
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ASSEMBLEFLOW: RIGID FLOW MATCHING WITH INER-
TIAL FRAMES FOR MOLECULAR ASSEMBLY

Anonymous authors
Paper under double-blind review

ABSTRACT

Molecular assembly, where a cluster of rigid molecules aggregated into strongly
correlated forms, is fundamental to determining the properties of materials. How-
ever, traditional numerical methods for simulating this process are computationally
expensive, and existing generative models on material generation overlook the
rigidity inherent in molecular structures, leading to unwanted distortions and in-
valid internal structures in molecules. To address this, we introduce AssembleFlow.
AssembleFlow leverages inertial frames to establish reference coordinate systems at
the molecular level for tracking the orientation and motion of molecules within the
cluster. It further decomposes molecular SE(3) transformations into translations in
R3 and rotations in SO(3), enabling explicit enforcement of both translational and
rotational rigidity during each generation step within the flow matching framework.
This decomposition also empowers distinct probability paths for each transforma-
tion group, effectively allowing for the separate learning of their velocity functions:
the former, moving in Euclidean space, uses linear interpolation (LERP), while the
latter, evolving in spherical space, employs spherical linear interpolation (SLERP)
with a closed-form solution. Empirical validation on the benchmarking data COD-
Cluster17 shows that AssembleFlow significantly outperforms six competitive deep
learning baselines by at least 45% in assembly matching scores while maintaining
100% molecular integrity. Also, it matches the assembly performance of a widely
used domain-specific simulation tool while reducing computational cost by 25-fold.

1 INTRODUCTION

Deep learning methods have been revolutionizing scientific research across various domains, enabling
breakthroughs in fields such as drug discovery (Yu et al., 2024), material science (Merchant et al.,
2023), and molecular design (Loeffler et al., 2024). For instance, AlphaFold-like systems have
demonstrated unprecedented accuracy and creativity in designing protein structures (Jumper et al.,
2021), driving innovation in drug discovery. These advancements underscore the transformative
potential of machine learning in tackling complex scientific problems.

Figure 1: Illustration of the assembly of a cluster of
three molecules transitioning from a weakly correlated
structure (left) to a strongly correlated crystal structure
(right). A key challenge for existing generative models
in material generation is preserving the rigidity of each
molecule throughout this transformation in 3D space,
and this paper aims to address this.

Molecular assemble or crystallization is one
such complex process where rigid molecules
transition from a weakly correlated arrangement
to a highly ordered, strongly correlated struc-
ture. During this process, each molecule is ap-
proximated to maintain its shape and structure
unchanged as it moves in the 3D space, as il-
lustrated in Figure 1. Crystallization plays a
pivotal role in determining the physical prop-
erties of materials, including their mechanical
strength, electrical conductivity, and thermal
stability (Porter et al., 2009; Carter & Nor-
ton, 2013), making it a key process in material
science (Ashby & Jones, 2012), pharmaceuti-
cals (Hilfiker, 2006), and nanotechnology (Gon-
salves et al., 2000). For example, the crystalline form of a drug can affect its solubility and bioavail-
ability (Byrn et al., 1999; Healy et al., 2017); Similarly, precise control over molecular arrangements

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 2: (a, b): The molecule’s center of mass (CoM) is used as the reference point for translation and
interpolation in Euclidean space. (c, d): An inertial frame serves as the reference coordinate system, tracking
rigid molecular rotation—where rotation operations are implemented using quaternion representation—and
enabling interpolation in spherical space.

is key to optimizing the electronic and catalytic performance of organic semiconductors, polymers,
and molecular catalysts (Saparov & Mitzi, 2016).

Traditional numerical methods have long been employed to simulate the crystallization pro-
cess (Martínez et al., 2009; Van Der Spoel et al., 2005), but they are often computationally expensive
and inefficient, limiting their scalability and practical use in large-scale applications. On the other
hand, despite the importance of crystallization, existing machine learning methods struggle to capture
the physical constraints critical to this process. A major limitation is the failure to account for the
inherent rigidity of molecular structures during crystallization (Liu et al., 2024), often leading to un-
wanted distortions and invalid internal structures, i.e., non-rigid molecules. In an assembly, molecules
must retain their rigid atomic structures, as this rigidity is essential for producing meaningful packing
arrangements. However, current generative models for molecular crystallization treat molecules as
flexible entities (Liu et al., 2024), resulting in physically unrealistic packing structures and atomic
arrangements, failing to retain individual molecule’s structure intact.

To address these limitations, we introduce AssembleFlow, a novel framework specifically designed to
incorporate the rigid body constraints inherent in molecular assembly or crystallization. As illustrated
in Figure 2, AssembleFlow leverages inertial frames to establish reference coordinate systems for
assembling molecules. Because SE(3) is the semi-direct product of the rotation group SO(3) and the
translation group R3, we can further decompose the group SE(3) transformations into translations
in R3 (Figure 2 (a, b)) and rotations in SO(3) (Figure 2 (c, d)). Such decomposition allows the
explicit enforcement of both translational and rotational rigidity at the molecular level effectively,
ensuring that each molecule in the cluster moves as a unified, rigid body throughout the crystallization
process. During such enforcement, AssembleFlow employs a distinct approach for learning the
SE(3)-equivariant velocity functions associated with translations and rotations. For translations,
it uses linear interpolation (LERP) in Euclidean space, while for rotations, it leverages spherical
linear interpolation (SLERP) in spherical space, with a closed-form solution. This distinction in
handling the translation and rotation groups allows AssembleFlow to accurately model the rigid
transformations of molecules during each prediction and generation step within the flow matching
framework (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2022).

We empirically evaluate AssembleFlow using the benchmarking crystallization dataset COD-
Cluster17. The quantitative results reveal that AssembleFlow significantly outperforms six competi-
tive deep learning baselines by at least 45% in terms of assembly matching score. Also, AssembleFlow
exhibits strong assembly performance compared to a widely used domain-specific simulation tool
for molecular assembly, achieving this with a 25-fold reduction in computational cost. Furthermore,
we present qualitative results, including DFT energy and atomic collision properties of predicted
crystals, which further demonstrate AssembleFlow’s effectiveness in preserving and modeling the
rigidity of the molecular crystallization and assembly process. Our work is the first to implement
rigid generation in SE(3) space for molecular assembly. We also want to mention that in what follows,
we use molecular assembly, crystallization, and molecular packing interchangeably.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

Molecular crystallization. Molecular crystallization is a transition of molecules from weakly
correlated structures to strongly correlated structures, e.g., from liquid or gas phase to solid phase,
as illustrated in Figure 1. A common example is liquid water freezing into ice, transitioning from
a liquid phase to a solid phase. The crystallization from a gas phase directly to a solid phase is called
deposition.

SE(3)-equivariance. For geometric modeling for crystallization, one critical property of the target
function is rotation-equivariant and translation-equivariant (i.e., SE(3)-equivariant). We here provide a
brief introduction on the SE(3)-equivariance, and for more detailed discussions of SE(3)-equivariance,
we refer the reader to (Smidt et al., 2018; Brandstetter et al., 2021; Liu et al., 2023; Zhang et al.,
2023). SE(3)-equivariance is the property for the geometric modeling function f : X → Y as:

f(ρX(a)x) = ρY (a)f(x), ∀a ∈ G,x ∈ X, (1)

where ρX(a) and ρY (a) are the SE(3) group representations on the input and output space, re-
spectively. SE(3)-equivariant modeling in Equation (1) is essentially saying that the designed deep
learning model f is modeling the whole SE(3) group transformation trajectory on the molecule
conformations, and the output is the transformed ŷ accordingly. One concrete example is that when
we rotate the input molecular system by a certain angle, the predicted forces by SE(3)-equivariant
models will also rotate accordingly.

Conditional flow matching. Conditional flow matching (CFM) (Lipman et al., 2022) and two parallel
works (Rectified Flow (Liu et al., 2022) and Stochastic Interpolants (Albergo & Vanden-Eijnden,
2022)) formulate the distribution modeling problem as learning a vector field that can generate a
probability path mapping from simple distribution at t = 0 to the target distribution at t = 1. Please
refer to the original papers for a more detailed discussion (Lipman et al., 2022).

In the crystallization processes, our geometric data are atomic coordinates in the 3D Euclidean points
r ∈ R3, and the atomic type is fixed during the whole crystallization process, so we may as well
ignore that. Then we define time-dependent vector field v : [0, 1] × R3 → R3. A time-dependent
vector field defines a time-dependent diffeomorphic map, called flow, ϕ : [0, 1] × R3 → R3. The
vector field defines flow via an ordinary differential equation as

dϕt(r)/dt = ut(ϕt(r)). (2)

A probability density path is denoted as p : [0, 1] × R3 → R>0. Existing flow model (Chen et al.,
2018) maps a prior distribution p0 to another distribution pt with push-forward equation or change

of variable rule: pt(r) = [ϕt]∗p0(r) = p0(ϕ
−1
t (r))det

∣∣∣dϕt(r)
dx

∣∣∣−1

. Thus, modeling the likelihood of
data distribution at t = 1 can be transformed into modeling the velocity field matching problem with
parameterized velocity field vθ, i.e., flow matching:

LFM = Et,r

∥∥ut(r)− vθ(r, t)
∥∥2

. (3)

With the continuity equation (Villani et al., 2009), we can further derive an equivalent objective by
considering the conditional vector field conditioned on the empirical data r1, i.e., ut(r|r1), and the
resulting objective is the conditional flow matching:

LCFM = Et,r,r1

∥∥ut(r|r1)− vθ(r, r1, t)
∥∥2

. (4)

3 METHOD: ASSEMBLEFLOW

Problem Formulation. AssembleFlow is designed to model rigid transformations during crystalliza-
tion, ensuring that each molecule in the cluster remains rigid throughout the transformation process.
Rigorously, we are modeling P ({rf}|{ri}), where {rf} and {ri} are the atom conformations in
final and initial positions respectively. During this process, we assume the rigidity of molecules.
Noticeably, we will use a preprocessed dataset where the prior conformations are geometrically
optimized and fixed (Liu et al., 2024).

This section outlines the five key steps in the algorithm’s development. Specifically, in Section 3.1, we
explain how inertial frames can be leveraged to provide a stable reference for tacking the orientation
of multiple assembling molecules in the Euclidean space. Such a reference perspective can guarantee

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

rigid structures during molecular rotations throughout the assembly process. Building on these
frames, there are multiple ways for rotation representation, so in Section 3.2, we illustrate how to use
quaternion representation for capturing the rotation transformation induced from inertial frames. This
is followed by a detailed discussion of AssembleFlow, a rigid flow matching method, in Section 3.3.
AssembleFlow decomposes the assembly probabilistic paths into SO(3) group path and R3 group
path to guarantee the rigidity, and learns the time-dependent vector fields through a flow-matching
framework on the two path spaces respectively. In Section 3.4, we employ the reparameterization trick
to make AssembleFlow more numerically stable. Finally, in Section 3.5, we present the two types of
SE(3)-equivariant flow matching velocity functions specifically designed for use in AssembleFlow.
Note: the pseudo algorithm of our AssembleFlow is provided in Appendix E.3.

3.1 SO(3) GROUP AND INERTIAL FRAME FOR RIGID PACKING

The core of AssembleFlow lies in the utilization of the inertial frame as the reference frame. Within
this frame, the rotation matrix in the SO(3) group defines how the molecular system rotates rigidly.
This serves as the key step in AssembleFlow for modeling rigid transformations in SO(3) group.

SO(3) group. The special orthogonal group, denoted as SO(n), is a group of rotation matrices that
represent rotations in n-dimensional Euclidean space. In this paper, we are interested in n = 3
dimensional space, and every rotation matrix used to perform a rotation in 3D space can be represented
as an element of SO(3) group. The SO(3) group consists of all orthogonal matrices (with determinant
1) R ∈ R3×3 such that RTR = I , where RT is the transpose of R and I is the identity matrix.

Inertial frame as the reference frame. An inertial frame is a reference frame such that it can
provide a consistent basis for describing a molecule’s motion, including rotation. We here utilize the
inertial frame to build up a basis to describe how each molecule rotates in the Euclidean space. One
example is illustrated in Figure 2. Importantly, an inertial frame provides a coordinate system such
that a molecule stays rigid and does not deform over the crystallization or modeling process; we here
assume the system is not influenced by external forces. Next, we will detail how inertial frames are
used to represent the rotation matrix for rigid molecules.

First, we employ the following four sequential steps to derive the reference frames that construct the
rotation matrix from N atomic positions r:

• Calculate the mass center: c = 1
N

∑
i ri.

• Adjust position relative to the center ri = ri − c.
• Compute the inertia tensor Î =

∑
i ∥ri∥2I − rir

T
i , where I is the unit diagonal matrix.

• Obtain the principal axes of inertia by applying eigen-decomposition on Î . We have
Î = QΛQT , where Q is the orthogonal matrix whose columns are the eigenvectors of Î ,
and Λ is the diagonal matrix whose elements are the eigenvalues λi of Î , representing the
principal moments of inertial along the principal axes.

Figure 3: (a, b) show two potential rotational alignments
between two coordinate systems (axes). (c, d) show that only
one unique rotation is possible for four non-coplanar points.

The above steps yield the three principal
axes in Q. To adopt this for modeling the
crystallization process (Figure 1), we build
inertial frames for each molecule in the
cluster. In our case, for each molecule we
need to build two inertial frames, for the
weakly correlated and strongly correlated
structures, respectively. We call these two
frames initial (inertial) frame Fi and final
(inertial) frame Ff .

Second, we apply the eigen-decomposition
to obtain the initial principal axes Qi and
final principal axes Qf , respectively. As
illustrated in Figure 2 (d), we can only per-
form the rotation based on the aligned prin-
cipal axes or the aligned coordinate systems. However, as we conduct the eigen-decomposition of
frames Fi and Ff , it is not guaranteed that the corresponding principal axes Qi and Qf are aligned.
To align the two coordinate systems, we aim to match both the directions and the orders of the
corresponding principal axes in each set. We will detail this alignment process next.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Align the directions between initial and final coordinate systems. First, for a given inertial frame
F , we have three axes in Q composing a coordinate system. This can lead to eight possible directions.
To align the directions between the initial system Qi and final system Qf , we add a first constraint
– the three axes must form a right-handed coordinate system. Such a filtering step can be achieved
by using cross-product: if the local frame system is right-handed, then the cross-product between
any two axes should match the third axis or share the same direction as the third axis. Otherwise, the
coordinate system is left-handed, then we randomly revert one basis out of three. This reduces to
four potential combinations of directions. To further align the directions, we introduce Lemma 1 and
Theorem 1 to help provide us with theoretical guidance.

Lemma 1. For an initial inertial frame Fi and a final inertial frame Ff , we build up the correspond-
ing right-handed principal axes as coordinate systems, Qi and Qf , respectively. Suppose we have to
change the directions of Qf to match Qi, then we should change the directions of two bases in Qf .

Proof. There are three bases in Qf . If we change one or three basis directions in Qf , then Qf will
change from right-handedness to left-handedness, which violates the assumption. Thus, if we need to
change the directions of Qf to match Qi, we should change the directions of two bases in Qf .
With Lemma 1, we find that using three base vectors is insufficient to determine the direction
alignment of three axes. To define the directions that can match between the initial and final
coordinate systems, we need to incorporate an extra node as an auxiliary, as in Theorem 1.

Theorem 1. For an initial inertial frame Fi and a final inertial frame Ff , we build up the corre-
sponding right-handed principal axes as coordinate systems, Qi and Qf , respectively. Then we need
to incorporate a fourth point that is not coplanar with the three basis vectors, to align the directions
of two coordinate systems with one unique rotation transformation matrix.

Proof Sketch. We first provide intuitive examples in Figure 3. In Figure 3 (a, b), we can see at least
two possible rotation matrices to transform from initial axes to final axes. However, when we add
a fourth non-coplanar point in Figure 3 (c), the rotation transformation becomes unique, and the
corresponding rotation in Figure 3 (d) is invalid. Then more rigorously, the proof includes the two key
steps: (1) Using Lemma 1, we can find multiple rotation matrices for alignment between coordinate
systems. (2) After introducing the fourth non-coplanar point, the contradiction proves that there exists
only one unique rotation for alignment. For more rigorous proof, please refer to Appendix D.

Align the ordering between initial and final coordinate systems. We can typically sort the
eigenvectors (as for principal axes) through the corresponding eigenvalues. The main challenge
comes when there is a tie in eigenvalues. Because this is a rare case, we propose doing a depth-first-
search to enumerate all the possible combinations of basis orderings of Qf , to match Qi.

Outputs and engineering issue: numerical stability. Without loss of generality, we can assume that
we do not change the axis direction or ordering in the initial coordinate system Qi, and we only change
Qf to Q̂f , so as to align with Qi. The ultimate rotation matrix is thus R = QT

i Q̂f . Meanwhile, we
would like to point out that multiple numerical stability issues exist. This can arise in the following
scenarios: (1) when the sampled points are near the origin, (2) when checking if the eigenvalues are
tied or not, (3) when extracting a fourth non-planar point for alignment, (4) when verifying whether
rotating the initial atoms (points) matches the final atoms. To mitigate these issues, we carefully
select a threshold value and clamp the (reconstructed) coordinates to this minimum threshold.

Summary. In this section, we first introduce the basic concepts of SO(3) group and inertial frame.
Then we present how we construct the initial and final inertial frames for each molecule, i.e., Fi

and Ff , in molecular crystallization. Next, by applying the eigen-decomposition on the constructed
inertial frames, we obtain the initial and final principal axes (right-handed), Qi and Qf , respectively.
Finally, we align the Q̂f to Q̂i by checking the directions and ordering of three axes in Qf . This
results in two aligned bases (Qi and Q̂f) and a rotation matrix R such that Q̂f = RQi. As a result,
this enables rigid molecule-level rotations during their transformations in the assembling processes.

3.2 QUATERNION REPRESENTATION FOR ROTATION

For the SO(3) group in Section 3.1, there are multiple ways to represent a rotation transformation
in addition to the rotation matrix R. If we want to model the rotation matrix directly, we must
guarantee that the generated matrix variable satisfies the two properties discussed in Section 3.1,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

namely Orthogonality and Determinant. Such a constrained modeling is challenging. Thus, an
alternative way of rotation representation with a more flexible formulation is preferred. To attain this
goal, we utilize quaternion representation defined through the inertial frame, as described below.

Definition. A quaternion q is defined as:
q = w + xi+ yj + zk = (w,v), (5)

where w, x, y, z are real numbers, and i, j, k are the fundamental quaternion units. Equivalently, the
w is called the real part, while v = (x, y, z) is a 3D vector representing the imaginary part.

Rotation quaternion. A rotation quaternion is a unitary quaternion, i.e., w2+x2+ y2+ z2 = 1, and
this can be easily achieved by taking the normalization of the quaternion variables. In what follows,
we will assume the quaternion is a rotation quaternion unless otherwise specified. Notice that for
each rotation matrix, there are two equivalent quaternions, q and −q. Here we manually enforce the
real number part of the generated quaternion to be non-negative.

Tranformation from rotation matrix to rotation quaternion. There are multiple ways to extract
the quaternion from the rotation matrix, and we provide a more detailed discussion in Appendix B. In
this work, we adopt eigendecomposition (Horn, 1987; Bar-Itzhack, 2000) to extract the initial and
final quaternion (i.e., qi and qf) from the initial and final coordinate systems (i.e., Qi and Qf).

Spherical interpolation (SLERP) for quaternion interpolation. One of the main advantages
of using quaternion is that it is friendly to interpolation on the SO(3) space, i.e., the spherical
interpolation (SLERP) between two quaternions q0 and q1:

SLERP(q0, q1, t) =
sin((1− t)ω)q0 + sin(tω)q1

sin(ω)
, (6)

where ω is the angle between q0 and q1, and t ∈ [0, 1] is interpolation parameter. Thus, we can
see that SLERP provides a smooth and uniform rotation between two quaternions. An example is
provided in Figure 2.

We provide a comprehensive discussion of various rotation representations in Appendix B, including
quaternion multiplication and vector rotation using quaternion. Please consult that section for details.

3.3 PATH INTERPOLATION IN ASSEMBLEFLOW

To model the crystallization process, our AssembleFlow method integrates the inertial frames and
quaternion representation for rotation, as discussed in Sections 3.1 and 3.2, into a conditional flow
matching framework. We note that unlike most existing flow matching methods that focus solely
on atom-level diffusion paths in the Euclidean space, which suffices for non-rigid transformation,
AssembleFlow operates within the full SE(3) group space in the molecule level due to the rigidity
requirement.

Recall that the crystallization process involves the movement over a cluster of molecules, and for each
molecule in the cluster, AssembleFlow jointly models the rotational transformations in SO(3) space
and translational transformations in R3 space. Such a decomposition ensures the preservation of rigid
molecular structures throughout the crystallization process. We next detail these two transformations.

Modeling translations in R3. The goal is to model the molecule-level translations in each cluster,
and AssembleFlow achieves this by modeling the translations on each molecule’s mass center, as
depicted in Figure 2. For notation simplicity, we will use x ∈ R3 to represent the translation vector.

We adopt the flow-matching framework, and the goal here is to learn the probability of final mass
center xf from the initial mass center xi, i.e., p(xf |xi). To this end, we assume that we use linear
interpolation (LERP) for path interpolation, by treating x0 = xi and x1 = xf , then for interpolation
parameter t ∈ [0, 1], we have the interpolated translation as:

LERP(x0,x1, t) = tx0 + (1− t)x1. (7)

Next, we introduce an SE(3)-equivariant function vθ,R3(xt, t) as the core module to learn the velocity
at time t. Thus the objective function is defined as:

LR3 = ∥x1 − x0 − vθ,R3(xt, qt, t)∥2. (8)

Modeling rotations in SO(3). For modeling the rotations in the SO(3) group, recall that we can
find the initial bases Qi and final principal bases Qf from inertial frames in Section 3.1, and then we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

transform them into the rotation quaternions qi and qf as introduced in Section 3.2. The task here is
to model p(qf |qi).
Thus, it is natural to adopt the spherical interpolation (SLERP) as the smooth translation between
two quaternions. We treat q0 = qi and q1 = qf and plug them into Equation (6). This gives us the
interpolated rotations at time t. The first-order derivative of SLERP has an analytical formula:

d

dt
SLERP(q0, q1, t) =

ω
(
cos(tω)q1 − cos((1− t)ω)q0

)
sin(ω)

. (9)

Similarly here, we then introduce an SE(3)-equivariant function vθ,SO(3)(qt, t) to model the molecule-
level rotation velocity at time t. The objective function becomes:

LSO(3) = ∥ d

dt
SLERP(q0, q1, t)− vθ,SO(3)(xt, qt, t)∥2. (10)

Inference. For inference, AssembleFlow conducts the sampling step in SO(3) and R3 alternatively:

xt+1 = xt + δt · vθ,R3(xt, qt, t), qt+1 = qt + δt · vθ,SO(3)(xt, qt, t). (11)

Thus, both the molecule-level translation xt+1 and molecule-level rotation qt+1 are applied on each
molecule, and we repeat Equation (11) for T steps to obtain the predicted strongly correlated molecule
position. However, in Equation (11), it remains an open question on how to obtain the ω for SO(3)
generation, since ω is the angle between q0 and q1, and q1 is unknown during the inference process.
We address this by proposing the reparameterization trick as will be discussed next in Section 3.4.

3.4 REPARAMETERIZATION FOR STRONGLY CORRELATED STRUCTURES

We here leverage the reparameterization trick to directly model the SE(3) action at time T instead of
the velocity at each time t. Equivalently, the velocity of SE(3) action can be written as:

vθ,R3(xt, qt, t) = (x̂1,θ(xt, qt, t)− xt)/(1− t),

vθ,SO(3)(xt, qt, t) =
ω
(
cos(tω)q̂1,θ(xt, qt, t)− cos((1− t)ω)q0

)
sin(ω)

.
(12)

In other words, we directly estimate the translation x̂1,θ(xt, qt, t) and rotation q̂1,θ(xt, qt, t) in the
final step or the strongly correlated structure. The objectives over the two spaces thus become:

LR3,reparameter = E[∥x1 − x̂1,θ(xt, qt, t)∥2], LSO(3),reparameter = E[∥q1 − q̂1,θ(xt, qt, t)∥2]. (13)

The final objective function is the summation of two terms. Besides, such a reparameterization
enables us to conduct inference using the Euler algorithm:

xt+1 = xt + δt · (x̂1,θ(xt, qt, t)− xt)/(1− t),

qt+1 = qt + δt ·
ω̂
(
cos(tω̂)q̂1,θ(xt, qt, t)− cos((1− t)ω̂)q0

)
sin(ω̂)

,
(14)

where ω̂ is the angle between q0 and q̂1,θ(xt, qt, t). The velocity functions of x̂1,θ(xt, qt, t) and
q̂1,θ(xt, qt, t) are SE(3)-equivariant and will be discussed next in Section 3.5.

3.5 SE(3)-EQUIVARIANT MULTI-GRAINED VELOCITY FUNCTION

Recall that the data structure considered here is the cluster of molecules, thus it is natural to split
the modeling into intra-molecule and inter-molecule modeling, as introduced below. For intra-
molecule modeling, we adopt the PaiNN (Schütt et al., 2021), which is one of the most widely used
SE(3)-equivariant models. It can encode the inherent geometric structural information of individual
molecules. Then for inter-molecule modeling, we consider two options of SE(3)-equivariant models:
(1) Atomic-level modeling that utilizes all the atoms’ positions for learning the molecular-level
rotation and translation for the next step. (2) Molecular-level modeling that directly utilizes the
molecular-level rotation and translation for next-step prediction. This concludes our discussion on
AssembleFlow, and more details are provided in Appendix E. A high-level overview and pseudo
algorithm are provided in Algorithms 1 and 2 in Appendix E.3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: AssembleFlow against six generative models on COD-Cluster17 with 5K, 10K, and all samples. The
best results are marked in bold.

Packing Matching Validity
PM (atom) ↓ PM (center) ↓ Collision ↓ Separation ↑ Compactness ↑

Dataset: COD-Cluster17-5K
GNN-MD 13.67 ± 0.06 13.80 ± 0.07 27.53 ± 0.49 0.22 ± 0.11 100.00 ± 0.00
CrystalSDE-VE 15.52 ± 1.48 16.46 ± 0.99 1.20 ± 0.08 27.17 ± 0.86 57.47 ± 7.76
CrystalSDE-VP 18.15 ± 3.02 19.15 ± 4.46 0.84 ± 0.14 53.13 ± 12.89 34.00 ± 30.75
CrystalFlow-VE 14.87 ± 7.07 13.08 ± 4.51 1.37 ± 0.04 35.70 ± 0.73 8.40 ± 4.17
CrystalFlow-VP 15.71 ± 2.69 17.10 ± 1.89 1.38 ± 0.04 35.43 ± 0.88 4.87 ± 1.09
CrystalFlow-LERP 13.59 ± 0.09 13.26 ± 0.09 0.34 ± 0.01 97.38 ± 0.10 100.00 ± 0.00
AssembleFlow (ours) 7.27 ± 0.04 6.13 ± 0.10 0.33 ± 0.00 97.64 ± 0.36 100.00 ± 0.00

Dataset: COD-Cluster17-10K
GNN-MD 13.83 ± 0.06 13.90 ± 0.05 27.88 ± 0.49 0.23 ± 0.11 100.00 ± 0.00
CrystalSDE-VE 17.25 ± 2.46 17.86 ± 1.11 0.99 ± 0.27 32.99 ± 10.72 34.93 ± 14.99
CrystalSDE-VP 22.20 ± 3.29 21.39 ± 1.50 0.53 ± 0.35 52.48 ± 15.44 16.83 ± 18.09
CrystalFlow-VE 16.41 ± 2.64 16.71 ± 2.35 1.42 ± 0.03 33.79 ± 0.51 5.47 ± 0.47
CrystalFlow-VP 19.39 ± 4.37 16.01 ± 3.13 1.44 ± 0.03 33.35 ± 0.55 4.23 ± 0.48
CrystalFlow-LERP 13.54 ± 0.03 13.20 ± 0.03 0.32 ± 0.00 97.32 ± 0.05 100.00 ± 0.00
AssembleFlow (ours) 7.38 ± 0.03 6.21 ± 0.05 0.31 ± 0.00 97.73 ± 0.16 99.93 ± 0.05

Dataset: COD-Cluster17-All
GNN-MD 22.30 ± 12.04 14.51 ± 0.82 24.29 ± 4.58 4.13 ± 5.60 98.77 ± 1.73
CrystalSDE-VE 17.28 ± 0.73 18.92 ± 0.03 0.19 ± 0.18 15.47 ± 12.42 2.51 ± 2.37
CrystalSDE-VP 18.03 ± 4.56 20.02 ± 3.70 0.55 ± 0.19 48.78 ± 1.70 6.88 ± 2.82
CrystalFlow-VE 12.80 ± 1.20 15.09 ± 0.34 1.41 ± 0.01 35.34 ± 0.28 2.90 ± 0.02
CrystalFlow-VP 13.50 ± 0.44 13.28 ± 0.48 1.51 ± 0.02 33.06 ± 1.31 6.61 ± 3.17
CrystalFlow-LERP 13.61 ± 0.00 13.28 ± 0.01 0.34 ± 0.00 97.34 ± 0.02 99.99 ± 0.01
AssembleFlow (ours) 7.37 ± 0.01 6.21 ± 0.01 0.31 ± 0.00 98.15 ± 0.22 99.98 ± 0.00

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. We evaluate our method using the crystallization dataset COD-Cluster17 (Liu et al., 2024).
This COD-Cluster17 contains 133K crystals and is a curated subset derived from the Crystallography
Open Database (COD) database (Grazulis et al., 2009). We consider three versions of COD-Cluster17,
with 5k, 10k, and all data, respectively. Detailed discussion on this dataset is provided in Appendix G.

Figure 4: AssembleFlow achieved marginally lower results
in formation energy.

Evaluation metrics. We evaluate the per-
formance of the compared approaches us-
ing a comprehensive set of metrics tailored
to assess the quality of crystallization pack-
ing. These metrics include: (1) Packing
Matching (PM) (Chisholm & Motherwell,
2005): This metric measures how well the
generated molecular assemblies match the
reference crystal structures in terms of spa-
tial arrangement and packing density. Fol-
lowing (Liu et al., 2024), we employ pack-
ing matching on both the atomic level (PM-atom) and the mass-center-level (PM-center) (Chisholm
& Motherwell, 2005). (2) Atomic Collision: This follows (Cordero et al., 2008). It measures the
percentage of collided atom pairs in the predicted assemblies. Atoms must maintain a minimum
covalent distance governed by the balance of attractive and repulsive forces. (3) Separation: We
extend the metric from (Xie et al., 2022; Yang et al., 2024) to our setting. A cluster of molecules is
valid if the minimum distance between molecules is above 0.5Å (Court et al., 2020). This metric is
referred to as separation to measure the validity to avoid unphysical interactions at the molecular
level. (4) Compactness: We propose this measure by calculating the percentage of simulated clusters
where the maximum atomic pairwise distances are below 100Å. A higher compactness value suggests
a more efficient arrangement, where the intermolecular spaces are minimized, leading to a denser
crystalline structure. (5) DFT Energy: This metric evaluates the stability of crystal structures by
calculating their total electronic energy using Density Functional Theory (DFT) (Kohn & Sham,
1965; Van Der Spoel et al., 2005). Lower DFT energy generally suggests a more stable molecular
configuration. Detailed discussions on these metrics are provided in Appendix G.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Predicted molecular assembly of two randomly picked crystals from the test set (top and bottom
subfigures), each consisting of 17 molecules. The leftmost shows the initial structure, the rightmost represents
the ground truth, and the intermediate steps display predictions at the 20th, 40th, and 50th iteration, respectively.

Baselines. We compare our method with two categories of baselines: state-of-the-art deep generative
models and an established domain-specific simulation tool.

(1) Deep generative baselines. For generative models, we evaluate our approach against GNN-
MD (Liu et al., 2024), CrystalSDE (Liu et al., 2024), CrystalFlow (Liu et al., 2024), and different
variations of them, including CrystalSDE-VE, CrystalSDE-VP, CrystalFlow-VE, CrystalFlow-VP,
and CrystalFlow-LERP. These models employ various mechanisms to handle the challenges of
molecular crystallization. CrystalSDE-VE and CrystalSDE-VP use stochastic differential equations
to model diffusion processes under different parameterizations. CrystalFlow-VE and CrystalFlow-VP
apply flow matching principles for diffusion-based interpolation path, with the latter focusing on
variance-preserving methods. CrystalFlow-LERP utilizes linear interpolation to handle molecular
transformations, striking a balance between computational complexity and performance.

(2) Domain-specific simulation baseline. We also compare our method with PackMol (Martínez et al.,
2009), a well-established simulation tool widely used in the field for molecular packing. PackMol
has long been a go-to solution for chemistry and material experts due to its ability to generate initial
molecular configurations for follow-up simulations, making it an important and relevant baseline for
evaluating molecular assembly tasks. More detail on this baseline is in Appendix F.

4.2 MAIN RESULTS

Table 2: Ablation studies of PackMol and AssembleFlow variants.
PackMol AssembleFlow-Atom AssembleFlow-Molecule

Dataset: COD-Cluster17-5K
PM (atom) ↓ 7.10± 0.05 7.27± 0.04 7.67± 0.10
PM (center) ↓ 6.05± 0.04 6.13± 0.10 6.77± 0.10
Collision ↓ 0.32± 0.00 0.33± 0.00 0.37± 0.01
Separation ↑ 99.56± 0.08 97.64± 0.36 92.95± 0.16

Dataset: COD-Cluster17-10K
PM (atom) ↓ 7.16± 0.01 7.38± 0.03 7.65± 0.17
PM (center) ↓ 6.11± 0.01 6.21± 0.05 6.69± 0.20
Collision ↓ 0.30± 0.00 0.31± 0.00 0.35± 0.01
Separation ↑ 99.45± 0.10 97.73± 0.16 92.67± 0.32

Dataset: COD-Cluster17-All
PM (atom) ↓ 7.15± 0.01 7.37± 0.01 7.40± 0.11
PM (center) ↓ 6.09± 0.01 6.21± 0.01 6.28± 0.13
Collision ↓ 0.30± 0.00 0.31± 0.00 0.33± 0.00
Separation ↑ 99.42± 0.03 98.15± 0.22 95.60± 0.11

The comparison results
with the generative mod-
eling baselines and the
simulation model are
presented in Tables 1 and 2,
respectively.

As shown in Table 1,
AssembleFlow significantly
outperformed all six deep
generative models across al-
most all metrics. For ex-
ample, AssembleFlow im-
proved Packing Matching
by at least 45% compared
to other models. Notably,
most baselines struggled
with rigid packing, leading
to very low Separation scores, except for CrystalFlow-LERP. For example, AssembleFlow achieved a
Separation rate of 97.64%, while GNN-MD only reached 0.22%.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

As shown in Table 2, when compared to the domain-specific tool PackMol, our data-driven
approach demonstrates strong assembly performance relative to this widely used simulation method.
Remarkably, our method achieves 100% validity, matching that of the domain-specific simulation
tool. While this outcome highlights the promise of AssembleFlow, it is expected for PackMol, as
it leverages well-established domain knowledge and heuristic physical rules to determine molecular
orientations. Promisingly, both methods achieved a very low Collision rate. Furthermore, Figure 4
shows the total DFT energy distributions of crystals predicted by AssembleFlow and calculated
by PackMol. The results indicate that the data-driven AssembleFlow performs comparably to the
domain simulation tool PackMol.

4.3 ABLATION STUDIES

Figure 6: Atomic collisions (red circles) in predicted
assemblies.

Velocity function. As discussed in Section 3.5,
AssembleFlow can utilize two types of SE(3)-
equivariant velocity functions. We here evaluate
their performance and, as shown in the last two
columns of Table 2, AssembleFlow-Atom gen-
erally outperforms AssembleFlow-Molecule, as
atomic-level information provides more detailed
geometric insights. Despite this, both variations
of AssembleFlow exhibit strong results, signifi-
cantly surpassing other deep learning baselines.

864

35

PackMol AssembleFlow

Figure 7: Comparison of computational cost in hours
for 10,543 molecule clusters from COD-Cluster17. Pack-
Mol requires around 864 hours, while AssembleFlow
requires 35 hours.

Atomic collision. To show atomic collisions of
the assemblies, we visualize, in Figure 6, two
atomic collisions in assemblies predicted by As-
sembleFlow, where two molecules collide into
each other (indicated by the red circle).

Computational cost. In Figure 7, we present
the computation time needed for Assemble-
Flow and PackMol. Figure 7 reveals that our
data-driven method achieves a 25-fold reduc-
tion in computational costs. This suggests that
our method can be scaled effectively for larger
molecular systems and datasets.

Predicted trajectory. In Figure 5, we visual-
ize two flow trajectories predicted by Assemble-
Flow, showing the processes of how AssembleFlow transformed two clusters of molecules from
weakly corrected structures (left) to strongly corrected structures (right); The leftmost structure is the
input, while the rightmost represents the ground truth.

5 CONCLUSION AND OUTLOOK

We introduced AssembleFlow, a generative model that maintains the inherent rigidity of molecular
structures during assembly. By using inertial frames for positional references at molecular level,
AssembleFlow accurately tracks molecular orientation and motion. It decomposes transformations
into translations and rotations, enforcing rigidity throughout the generation process. This innova-
tive approach enables the model to separately learn velocity functions using linear and spherical
interpolation for accurate rigid molecular assembly.

Empirical results on COD-Cluster17 show that AssembleFlow outperforms six state-of-the-art
deep learning models while maintaining molecular integrity and achieves comparable assembly
performance to an established simulation tool, significantly reducing computational costs.

To the best of our knowledge, AssembleFlow is the first to implement rigid generation in SE(3) space
for molecular assembly. It has the potential to be generalized to more complex and challenging
scenarios, such as simulating the crystallization process of polymorphs with diverse configurations
and structures. We aim to explore these challenges in future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pp. 1–3, 2024. 15

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
arXiv preprint arXiv:2209.15571, 2022. 2, 3, 15

Marloes Arts, Victor Garcia Satorras, Chin-Wei Huang, Daniel Zugner, Marco Federici, Cecilia
Clementi, Frank Noe, Robert Pinsler, and Rianne van den Berg. Two for one: Diffusion models and
force fields for coarse-grained molecular dynamics. Journal of Chemical Theory and Computation,
2023. 15

Michael F. Ashby and David RH Jones. Engineering Materials 2. Butterworth-Heinemann, 4 edition,
2012. 1

Itzhack Y Bar-Itzhack. New method for extracting the quaternion from a rotation matrix. Journal of
guidance, control, and dynamics, 23(6):1085–1087, 2000. 6, 21

Avishek Joey Bose, Tara Akhound-Sadegh, Kilian Fatras, Guillaume Huguet, Jarrid Rector-Brooks,
Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael Bronstein, and Alexander Tong.
Se (3)-stochastic flow matching for protein backbone generation. arXiv preprint arXiv:2310.02391,
2023. 15

Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Ge-
ometric and physical quantities improve e (3) equivariant message passing. arXiv preprint
arXiv:2110.02905, 2021. 3

WH Brooks, WC Guida, and KG Daniel. The significance of chirality in drug design and development.
Current topics in medicinal chemistry, 11(7):760, 2011. 15

Stephen R. Byrn, Robert R. Pfeiffer, and John G. Stowell. Solid-State Chemistry of Drugs. SSCI,
Inc., West Lafayette, IN, 1999. 1

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024. 15

C. Barry Carter and M. Grant Norton. Ceramic Materials: Science and Engineering. Springer, 2
edition, 2013. 1

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018. 3

James Alexander Chisholm and Sam Motherwell. Compack: a program for identifying crystal
structure similarity using distances. Journal of applied crystallography, 38(1):228–231, 2005. 8,
31

Beatriz Cordero, Verónica Gómez, Ana E Platero-Prats, Marc Revés, Jorge Echeverría, Eduard
Cremades, Flavia Barragán, and Santiago Alvarez. Covalent radii revisited. Dalton Transactions,
(21):2832–2838, 2008. 8, 31

Callum J. Court, Batuhan Yildirim, Apoorv Jain, and Jacqueline M. Cole. 3-d inorganic crystal
structure generation and property prediction via representation learning. Journal of Chemical
Information and Modeling, 60(10):4518–4535, 2020. 8, 31

Stefan Doerr, Maciej Majewski, Adrià Pérez, Andreas Kramer, Cecilia Clementi, Frank Noe, Toni
Giorgino, and Gianni De Fabritiis. Torchmd: A deep learning framework for molecular simulations.
Journal of chemical theory and computation, 17(4):2355–2363, 2021. 15

Daniel Flam-Shepherd and Alán Aspuru-Guzik. Language models can generate molecules, materials,
and protein binding sites directly in three dimensions as xyz, cif, and pdb files. arXiv preprint
arXiv:2305.05708, 2023. 15

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xiang Fu, Tian Xie, Nathan J Rebello, Bradley D Olsen, and Tommi Jaakkola. Simulate time-
integrated coarse-grained molecular dynamics with geometric machine learning. arXiv preprint
arXiv:2204.10348, 2022. 15

Octavian Ganea, Lagnajit Pattanaik, Connor Coley, Regina Barzilay, Klavs Jensen, William Green,
and Tommi Jaakkola. Geomol: Torsional geometric generation of molecular 3d conformer
ensembles. Advances in Neural Information Processing Systems, 34:13757–13769, 2021. 15, 16

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017. 28

K. Elsabett Gonsalves, C.-P. Wong, Lisa T. Kuhn, and R. Shukla. Nanotechnology: Molecularly
Designed Materials. American Chemical Society, 2000. 1

Saulius Grazulis, Daniel Chateigner, Robert T. Downs, Alex F. T. Yokochi, Manuel Quirós, Luca
Lutterotti, Elena Manakova, Justinas Butkus, Peter Moeck, and Armel Le Bail. Crystallography
open database – an open-access collection of crystal structures. Journal of Applied Crystallography,
42(4):726–729, 2009. doi: 10.1107/S0021889809016690. 8, 31

Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, and Jianzhu Ma. 3d equivariant
diffusion for target-aware molecule generation and affinity prediction. In The Eleventh International
Conference on Learning Representations, 2022. 15

Jiaqi Guan, Xiangxin Zhou, Yuwei Yang, Yu Bao, Jian Peng, Jianzhu Ma, Qiang Liu, Liang Wang,
and Quanquan Gu. DecompDiff: Diffusion models with decomposed priors for structure-based
drug design. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 11827–11846. PMLR,
23–29 Jul 2023. URL https://proceedings.mlr.press/v202/guan23a.html. 15

Anne Marie Healy, Zelalem Ayenew Worku, Dinesh Kumar, and Atif M. Madi. Pharmaceutical
solvates, hydrates and amorphous forms: A special emphasis on cocrystals. Advanced Drug Deliv-
ery Reviews, 117:25–46, 2017. URL https://api.semanticscholar.org/CorpusID:
38541447. 1

Rolf Hilfiker. Polymorphism in the Pharmaceutical Industry. Wiley-VCH, 2006. 1

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving flow-
based generative models with variational dequantization and architecture design. In International
conference on machine learning, pp. 2722–2730. PMLR, 2019. 17

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020. 15

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3d. In International conference on machine learning, pp. 8867–8887.
PMLR, 2022. 15

Berthold KP Horn. Closed-form solution of absolute orientation using unit quaternions. Josa a, 4(4):
629–642, 1987. 6, 21

Guillaume Huguet, James Vuckovic, Kilian Fatras, Eric Thibodeau-Laufer, Pablo Lemos, Riashat
Islam, Cheng-Hao Liu, Jarrid Rector-Brooks, Tara Akhound-Sadegh, Michael Bronstein, et al.
Sequence-augmented se (3)-flow matching for conditional protein backbone generation. arXiv
preprint arXiv:2405.20313, 2024. 15

Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu. Crystal
structure prediction by joint equivariant diffusion. Advances in Neural Information Processing
Systems, 36, 2024. 15

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021. 1, 15

12

https://proceedings.mlr.press/v202/guan23a.html
https://api.semanticscholar.org/CorpusID:38541447
https://api.semanticscholar.org/CorpusID:38541447

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. Advances in Neural
Information Processing Systems, 36, 2024. 15, 16

Jonas Köhler, Michele Invernizzi, Pim De Haan, and Frank Noé. Rigid body flows for sampling
molecular crystal structures. In International Conference on Machine Learning, pp. 17301–17326.
PMLR, 2023. 15, 16, 17

Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation effects.
Physical Review, 140(4A):A1133–A1138, 1965. doi: 10.1103/PhysRev.140.A1133. 8, 31

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022. 2, 3, 15

Shengchao Liu, Weitao Du, Yanjing Li, Zhuoxinran Li, Zhiling Zheng, Chenru Duan, Zhi-Ming
Ma, Omar M. Yaghi, Anima Anandkumar, Christian Borgs, Jennifer T Chayes, Hongyu Guo, and
Jian Tang. Symmetry-informed geometric representation for molecules, proteins, and crystalline
materials. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2023. URL https://openreview.net/forum?id=ygXSNrIU1p. 3,
15, 27

Shengchao Liu, Divin Yan, Hongyu Guo, and Anima Anandkumar. Equivariant flow match-
ing framework for learning molecular cluster crystallization. In ICML 2024 Workshop on
Geometry-grounded Representation Learning and Generative Modeling, 2024. URL https:
//openreview.net/forum?id=lCVqpQvr4l. 2, 3, 8, 9, 15, 31

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022. 2, 3, 15

Hannes H Loeffler, Jiazhen He, Alessandro Tibo, Jon Paul Janet, Alexey Voronov, Lewis H Mervin,
and Ola Engkvist. Reinvent 4: Modern ai–driven generative molecule design. Journal of Chemin-
formatics, 16(1):20, 2024. 1

Youzhi Luo, Chengkai Liu, and Shuiwang Ji. Towards symmetry-aware generation of periodic
materials. Advances in Neural Information Processing Systems, 36, 2024. 15

Leandro Martínez, Ricardo Andrade, Ernesto G Birgin, and José Mario Martínez. Packmol: A package
for building initial configurations for molecular dynamics simulations. Journal of computational
chemistry, 30(13):2157–2164, 2009. 2, 9

Rebecca U McVicker and Niamh M O’Boyle. Chirality of new drug approvals (2013–2022): trends
and perspectives. Journal of Medicinal Chemistry, 67(4):2305–2320, 2024. 15

Amil Merchant, Simon Batzner, Samuel S. Schoenholz, Muratahan Aykol, Gowoon Cheon, and
Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nature, 2023. doi: 10.1038/
s41586-023-06735-9. 1

David A. Porter, Kenneth E. Easterling, and Mohamed Y. Sherif. Phase Transformations in Metals
and Alloys. CRC Press, third edition, 2009. 1

Bayrammurad Saparov and David B. Mitzi. Organic–inorganic hybrid perovskites: Structural
versatility for functional materials design. Chemical Reviews, 116(7):4558–4596, 2016. 2

Kristof T Schütt, Oliver T Unke, and Michael Gastegger. Equivariant message passing for the
prediction of tensorial properties and molecular spectra. arXiv preprint arXiv:2102.03150, 2021.
7, 27, 28, 30

Tess Smidt, Nathaniel Thomas, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds.
arXiv preprint arXiv:1802.08219, 2018. 3, 15

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019. 15

13

https://openreview.net/forum?id=ygXSNrIU1p
https://openreview.net/forum?id=lCVqpQvr4l
https://openreview.net/forum?id=lCVqpQvr4l

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Alan W Sousa da Silva and Wim F Vranken. Acpype-antechamber python parser interface. BMC
research notes, 5:1–8, 2012. 31

David Van Der Spoel, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E Mark, and Herman JC
Berendsen. Gromacs: fast, flexible, and free. Journal of computational chemistry, 26(16):
1701–1718, 2005. 2, 8, 31

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017. 27, 28

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009. 3

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011. 15

Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi S. Jaakkola. Crystal diffu-
sion variational autoencoder for periodic material generation. In International Conference on Learn-
ing Representations, 2022. URL https://openreview.net/forum?id=03RLpj-tc_.
8, 31

Sherry Yang, Simon Batzner, Ruiqi Gao, Muratahan Aykol, Alexander L. Gaunt, Brendan McMorrow,
Danilo J. Rezende, Dale Schuurmans, Igor Mordatch, and Ekin D. Cubuk. Generative hierarchical
materials search. 2024. URL https://arxiv.org/abs/2409.06762. 8, 31

Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297, 2023a.
15, 16

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation.
arXiv preprint arXiv:2302.02277, 2023b. 15

Min Yu, Weiming Li, Yunru Yu, Yu Zhao, Lizhi Xiao, Volker Lauschke, Yiyu Cheng, Xingcai Zhang,
and Yi Wang. Deep learning large-scale drug discovery and repurposing. Nature Computational
Science, 4:1–15, 08 2024. doi: 10.1038/s43588-024-00679-4. 1

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
Lin, Zhao Xu, Keqiang Yan, et al. Artificial intelligence for science in quantum, atomistic, and
continuum systems. arXiv preprint arXiv:2307.08423, 2023. 3, 15

Yangtian Zhang, Zuobai Zhang, Bozitao Zhong, Sanchit Misra, and Jian Tang. Diffpack: A torsional
diffusion model for autoregressive protein side-chain packing. Advances in Neural Information
Processing Systems, 36, 2024. 15

14

https://openreview.net/forum?id=03RLpj-tc_
https://arxiv.org/abs/2409.06762

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORKS

A.1 GEOMETRIC MODELING

Geometric modeling of molecules has predominantly been applied in 3D Euclidean space (Smidt et al.,
2018). It requires that the representation and generation function over the molecular system remain
equivariant to the rotations and translations, i.e., the SE(3)-equivariance, ensuring that molecular
properties are preserved regardless of orientation or position in space (Smidt et al., 2018; Zhang et al.,
2023; Liu et al., 2023).

We note that reflection (or chirality) is also an important factor in geometric molecule modeling. For
multi-component molecular systems like protein-ligand binding complexes, each individual molecule
can lead to different energies and corresponding properties with distinct chiralities (Brooks et al.,
2011; McVicker & O’Boyle, 2024). Also, as shown in AlphaFold2, the natural molecules should be
sensitive to the chirality (Jumper et al., 2021). Thus, more physically accurate geometric modeling
should be SE(3)-equivariant and reflection-antisymmetric, and we have shown how our proposed
AssembleFlow satisfies this in Section 3.

We also want to highlight another line of research that downplays the importance of symmetry
in molecular modeling, as demonstrated by models like AlphaFold3 (Abramson et al., 2024) and
XYZTransformer (Flam-Shepherd & Aspuru-Guzik, 2023). These models avoid incorporating
geometric symmetries because enforcing group symmetry constraints, such as SE(3)-equivariance,
can limit a model’s expressiveness. In some domain-specific tasks, relaxing these constraints has
resulted in strong performance. However, in the case of crystallization, maintaining molecular
rigidity—a key symmetric property—is crucial. As demonstrated in previous work (Liu et al.,
2024), neglecting these equivariance constraints during molecular crystallization leads to unrealistic
molecular structures.

A.2 GENERATIVE MODELS ON GEOMETRIC DATA

The geometric modeling on the continuous 3D Euclidean space can be naturally merged with deep
generative frameworks, where the goal is to learn the geometric data distribution and generate new
molecules. The deep generative models include but are not limited to denoising score matching (Vin-
cent, 2011; Song & Ermon, 2019), denoising diffusion probabilistic model (Ho et al., 2020), and flow
matching (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2022). Such geometric
generative models have been widely adopted for molecule and material generation (Hoogeboom
et al., 2022; Jiao et al., 2024; Luo et al., 2024), protein design and protein folding (Zhang et al.,
2024; Campbell et al., 2024), structure-based drug design (Guan et al., 2023; 2022), and molecular
dynamics simulation (Doerr et al., 2021; Arts et al., 2023; Fu et al., 2022).

A.3 GENERATIVE MODELS ON RIGID GEOMETRIC DATA

Though our work is the first to apply rigid generation in SE(3) space for molecular pack-
ing/crystallization, similar ideas have been carried out for protein backbone generation (Jumper
et al., 2021; Yim et al., 2023a;b; Bose et al., 2023; Huguet et al., 2024) and relevant works (Köhler
et al., 2023; Ganea et al., 2021; Klein et al., 2024)) In the protein backbone generation and folding
setting, there exists a well-defined local frame structure for each residue: the backbone atom pairs
(C −N) and (Cα − C) form two bases, and their cross product leads to the third basis, which is a
normal vector perpendicular to the two bases. Thus, the rotation matrix can be easily constructed
based on such a local frame structure. Such a modeling paradigm is appealing for macromolecules
like proteins to reduce the computational cost.

In this field, AlphaFold2 adopts this local-frame idea to model the folding process (Jumper et al.,
2021), while FrameDiff applies this idea and denoising diffusion model for protein structure gen-
eration (Yim et al., 2023b). Similarly, FrameFlow and FoldFlow integrate local frames with flow
matching to learn the protein dynamics (Yim et al., 2023a; Bose et al., 2023; Huguet et al., 2024).
However, this approach cannot be easily extended to crystallization tasks, as constructing reliable lo-
cal frames to establish positional references for assembling molecules is not straightforward. Instead,
we innovatively introduce inertial frames to achieve this goal.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We have added related works above: (Köhler et al., 2023; Ganea et al., 2021; Klein et al., 2024; Yim
et al., 2023a).

A.4 COMPARISON BETWEEN SPHERICAL INTERPOLATION AND EXPONENTIAL MAP
INTERPOLATION ON SO(3)

In addition to spherical interpolation, we could also consider the exponential map interpolation, as
used in (Riemannian FM, FrameFlow, and FoldFlow). In this section, we would like to compare
the theoretical differences. We further conduct experiments for empirical comparison, and please
check Appendix H.2 for more details.

We mark exponential map interpolation as (EMLERP), and it is defined as:

EMLERP(r0, r1, t) = expr0
(t logr0

(r1)). (15)

We then discuss how FoldFlow and FoldFlow2 utilized this equation since they are the latest work
along this line of using EMLERP. By utilizing the tangent space of the manifold and axis-angle
representation, existing works (FoldFlow, FoldFlow2) have been using an approximated closed-form
solution for the derivative:

d

dt
EMLERP(r0, r1, t) = logrt

r0
t
. (16)

Thus, their objective function on SO(3) is:

LSO(3) = ∥ d

dt
EMLERP(r0, r1, t)− vθ,SO(3)(xt, rt, t)∥2

= ∥ logrt

r0
t

− vθ,SO(3)(xt, rt, t)∥2.
(17)

To sum up, these two methods do not have a clear methodological advantage over each other; however,
the EMLERP considers more approximation tricks in implementation . We summarize the main
differences in Table 3.

Table 3: Comparison between the interpolation paths in AssembleFlow and FrameFlow.
AssembleFlow (ours) FoldFlow

Reference Frame Eigenvectors of inertial frames Gram-Schmidt on N -C-Cα

SO(3) Interpolation Spherical Interpolation Exponential Map Interpolation
Equation sin((1−t)ω)q0+sin(tω)q1

sin(ω) expr0
(t logr0

(r1))

Derivative Equation (9) Equation (16)
Rotation Representation (for Velocity / Objective Function) Quaternion Rotation Matrix or Axis-angle
Reparameterization Yes No

A.5 COMPARISON BETWEEN OUR WORK AND RIGID STRUCTURE SAMPLING (KÖHLER
ET AL., 2023)

We would like to emphasize that our work differs from (Köhler et al., 2023) in the following
fundamental aspects. Noticeably, we would like to emphasize that our work can be seen as an
extension of (Köhler et al., 2023), yet addressing more practical and challenging problems, including
rigid modeling on arbitrary molecules, SE(3)-equivariant modeling, and interpolation modeling.

1. Experiment and Data Difference: (Köhler et al., 2023) targets at modeling the transition,
e.g., water molecules at different temperatures (no code or comments related to methane
rigid modeling were found in the GitHub repository). The MD simulation can provide
samples at the stable or equilibrium status. Our work models the transition from unstable to
stable conformations.

2. Dynamic Transition Modeling vs. Stable Structure Sampling: Unlike (Köhler et al.,
2023) which focuses on stable structure sampling, our work models the dynamic transition
process from weakly correlated (unstable) structures to strongly correlated (stable) structures.
Notably, dynamic transition modeling toward stability is identified as a nontrivial next step

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

in the ICML work (Köhler et al., 2023), which states ’... a flow model for the positions that
can handle ... phase transitions’. We also want to emphasize that the transition of a molecular
cluster from weakly correlated (unstable) structures to strongly correlated (stable) structures
is a special case of the general dynamics. The limitation here is the data insufficiency (lack
of intermediate snapshots), not modeling.

3. Objective Difference: (Köhler et al., 2023) first introduces molecular equilibrium sampling
with Boltzmann distribution in Eq 1,2. But this is not the goal, (Köhler et al., 2023) changes
to estimating log-ratio: ∇F = − log(Zα1/Zα0) between two configurations in Eq 3. This
measure estimates the energy difference and tells which state is more stable. (Köhler et al.,
2023) says using trackable priors like Gaussian can be biased, thus it takes the insight
from previous work, and targets solving the problems Eq 3 and 7 (learned free energy
perturbation). (Notice that other equations Eq 2,4,5 are preliminaries, not directly related to
the core method in this work.) This reveals another theoretical difference between this work
and our work: (Köhler et al., 2023) is estimating the upper bound of log-ratio between two
stable states (with MD simulations), and ours is directly modeling p(X1|X0) from unstable
to stable transition.

4. Use of Inertial Frames for Rigid Modeling: (Köhler et al., 2023) specifically models the
frame for H-O-H (codes here) (no code or comments related to methane rigid modeling
were found in the GitHub repository). In contrast, our approach is more generalizable, as
the inertial frame can serve as a reference frame for any molecule. Thus, (Köhler et al.,
2023) cannot be directly applied to our dataset, as it is limited to few types of constructed
frames, and our work can be viewed as an extension of (Köhler et al., 2023) to a more
general setting.

5. SE(3)-equivariant Symmetry Modeling: (Köhler et al., 2023) states that it has a limitation
on not ’exploiting the SE(3) symmetry of jointly moving all rigid bodies’. We solve this
issue by introducing the SE(3)-equivariant modeling from two granularities.

6. Limitations of Coupling Layers in Normalizing Flow: (Köhler et al., 2023) does modeling
with an extra bijectivity constraint in coupling layers, limiting the model capacity (Ho et al.,
2019). Flow matching enables flexible velocity functions under the interpolation framework.

We list the comparison in the table below:

Table 4: Comparison between (Köhler et al., 2023) and AssembleFlow.
Paper (Köhler et al., 2023) AssembleFlow (ours)

Experiments Transition between two stable conformations Transition from unstable to stable

Data Water and methane (experiment missing on
GitHub repo) molecules

COD organic molecules

Frame construction H-O-H frame specific for water molecule (No code
or comments related to methane rigid modeling
were found in the GitHub repository)

Inertial frame for any organic molecule

Data Water molecules COD organic molecules

Objective Function Upper bound of log-ratio between two stable con-
formations for energy difference

Direct estimation of conditional density from un-
stable to stable

Modeling SE(3) symmetry in moving
rigid bodies

No Yes

Avoid bijectivity constraint in coupling
layers

No Yes

17

https://github.com/noegroup/rigid-flows/blob/main/rigid_flows/rigid.py#L13-L29

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B ROTATION REPRESENTATION

In this section, we will be mainly discussing three types of rotation representations. It is important to
note that “representation” here refers to the data structure commonly used in the machine learning
community, rather than the concept of a representation space.

In Appendix C.1, we will explain how to use inertials to represent the rigid structures of molecules in
a cluster. With such a rigid representation, we can then decompose SE(3) transformation into a tuple
of SO(3) and R3 transformations.

A natural way to represent the SO(3) transformation is by using the rotation matrix, as will be
introduced in Appendix B.1. However the rotation matrix is not flexible and it must satisfy specific
mathematical properties to make sure it is a valid rotation in space, so we need a more flexible
and efficient representation. To this end, we would like to introduce axis-angle representation in
Appendix B.2 and quaternion representation in Appendix B.3. The axis-angle representation and
quaternion representation are closely related, and their transformation is discussed in Appendix B.4.
Last but not least, the transformation between the rotation matrix and quaternion is in Appendix B.5,
and the transformation between axis-angle representation and rotation matrix representation is in
Appendix B.6. An overview of the rotation representation and the corresponding transformations are
listed in Figure 8.

Figure 8: Transformation between rotation matrix, quaternion, and axis-angle representation.

B.1 ROTATION REPRESENTATION WITH ROTATION MATRIX

Definition Rotation matrix is R ∈ R3×3, satisfying two conditions:

1. Orthogonality: The rows and columns of R are orthonormal vectors. RTR = RRT = I .
2. Determinant: The determinant of R must be 1. det(R) = 1.

The set of all orthogonal matrices of size 3 with determinant 1 is a representation of a group known
as the special orthogonal group SO(3). To generate a rotation matrix in SO(3), certain properties
for the rotation matrix must be satisfied, and such constrained generation is challenging. Thus, an
alternative way of representing the rotation matrix is preferred. To this end, we consider axis-angle
representation, as described below.

Rotation with Rotation Matrix To rotation a point, p = (x, y, z), in the 3D Euclidean space, the
rotation operation is: [

x′

y′

z′

]
= R

[
x
y
z

]
=

[
R11 R12 R13

R21 R22 R23

R31 R32 R33

][
x
y
z

]
. (18)

Properties

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• If we have multiple rotation matrices, and we want to yield a single matrix that combines
these rotations into one, then we have two options:

– Extrinsic rotations. All rotations refer to a fixed and global coordinate system, and the
rotation matrices are ordered from the right to the left. If we apply rotations R1, R2,
and R3, then it is written as R = R3R2R1.

– Intrinsic rotations. A rotation refers to the last rotated coordinate system, and the
rotation matrices are ordered from the left to the right. If we apply rotations R1, R2,
and R3, then it is written as R = R1R2R3.

B.2 ROTATION REPRESENTATION WITH AXIS-ANGLE REPRESENTATION

The axis-angle represents the rotation by its angle θ and the rotation axis u. For example, a rotation
of 180 degrees around the Y-Axis would be represented as θ = 180, u = (0, 1, 0). The representation
is very intuitive, but for actually applying the rotation, another representation is required, such as a
quaternion or rotation matrix.

Definition The axis-angle representation of a rotation is defined by two components:

1. Rotation axis: a unit vector u = (ux, uy, uz) that specifies the direction of rotation, ∥u∥ =
1.

2. A scalar θ specifies the angle of rotation around the rotation axis.

For annotation, an axis-angle rotation can thus be presented by four numbers as (θ, x̂, ŷ, ẑ).

B.3 ROTATION REPRESENTATION WITH QUATERNION REPRESENTATION

Quaternion represents a rotation by a 4D vector and it is a more concise representation than a rotation
matrix. It requires more math and is less intuitive, but is a much more powerful representation.
Quaternion representation has been widely used in rigid motion modeling, robotics modeling, and
quantum mechanics (e.g., the spin of an electron and the polarization of a photon). In this work, we
are focusing on the first case, rigid motion modeling.

Definition A quanternion q is:

q = w + xi+ yj + zk = (w,v), (19)

where w, x, y, z are real numbers, and i, j, k are the fundamental quaternion units. The w is the real
part, and v = (x, y, z) is a 3D vector representing the imaginary part.

Multipliation of basis elements The multiplication for the basis elements i, j, k is defined below:

i2 = j2 = k2 = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j

ijk = −1.

(20)

Quanternion multiplication: Hamilton product This can give us the quaternion multiplication,
a.k.a., Hamilton product. For two quaternions r = (r0, r1, r2, r3) and s = (s0, s1, s2, s3):

t = rs, (21)

where
t0 = r0s0 − r1s1 − r2s2 − r3s3

t1 = r0s1 + r1s0 − r2s3 + r3s2

t2 = r0s2 + r1s3 + r2s0 − r3s1
t3 = r0s3 − r1s2 + r2s1 + r3s0.

(22)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Point rotation with quaternion We rotate a point v = (vx, vy, vz) by the quaternion q =
(w, x, y, z) using the following three steps:

1. Transform v to quaternion p = (0, vx, vy, vz).
2. Construct the conjugate quaternion q∗ = (w,−x,−y,−z).
3. There are two types of rotation operations:

(a) Active rotation: p′ = q∗pq, when the point is rotated w.r.t. the coordinate system.
(b) Passive rotation: p′ = qpq∗, when the coordinate system is rotated w.r.t. the point.

Notice that the two rotations are opposite from each other. In our case, we use the passive
rotation.

4. The resulting vector v′ is extracted from the imaginary part of p′.

Spherical Interpolation (SLPER) for Quaternion Interpolation Quaternions are often pre-
ferred for interpolating between rotations because they offer smoother interpolation than axis-angle
representation. The spherical interpolation defines the geodesic over the rotation group.

SLERP(q0, q1, t) =
sin((1− t)ω)q0 + sin(tω)q1

sin(ω)
, (23)

where ω is the angle between q0 and q1.

Properties

• A quaternion is a unit quaternion if ∥q∥ = w2 + x2 + y2 + z2 = 1.
• All rotation quaternions must be unit quaternions.
• A rotation of qa followed by a rotation of qb can be combined into a single rotation:
qc = qbqa. Note that order matters.

• The conjugate of a quaternion is q∗ = (w,−x,−y,−z).
• The inverse of a rotation quaternion is q−1 = q∗. Then we can see that qq−1 = qq∗ =
(1, 0, 0, 0).

• Quaternion multiplication is associative: abc = a(bc).
• Quaternion multiplication is not commutative: ab ̸= ba.

B.4 TRANSFORMATION BETWEEN AXIS-ANGLE AND QUATERNION

Axis-angle representation to quaternion representation Axis-angle representation is u =
(ux, uy, uz) equipped with a rotation angle θ, and the rotation quaternion is unitary, i.e., w2 +
x2 + y2 + z2 = 1. The quaternion is thus:

q = cos

(
θ

2

)
+ sin

(
θ

2

)
(uxi+ uyj + uzk), (24)

or equivalently in the vector form:

q = (cos

(
θ

2

)
, sin

(
θ

2

)
ux, sin

(
θ

2

)
uy, sin

(
θ

2

)
uz). (25)

Quaternion representation to axis-angle representation Quaternion is q = (w, x, y, z), and to
convert it to axis-angle representation:

1. Compute the angle θ = 2 cos−1(w).
2. Compute the axis u:

u =
(x, y, z)√

x2 + y2 + z2
=

(x, y, z)

sin θ
2

. (26)

B.5 TRANSFORMATION BETWEEN QUATERNION AND ROTATION

Quaternion to rotation matrix Given a quaternion q = (w, x, y, z), the corresponding rotation
matrix is

R =

1− 2y2 − 2z2 2xy − 2wz 2xz + 2wy
2xy + 2wz 1− 2x2 − 2z2 2yz − 2wx
2xz − 2wy 2yz + 2wx 1− 2x2 − 2y2

 (27)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Rotation matrix to rotation quaternion Given a rotation matrix R =

[
R11 R12 R13

R21 R22 R23

R31 R32 R33

]
, then

we first calculate the magnitude of four quaternion components as below:

|q0| =
√

1 +R11 +R22 +R33

4

|q1| =
√

1 +R11 −R22 −R33

4

|q2| =
√

1−R11 +R22 −R33

4

|q3| =
√

1−R11 −R22 +R33

4

(28)

To find the signs of the four elements, we can find the largest magnitude:

• If |q0| is the largest, then

w = q0, x =
R32 −R23

4w
, y =

R13 −R31

4w
, z =

R21 −R12

4w
. (29)

• If |q1| is the largest, then

x = q1, w =
R32 −R23

4x
, y =

R12 +R21

4x
, z =

R13 +R31

4x
. (30)

• If |q2| is the largest, then

y = q2, w =
R13 −R31

4y
, x =

R12 +R21

4y
, z =

R23 +R32

4y
. (31)

• If |q3| is the largest, then

z = q3, w =
R21 −R12

4z
, x =

R13 +R31

4z
, y =

R23 +R32

4z
. (32)

The sign is ambiguous because any rotation has two possible quaternion representations. If one is
known, the other one can be found by taking the negative of all four terms.

Besides, there exist other solutions, for instance, extracting quaternion from rotation matrix using
eigendecomposition (Horn, 1987; Bar-Itzhack, 2000). We first construct a matrix K with:

K =
1

3

R11 +R22 +R33 R32 −R23 R13 −R31 R21 −R12

R32 −R23 R11 −R22 −R33 R12 +R21 R13 +R31

R13 −R31 R12 +R21 R22 −R11 −R33 R23 +R32

R21 −R12 R13 +R31 R23 +R32 R33 −R11 −R22

 . (33)

Then we perform eigendecomposition K = V ΛV T , where Λ is a diagonal matrix with eigenvalues
and V is the matrix with eigenvectors as columns. Finally, we pick up the eigenvector w.r.t. the
largest eigenvalue, and this eigenvector is the unit quaternion.

B.6 TRANSFORMATION BETWEEN AXIS-ANGLE REPRESENTATION AND ROTATION MATRIX

Axis-angle representation to rotation matrix Construct the skew-symmetric matrix:

K =

[
0 −uz uy

uz 0 −ux

−uy ux 0

]
(34)

According to the Rodrigue’s rotation formula, we have:

R = I + sin(θ)K + (1− cos(θ))K2. (35)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Rotation matrix to axis-angle representation The rotation angle can be computed using the trace
of R, i.e.,

θ = cos−1
(Tr(R)− 1

2

)
, (36)

where Tr(R) is the trace, as Tr(R) = R11 +R22 +R33.

Then we calculate the rotation direction or rotation axis u = (ux, uy, uz), as

ux =
R32 −R23

2 sin θ
, uy =

R13 −R31

2 sin θ
, uz =

R21 −R12

2 sin θ
. (37)

Notice that when θ = 0, there is no definition of rotation axis and the whole rotation matrix R is
unitary. When θ = π, because sin θ = 0, then we need other methods (e.g., eigendecomposition) to
determine the rotation axis.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C INERTIAL FRAME FOR RIGID BODY

C.1 RIGID REPRESENTATION OF MOLECULE

We employ the following four sequential steps to derive the reference frames that construct the
rotation matrix from N atomic positions r:

• Calculate the mass center: c = 1
N

∑
i ri.

• Adjust position relative to the center ri = ri − c.
• Compute the inertia tensor Î =

∑
i ∥ri∥2I − rir

T
i , where I is the unit diagonal matrix.

• Obtain the principal axes of inertia by applying eigen-decomposition on Î . We have
Î = QΛQT , where Q is the orthogonal matrix whose columns are the eigenvectors of Î ,
and Λ is the diagonal matrix whose elements are the eigenvalues λi of Î , representing the
principal moments of inertial along the principal axes.

C.2 ORTHOGONAL MATRIX

In linear algebra, an orthogonal matrix or orthonormal matrix is a square matrix whose columns and
rows are orthonormal vectors. This can be written as

QTQ = QQT = I. (38)

This leads to the equivalent characterization: a matrix Q is orthogonal if its transpose is equal to its
inverse:

QT = Q−1. (39)

Notice that when discussing matrices, the two terms (orthogonal and orthonormal) can be used
interchangeably.

If Q is a square matrix, then the conditions RRT = I and RTR = I are equivalent. Proof sketch:
RTR = I and RTRR−1 = R−1, so RT = R−1. This can give us RRT = I .

C.3 ROTATION MATRIX FROM RIGID BODY

From Appendix C.1, we can construct the inertial tensors. Then we employ eigenvalue decomposition
on the inertial tensor. The normalized eigenvectors v1,v2,v3 form an orthonormal basis, which can
be used to construct the rotation matrix, i.e.,

R = [v1 v2 v3] . (40)

Eigendecomposition of Inertial Tensors For inertial tensor I , the decomposition is: with Ivi =
λivi, where λi are eigenvalues and vi ∈ R3×1 are eigenvectors. Thus, we can have

Iv = λv

IR = RΛ

I = RΛR−1,

(41)

where Λ =

[
λ0 0 0
0 λ1 0
0 0 λ2

]
. Because the inertial tensors are symmetric matrices, we have that

matrices R are orthonormal matrices.

C.4 EXPLORATIONS ON OTHER REFERENCE FRAME OPTION

One critical question is in addition to the Inertial frame, do we have other options for modeling the
rigidity? One simple solution is to directly apply the eigendecomposition as principal component
analysis (PCA) on the point clouds of centered molecules.

First, we would like to clarify that there are two roles and one important property of the inertial frame
and its eigenvectors:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

• Role 1: The three bases in inertial frames act as a reference or a canonical pose.
• Role 2: The three bases enable modeling the velocity function in SO3 space.
• What’s more important, we expect the three bases to be numerically stable.

Then getting back to the question, though both can help build up the reference frame or canonical
pose, there are certain aspects we would like to emphasize when comparing PCA and Inertial frames.

• Canonical pose: The key question is defining a canonical pose. If we just do PCA on the
point clouds, this cannot guarantee the group symmetry in SE(3). However, if we remove
the center point, then the group symmetry can be guaranteed; then we can use SVD to get
the three principal components. Till this step, one can find this is somewhat similar to the
inertial frame construction (Sec 3.1).

• Difference between PCA and Inertial Frame as reference frames: Though both can be
used for building up the reference frame or canonical poses, SVD (for PCA) on the set of
point clouds N × 3 (N is the number of atoms) can be less numerically unstable, while
eigendecomposition Inertial Frame 3× 3 can be more numerically stable. We conduct an
experiment to verify this.

– Experiment setup: Suppose we have weakly-correlated structures X0 and strongly-
correlated structures X1, and we find the corresponding bases using either eigendecom-
position on centered X or inertial frame I . The two bases are marked as B0 ∈ R3×3

and B1 ∈ R3×3.
– Objective: We can obtain the rotation matrix with RT = BT

0 B1, and then we can rotate
the whole molecular system as X̃1 = X0R

T , and we are measuring the reconstruction
errors as MSE(X1 − X̃1). We mark the MSE using inertial frame and PCA as δInertial
and δPCA, respectively. If δInertial < δPCA, then we can conclude that using the inertial
frame is more stable than using PCA, and vice versa. Notice that since the MSE
reconstruction is meaningless when it is too small, so we only compare these two
frames when at least one of them has reconstruction greater than or equal to a threshold
θ.

– Results: The comparison results are in Table 5, and we can observe that in general,
using the inertial frame is more stable than PCA. We are listing multiple reconstruction
threshold θ in Table 5, and we are using θ = 1e− 3 in the main article.

Table 5: Comparison of using inertial frame and PCA for reconstruction (%).

θ 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8

P (δInertial < δPCA) 0.434 0.884 1.338 1.794 2.254 2.727
P (δInertial > δPCA) 0.371 0.756 1.147 1.539 1.934 2.345

C.5 KABSCH ALGORITHM

Kabsch algorithm is one way to compute the optimal rotation matrix that minimizes the root-mean-
square deviation (RMSD) between two sets of points (atoms in our case). However, it is guaranteed in
the COD-Cluster17 dataset that the molecules in weakly correlated structures can rotate to molecules
in strongly correlated structures; in other words, the RMSD can be approximately 0 if we use the
Kabsch algorithm, which is equivalent to calculating the rotation matrix directly after we fix the
poses. We have shown how to calculate the rotation matrix in the experiment above.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D PROOF OF THEOREM 1

Proof. For three vectors, we can easily find a counter-example, as illustrated in Figure 3 (a, b).
Figure 3 (a, b) describes two cases where we have the same initial frame, and we can rotate it to two
different final frames with two rotation matrices, yet the righthandness still matches. We can easily
see that there are four options of rotation matrices in this case, and we cannot uniquely determine the
final inertial frame in this case.

More rigorously, let us first assume that there exists a rotation transformation R that can transform
the initial coordinate system Qi to the final coordinate system Qf , as:

[
Qf,0

Qf,1

Qf,2

]T

= R ·

[
Qi,0

Qi,1

Qi,2

]T

(42)

First, as Lemma 1, we should change either zero or two directions for direction alignment.

Then without loss of generality, we can assume the two directions to be the last two axes. Thus, we
can obtain a rotation matrix R′ such that R′ is rotating R along vector Qf,0 with 180 degrees. We
can represent R′ using Rodrigue’s rotation formula, as R′ = (2Qf,0Q

T
f,0 − I)R. Thus, we can have:

R′ ·

[
Qi,0

Qi,1

Qi,2

]T

= (2Qf,0Q
T
f,0 − I)

[
Qf,0

Qf,1

Qf,2

]T

=

[
Qf,0

−Qf,1

−Qf,2

]T

(43)

This is essentially saying starting from one initial frame, we can have multiple matched final frames.
Thus, using only three vectors cannot uniquely determine the direction matching. We provide two
examples in Figure 3 (a, b).

For the four vectors, we introduce an extra atom into the inertial frame system, and such an extra atom
point is nonplanar to the three base axes. Then the problem becomes: starting from an initial frame
and an extra point, can we find multiple rotation matrices such that the final frames have reflected
directions? To be more rigorous, let us have the following formulation.

First, let us assume we have this rotation matrix:

Qf,0

Qf,1

Qf,2

v


T

= R ·

Qi,0

Qi,1

Qi,2

v


T

(44)

As discussed above, we need to guarantee the right-handedness property, thus, without loss generality,
here we also assume the last two axes are reflected. The question turns to: does it exit another rotation
matrix R′, such that:

 Qf,0

−Qf,1

−Qf,2

v


T

= R′ ·

Qi,0

Qi,1

Qi,2

v


T

(45)

We now use contradiction. Since we still have the two axes rotated 180 degrees around the first axes,
Qf,0, so R′ = (2Qf,0Q

T
f,0 − I)R. Then given the two conditions vT = RvT and vT = R′vT , we

have (2Qf,0Q
T
f,0 − I)vT = vT .

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

If we let Qf,0 = [k1, k2, k3] and v = [v1, v2, v3], then we have

(2Qf,0Q
T
f,0 − I)vT = vT[

k1k1 k1k2 k1k3
k1k2 k2k2 k2k3
k2k3 k2k3 k3k3

][
v1
v2
v3

]
=

[
v1
v2
v3

]
[
k1(k1v1 + k2v2 + k3v3)
k2(k1v1 + k2v2 + k3v3)
k3(k1v1 + k2v2 + k3v3)

]
=

[
v1
v2
v3

]

(k1v1 + k2v2 + k3v3)

[
k1
k2
k3

]
=

[
v1
v2
v3

]
.

(46)

After calculation, we can obtain that Qf,0 = cv, where c is a coefficient. However, as we claimed in
the condition, v does not lie in the same line as Qf,0, thus, there does not exist such another rotation
matrix R′ ̸= R satisfying Equation (45). We also provide two examples in Figure 3 (c, d).

By contradiction, we can tell that there is only one unique rotation mapping from the initial inertial
frame to the final inertial frame.

To sum up, three points cannot form a rigid structure in Euclidean space, thus there can exist multiple
reflection transformations, leading to opposite inertial frames. Four points can form a rigid structure,
thus there exists only one reflection transformation.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

E PROBLEM FORMULATION AND MORE DETAILS OF ASSEMBLEFLOW

E.1 PROBLEM FORMULATION

We would like to emphasize that previous works aim at atomic level modeling, while our proposed
AssembleFlow focuses on molecular level modeling. Meanwhile, both models need to satisfy the
SE(3)-equivariance, as detailed below.

Atomic Level Modeling Existing deep learning frameworks have been using atomic level modeling.
For each atom r, the inference step is:

rt+1 = rt + xθ,t,

s.t. xθ,t is SE(3)-equivariant.
(47)

Thus, we can observe that such a problem formulation cannot guarantee the rigidity of each molecule
during the crystallization process.

Molecular Level Modeling In our proposed AssembleFlow, it learns the translation and rotation at
the molecule level. For each atom r, the inference step is:

rt+1 = Rθ,t(rt + xθ,t),

s.t. xθ,t and Rθ,t are SE(3)-equivariant.
(48)

The xθ,t and Rθ,t are molecular level modeling. Notice that this also holds after we take the
reparameterization, as discussed in Section 3.4. In Appendix E.2, we will explore how to define the
SE(3)-equivariant models on top of that.

E.2 SE(3)-EQUIVARIANT VELOCITY FUNCTION

We consider two types of SE(3)-equivariant models as the velocity function. As shown in Figure 9,
the inputs are the same for learning: the positions at the initial step and the final step, respectively.
We take the position of the mass center for each molecule in the cluster to obtain the translation in R3

(xi and xf), and we take the first principal axes of inertial frames to obtain the reference coordinate
system for rotation in SO(3) (qi and qf with alignment). Then we adopt Equations (6) and (7) for
the interpolation on SO(3) and R3 group respectively, which gives us translation xt and rotation qt
at interpolation time t ∈ [0, 1].

Recall that the data structure considered here is the cluster of molecules, thus it is natural to split the
modeling into intra-molecule and inter-molecule modeling, as introduced below.

Intra-molecule Modeling. For each molecule in the cluster, we adopt the SE(3)-equivariant
PaiNN (Schütt et al., 2021) to obtain the representation for each atom. Such an atomic representation
can encode the inherent geometric structural information of individual molecules, which can be
passed to inter-molecule modeling in the next step.

Inter-molecule Modeling. This step aims to model the inter-molecule interactions during the
molecular crystallization process based on the intra-molecule representation. We can have two
options for SE(3)-equivariant inter-molecule modeling: (1) to project xt and qt back to obtain the
atom-wise position and do modeling, as in Figure 9(a), or (2) to directly perform molecular level
modeling on molecular-level translation xt and rotation qt, as in Figure 9(b).

• Atomic level modeling. This means we build up the SE(3)-equivariant models on top of
atom positions rt at time t, and the outputs are the rotation and translation for step t+ 1 or
step T (if we use reparameterization).

– Obtain intra-molecule representation ha using PaiNN (Schütt et al., 2021).
– Obtain time embedding ht with positional encoding (Vaswani et al., 2017).
– Build up the vector frame basis (Liu et al., 2023) for each atom Fa, based on its

neighborhoods.
– Then we update the atomic representation ha as the summation of ha and ht.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

(a) Atomic level inter-molecule modeling. (b) Molecular level inter-molecule modeling.

Figure 9: Illustration of two types of SE(3)-equivariant inter-molecule velocity functions.

– Apply message passing (Gilmer et al., 2017) to exchange the information between each
atom and its neighborhood on top of the atomic representation ha and vector frame
basis Fa.

– The outputs include the atomic scalar representation ha,s ∈ RN×d and atomic vector
representation ha,v ∈ RN×3×d, where N is the total number of atoms in the cluster.

– Then we conduct the aggregation to obtain the molecular level predicted rotation
velocity q̂θ ∈ RM×3 and predicted translation velocity x̂θ ∈ RM×3, where M is the
number of molecules in the cluster.

– This holds similarly if we are going to predict the final rotation q̂1,θ and final translation
vector x̂1,θ when using the reparameterization.

• Molecular level modeling. This means we build up the SE(3)-equivariant models on top of
xt and qt at time t, and the outputs are the rotation and translation for step t+ 1 or step T
(if we are using reparameterization).

– Obtain intra-molecule representation ha using PaiNN (Schütt et al., 2021).
– Obtain time embedding ht with positional encoding (Vaswani et al., 2017).
– Then we update the atomic representation ha as the summation of ha and ht.
– Aggregate the atomic representation to get the molecular representation hm.
– Apply the message passing (Gilmer et al., 2017) to exchange the information between

each molecule and other molecules in the cluster, where the interactions are treated as
the forces in the inter-molecule level in the cluster.

– The outputs include a molecular level predicted rotation velocity q̂θ ∈ RM×3 and
predicted translation velocity x̂θ ∈ RM×3, where M is the number of molecules in the
cluster.

– This holds similarly if we are going to predict the final rotation q̂1,θ and final translation
vector x̂1,θ when using the reparameterization.

Notice that for the predicted quaternion q̂θ, we only predict the imaginary part. We then concat the
real part as 1, followed by a normalization to make it a rotation quaternion.

E.3 ALGORITHM

In this section, we provide the pseudocodes for AssembleFlow. Following Section 3, we illustrate
the reparameterized version here. The training and inference algorithms are in Algorithms 1 and 2,
respectively. We would also like to emphasize the following prior steps: (1) We first construct the
inertial frames as discussed in the main article. (2) Then we construct the coordinate system (in
rotation matrix) and conduct the alignment between the initial and final frames. (3) Last but not least,
we transform the coordinate system from rotation matrix to quaternion as discussed in Appendix B.5.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Algorithm 1 Learning of AssembleFlow.
1: Inputs: For N atoms in M molecules, we have atomic level initial position r0 ∈ RN×3,

molecular level initial rotation quaternion qM×4
0 and translation x0 ∈ RM×3, atomic level

final position r ∈ RN×3, molecular level final rotation quaternion q1 ∈ RM×4 and translation
x1 ∈ RM×3, timestep T ∈ R, epoch E ∈ R, coefficients α0, α1 ∈ R.

2: for epoch e ∈ [1, E] do
3: Sample t ∈ [1, T].
4: Conduct LERP to obtain translation xt at time t, following Equation (7).
5: Perform SLERP to obtain quaternion qt at time t, following Equation (6).
6: Predict the final quaternion q̂1 = q̂1,θ(xt, qt, t) and translation x̂1 = x̂1,θ(xt, qt, t) using

SE(3)-equivariant modeling as discussed in Appendix E.2.
7: Minimize loss L = α0LR3,reparameter + α1LSO(3),reparameter, as defined in Equation (13).
8: end for

Algorithm 2 Inference of AssembleFlow.
1: Inputs: For N atoms in M molecules, we have atomic level initial position r0 ∈ RN×3,

molecular level initial rotation quaternion qM×4
0 and translation x0 ∈ RM×3, timestep T ∈

R, learned SE(3)-equivariant models final rotation quaternion q̂1,θ(xt, qt, t) and translation
x̂1,θ(xt, qt, t).

2: for timestep t ∈ [1, T] do
3: Predict the final quaternion q̂1 = q̂1,θ(xt, qt, t) and translation x̂1 = x̂1,θ(xt, qt, t) using

SE(3)-equivariant modeling as discussed in Appendix E.2.
4: Calculate the next-step quaternion q̂t+1 and translation x̂t+1 as Equation (14).
5: Move the cluster of molecules w.r.t. q̂t+1 and x̂t+1.
6: Obtain the corresponding atomic positions rt+1 at time t+ 1, following Equation (48).
7: end for
8: The final predicted crystal structure is r̂T .

E.4 HYPER-PARAMETERS

We provide the key hyper-parameters of AssembleFlow in Table 6.

Table 6: Hyperparameter specifications for AssembleFlow.
Model Hyperparameter Value

Intra-modeling PaiNN
embedding dim {128}
num of layers {3}
cutoff {5}
read out {mean}

Intra-modeling Atomic Level num of layers {2,5}
num of convolution {2}
num of head {4, 8}
num of timesteps {50, 200}
α0 {1}
α1 {1, 10}

Intra-modeling Molecular Level num of layers {4,5}
num of head {4, 8}
num of timesteps {50, 200}
α0 {1}
α1 {1, 10}

Optimization seed {0, 42, 123}
epochs {1000, 2000}
cutoff c {20, 50}
learning rate {1e-4, 5e-4}
optimizer {Adam }

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

F DETAILS OF BASELINES

F.1 DEEP LEARNING BASELINES AND PARAMETERS

Notice that for all the baselines listed below, we also adopt the PaiNN for atomic level representa-
tion (Schütt et al., 2021), and the hyperparameters are the same as Appendix E. We list the remaining
hyperparameters of baselines in Table 7.

Table 7: Hyperparameter specifications for deep learning baselines.
Model Hyperparameter Value

GNN-MD seed {0, 42, 123}
epochs 3000
num of timesteps {50, 200}
cutoff c {20, 50}
learning rate {1e-4, 5e-4}
optimizer {Adam }

CrystalSDE SDE type {VE, VP}
seed {0, 42, 123}
epochs 3000
num of timesteps {50, 200}
cutoff c {20, 50}
learning rate {1e-4, 5e-4}
optimizer {Adam }

CrystalFlow interpolation type {VE, VP, LERP}
seed {0, 42, 123}
epochs 3000
num of timesteps {50, 200}
cutoff c {20, 50}
learning rate {1e-4, 5e-4}
optimizer {Adam }

F.2 PACKMOL

We want to mention that using PackMol for evaluation with the packing matching metrics is non-
trivial. This is because the atom ordering in each molecule and the molecule ordering in each cluster
are different between PackMol simulated results and the ground-truth results. We note that deep
learning methods do not have this issue because the orderings of initial atoms/molecules match with
the final atoms/molecules.

Thus, to address this issue, we first use the Hungarian algorithm to match the mass centers of
simulated results to obtain the least matching distance with the ground truth mass centers, i.e., PM
(center). This gives us the molecule ordering mapping from simulated clusters to the ground-truth
clusters. Then for each molecule simulated-and-ground-truth pair, we apply the Hungarian algorithm
again to obtain the minimum distance for alignment.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

G DATASET AND EVALUATION METRICS

G.1 DATASET

We evaluate our method using the crystallization dataset COD-Cluster17 from (Liu et al., 2024). This
COD-Cluster17 is a curated subset derived from the COD database (Grazulis et al., 2009). We note
that some single molecules/substances can crystallize in different forms, known as polymorphs. This
arises due to the change of the configurations when the process happens, such as the environment
temperature, pressure, and solvent. COD-Cluster17 simplifies this setup by ignoring the configuration
information and treats the crystallization problem as a density estimation problem.

G.2 DETAILS OF EVALUATION METRICS

We illustrate five types of evaluation metrics below. Notice that in the original dataset, the dynamics
or trajectories of molecules are missing. Thus, our evaluation is based on the ground truth cluster
geometry at the last step.

Packing Matching (PM) This metric quantifies how well the generated molecular assemblies
match the reference crystal structures in terms of spatial arrangement and packing density (Chisholm
& Motherwell, 2005). It is a key indicator of how accurately a model can replicate real-world
crystallization patterns. We provide both the atomic MP, denoted as “PM (atom)” and mass-center-
level PM, denoted as “PM (center)”.

Collision This follows (Cordero et al., 2008). It measures if there is any atomic collision in the
predicted assemblies. Atoms must maintain a minimum pairwise distance governed by the balance of
attractive and repulsive forces. More concretely, we are using covalent radii as the most strict metric
for atomic collisions in molecular generation. This is because it provides a precise lower bound
for the distances between atoms when they are bonded. In other words, covalent radii represent the
distance at which two atoms form a stable covalent bond, which is a very close and well-defined
interaction compared to non-covalent interactions. However, other types of atomic radii, such as
van der Waals radii or ionic radii, can be used for different purposes, depending on the nature of the
interaction you’re modeling.

Separation We extend the metric from (Xie et al., 2022; Yang et al., 2024) to our setting. A cluster
of molecules is valid if the minimum distance between molecules is above 0.5Å (Court et al., 2020).
This metric is referred to as separation to measure the validity to avoid unphysical interactions at the
molecular level.

Compactness We propose this measure by calculating the percentage of simulated clusters where
the maximum atomic pairwise distances are below 100Å. This assesses the spatial efficiency of
the molecular assemblies, indicating how closely the constituent molecules are packed together. A
higher compactness value suggests a more efficient arrangement, where the intermolecular spaces are
minimized, leading to a denser crystalline structure.

DFT Energy This metric evaluates the stability of crystal structures by calculating their total
electronic energy using Density Functional Theory (DFT) (Kohn & Sham, 1965). Lower DFT energy
generally suggests a more stable molecular configuration. To be more concrete, we adopt ACPYPE
(AnteChamber PYthon Parser interfacE) (Sousa da Silva & Vranken, 2012) and GROMACS (Van
Der Spoel et al., 2005) for energy calculation.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

H ABLATION STUDIES

H.1 ABLATION STUDIES ON RANDOM SAMPLING

Here we are adding another baseline by randomly sampling translation and rotation.

• For SO(3), we can do random sampling.
• For R3, we first obtain the range of atom positions in the training data, and then we just do

uniform sampling within this range.

The results are in Table 8. As observed in Table 8, the Random baseline performs exceptionally well
across all three validity metrics; however, its packing matching is significantly worse by an order of
magnitude.

Table 8: AssembleFlow against six generative models on COD-Cluster17 with 5K, 10K, and all samples. The
best results are marked in bold. Baseline Random has the best validity metrics, but they are meaningless since
the packing matching is extremely high, remarking that the results collapse. Thus, we mark them in gray.

Packing Matching Validity
PM (atom) ↓ PM (center) ↓ Collision ↓ Separation ↑ Compactness ↑

Dataset: COD-Cluster17-5K
Random 54.07 ± 0.42 54.62 ± 0.43 0.31 ± 0.01 99.88 ± 0.01 100.00 ± 0.00
GNN-MD 13.67 ± 0.06 13.80 ± 0.07 27.53 ± 0.49 0.22 ± 0.11 100.00 ± 0.00
CrystalSDE-VE 15.52 ± 1.48 16.46 ± 0.99 1.20 ± 0.08 27.17 ± 0.86 57.47 ± 7.76
CrystalSDE-VP 18.15 ± 3.02 19.15 ± 4.46 0.84 ± 0.14 53.13 ± 12.89 34.00 ± 30.75
CrystalFlow-VE 14.87 ± 7.07 13.08 ± 4.51 1.37 ± 0.04 35.70 ± 0.73 8.40 ± 4.17
CrystalFlow-VP 15.71 ± 2.69 17.10 ± 1.89 1.38 ± 0.04 35.43 ± 0.88 4.87 ± 1.09
CrystalFlow-LERP 13.59 ± 0.09 13.26 ± 0.09 0.34 ± 0.01 97.38 ± 0.10 100.00 ± 0.00
AssembleFlow (ours) 7.27 ± 0.04 6.13 ± 0.10 0.33 ± 0.00 97.64 ± 0.36 100.00 ± 0.00

Dataset: COD-Cluster17-10K
Random 54.20 ± 0.90 54.76 ± 0.90 0.30 ± 0.00 99.86 ± 0.01 100.00 ± 0.00
GNN-MD 13.83 ± 0.06 13.90 ± 0.05 27.88 ± 0.49 0.23 ± 0.11 100.00 ± 0.00
CrystalSDE-VE 17.25 ± 2.46 17.86 ± 1.11 0.99 ± 0.27 32.99 ± 10.72 34.93 ± 14.99
CrystalSDE-VP 22.20 ± 3.29 21.39 ± 1.50 0.53 ± 0.35 52.48 ± 15.44 16.83 ± 18.09
CrystalFlow-VE 16.41 ± 2.64 16.71 ± 2.35 1.42 ± 0.03 33.79 ± 0.51 5.47 ± 0.47
CrystalFlow-VP 19.39 ± 4.37 16.01 ± 3.13 1.44 ± 0.03 33.35 ± 0.55 4.23 ± 0.48
CrystalFlow-LERP 13.54 ± 0.03 13.20 ± 0.03 0.32 ± 0.00 97.32 ± 0.05 100.00 ± 0.00
AssembleFlow (ours) 7.38 ± 0.03 6.21 ± 0.05 0.31 ± 0.00 97.73 ± 0.16 99.93 ± 0.05

Dataset: COD-Cluster17-All
Random 65.94 ± 0.07 66.56 ± 0.07 0.30 ± 0.00 99.91 ± 0.00 100.00 ± 0.00
GNN-MD 22.30 ± 12.04 14.51 ± 0.82 24.29 ± 4.58 4.13 ± 5.60 98.77 ± 1.73
CrystalSDE-VE 17.28 ± 0.73 18.92 ± 0.03 0.19 ± 0.18 15.47 ± 12.42 2.51 ± 2.37
CrystalSDE-VP 18.03 ± 4.56 20.02 ± 3.70 0.55 ± 0.19 48.78 ± 1.70 6.88 ± 2.82
CrystalFlow-VE 12.80 ± 1.20 15.09 ± 0.34 1.41 ± 0.01 35.34 ± 0.28 2.90 ± 0.02
CrystalFlow-VP 13.50 ± 0.44 13.28 ± 0.48 1.51 ± 0.02 33.06 ± 1.31 6.61 ± 3.17
CrystalFlow-LERP 13.61 ± 0.00 13.28 ± 0.01 0.34 ± 0.00 97.34 ± 0.02 99.99 ± 0.01
AssembleFlow (ours) 7.37 ± 0.01 6.21 ± 0.01 0.31 ± 0.00 98.15 ± 0.22 99.98 ± 0.00

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

H.2 ABLATION STUDIES ON INTERPOLATION ON SO(3)

Empirical results. We consider replacing the SLERP with EMLERP in AssembleFlow, and name
it as AssembleFlow-EMLERP. We conduct the experiment on COD-5000, where we are taking the
optimal hyperparameters from AssembleFlow.

The results are in Table 9. As observed, using SLERP is better than EMLERP. We are still running
results for COD-10k and COD, and will update the results later.

Table 9: AssembleFlow against six generative models on COD-Cluster17 with 5K, 10K, and all samples
(running now). The best results are marked in bold.

Packing Matching Validity
PM (atom) ↓ PM (center) ↓ Collision ↓ Separation ↑ Compactness ↑

Dataset: COD-Cluster17-5K
GNN-MD 13.67 ± 0.06 13.80 ± 0.07 27.53 ± 0.49 0.22 ± 0.11 100.00 ± 0.00
CrystalSDE-VE 15.52 ± 1.48 16.46 ± 0.99 1.20 ± 0.08 27.17 ± 0.86 57.47 ± 7.76
CrystalSDE-VP 18.15 ± 3.02 19.15 ± 4.46 0.84 ± 0.14 53.13 ± 12.89 34.00 ± 30.75
CrystalFlow-VE 14.87 ± 7.07 13.08 ± 4.51 1.37 ± 0.04 35.70 ± 0.73 8.40 ± 4.17
CrystalFlow-VP 15.71 ± 2.69 17.10 ± 1.89 1.38 ± 0.04 35.43 ± 0.88 4.87 ± 1.09
CrystalFlow-LERP 13.59 ± 0.09 13.26 ± 0.09 0.34 ± 0.01 97.38 ± 0.10 100.00 ± 0.00
CrystalFlow-LERP 13.59 ± 0.09 13.26 ± 0.09 0.34 ± 0.01 97.38 ± 0.10 100.00 ± 0.00
AssembleFlow-EMLERP 7.30 ± 0.04 6.32 ± 0.04 0.37 ± 0.01 93.38 ± 0.54 100.00 ± 0.00
AssembleFlow (ours) 7.27 ± 0.04 6.13 ± 0.10 0.33 ± 0.00 97.64 ± 0.36 100.00 ± 0.00

Dataset: COD-Cluster17-10K
GNN-MD 13.83 ± 0.06 13.90 ± 0.05 27.88 ± 0.49 0.23 ± 0.11 100.00 ± 0.00
CrystalSDE-VE 17.25 ± 2.46 17.86 ± 1.11 0.99 ± 0.27 32.99 ± 10.72 34.93 ± 14.99
CrystalSDE-VP 22.20 ± 3.29 21.39 ± 1.50 0.53 ± 0.35 52.48 ± 15.44 16.83 ± 18.09
CrystalFlow-VE 16.41 ± 2.64 16.71 ± 2.35 1.42 ± 0.03 33.79 ± 0.51 5.47 ± 0.47
CrystalFlow-VP 19.39 ± 4.37 16.01 ± 3.13 1.44 ± 0.03 33.35 ± 0.55 4.23 ± 0.48
CrystalFlow-LERP 13.54 ± 0.03 13.20 ± 0.03 0.32 ± 0.00 97.32 ± 0.05 100.00 ± 0.00
AssembleFlow-EMLERP 7.51 ± 0.17 6.46 ± 0.22 0.33 ± 0.00 94.68 ± 0.44 99.93 ± 0.05
AssembleFlow (ours) 7.38 ± 0.03 6.21 ± 0.05 0.31 ± 0.00 97.73 ± 0.16 99.93 ± 0.05

Dataset: COD-Cluster17-All
GNN-MD 22.30 ± 12.04 14.51 ± 0.82 24.29 ± 4.58 4.13 ± 5.60 98.77 ± 1.73
CrystalSDE-VE 17.28 ± 0.73 18.92 ± 0.03 0.19 ± 0.18 15.47 ± 12.42 2.51 ± 2.37
CrystalSDE-VP 18.03 ± 4.56 20.02 ± 3.70 0.55 ± 0.19 48.78 ± 1.70 6.88 ± 2.82
CrystalFlow-VE 12.80 ± 1.20 15.09 ± 0.34 1.41 ± 0.01 35.34 ± 0.28 2.90 ± 0.02
CrystalFlow-VP 13.50 ± 0.44 13.28 ± 0.48 1.51 ± 0.02 33.06 ± 1.31 6.61 ± 3.17
CrystalFlow-LERP 13.61 ± 0.00 13.28 ± 0.01 0.34 ± 0.00 97.34 ± 0.02 99.99 ± 0.01
AssembleFlow-EMLERP 7.28 ± 0.00 6.23 ± 0.01 0.35 ± 0.00 93.17 ± 0.02 99.98 ± 0.00
AssembleFlow (ours) 7.37 ± 0.01 6.21 ± 0.01 0.31 ± 0.00 98.15 ± 0.22 99.98 ± 0.00

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

H.3 ABLATION STUDIES ON ADDITIONAL ENERGY RESULTS

We computed and compared the formation energy for both systems in Figure 4. Formation energy,
defined as the difference between a compound’s DFT total energy and the sum of the energies of
its constituent elements, is a direct indicator of the relative favorability of a material’s energy
state. We also provide the pairwise differences between the two systems in terms of formation energy
in Figure 10.

Figure 10: Formation energy difference between PackMol-constructed assemblies and AssembleFlow-predicted.

34

