94.4% 96.6% 91.3% 90.9% 0.728 0.422
MindEye1 [3] [NeurIPS’24] 0.319 0.360 92.8% 96.9% 94.6% 93.3% 0.648 0.377
UMBRAE [34] [ECCV’24] 0.283 0.341 95.5% 97.0% 91.7% 93.5% 0.700 0.393
NeuroPictor [5] [ECCV’24] 0.229 0.375 96.5% 98.4% 94.5% 93.3% 0.639 0.350
NeuroPictor†[5] [ECCV’24] 0.141 0.349 91.4% 95.7% 88.3% 88.9% 0.722 0.417
MindBridge [31] [CVPR’24] 0.151 0.263 87.7% 95.5% 92.4% 94.7% 0.712 0.418
MindEye2 [4] [ICML’24] 0.322 0.431 96.1% 98.6% 95.4% 93.0% 0.619 0.344
MindTuner [6] [AAAI’25] 0.322 0.421 95.8% 98.8% 95.6% 93.8% 0.612 0.340

Few-shot

MindEye2 [4] (1 hour) 0.195 0.419 84.2% 90.6% 81.2% 79.2% 0.810 0.468
MindTuner [6] (1 hour) 0.224 0.420 87.8% 93.6% 84.8% 83.5% 0.780 0.440

Zero-shot

NeuroPictorω 0.057 0.297 71.4% 74.7% 62.5% 66.0% 0.939 0.607
Our baseline 0.074 0.316 70.8% 74.0% 63.5% 62.5% 0.920 0.602
ZEBRA 0.131 0.375 74.6% 81.2% 72.2% 71.5% 0.837 0.506

Table 2: Ablations on the key components of ZEBRA, and all results are from subject 1. ‘Adv.’
denotes adversarial training and ‘Anchor’ stands for preservation anchor.

Base SIFE SSFE Low-Level High-Level

line Adv. Anchor Adv. Anchor PixCorr↔ SSIM↔ Alex(2)↔ Alex(5)↔ Incep↔ CLIP↔ Eff↗ SwAV↗
✁ 0.089 0.325 72.5% 74.7% 64.7% 63.2% 0.891 0.579
✁ ✁ 0.129 0.355 73.9% 77.4% 68.0% 66.8% 0.885 0.545
✁ ✁ ✁ 0.134 0.368 74.3% 78.3% 70.0% 69.3% 0.855 0.525
✁ ✁ ✁ ✁ 0.142 0.374 75.2% 79.6% 71.4% 70.8% 0.832 0.505

✁ ✁ ✁ ✁ ✁ 0.153 0.384 76.1% 81.8% 73.4% 72.3% 0.814 0.490

74.6% and 81.2% on AlexNet(2) and AlexNet(5), respectively, compared to 71.4% and 74.7% for
NeuroPictorω. On high-level semantic metrics, ZEBRA outperforms NeuroPictorω with margins of
+9.7% on Inception (72.2% vs. 62.5%) and +5.5% on CLIP similarity (71.5% vs. 66.0%). ZEBRA
also demonstrates lower perceptual distance, with Eff decreasing from 0.939 to 0.837, and SwAV
from 0.607 to 0.506, indicating stronger alignment with ground-truth representations. These results
demonstrate ZEBRA’s clear advantage in generalizing across subjects without requiring fine-tuning.
While fully fine-tuned methods unsurprisingly perform better due to access to the data of test subjects,
ZEBRA narrows this gap significantly. For instance, in the zero-shot setting, ZEBRA achieves 74.6%
on AlexNet(2), compared to 78.9% by Takagi et al. [1] and 87.7% by MindBridge [31], despite
using no data from the test subjects. In summary, ZEBRA sets a new state of the art in zero-shot
neural decoding, outperforming prior zero-shot methods by large margins across all metrics, and
approaching the performance of few-shot and even some fully fine-tuned approaches.

Qualitative Results. We compare ZEBRA with the zero-shot implementation of NeuroPictorω and
the few-shot baseline MindEye2 (1-hour) as shown in Fig. 5. Qualitatively, ZEBRA generates high-
fidelity images that are visually comparable to those produced by fully supervised models, and clearly
surpasses NeuroPictorω in overall perceptual quality. Compared to few-shot methods, the main
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ZEBRA NeuroPictor*GT Mindeye2(1h) ZEBRA NeuroPictor*GT Mindeye2 (1h)

Figure 5: Qualitative comparison between ZEBRA and zero-shot implementation of NeuroPictor and
Mindeye2 (1h).

limitation of ZEBRA lies in semantic accuracy. As highlighted in the failure cases Fig. 7, ZEBRA
tends to struggle with fine-grained semantic distinctions, especially for rare object categories.

4.3 Ablation Studies
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Figure 6: Visualization of subject-invariant and -specific
features with UMAP and t-SNE.

We conduct ablation studies on Subject
1 (trained on Subjects 2-8) to assess the
contribution of each component in ZE-
BRA, including adversarial training and
the proposed preservation anchor in both
the Subject-Invariant Feature Extractor
(SIFE) and the Subject-Specific Feature
Enhancer (SSFE).

Effectiveness of the key components. As
shown in Table 2, the base model with-
out any regularization performs poorly
(e.g., PixCorr = 0.089, Alex(5) = 72.7%).
Adding adversarial training to SIFE yields
clear improvements across both low- and
high-level metrics (e.g., +0.040 PixCorr,
+3.6% CLIP). Adding the anchor further
boosts performance, especially in high-
level features like CLIP. Incorporating ad-
versarial loss in SSFE brings additional
gains, especially in high-level metrics,
confirming the benefit of regularizing both
branches. The full model with all com-
ponents achieves the best overall results,
highlighting the effectiveness of our de-
sign.

Effectiveness of the proposed subject-invariant representation learning. In Fig. 6, we use UMAP
and t-SNE to visualize the feature distributions of different subjects. The left two plots show the
subject-invariant features Ei, while the right two show the subject-specific features Es. In the
case of Ei, data points from all subjects are highly mixed without forming subject-specific clusters,
demonstrating that the learned features are invariant to subject identity. In contrast, Es exhibits clear
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Table 3: Ablation on the number of training subjects for ZEBRA, evaluated on data from subject 1.

# of Low-Level High-Level

Subjects PixCorr↔ SSIM↔ Alex(2)↔ Alex(5)↔ Incep↔ CLIP↔ Eff↗ SwAV↗
4 (2 to 5) 0.109 0.325 68.2% 73.5% 66.1% 63.7% 0.871 0.563
5 (2 to 6) 0.126 0.347 71.3% 76.8% 68.7% 67.2% 0.846 0.534
6 (2 to 7) 0.135 0.363 74.1% 79.0% 70.8% 69.6% 0.823 0.508

7 (2 to 8) 0.153 0.384 76.1% 81.8% 73.4% 72.3% 0.814 0.490

clustering by subject, indicating that the model successfully captures individual-specific information.
These results confirm that our method effectively disentangles subject-invariant and subject-specific
representations.

Ablation on Number of Training Subjects. As shown in Table 3, we evaluate the impact of training
subject count on model performance. As the number of subjects increases from 4 to 7, we observe
consistent performance improvements across all metrics. For instance, PixCorr improves significantly
from 0.109 to 0.153, and both low- and high-level semantic scores show similar trends, such as CLIP
score increasing from 63.7% to 72.3%. These results demonstrate that incorporating more diverse
subject data helps the model generalize better, highlighting its scalability and robustness.

5 Discussion and Conclusion

Key Contributions and Insights. The novelty of our work lies not in individual archi-
tectural components, but in the problem formulation, representation disentanglement design,
and cross-subject transfer mechanism that together enable zero-shot fMRI-to-image decoding.
First, the importance of the zero-shot setting: traditional fMRI decoding frameworks typically rely
on fully supervised, subject-specific training, requiring separate model tuning for each individual
under expert supervision. Such procedures are time-consuming—often exceeding 12 hours per
subject—and computationally prohibitive for clinical use. In contrast, our approach introduces,
for the first time, a zero-shot setting that allows the model to be directly applied to unseen sub-
jects without retraining. This paradigm shift makes neural decoding fast, scalable, and clinically
practical, achieving 73.4% decoding performance with approximately one second of inference per
image. Second, neuroscience-inspired representation disentanglement: our design is motivated by
neuroscientific evidence that, despite inter-individual variability, the human cortex encodes semantic
information in a consistent and topographically organized manner across subjects. To preserve
this universality while maintaining discriminative power, we explicitly separate subject-invariant
and semantic-specific representations through the SIFE and SSFE modules, balancing fidelity and
generalizability. Third, adversarial disentanglement with preservation anchors: adversarial training
objectives are employed to automatically extract invariant and specific features, while a Representa-
tion Preservation Anchor ensures that essential individual information is retained during zero-shot
transfer. Finally, empirical superiority in zero-shot decoding: our framework outperforms state-of-
the-art baselines adapted to the zero-shot setting (e.g., MindTuner), underscoring the effectiveness of
our disentanglement and transfer design in achieving robust cross-subject generalization.

Limitations and Future Work. Despite the encouraging results, several limitations remain. Although
our reconstructed images exhibit competitive quality, especially in low-level perceptual metrics, their
semantic fidelity still lags behind few-shot approaches. Improving high-level semantic accuracy
remains a key challenge. Nonetheless, our work offers a promising zero-shot strategy and lays
the foundation for building generalizable brain decoding models. Another limitation lies in the
scope of downstream tasks. While this study focuses on image reconstruction, the proposed ZEBRA
framework is inherently modality-agnostic and could be extended to more complex domains such
as text or video. For instance, integrating ZEBRA with existing methods like NeuroClips [50] or
NEURONS [51] could enable zero-shot fMRI-to-video generation, facilitating a richer understanding
of human perceptual experiences. Moreover, the current dataset contains a limited number of subjects,
which restricts the ability to fully demonstrate the generalizability of our approach. We believe that
as more training subjects and fMRI data become available, the model’s robustness and zero-shot
performance will further improve. Expanding subject diversity is especially important for advancing
toward universal brain decoders. Finally, additional fMRI recordings and broader subject coverage are
essential to capture real-world visual experiences more comprehensively. Addressing these limitations
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Figure 7: Failure cases, mainly caused by wrong semantics.

will require interdisciplinary progress across machine learning, computer vision, neuroscience, and
biomedical engineering. We emphasize that alongside technical advances, it is equally important to
establish ethical and regulatory frameworks to ensure the privacy and responsible use of brain data.

Conclusion. In this work, we introduced ZEBRA, a novel zero-shot brain visual decoding framework
that addresses the critical challenge of generalizing fMRI-to-image reconstruction to unseen subjects.
By disentangling subject-specific and semantic-specific components in the fMRI embedding space,
ZEBRA enables accurate visual reconstruction without requiring additional data or retraining for new
individuals. Our approach leverages adversarial learning and residual decomposition to isolate shared
semantic representations, achieving strong generalization across subjects. Extensive experiments
demonstrate that ZEBRA outperforms existing zero-shot baselines and approaches the performance of
fully finetuned models, both quantitatively and qualitatively. This represents a significant step toward
practical and scalable brain decoding systems with real-world applicability in neuroscience, clinical
settings, and brain-computer interfaces.
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Appendix

1 More Details about the Baseline of ZEBRA

The Baseline employs the ViT-based fMRI encoder from fMRI-PTE [1], which is pretrained on the
UK Biobank dataset [2]. This encoder transforms the fMRI scan into a shared latent space, where
a diffusion prior network then converts the latent brain embeddings into vision features for image
generation using Stable Diffusion.

The Baseline consists of three main components:

1. fMRI Encoder: This module processes the input fMRI data and transforms it into a unified
2D brain activation map [1], resulting in a single-channel image x → R256→256. The fMRI
encoder then maps this image into a latent representation E → RB→L→C1 , where B is the
batch size, L is the number of tokens, and C1 is the brain feature dimension.

2. Latent Representation Conversion: The latent brain embedding E is subsequently trans-
formed into a CLIP-compatible embedding F → RB→L→C2 to provide guidance for the
reconstruction process.

3. Diffusion Prior Network: As in MindEye2 [3], we employ a diffusion prior [4] to map the
fMRI-CLIP embedding F to a reconstructed OpenCLIP image embedding Fy corresponding
to the visual stimulus.

The training of the Baseline involves three key losses:

1. Contrastive Loss on CLIP Text Embeddings: This loss, denoted LCLIPt , is calculated
between the predicted CLIP text embedding F t and the ground truth F t

y .

2. Contrastive Loss on CLIP Image Embeddings: The loss LCLIPi is computed between the
predicted CLIP image embedding F and the ground truth F i

y .

3. Diffusion Prior Loss: The loss Lprior is used to train the diffusion prior network to minimize
the reconstruction error.

Both LCLIPt and LCLIPi are implemented as the BiMixCo loss, which aligns fMRI signals x
and corresponding image embeddings y using a bidirectional contrastive loss and MixCo data
augmentation, as detailed below.

The MixCo procedure involves mixing two independent fMRI signals. For each fMRI signal x, we
randomly sample another fMRI signal xm corresponding to a different index m. The two signals are
then mixed using a linear combination:

x↑ = mix(x, xm) = ω · x+ (1↑ ω)xm, (1)

where x↑ represents the mixed fMRI signal and ω is a hyperparameter sampled from a Beta distribu-
tion. The ridge regression module then maps x↑ to a lower-dimensional space, yielding x↑→

, from
which the embedding F is obtained using the MLP, i.e., F = E(x↑→

).
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The BiMixCo loss function is formulated as:

LBiMixCo =→ 1
2L

L∑

i=1

ωi · log
exp(sim(Fi,yi)/ε)∑L

k=1 exp (sim(Fi,yk)/ε)

→ 1
2L

L∑

i=1

(1→ ωi) · log
exp(sim(Fi,ymi)/ε)∑L
k=1 exp(sim(Fi,yk)/ε)

→ 1
2L

L∑

j=1

ωj · log
exp(sim(Fj ,yj)/ε)∑L
k=1 exp(sim(Fj ,yj)/ε)

→ 1
2L

L∑

j=1

∑

{l|ml=j}

(1→ ωj) · log
exp(sim(Fl,yj)/ε)∑L
k=1 exp(sim(Fl,yj)/ε)

,

(2)

where F represents the OpenCLIP embeddings for the image y.

The Diffusion Prior network is used to transform the fMRI embedding F into the reconstructed
OpenCLIP image embeddings of stimulus Fy . The objective is to minimize the mean squared error
(MSE) between the predicted and target embeddings, formulated as:

LPrior = EFy,F ,ω↓N (0,1)||ε(F )↑ Fy||2. (3)

2 More Details about Metrics

To evaluate reconstruction quality, we adopt a comprehensive set of low-level and high-level metrics.

On the low-level side, we include four metrics: pixel-wise correlation, Structural Similarity Index
Measure (SSIM) [5], AlexNet(2), and AlexNet(5). Pixel-wise correlation and SSIM are computed by
averaging the similarity scores between each reconstructed image and its ground-truth counterpart.
AlexNet(2) and AlexNet(5) assess semantic similarity by measuring the two-way classification accu-
racy based on features extracted from the 2nd and 5th layers of a pre-trained AlexNet, respectively.

For high-level evaluation, we extract features using several pre-trained models. EffNet-B and SwAV
metrics are calculated by averaging the feature distance between reconstructions and ground-truth
images using EfficientNet-B1 [6] and SwAV-ResNet50 [7]. In contrast, the Inception [8] and CLIP [9]
metrics reflect the accuracy of two-way classification using the corresponding high-level features.

3 Comparison with Baselines across Subjects

Table 1 presents a detailed comparison of ZEBRA with NeuroPictorε, and our baseline across subjects
1, 2, 5, and 7 from the Natural Scenes Dataset. The results are reported under a zero-shot setting,
where NeuroPictorε refers to our reimplementation pretrained on the remaining seven subjects
without any subject-specific finetuning. Across both low-level (PixCorr, SSIM) and high-level
metrics (AlexNet, Inception, CLIP, etc.), ZEBRA consistently outperforms the zero-shot baselines,
especially on semantic metrics like Alex(5) and CLIP accuracy. Notably, its performance remains
stable across subjects, indicating strong generalization ability. The final row reports the averaged
scores across all four subjects, further confirming the effectiveness of ZEBRA in both perceptual
quality and semantic fidelity.
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are detailedly discussed.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The proposed method does not involve theory assumptions and proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have disclosed all the information, including details of modules, parameters,
implementation details. Our code in attached in supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our code in attached in supplementary materials with detailed instructions and
documentations.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have specified all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: To maintain a similar setting for comparison with previous studies.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Experiments compute resource information is provided in Implementation
section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper adheres to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Included in the Limitations and Future Work section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There are no released models and scraped datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have properly mentioned the used models and cited them without violating
their license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code is with the MIT license.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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