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Abstract

Signed graphs can model friendly or antagonistic relations where edges are anno-
tated with a positive or negative sign. Signed Graph Neural Networks (SGNNs)
have been widely used for signed graph representation learning. While signifi-
cant progress has been made in SGNNs research, two issues (i.e., graph sparsity
and unbalanced triangles) persist in the current SGNN models. We aim to allevi-
ate these issues through data augmentation (DA) techniques which have demon-
strated effectiveness in improving the performance of graph neural networks.
However, most graph augmentation methods are primarily aimed at graph-level
and node-level tasks (e.g., graph classification and node classification) and can-
not be directly applied to signed graphs due to the lack of side information (e.g.,
node features and label information) in available real-world signed graph datasets.
Random DropEdge is one of the few DA methods that can be directly used for
signed graph data augmentation, but its effectiveness is still unknown. In this
paper, we are the first to provide the generalization error bound for the SGNN
model and demonstrate from both experimental and theoretical perspectives that
the random DropEdge cannot improve the performance of link sign prediction.
Therefore, we propose a novel Signed Graph Augmentation framework (SGA)
tailored for SGNNs. Specifically, SGA first integrates a structure augmentation
module to detect candidate edges solely based on network information. Further-
more, SGA incorporates a novel strategy to select beneficial candidates. Finally,
SGA introduces a novel data augmentation perspective to enhance the training
process of SGNNs. Experiment results on six real-world datasets demonstrate
that SGA effectively boosts the performance of diverse SGNN models, achieving
improvements of up to 26.2% in F1-micro for SGCN on the Slashdot dataset in the
link sign prediction task. Code and data are available at https://github.com/Alex-
Zeyu/SGA.

1 Introduction

As social media continues to gain widespread popularity, it fosters a multitude of interactions among
individuals, which are subsequently documented within social graphs [1, 2]. While many of these
social interactions denote positive connections, such as liking, trust, and friendship, there are also
instances of negative interactions, encompassing feelings of hatred, distrust, and more. For in-
stance, Slashdot [3], a tech-related news website, allows users to tag other users as either ‘friends’
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or ‘foes’. Graphs that incorporate both positive and negative interactions or links are commonly
termed signed graphs [4, 5]. In recent years, there has been a growing interest among researchers in
exploring network representation within the context of signed graphs [6–8]. Most of these methods
are combined with Graph Neural Networks (GNNs) [9, 10], and are therefore collectively referred
to as Signed Graph Neural Networks (SGNNs) [11, 7, 12, 13]. This endeavor focuses on acquiring
low-dimensional representations of nodes, with the ultimate goal of facilitating subsequent network
analysis tasks, especially link sign prediction.

Figure 1: Green and red lines represent
positive and negative edges, resp. Solid
lines represent edges in the training set,
while dashed lines represent edges in
the test set.

Despite increasing interest in SGNNs in recent years, two
issues remain unresolved. First, real-world signed graph
datasets are exceptionally sparse (see Table 5 from Ap-
pendix H). The sparsity of signed graphs makes down-
stream tasks challenging. As shown in Issue 1 (from Fig-
ure 1), without additional structure information or side in-
formation, predicting the edge sign between nodes vj and
vk in the test set is difficult. However, this changes with
the introduction of extra edges (eil) through data augmen-
tation. Second, according to the analysis in [14], SGNNs
cannot learn proper representations for nodes from unbal-
anced triangles. The intuitive understanding is as follows:
as shown in Issue 2(c) (from Figure 1), there is a nega-
tive relationship between node vi and node vj in a one-
hop path, while through a two-hop path via node vk, it
becomes a positive relationship. In other words, the rela-
tionship between node vi and node vj is uncertain, which
complicates the task of SGNNs in learning representa-
tions for these three nodes. Furthermore, we notice that
the proportion of unbalanced triangles is considerable (see Table 3).

Figure 2: Effectiveness of random
EdgeDrop (SGCN [11] as backbone
model) on link sign prediction perfor-
mance with six real-world signed graph
datasets.

One promising approach to alleviate the aforementioned
issues in SGNNs is data augmentation (DA) which has
been well-studied in computer vision [15–18] and natural
language processing [19–21]. Recently, significant ad-
vancements have been made in graph augmentation [22–
24], including node perturbation [25, 26], edge perturba-
tion [27], and sub-graph sampling [28]. However, current
graph augmentation methods cannot be directly applied
to signed graphs for following reasons: 1) Some meth-
ods [22, 23] require side information (e.g., node features
and labels), which are often absent in real-world signed
graph datasets that only contain structural information.
2) Random structural perturbation based augmentation
methods [27, 8, 29] cannot improve SGNN performance.
As shown in Figure 2, random EdgeDrop cannot stably
enhance SGCN performance. For more experimental re-
sults on data augmentation methods based on random
structural perturbations, please refer to the Appendix A.
Besides, we take a first step into developing a deeper theoretical understanding of SGNN models and
deriving the generalization error bound of SGCN. Based on this analysis, we further demonstrate
that randomly deleting edges increases the generalization error bound of SGNN, and therefore, it
is not an effective enhancement method for SGNN (see Section 4). In summary, it is necessary to
design a new DA method specifically for SGNNs.

Overall, the designed signed graph augmentation method should address the two common obstacles
encountered by popular SGNN models:

1. Exploring new structural information using solely network information.
2. Alleviate the negative impact of unbalanced triangles on SGNNs.

To address the aforementioned obstacles, we propose a novel Signed Graph Augmentation frame-
work, SGA. For the first obstacle, We utilize a classic SGNN model, such as SGCN [11] to discover
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candidate samples. Nodes of a signed graph are first projected into embedding space. In the embed-
ding space, following the principles of the extended structural balance theory [30], we interpret the
relationships between closely proximate nodes as potential positive edges, whereas the relationships
between more distant nodes are considered as potential negative edges. The newly added edges are
treated as candidate samples (i.e., edges). To overcome the second obstacle, we approach it from
two perspectives. Foremost, we attempt to reduce the number of existing unbalanced triangles. The
candidate samples yield two outcomes: creating new edges or modifying the sign of existing edges.
These operations do not reduce the number of training samples, which is consistent with the results
of the theoretical analysis (see Sec. 4). Instead of directly incorporating the candidate samples into
the training set, we analyze them beforehand. Only candidate samples that do not introduce new
unbalanced triangles are retained. Next, we aim to reduce the training weight of edges belonging to
unbalanced triangles. To achieve this, we introduce a new perspective on data augmentation, namely
edge difficulty scores (see Def. 3.3). Based on this, we design a curriculum learning training strat-
egy tailored for SGNNs, aiming to decrease the training weight of edges with high difficulty scores
and increase the training weight of edges with low difficulty scores.

To evaluate the effectiveness of SGA, we perform extensive experiments on six real-world datasets,
i.e., Bitcoin-alpha, Bitcoin-otc, Epinions, Slashdot, Wiki-elec, and Wiki-RfA. We verify that our
proposed framework SGA can improve the performance of baseline models. The experiment results
show that SGA improves the link sign prediction accuracy of five base models, including two un-
signed GNN models (GCN [9] and GAT [31]) and three signed GNN models (SGCN [11], SiGAT
[32] and GS-GNN [13]) (see Table 1 and Table 6). SGA boosts up to 14.8% in terms of AUC
for SGCN on Wiki-RfA, 26.2% in terms of F1-binary, 32.3% in terms of F1-micro, and 24.7% in
terms of F1-macro for SGCN on Slashdot in link sign prediction, at best. These experiment results
demonstrate the effectiveness of SGA.

Limitations. Our data augmentation method utilizes the conclusions from SGNN representation
limitation based on balance theory [14]. However, it is well known that balance theory cannot
model all signed graph formation patterns, as discussed in the paper [13]. Therefore, for real-
world datasets that do not strongly conform to balance theory, our data augmentation may be less
effective. Additionally, we have only validated our method on the primary downstream task of link
sign prediction in signed graphs. Some works [33, 34] consider the clustering task for signed graphs,
but these primarily use synthetic datasets and there are no real-world datasets available yet, which is
why we have not conducted tests on them.

Overall, our contributions are summarized as follows:

• We are the first to provide the generalization error bound for the SGNN model. Based
on this, we theoretically demonstrate the random DropEdge method, which is suitable for
node classification and graph classification, is not applicable to edge-level task (i.e., link
sign prediction).

• We propose a novel signed graph augmentation framework that alleviates the two issues
(i.e., sparsity and unbalanced triangles) widely existing in SGNNs.

• Extensive experiments on six real-world datasets with five backbone models demonstrate
the effectiveness of our framework.

2 Problem Statement

A signed graph is defined as G = (V, E+, E−), where V = {v1, . . . , v|V|} represents the set of
nodes, and E+ and E− denote the positive and negative edges, respectively. Each edge eij ∈ E+ ∪
E− connecting two nodes vi and vj can be either positive or negative, but not both, meaning that
E+ ∩ E− = ∅. We use σ(eij) ∈ {+,−} to denote the sign of eij . The structure of G is represented
by the adjacency matrix A ∈ R|V|×|V|, where each entry Aij ∈ {1,−1, 0} signifies the sign of the
edge eij . It’s important to note that, unlike unsigned graph datasets, signed graphs typically do not
provide node features, meaning there is no feature vector xi associated with each node vi.

Positive and negative neighbors of vi are denoted as N+
i = {vj | Aij > 0} and N−i = {vj | Aij <

0}, respectively. Let Ni = N+
i ∪ N−i be the set of neighbors of node vi. O3 represents the set of

triangles in the signed graph, i.e., O3 = {{vi, vj , vk} | AijAjkAik ̸= 0}. A triangle {vi, vj , vk} is
called balanced if AijAjkAik > 0, and is called unbalanced otherwise.
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Figure 3: The overall process of SGA. Green lines represent positive edges and red lines represent
negative edges.

Problem Definition: Dtrain refers to the set of train samples (edges) and Dtest refers to the set
of test samples. When only given Dtrain, our purpose is to design a graph augmentation strategy
ψ : (Dtrain) → (D′train,F), where D′train refers to augmented train edge set and F refers to the newly
generated edge features (i.e., edge difficulty score).

3 Proposed Method

The overall framework of SGA is shown in Figure 3, which aims to augment training samples (i.e.,
edges) from a structure perspective (edge manipulation) to side information (edge feature). SGA
mainly encompasses three key elements: 1) generating new training candidate samples, 2) selecting
beneficial candidate samples, and 3) introducing a new feature (i.e., edge difficulty score) for training
samples. For the specific procedural details of each part, please refer to Appendix C.

3.1 Generating Candidate Training Samples

Real-world signed graph datasets are extremely sparse (see Table 2) with many uncovered edges.
In this part, we attempt to uncover the potential relationships between nodes. We first use a SGNN
model, e.g., SGCN [11], as the encoder to project nodes from topological space to embedding space.
Here, the node representations are updated by aggregating information from different types of neigh-
bors as follows:

For the first aggregation layer ℓ = 1:
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where Hpos(ℓ)(Hneg(ℓ)) represents the positive (negative) segment of representation matrix at the
ℓth layer. A+(A−) represents the row normalized matrix of the positive (negative) part of the adja-
cency matrixA. Wpos(ℓ)(Wneg(ℓ)) denotes learnable parameters of the positive (negative) part, and
σ(·) is the activation function ReLU. [.] is the concatenation operation. After conducting message-
passing for L layers, the final node representation matrix is Z = H(L) =

[
Hpos(L), Hneg(L)

]
. For

node vi, the node embedding is Zi. As we wish to classify whether a pair of nodes has a positive,
negative, or no edge between them. We train a multinomial logistic regression classifier (MLG) (as
in [11]). The training loss is as follows:

L
(
θ

MLG)
= −

1

|Dtrain|
∑

(vi,vj,σ(eij))∈Dtrain

log
exp

(
[Zi, Zj ] θ

MLG
σ(eij)

)
Σq∈{+,−,?} exp

(
[Zi, Zj ] θMLG

q

) (3)
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θMLG refers to the parameter of the MLG classifier. Using this classifier, for any two nodes vi, vj , we
can calculate the probability of forming a positive or negative edge between any two nodes, denoted
as Prposeij and Prnegeij . We set up four probability threshold hyper-parameters, namely the probability
threshold for adding positive edges (ϵ+add), the probability threshold for adding negative edges (ϵ−add),
the probability threshold for deleting positive edges (ϵ+del) and the probability threshold for deleting
negative edges (ϵ−del). Subsequently, we employ the following strategy to generate candidate training
samples:

• ∀vi, vj ∈ V , if Prposeij > ϵ+add ∨ Prneg
eij > ϵ−add, then Dcand.

train add ∪ {(vi, vj , σ(eij))};

• ∀vi, vj ∈ V , if (vi, vj , σ(eij)) ∈ Dtrain, Aij > 0, Prposeij < ϵ+del, then Dcand.
train del ∪ {(vi, vj , σ(eij))};

• ∀vi, vj ∈ V , if (vi, vj , σ(eij)) ∈ Dtrain, Aij < 0, Prneg
eij < ϵ−del, then Dcand.

train del ∪ {(vi, vj , σ(eij))}.

Dcand.
train add and Dcand.

train del refer to the candidate training set for adding edges and the candidate training
set for deleting edges.

3.2 Selecting Beneficial Candidate Training Samples

After obtaining candidates, we do not merge them into the training set directly. Instead, we select
the beneficial portions based on some rules. According to [14], it proves SGNNs cannot learn proper
representations from unbalanced triangles (see Figure 1). The intuitive insight from this conclusion
for signed graph augmentation is that beneficial candidates should not lead to new unbalanced tri-
angles. Therefore, after generating candidate training set Dcand.

train add and Dcand.
train del, we need to discern

which operations are beneficial or not. Considering that removing edges will not introduce new
unbalanced triangles, it can be directly applied to the training set. However, adding edges may po-
tentially introduce unbalanced triangles, so it needs to be analyzed whether it should be applied to
the training set. The specific criteria are as follows:

• ∀ (vi, vj , σ(eij)) ∈ Dcand.
train del, Dtrain \ {(vi, vj , σ(eij))};

• ∀ (vi, vj , σ(eij)) ∈ Dcand.
train add, if (vi, vj , σ(eij)) /∈ Dtrain, and ∀vk ∈ Ni ∩ Nj ,

(σ(eij) ∗ σ(eik) ∗ σ(ejk)) > 0, then Dtrain ∪ {(vi, vj , σ(eij))}.

According to the above steps, we have merged the Dcand.
train add and Dcand.

train delinto the training set Dtrain.

3.3 Introducing New Feature for Training Samples

In this part, we attempt to alleviate the negative impact of unbalanced triangles on SGNNs from
another perspective by augmenting a new feature for training samples (i.e., edges), namely edge
difficulty score. Intuitively, edges belonging to unbalanced triangles have higher difficulty scores,
while those belonging to balanced triangles have lower difficulty scores. Based on the difficulty
scores, we design a curriculum learning-based training plan, aiming to reduce the training weights
of edges with high difficulty scores, thereby mitigating the negative impact of unbalanced triangles
on SGNNs.

We provide a definition of global and local balance degree:
Definition 3.1. The Global Balance Degree [35] of a signed graph is defined by:

D3(G) =
|O+

3 |
|O3|

(4)

where O3 represents the set of triangles, O+
3 represents the set of balanced triangles. | · | represents

the set cardinal number.
Definition 3.2 (Local Balance Degree). For edge eij , the local balance degree is defined by:

D3(eij) =
|O+

3 (eij)| − |O−
3 (eij)|

|O+
3 (eij)|+ |O−

3 (eij)|
(5)

where O+
3 (eij) (O−3 (eij)) represents the set of balanced (unbalanced) triangles containing edge eij .

| · | represents the set cardinal number.
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From Def. 3.2, we can observe that the edge’s local balance degree is related to the count of balanced
and unbalanced triangles that include this edge. Based on this, we can define the edge difficulty
score:
Definition 3.3 (Edge Difficulty Score). For edge eij , the difficulty score is defined by:

Score(eij) =
1−D3(eij)

2
(6)

where D3(eij) denotes the local balance degree of edge vij .

Upon quantifying the difficulty scores for each edge within the training set, a curriculum-based
training approach is applied to enhance the performance of the SGNN model. This curriculum
is fashioned following the principles outlined in [36], which enables the creation of a structured
progression from easy to difficult. The process entails initially sorting the training set E in ascending
order based on their respective difficulty scores. Subsequently, a pacing function g(t) is employed
to allocate these edges to distinct training epochs, transitioning from easier to more challenging
samples, where t signifies the t-th epoch. we use a linear pacing function as shown below:

g(t) = min

(
1, λ0 + (1− λ0) ∗

t

T

)
(7)

λ0 denotes the initial proportion of the easiest examples available, and T indicates the training epoch
at which g(t) reaches value 1. The process of SGA is detailed in Appendix D.

4 Generalization Bound of SGNN

In this section, we are going to prove the generalization error bound for SGNN. Our results show that
the generalization performance of the model is affected by the number of edges. A larger number
of edges in the training set usually generalizes better, which means that dropout cannot always
contribute to improving the model’s generalization ability in many situations. For the basic setup
and assumptions, please see the Appendix E.

Main Result. Under link prediction task, we denote AD as a learning algorithm trained on dataset
D. According to Algorithm 2, we can set AD = σ(f(zi, zj , w)), the generalization gap is defined
as the difference between training error and test error:

δgen = EA[R (ADtrain)−R(ADtest)] (8)

δgen ≤ Ψ

(
β, θ,

1

nt
, L

)
(9)

Theorem 1 (Generalization Gap of SGNN).

δgen ≤ 2αx
L +

√
2αy

LMβ(θ + tηαx
Lαfβ)

nt
(10)

Here β refers to the infinite norm of the matrix Z , θ refers to paradigm of initial weight matrix
∥winit∥. The generalization ability is mainly influenced by scale of the graph(the number of nodes
and edges) and the norm of weights matrix. In the main result, ασ , αg , M are constants determined
by the non-linear activation function, function g and function f respectively.

5 Experiments

In this section, we commence by assessing the enhancements brought about by SGA in comparison
to diverse backbone models for the link sign prediction task. We will answer the following questions:

• Q1: Can SGA improve the performance of backbone models? Does SGA effectively alleviate
issues related to graph sparsity and the presence of unbalanced triangles?

• Q2: Does each part of the SGA framework play a positive role?
• Q3: Is the proposed method sensitive to hyper-parameters? How do key hyper-parameters impact

the method performance?

For an introduction and statistical information on the datasets, please refer to the Appendix H. For
details on baselines and experimental settings, please also see the Appendix I.
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Table 1: Link sign prediction results (average ± standard deviation) with AUC (%) and F1-binary
(%) on six benchmark datasets.

Datasets Bitcoin-alpha Bitcoin-otc Epinions Slashdot Wiki-elec Wiki-RfA
Methods AUC F1-binary AUC F1-binary AUC F1-binary AUC F1-binary AUC F1-binary AUC F1-binary
GCN [9] 60.9±0.8 73.6±1.6 69.2±0.8 83.0±1.5 68.5±0.2 80.5±0.1 51.9±0.5 54.7±1.0 64.2±0.9 76.6±0.7 60.5±0.6 73.3±0.4
+SGA 65.1±2.9 78.7±3.9 67.8±1.2 86.8±1.7 68.8±0.3 80.6±0.8 51.2±1.7 62.2±9.8 66.9±0.8 77.5±0.6 63.5±0.9 74.7±0.9

(Improv.) 6.9% ↑ 6.9% ↑ -2% ↓ 4.6% ↑ 0.4% ↑ 0.1% ↑ -1.3% ↓ 13.7% ↑ 4.2% ↑ 1.2% ↑ 5.0% ↑ 1.9% ↑
GAT [31] 60.3±2.2 63.3±9.4 68.2±1.2 86.0±3.4 53.1±1.7 68.1±18.9 51.2±1.8 65.7±20.7 54.7±2.1 66.7±13.4 51.8±1.1 72.2±4.6

+SGA 63.0±4.5 86.9±2.5 71.7±1.4 90.0±3.4 61.4±3.7 80.8±6.6 55.2±2.1 68.6±11.9 58.5±2.0 72.4±4.9 53.4±0.6 69.9±3.7
(Improv.) 4.5% ↑ 37.3% ↑ 5.1% ↑ 4.7% ↑ 15.6% ↑ 18.7% ↑ 7.8% ↑ 4.4% ↑ 7.0% ↑ 8.6% ↑ 3.1% ↑ -3.2% ↓

SGCN [11] 75.3±0.2 90.5±0.8 79.4±1.5 92.3±1.2 68.6±4.4 90.5±1.4 61.0±1.6 67.3±3.3 70.2±3.1 81.4±1.9 65.8±2.8 72.0±4.1
+SGA 80.9±2.0 92.8±0.7 82.1±0.3 94.6±0.3 77.4±0.4 92.2±0.9 68.7±1.6 85.0±1.0 77.4±0.9 87.0±0.7 75.6±0.6 85.5±0.8

(Improv.) 7.5% ↑ 2.5% ↑ 3.4% ↑ 2.5% ↑ 12.9% ↑ 1.9% ↑ 12.6% ↑ 26.2% ↑ 10.3% ↑ 6.9% ↑ 14.8% ↑ 18.7% ↑
SiGAT [32] 85.5±0.9 96.8±0.1 88.3±1.0 95.5±0.2 89.1±0.5 95.2±0.1 84.6±0.1 89.2±0.1 88.0±0.2 90.9±0.1 87.1±0.1 90.3±0.0

+SGA 87.8±0.9 96.9±0.1 90.2±0.5 95.7±0.1 91.1±0.2 95.4±0.1 85.5±0.2 89.4±0.1 89.3±0.2 91.1±0.1 88.0±0.1 90.4±0.2
(Improv.) 2.7% ↑ 0.2% ↑ 2.1% ↑ 0.1% ↑ 2.3% ↑ 0.1% ↑ 1% ↑ 0.2% ↑ 1.5% ↑ 0.1% ↑ 1% ↑ 0.1% ↑

GSGNN [13] 85.6±1.4 97.1±0.1 88.3±1.1 95.9±0.3 88.8±0.4 95.0±0.6 77.9±0.7 88.6±0.3 88.2±0.2 90.9±0.1 86.8±0.2 90.3±0.2
+SGA 90.0±0.1 97.2±0.2 90.7±1.2 96.1±0.2 89.6±0.5 95.4±0.1 81.2±0.2 88.3±0.3 88.8±0.2 91.0±0.1 87.5±0.1 90.4±0.1

(Improv.) 5.1% ↑ 0.1% ↑ 2.7% ↑ 0.2% ↑ 0.9% ↑ 0.4% ↑ 4.3% ↑ -0.3% ↓ 0.7% ↑ 0.1% ↑ 0.8% ↑ 0.2% ↑

Table 2: Density of original graph and after augmentation.

Dataset Bitcoin-alpha Bitcoin-otc Epinions Slashdot Wiki-elec Wiki-RfA
Original 1.45e-3 8.92e-4 4.81e-5 7.55e-5 1.89e-3 1.29e-3
+SGA 1.59e-3 9.26e-4 7.29e-5 1.16e-4 3.41e-3 1.81e-3

5.1 Performance Evaluation (Q1)

To comprehensively evaluate the performance of our proposed SGA, we contrast it with several
baseline configurations that exclude SGA integration on link sign prediction. For a detailed view,
AUC and F1-binary score results are presented in Table 1. Further, F1-macro and F1-micro can be
referenced in Appendix J. For each model, the mean AUC and F1-binary scores, along with their
respective standard deviations, are documented. These metrics are derived from five independent
runs on each dataset, utilizing distinct, non-overlapping splits: 80% of the edges are used for train-
ing, while the residual 20% serve as the test set. Additionally, the table elucidates the percentage
improvement in these metrics attributable to the integration of SGA, relative to the baseline models
without SGA. The results provide several insights:

• Our investigations affirm that the SGA framework serves as an effective method in aug-
menting the performance of both signed and unsigned graph neural networks.

• For unsigned GNN models (GCN, GAT), the SGA method can effectively enhance the
predictive performance (Some metrics show an improvement of over 10%.), possibly be-
cause both signed GNN and unsigned GNN models are based on a similar message-passing
mechanism.

• Concerning the signed GNN models (SGCN, SiGAT, GS-GNN), we observed that SGA
significantly enhances SGCN SiGAT compared to GS-GNN. The reason for this might
be that SGA primarily focuses on mitigating the impact of unbalanced triangles on the
model’s predictive performance. Both SGCN and SiGAT are designed based on balance
theory, making them more susceptible to the influence of unbalanced triangles, whereas
GS-GNN is not, and therefore, it is less affected by unbalanced triangles. This indirectly
reflects that SGA indeed alleviates the negative impact caused by unbalanced triangles to
some extent.

Next, we will verify whether SGA effectively addresses the two issues in signed graph representa-
tion learning based on SGNN. Regarding the dataset density, we conducted a statistical analysis, as
shown in Table 2. From the statistical results, it can be observed that after augmentation through the
SGA method, the density of all six real-world datasets has increased, indicating a certain improve-
ment in data sparsity issues.

Regarding unbalanced triangles, we conduct a statistical analysis, as shown in Table 3. The calcula-
tion of balance degree is based on Definition 3.1. From the statistical results, it can be seen that in
most cases, SGA indeed reduces the number of unbalanced triangles, improving the balance degree
of real-world datasets.

In addition to the statistical results, we also validated the effectiveness of SGA through the case
study illustrated in Figure 4. Both of these two cases are from Bitcoin-alpha dataset. Case 1 verifies
that SGA, by exploring latent structures, assists SGCN in correctly predicting the sign of edge
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Table 3: The balance degree of original datasets and after augmentation. BT refers to balanced
triangle, UT refers to unbalanced triangle, BD refers to balance degree (see Def. 3.1).

Dataset Original +SGA
# BT # UT BD (%) # BT # UT BD (%)

Bitcoin-alpha 52,126 6,971 88.20 63,535 5,060 92.58
Bitcoin-otc 75,460 9,292 89.04 72,105 9,289 88.60
Epinions 6,286,597 516,723 92.40 6,162,877 391,707 94.02
Slashdot 709,417 64,190 91.70 676,378 45,268 93.72
Wiki-elec 311,251 92,934 77.01 242,691 29,579 89.13
Wiki-RfA 603,753 195,532 75.54 494,458 84,840 85.38

Figure 4: Case Study of SGA. Note that green lines denote positive edges and red lines denote
negative edges.

(e144,130, e130,147) that are originally mispredicted. Case 2 indicates that SGA, by changing the
signs of edges (e67,12) in existing structures, reduces the impact of unbalanced triangles, allowing
the model to achieve correct prediction results (e67,1536).

5.2 Ablation Study (Q2)

In this section, we explore how different parts of SGA, contribute to its overall effectiveness. We do
this by testing the SGCN [11] under various settings:

• SGCN: Here, we use the SGCN in its basic form. It works directly on the original graph
data without any additional techniques or modifications.

• +SA (Structure Augmentation, refer to Sec. 3.1 and Sec. 3.2): SGCN operates on
augmented datasets. This augmentation involves the addition or removal of edges from the
initial graph.

• +TP (Training Plan, refer to Sec. 3.3): SGCN runs on the original graph but with a
modified training paradigm. Adopting a curriculum learning approach, we rank edges by
their difficulty. The model is then progressively exposed to these edges, transitioning from
simpler to more challenging ones as training epochs progress.

• +SGA(Combining both the structural augmentation and the tailored training plan)
The SGCN runs on augmented graph using a curriculum learning training plan.

Our thorough ablation study, detailed in Table 4 and conducted across six benchmark datasets, re-
veals several insights:

• Importance of Structural Augmentation: This strategy proves crucial for improving
model performance. In almost all cases, using only structural augmentation leads to bet-
ter results than the baseline model, which is trained on the unmodified graph without any
specific training strategy.

• Effect of the Training Plan Alone: Implementing just the training plan, without other
modifications, yields a smaller performance improvement compared to using structural
augmentation alone.

• Combined Advantages of Training Plan and Data Augmentation: Combining the train-
ing plan with structural augmentation often enhances the benefits of each approach, yield-
ing the largest performance gain on most of the datasets.
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Table 4: The ablation study results of using different components of SGA.

Dataset Metric SGCN +SA +TP +SGA

Bitcoin-alpha

AUC 75.3±0.2 79.8±1.1 75.3±2.8 80.9±2.0
F1-binary 90.5±0.8 93.8±0.4 91.3±1.2 92.8±0.7
F1-micro 83.4±1.3 88.8±0.7 84.6±1.9 87.2±1.0
F1-macro 62.1±1.1 69.0±1.0 63.1±1.7 67.6±0.8

Bitcoin-otc

AUC 79.4±1.5 80.7±2.4 79.7±1.0 82.1±0.3
F1-binary 92.3±1.2 94.5±0.7 91.3±1.7 94.6±0.3
F1-micro 86.7±1.9 90.2±1.2 86.7±2.7 90.5±0.4
F1-macro 72.0±1.5 76.5±1.5 72.2±3.0 77.3±0.6

Epinions

AUC 68.6±4.4 75.9±1.0 75.2±1.1 77.4±0.4
F1-binary 90.5±1.4 90.4±1.6 87.5±3.5 92.2±0.9
F1-micro 83.9±2.0 84.1±2.4 80.1±4.7 86.9±1.3
F1-macro 68.0±2.9 72.5±2.6 69.1±3.5 75.6±1.3

Slashdot

AUC 61.0±1.6 67.0±1.3 63.7±0.3 68.7±1.6
F1-binary 67.3±3.3 85.3±1.5 67.3±1.0 85.0±1.0
F1-micro 58.2±3.1 77.1±1.8 58.8±0.8 77.0±1.0
F1-macro 54.6±2.4 67.1±1.0 55.8±0.6 68.1±0.8

Wiki-elec

AUC 70.2±3.1 78.0±0.5 71.2±2.3 77.4±0.9
F1-binary 81.4±1.9 86.5±0.9 81.5±2.7 87.0±0.7
F1-micro 73.1±1.7 80.0±0.1 73.4±3.0 80.6±0.8
F1-macro 66.1±1.2 74.1±0.7 66.8±2.0 74.2±0.3

Wiki-RfA

AUC 65.8±2.7 75.6±0.7 69.8±1.2 75.6±0.6
F1-binary 72.0±4.1 84.9±1.9 78.6±1.6 85.5±0.8
F1-micro 63.2±3.7 77.8±2.2 70.1±1.6 78.6±0.9
F1-macro 58.7±2.4 71.7±1.5 64.4±1.1 72.1±0.6

5.3 Parameter Sensitivity Analysis (Q3)

Figure 5: Performance of SGCN: AUC scores
(with standard deviation) across six benchmark
datasets, evaluated under variations in parameters
ϵ+del, ϵ

−
del, ϵ

+
add, ϵ−add, T and λ0.

In this subsection, we perform a sensitiv-
ity analysis focusing on six hyper-parameters:
ϵ+del, ϵ

−
del, ϵ

+
add, ϵ−add (these denote the proba-

bility thresholds for adding or removing pos-
itive/negative edges); T represents the num-
ber of intervals during the training process
where more challenging edges are incremen-
tally added to the training set; and λ0 desig-
nates the initial fraction of the easiest exam-
ples. Performance metrics for the SGCN model
within the SGA framework, as measured by
AUC across various hyper-parameter configu-
rations, is illustrated in Figures 5. F1-binary,
F1-macro and F1-micro scores are illustrated in
Appendix K.

The figures reveal divergent patterns in AUC and F1 scores based on hyperparameter adjustments,
with SGCN showing more significant variations on the Slashdot dataset compared to others. On a
broader scale, the AUC is fairly consistent with changes to ϵ+del and ϵ−add. Notably, as ϵ−del or ϵ+add
rise, there’s a tendency for the AUC to augment. Interestingly, AUC initially increases and then
experiences a slight dip as λ0 rises. Regarding the F1 score, it is less sensitive to changes in ϵ−add,
T , and λ0, except for the case of the Slashdot dataset. In general, an increase in ϵ−del and ϵ+add boosts
the F1 score. However, for ϵ+del, the optimal value can differ across datasets, typically lying between
0.1 and 0.4.

6 Conclusion

In this paper, we introduce the Signed Graph Augmentation framework (SGA), a novel approach
designed to address two prominent issues in existing signed graph neural networks, namely, data
sparsity and unbalanced triangles. This framework has three main components: generating candi-
date training samples, selecting beneficial candidate training samples, and introducing a new feature
(edge difficulty score) for training samples. Based on this new feature, we have designed a cur-
riculum learning framework tailored for SGNNs. Through extensive experiments on benchmark
datasets, our SGA framework proves its effectiveness in boosting various models.
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Figure 6: Effectiveness of data augmentation through random structural perturbations (SGCN [11]
as backbone model) on link sign prediction performance. (a) Randomly increasing or decreasing
positive edges. (b) Randomly increasing or decreasing negative edges. (c) Randomly flipping the
sign of edges.

A Experimental results of data augmentation through random structural
perturbations

We employ three different random methods (random addition/removal of positive edges, random
addition/removal of negative edges, and random sign-flipping of existing edges) were tested with
the classic SGNN model, SGCN [11]. As is Shown in Figure 6, The results indicate that these
random methods do not enhance SGCN performance, suggesting that data augmentation methods
used in signed graph contrastive learning models [8, 29] do not readily extend to general SGNNs
not using a contrastive learning paradigm.

B Related Work

In this section, we will introduce two aspects related to this paper: signed graph neural networks
and graph data augmentation.

B.1 Signed Graph Neural Networks

Due to the widespread popularity of social media ,signed networks have become ubiquitous .There-
fore, the network representation of signed graphs has gained significant attention[37, 38, 29, 14, 39,
40]. Existing research has predominantly concentrated on tasks related to link sign prediction, while
overlooking other crucial tasks like node classification [41], node ranking [42], and community de-
tection [43]. Some signed graph embedding techniques, such as SNE [44], SIDE [45], SGDN [46],
and ROSE [47], utilize random walks and linear probability methods to capture the positive and
negative relationships within graphs.These techniques consider complex interactions between nodes
when processing graph data, but they may not be sufficient to capture deep-seated relationships in
signed graphs. With the further exploration of signed graphs, neural networks have also been ap-
plied to signed graph representation learning in recent years. There are some SGNN models based
on GCN [9].For example,the first Signed Graph Neural Network (SGNN), SGCN [11], generalizes
GCN to signed graphs by utilizing balance theory to correctly aggregate and propagate the informa-
tion across layers of a signed GCN model. Another noteworthy GCN-based approach is GS-GNN,
which moves beyond the traditional balance theory by categorizing nodes into multiple groups. Ad-
ditionally, there are SGNN models based on GAT [48] such as SiGAT [32], SNEA [7], SDGNN
[12], and SGCL [8],which further enhance the ability to identify the varying levels of importance
of nodes in the graph by introducing attention mechanisms. Unlike the above methods dedicated
to developing more advanced SGNN models, we introduce a plugin to enhance the performance of
SGNNs.

B.2 Graph Data Augmentation

With the rapid development of graph neural networks, there has been a growing interest and de-
mand for graph data augmentation techniques. To address issues such as data sparsity and noise
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Figure 7: Generating candidate training samples

Figure 8: Selecting beneficial candidate training samples

in graphs, many research studies have focused on enhancing graph data augmentation techniques
[49, 23, 24, 50–52]. According to a survey of graph data augmentation [53], graph augmentation
methods can be classified into three types, i.e., feature-wise [24, 54, 55], structure-wise [56–58] and
label-wise [59, 60]. Feature-wise augmentation methods primarily involve modifying, creating, or
merging new features to enhance graph data. For example,LAGNN [24] operates by using a genera-
tive model that takes into account the localized neighborhood information of a target node to enrich
the node’s features. Other feature-wise methods [61, 25] generate augmented node features by ran-
dom shuffling. Structure-wise augmentation methods target at modifying edges and nodes (e.g.,
randomly adding or deleting edges) to simulate different graph structures. GAUG [22] employs
neural edge predictors that can effectively encode class-homophilic structure to promote intra-class
edges and demote inter-class edges in a given graph structure. GraphSMOTE [62] inserts nodes to
enrich the minority classes. Graph diffusion method (GDC [63]) can generate an augmented graph
by providing global views of the underlying structure. Label-wise augmentation methods aim at aug-
menting the limited labeled training data,especially in cases where labeled data is scarce in graph
data . G-Mixup [23] augment graphs for graph classification by interpolating the generator (i.e.,
graphon) of different classes of graphs.Note that these existing data augmentation methods rely on
additional information such as node features and labels. However, the absence of key information
such as node features and labels in signed graphs limits the applicability of traditional data aug-
mentation techniques to SGNN. Therefore, it is necessary to develop data augmentation strategies
tailored for signed graphs.

C Detailed Design of SGA

Figure 7, 8 and 9 show the details of the three steps of the SGA framework.

D SGA Algorithm Details

The SGA Algorithm is shown in Algorithm 1.
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Figure 9: Introducing new feature for training samples

Algorithm 1: SGA Algorithm
1: Input: A signed graph training edge set Dtrain, SGCN f and SGNN f ′, pacing function g(t), ϵ+add, ϵ+neg , ϵ−add, ϵ−del
2: Output: SGNN f ′ parameters θf′

3: Initialize SGCN parameter θf , SGNN θf′ , Dcand.
train add = ∅, Dcand.

train del = ∅
4: Pre-train the f on Dtrain

// Generation of Candidate Training Samples

5: for all vi, vj ∈ V do
6: Calculate Prposeij

and Prneg
eij

using f

7: if
(
Prposeij

> ϵ+add or Prneg
eij

> ϵ−add

)
then

8: Dcand.
train add ← Dcand.

train add ∪ {(vi, vj , σ(eij))}
9: end if
10: if (vi, vj , σ(eij)) ∈ Dtrain, Aij > 0 and Prposeij

< ϵ+del then

11: Dcand.
train del ← Dcand.

train del ∪ {(vi, vj , σ(eij))}
12: end if
13: if (vi, vj , σ(eij)) ∈ Dtrain, Aij < 0 and Prneg

eij
< ϵ−del then

14: Dcand.
train del ← Dcand.

train del ∪ {(vi, vj , σ(eij))}
15: end if
16: end for

// Selecting Beneficial Candidate Training Samples

17: for all (vi, vj , σ(eij)) ∈ Dcand.
train del do

18: Dtrain ← Dtrain \ {(vi, vj , σ(eij))}
19: end for
20: for all (vi, vj , σ(eij)) ∈ Dcand.

train add do
21: if (vi, vj , σ(eij)) /∈ Dtrain then
22: for all vk ∈ Ni ∩ Nj do
23: if (σ(eij)) ∗ σ(eik) ∗ σ(ejk)) > 0 then
24: Dtrain ← Dtrain ∪ {(vi, vj , σ(eij))}
25: end if
26: end for
27: end if
28: end for

// Introducing New Feature for Training Samples

29: for (vi, vj , σ(eij)) ∈ Dtrain do
30: Calculate Score(eij) using Eq. 6
31: end for
32: Sort Dtrain according to difficulty in ascending order
33: Let t = 1
34: while Stopping condition is not met do
35: λt ← g(t)
36: Et ← Dtrain [0, . . . , λt · |Dtrain|]
37: Use f ′ to predict the labels ˆσ(Et)
38: Calculate cross-entropy loss L on { ˆσ(Et), σ(Et)}
39: Back-propagation on f for minimizing L
40: t← t + 1
41: end while
42: return θf′
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E Theory Analysis

E.1 Basic Setup

Before the proof begins, the framework of the SGNN for edge prediction is given in Algorithm
2. A network first performs feature aggregation, where each node learns the representations of its
neighboring nodes, and subsequently uses the feature representations of several pairs of nodes as
inputs to a classifier for predicting the nature of the edges connecting these two nodes. Before the
proof begins, we show the framework of the SGNN for edge prediction below.

Algorithm 2: Simplified SGNN Framework

Input: the adjacency matrix A ∈ R|V|×|V| of graph G, number of aggregation layers L, weight matrix w
2: Output: Label prediction of edge ei,j

H0=A
// Feature Aggregation

4: for l = 0 → L− 1 do
4: Hl+1 = p(Hl, w) =

∑
νi∈N+,νj∈N− aggregate(ν, νi) + aggregate(ν, νj)

end for
6: Z = HL

// Classifier
σ̂ (eij) = f (zi, zj , w)

8: Upgrade parameters based on loss function
return Âij

A network first performs feature aggregation, where each node learns the representations of its
neighboring nodes, and subsequently uses the feature representations of several pairs of nodes as
inputs to a classifier for predicting the edges connecting these two nodes. Here, zi,zj denote the i-th
and j-th rows respectively, in matrix Z and Âij is the predicted label of edge eij . These vectors cor-
respond to the node representations learned through graph filters in traditional GNNs. But actually
SGNN does not have representations for each node, and this is done here to more clearly represent
the variables that affect the generalization performance during the proof process next.

E.2 Assumptions

l-Lipschitz Continuous and Smooth Loss Function: A function f : X → R is α1-Lipschitz
continuous if for all x, y ∈ X, |f(x)− f(y)| ⩽ α1∥x− y∥. A function f : X → R is α2-Lipschitz
smooth if for all x, y ∈ X, |f ′(x)−f ′(y)| ⩽ α2∥x−y∥, where f ′ represents the differential function
of f , and ∥·∥ represents the 2-norm.

Similarly, for functions of three variables, a function f : X → R is α1-Lipschitz continuous

if for all x, y, z ∈ X, |f (xi, yi, z)− f (xj , yj , z)| ≤ α1

√
(xi − xj)

2
+ (yi − yj)

2. A func-
tion f : X → R is α2-Lipschitz smooth if for all x, y, z ∈ X, |f ′(xi, yi, z)− f ′(xj , yj , z)| ≤
α2

√
(xi − xj)

2
+ (yi − yj)

2. We assume that the loss function L(), f(), g(), satisfies the Lipschitz
condition.

Actually, in simple terms, Lipschitz continuity portrays how smooth the function is, ensuring that
the function does not have too steep a slope or abrupt changes: in the event of a small change in the
input value, the change in the output value is also limited to a certain range.

In practice, regularization, normalization, gradient trimming, and other methods of keeping the
model stable actually limit the drastic changes in the function, which means that the assumption
is easily satisfied.

Training set and Test set: Training data is usually easier to obtain than test data. In the link
prediction task, the training set contains more edges and can simulate the data distribution in real
scenarios, while the test set is used to validate the performance of the model in real applications.
It is also taken into account that if the number of edges in the test set is too high, it may cause the
evaluation results to be skewed towards the distribution of the training set, which does not accurately
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reflect the generalization ability of the model. So we assume that the training set has more edges
than the test set.

F Proof of Theorem 1

In this section, we will present the entire proof of our main result about the generalization gap bound.
Similar as proof of theorem 1[[64], Theorem 1], we have:

δgen = EA [R (ADnain
)−R (ADset

)]

=

∣∣∣∣∣∣ 1nt
∑

eij∈ε+t ∪ε
−
t

L
(
Âij , Aij

)
− 1

nm

∑
epq∈ε+m∪ε−m

L
(
Âpq, Apq

)∣∣∣∣∣∣
(a)

≤ 1

nt

∣∣∣∣∣∣
∑

eij ,epq

L
(
Âij , Aij

)
–L

(
Âpq, Apq

)∣∣∣∣∣∣
(11)

The loss function we use is based on link sign prediction, where nt,nm is the number of edges
in training set and test set respectively. Step (a) is the application of our assumption. In learning
process, the number of edges in test set is always lower than it in training set. Therefore, we get
Equation (11). Then using absolute value inequality, we have:∣∣∣∣∣∣

∑
eij ,epq

L
(
Âij , Aij

)
− L

(
Âpq, Apq

)∣∣∣∣∣∣
≤

∑
eij ,epq

∣∣∣L(Âij , Aij

)
− L

(
Âij , Apq

)∣∣∣+ ∣∣∣L(Âij , Apq

)
− L

(
Âpq, Apq

)∣∣∣
(b)

≤
∑

eij ,epq

αx
L

∣∣∣Aij −Apq

∣∣∣+ αy
L

∣∣∣Âij − Âpq

∣∣∣
(12)

Step (b) uses the Lipshitz-continuity of loss function L
(
Â, A

)
. Next, we consider the first item. As

Aij , Apq ∈ {1,−1, 0} signifies the original sign and the predicted sign of the edge eij , obviously
we get the upper bound: max |Aij −Apq|=2.

For the last item, according to the process of link prediction:

Âij = σ̂(eij) = f(zi, zj , w) (13)

Continuing to use the Lipschitz-continuity of the function f(), we get:

∑
eij ,epq

αy
L

∣∣∣Âij − Âpq

∣∣∣
≤ αy

L

∑
eij ,epq

∣∣∣f(zi, zj , w)− f
(
zp, zq, w

)∣∣∣
(c)

≤αy
LM∥w∥

∑
eij ,epq

√(
z2i − z2p

)
+

(
z2j − z2q

)
≤ αy

LM∥w∥
∑

eij ,epq

√
z2i + z2j

≤
√
2αy

LM∥w∥
∑

eij ,epq

∥Z∥∞

(14)

Here, Step (c) is an extension of the Lipschitz-condition for multivariate functions. Similar to αy
L

and αx
L, M is constant determined only by the function f() itself. We will subsequently prove the

existence of the constant M in the proof of Lemma 1.
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In Equation (14), ∥Z∥∞ refers to the infinite norm of the matrix Z. We set zi as the i-th row of
matrix Z, which can be represented as zi = Z · Ii. Here Ij =

[
0, · · · , 1j , · · · , 0

]
is a vector

with position i being 1 and the other positions being 0. The Last step followed the definition that

∥Z∥∞ = max{
|V|︷ ︸︸ ︷

z1, z2, · · · · · · zi}.

Bringing Equation (12) and (14) into Equation (11), we get the following result:

EA [∥R (ADtrain)−R (ADtest)∥] ≤ 2αx
L +

√
2αy

LM ∥w∥ ∥Z∥∞
nt

(15)

Next we will prove an upper bound for ∥w∥ based on the SGD algorithm.

wt+1 = wt − η∇loss

= wt − η
∇L
∇f

· ∇f
∇w

≤ wt − ηαx
Lαf |Z|∞

(16)

This gives us the iterative formula for w. After t iterations, we can obtain upper bound of weight
matrix ∥wt∥:

∥wt∥ ≤ ∥winit∥+ tηαx
Lαf∥Z∥∞ (17)

Bringing Equation (17) into Equation (15), let β = ∥z∥∞ and θ = ∥winit∥, we get the final result:

Egen ≤ 2αx
L +

√
2αy

LMβ(θ + tηαx
Lαfβ)

nt
(18)

G Proof of Lemma 1

For the ternary function f(x, y, z) with a bounded z0, if the function f satisfies the Lipschitz-
condition for z, it can be obtained:

|f (x1, y1, z0)− f (x2, y2, z0)| ≤M |z0|
√

(x1 − x2)
2
+ (y1 − y2)

2 (19)

For a succinct representation in the next proof, we defineD
(
x1 x2
y1 y2

)
=

(
x1−x2

)2

+
(
y1−y2

)2

.

To prove our conclusion, we first construct the auxiliary function G:

G
(
x, y, z,∆x,∆y

)
=

1

2

(
f
(
x+∆x, y +∆y, z

)
+ f

(
x, y, z

)) (20)

By the definition of G(x, y, z,∆x,∆y), we have:

G(x1, y1, z,∆x1,∆y1)–G(x2, y2, z,∆x2,∆y2)

=
1

z
[f(x1 +∆x1, y1 +∆y1, z)− f(x2 +∆x2, y2 +∆y2, z) + f(x1, y1, z)− f(x2, y2, z)]

≤ Lf

z

[√
D(

x1 +∆x1 x2 +∆x
y1 +∆y1 y2 +∆y2

) +

√
D(

x1 x2
y1 y2

)

]
(21)

Using a special case of Cauchy Schwarz’s inequality, we have:
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D(
x1 +∆x1 x2 +∆x
y1 +∆y1 y2 +∆y2

) ≤ D(
x1 x2
∆x1 ∆x2

) +D(
y1 y2
∆y1 ∆y2

) (22)

Given that z is bounded and the obvious conclusion
√
D(

x1 x2
y1 y2

) ≤√
D(

x1 +∆x1 x2 +∆x
y1 +∆y1 y2 +∆y2

),

G(x1, y1, z,∆x1,∆y1)−G(x2, y2, z,∆x2,∆y2)

≤ K

√
(x1 − x2)

2
+ (y1 − y2)

2
+ (∆x1 −∆x2)

2
+ (∆y1 −∆y2)

2
(23)

HereK is a constant ultimately determined by function f . Based on Equation (23), next we construct
a differential of the following form:

f(x1, y1, z)

z
− f(x2, y2, z)

z

=
1

|z|

[
f
(
x1, y1, z

)
+ f

(
x2, y1, z

)
−
(
f
(
x2, y1, z

)
+ f

(
x2, y2, z

))]
= G(x1, y1, z, x2 − x1, 0)−G(x2, y2, z, 0, y2 − y1)

(24)

As what we defined in Equation (20) and (23), ∆x1 = x2 − x1,∆y2 = y2 − y1,∆x2 = ∆y1 = 0.
Applying Equation (23) to Equation (24):

f (x1, y1, z)− f (x2, y2, z) ≤
√
2K|z|

√
(x1 − x2)

2
+ (y1 − y2)

2 (25)

Let M =
√
2K, we managed to proof the existence of M in Equation (14).

H Datasets

We conduct experiments on six real-world datasets, i.e., Bitcoin-OTC, Bitcoin-Alpha, Wiki-elec,
Wiki-RfA, Epinions, and Slashdot. The main statistics of each dataset are summarized in Table 5.
In the following, we explain the important characteristics of the datasets briefly.

Bitcoin-OTC2 [65, 66] and Bitcoin-Alpha3 are two datasets extracted from bitcoin trading plat-
forms. Because Bitcoin accounts are anonymous, individuals assign trust or distrust tags to others
to enhance security.

Wiki-elec4 [67, 1] is a voting network in which users can choose trust or distrust to other users in
administer elections. Wiki-RfA [68] is a more recent version of Wiki-elec.

Epinions5 [67] is a consumer review site with trust and distrust relationships between users.

Slashdot6 [67] is a technology-related news website in which users can tag each other as friends
(trust) or enemies (distrust).

Following the experimental settings in [11], We randomly split the edges into a training set and a
testing set with a ratio of 8:2. We run with different train-test splits for 5 times to get the average
scores and standard deviation.

2http://www.bitcoin-otc.com
3http://www.btc-alpha.com
4https://www.wikipedia.org
5http://www.epinions.com
6http://www.slashdot.com
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Table 5: The statistics of datasets.

Dataset # Nodes # Links # Pos edges # Neg edges Density
Bitcoin-OTC 5,881 35,592 32,029 3,563 1.03e-3
Bitcoin-Alpha 3,783 24,186 22,650 1,536 1.69e-3

Wiki-elec 7,115 103,689 81,345 22,344 2.05e-3
Wiki-RfA 11,017 170,335 133,330 37,005 1.40e-3
Epinions 131,580 840,799 717,129 123,670 4.86e-5
Slashdot 82,140 549,202 425,072 124,130 8.14e-5

I Baselines and Experiment Setting

We use five popular graph representation learning models as backbones, including both unsigned
GNN models and signed GNN models.

Unsigned GNN: We employ two classical GNN models (i.e., GCN [9] and GAT [31]). These
methods are designed for unsigned graphs, thus, as mentioned before, we consider all edges as
positive edges to learn node embeddings in the experiments.

Signed Graph Neural Networks: SGCN [11] and SiGAT [32] respectively generalize GCN [9]
and GAT [31] to signed graphs based on message mechanism. Besides, they integrate the balance
theory. GS-GNN [13] adopts a more generalized assumption (than balance theory) that nodes can
be divided into multiple latent groups. We use these signed graph neural networks as baselines to
explore whether SGA can enhance their performance.

We implement our SGA using PyTorch [69] and employ PyTorch Geometric [70] as its complemen-
tary graph library. The graph encoder, responsible for augmenting the graph, consists of a 2-layer
SGCN with an embedding dimension of 64. This encoder is optimized using the Adam optimizer,
set with a learning rate of 0.01 over 300 epochs. For SiGAT, we randomly standardized the node
embedding dimension to 20 as recommended in [32]. For the remaining embedding-based methods
it was set to 64, matching the dimensionality used in GS-GNN [13]. For the baseline methods, we
adhere to the parameter configurations as recommended in their originating papers. Specifically, for
unsigned baseline models like GCN and GAT, we employ the Adam optimizer, with a learning rate
of 1e-2, a weight decay of 5e-4, and span the training over 500 epochs. For signed baseline models,
SGCN is trained with an initial learning rate of 1e-2 and run for 300 epochs, SiGAT is trained with
an initial learning rate of 5e-3 and run for 1500 epochs, GSGNN is trained with an initial learning
rate of 1e-2 and run for 3000 epochs. The experiments are performed on a Linux machine with eight
24GB NVIDIA GeForce RTX 3090 GPUs.

Our primary evaluation task is link sign prediction. We assess the performance employing AUC,
F1-binary, F1-macro, and F1-micro metrics, consistent with the established norms in related liter-
ature [71, 13]. It is imperative to note that across these evaluation metrics, a higher score directly
translates to better model performance.

J More Link sign prediction results

Table 6: Link sign prediction results (average ± standard deviation) with F1-micro (%) and F1-
macro (%) on six benchmark datasets.

Datasets Bitcoin-alpha Bitcoin-otc Epinions Slashdot Wiki-elec Wiki-RfA
Methods F1-micro F1-macro F1-micro F1-macro F1-micro F1-macro F1-micro F1-macro F1-micro F1-macro F1-micro F1-macro
GCN [9] 59.9±1.9 45.0±0.9 72.9±2.0 57.7±1.4 70.6±0.1 60.1±0.1 46.3±0.6 44.5±0.4 67.0±0.7 60.1±0.5 63.0±0.3 56.5±0.3
+SGA 66.4±4.9 49.1±2.8 78.0±2.4 60.1±1.2 70.7±1.0 60.2±0.7 52.2±7.9 46.5±2.4 68.4±0.5 62.1±0.2 64.9±1.1 58.8±1.0

(Improv.) 10.9% ↑ 9.1% ↑ 7% ↑ 4.2% ↑ 0.1% ↑ 0.2% ↑ 12.7% ↑ 4.5% ↑ 2.1% ↑ 3.3% ↑ 3% ↑ 4.1% ↑
GAT [31] 49.4±9.7 39.5±5.3 77.0±4.8 59.9±3.4 58.2±19.8 44.9±6.3 57.5±17.5 44.4±5.0 56.9±10.4 49.9±5.5 60.2±4.9 50.4±1.8

+SGA 77.5±3.7 53.8±2.7 83.0±5.0 65.6±4.2 70.7±8.4 55.9±1.7 58.7±9.2 51.3±4.4 61.8±4.9 54.9±3.1 58.3±3.4 50.8±1.3
(Improv.) 56.9% ↑ 36.2% ↑ 7.8% ↑ 9.5% ↑ 21.5% ↑ 24.5% ↑ 2.1% ↑ 15.5% ↑ 8.6% ↑ 10% ↑ -3.2% ↓ 0.8% ↑

SGCN [11] 83.4±1.3 62.1±1.1 86.7±1.9 72.0±1.5 83.9±2.0 68.0±2.9 58.2±3.1 54.6±2.4 73.1±1.7 66.1±1.2 63.2±3.7 58.7±2.4
+SGA 87.2±1.0 67.6±0.8 90.5±0.4 77.3±0.6 86.9±1.3 75.6±1.4 77.0±1.0 68.1±0.8 80.6±0.8 74.3±0.3 78.6±0.9 72.1±0.6

(Improv.) 4.6% ↑ 8.8% ↑ 4.3% ↑ 7.5% ↑ 3.7% ↑ 11.2% ↑ 32.3% ↑ 24.7% ↑ 10.2% ↑ 12.3% ↑ 24.3% ↑ 23% ↑
SiGAT [32] 94.0±0.2 65.2±0.7 91.8±0.4 72.4±1.3 91.7±0.2 80.7±0.5 82.7±0.1 73.0±0.1 85.2±0.2 75.8±0.5 84.3±0.1 74.4±0.2

+SGA 94.2±0.1 70.3±1.1 92.2±0.2 78.0±1.1 91.9±0.2 82.2±0.4 83.2±0.2 74.5±0.3 85.6±0.1 77.4±0.3 84.7±0.2 76.0±0.2
(Improv.) 0.2% ↑ 7.8% ↑ 0.4% ↑ 7.7% ↑ 0.2% ↑ 1.9% ↑ 0.6% ↑ 2.1% ↑ 0.5% ↑ 2.1% ↑ 0.4% ↑ 2.1% ↑

GS-GNN [13] 94.5±0.3 72.1±3.7 93.1±1.0 75.4±7.5 91.7±1.0 81.9±1.7 81.6±0.4 70.3±1.0 85.3±0.1 75.8±0.6 84.1±0.3 73.0±1.1
+SGA 94.7±0.2 74.6±0.9 93.0±0.3 80.5±0.6 92.0±0.2 82.6±0.5 81.6±0.4 72.1±1.0 85.4±0.3 75.6±1.4 84.5±0.1 74.7±0.3

(Improv.) 0.2% ↑ 3.4% ↑ -0.1% ↓ 6.7% ↑ 0.4% ↑ 0.8% ↑ -0% ↓ 2.6% ↑ 0.1% ↑ -0.3% ↓ 0.5% ↑ 2.3% ↑
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K Parameter Sensitivity Analysis with F1 scores

Figure 10: Performance of SGCN: F1-binary scores (with standard deviation) across six benchmark
datasets, evaluated under variations in parameters ϵ+del, ϵ

−
del, ϵ

+
add, ϵ−add, T and λ0.

Figure 11: Performance of SGCN: F1-macro scores (with standard deviation) across six benchmark
datasets, evaluated under variations in parameters ϵ+del, ϵ

−
del, ϵ

+
add, ϵ−add, T and λ0.

Figure 12: Performance of SGCN: F1-micro scores (with standard deviation) across six benchmark
datasets, evaluated under variations in parameters ϵ+del, ϵ

−
del, ϵ

+
add, ϵ−add, T and λ0.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly reflect the motivation and main contri-
butions of this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see the limitation part in introduction.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The main theoretical result is Theorem 1. For the complete proof, please refer
to Appendix G and F.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to the code link provided in the abstract section and the experi-
ment setting in the Experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Please refer to the code link provided in the abstract section.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to the Baselines and Experiment Setting.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use average improvement ratio to represent the statistical significance and
calculate the results with average and standard deviation. (Please refer to Table 1)

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to the Baselines and Experiment Setting part.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: Baselines and Experiment Setting
Justification: Please refer to the code link provided in the abstract section.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to the introduction part.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have given proper citations or URLs to those existing datasets and codes
1451 of baselines.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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