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Abstract

As large language models evolve, there is grow-
ing anticipation that they will emulate human-
like Theory of Mind (ToM) to assist with routine
tasks. However, existing methods for evaluat-
ing machine ToM focus primarily on unimodal
models and largely treat these models as black
boxes, lacking an interpretative exploration of
their internal mechanisms. In response, this study
adopts an approach based on internal mechanisms
to provide an interpretability-driven assessment
of ToM in multimodal large language models
(MLLMs). Specifically, we first construct a multi-
modal ToM test dataset, GridToM, which incor-
porates diverse belief testing tasks and perceptual
information from multiple perspectives. Next,
our analysis shows that attention heads in multi-
modal large models can distinguish cognitive in-
formation across perspectives, providing evidence
of ToM capabilities. Furthermore, we present a
lightweight, training-free approach that signifi-
cantly enhances the model’s exhibited ToM by
adjusting in the direction of the attention head. 1

1. Introduction
Theory of Mind (ToM) is a psychological term referring
to infer mental states to self and others. This capability is
fundamental to human social cognition and emotional un-
derstanding. In recent years, the rapid development of large
models raised researchers’ consideration: can they interact
with us in a manner similar to humans? For example, could
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they, like the robot TARS in Interstellar, accurately compre-
hend and execute both explicit and implicit tasks assigned
by humans (Figure 1) ? It leds to the question that whether
large models have ToM. Evaluating the ToM capabilities
of large models is crucial for understanding their potential
to meaningfully engage with human communication and
reasoning. Some works utilized the classical Sally-Anne to
test the ToM capabilities of machines (Nematzadeh et al.,
2018; Grant et al., 2017; Ullman, 2023; Lore et al., 2024;
Kosinski, 2024). While these evaluation methods offer pre-
liminary insights into the ToM capabilities of large models,
they remain limited in scope.

Most existing studies adopt unimodal approaches, focusing
on either text or videos, and lack comprehensive agent-level
information (Gandhi et al., 2021; Nematzadeh et al., 2018;
Grant et al., 2017; Le et al., 2019; Amirizaniani et al., 2024).
In contrast, human social interactions rely on reasoning
about others’ mental states by integrating multimodal in-
puts, such as visual and linguistic data. Although some
studies (Jin et al., 2024; Shi et al., 2025) have attempted to
extend ToM evaluations of large models to multimodal en-
vironments using video-based datasets, their datasets often
incorporate excessive high-level information, such as spa-
tial relationships, agents’ tasks, and action trajectories (Ma
et al., 2023). Moreover, in real-world datasets, an agent’s
perception of environmental events cannot be accurately
captured. For example, in the MMToM-QA dataset (Jin
et al., 2024), it is impossible to determine from the video
modality alone whether the protagonist truly “saw” the plate.
Consequently, the accuracy of ToM evaluations may depend
on the quality of perceptual information, which could lead
to correct or incorrect performance for reasons unrelated
to genuine ToM capabilities. Unlike these prior works, we
construct a dataset that is based on 2d grid world, enabling
large models to perceive the full context of the physical
world through the video modality while supplementing cog-
nitive perspective information for each agent through the
text modality.

Furthermore, the majority of assessments of ToM capabil-
ities in large models take a black-box approach, relying
heavily on question-answering tasks to infer conclusions
(Xu et al., 2024), as demonstrated in Figure 1, while lacking
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Previous work has focused on evaluating ToM abilities of LLMS 
through their performance in answering ToM-related QA tasks.

Our work focuses on the internal 
representations of the model rather 
than relying solely on its input-output 
performance. 

Figure 1. This illustration highlights the integration of different levels of ToM: recognizing an agent’s desire (Cooper wants to pilot), a
first-order belief (he believes he can do it), and a second-order belief (he believes TARS perceives it as risky). These nested mental states
are crucial in evaluating advanced ToM.

interpretability-oriented methodologies (Mao et al., 2024).
However, multimodal large language models (MLLMs) are
known to exhibit hallucination phenomena, where the qual-
ity of prompts can significantly impact their performance
on question-answering tasks. This means that a model may
“understand” a concept but fail to provide a “correct” re-
sponse (Bai et al., 2024). Like demonstreted in Figure 2,
factors influencing QA performance are not limited to ToM
capabilities. Elements such as hallucination and scenario
understanding also affect the ToM evaluation results of pre-
vious studies. Consequently, it is insufficient to determine
whether MLLMs possess ToM capabilities solely based on
their performance in ToM tasks. In contrast, our goal is to
examine whether these models develop internal represen-
tations that distinguish agents’ mental states from differ-
ent perspectives, beyond merely analyzing output accuracy.
This will provide an interpretable explanation of whether
MLLMs possess ToM capabilities.

Input Output
ToM

hallucination
Scenario understanding

…

MLLMs

Figure 2. The figure highlights the limitations of current ToM eval-
uations, namely that other model capabilities (such as hallucination
and scenario understanding) may interfere with the results.

In summary, our main contributions are as follows: (1) we
introduce GridToM, a novel multimodal ToM dataset that in-

corporates diverse belief-testing tasks alongside perceptual
information from multiple perspectives; (2) we conduct an
in-depth analysis of the internal representations of MLLMs
through interpretability methods, focusing on their interme-
diate activations; (3) we propose a training-free approach
to enhance ToM performance in MLLMs by strategically
shifting activations along specific directions.

2. Related Work
2.1. Dataset for Evaluating Theory of Mind

Inspired by traditional experiments used to evaluate ToM
in children, some studies have applied the classic Sally-
Anne task to assess ToM capabilities in machines (Grant
et al., 2017; Eysenbach et al., 2016; van Duijn et al., 2023).
Most existing datasets and methods for evaluating ToM
capabilities are based on a single modality (Xiao et al.; Am-
irizaniani et al., 2024; Wu et al., 2023; Yim et al., 2024)
. For text inputs, Mindgames (Sileo & Lernould, 2023) is
a dataset grounded in dynamic epistemic modal logic, de-
signed to evaluate the epistemic reasoning of large language
models through controlled problem generation. OpenToM
(Xu et al., 2024) is a dataset characterized by long-form
narratives featuring real-world individuals and events, em-
phasizing the complexity of storylines and the diversity of
character relationships. Similarly, ToMi (Le et al., 2019) is a
comprehensive dataset encompassing multi-agent scenarios,
multi-episode contexts, multi-turn question answering, and
tasks involving mental state reasoning. Some tried videos,
(Shu et al., 2021) is a benchmark composed of program-
matically generated 3D animations, where agents interact
with objects and move within various physical constraints.
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SymmToM (Sclar et al., 2022) is a multi-agent reinforce-
ment learning environment called SymmToM, where agents
can simulate the mental states of others.

The MMToM-QA dataset (Jin et al., 2024) is the pioneer-
ing resource aimed at assessing machine learning models’
ability to infer mental states from multimodal data, com-
bining video and text in real-world tasks. Similarly, other
studies (Chen et al., 2024; Shi et al., 2025) have also ex-
plored this domain. However, real-world video datasets
often lack perspective information, making it challenging to
infer high-dimensional details such as whether the protago-
nist in a story truly notices specific objects. This limitation
can affect the accuracy of ToM task performance.

To address these challenges, we developed a dataset based
on a 2D grid world environment, which provides simplified
character relationships, complete physical information, and
comprehensive perceptual data for all agents. The 2D grid
world framework not only enables the creation of manipula-
ble visual causal stories for training classifiers to distinguish
perspective information but also avoids introducing high-
level information. This reduces the cognitive burden on
MLLMs, allowing them to focus on the core ToM tasks.

2.2. Benchmark

The question of whether large models exhibit genuine ToM
capabilities remains a topic of ongoing debate. Some evalu-
ation studies suggest that certain large models demonstrate
a degree of ToM ability in reasoning tasks, such as un-
derstanding others’ beliefs, intentions, and mental states
(Kosinski, 2023; Bubeck et al., 2023; Zhou et al., 2023).
However, other studies argue that the observed ToM-like
capabilities of large models are not based on true general-
ization but instead result from learning patterns in question-
answering tasks (Shapira et al., 2024; Ullman, 2023; Stra-
chan et al., 2024) or lack of ToM (Sap et al., 2022; Verma
et al., 2024).Most conclusions about ToM capabilities in
large models rely on performance in QA tasks. In contrast,
our research aims to address this question from an inter-
pretability perspective by investigating the internal repre-
sentations of MLLMs related to mental state understanding,
rather than solely depending on the quality of their question-
answering performance.

3. GridToM
Why not previous grid world based ToM dataset? The
previous datasets only included unimodal inputs and lacked
annotations for character perspective information and event
details, making them unsuitable as positive and negative
samples for the subsequent experiments in this study.

Unlike previous ToM works, GridToM provides manipula-
ble multimodal visual-linguistic causal stories and includes

the perceptual information of all agents in the scene. For
each story, we apply randomized manipulations to the evalu-
ation data, including room configurations, agent states, and
action trajectories.

3.1. Overview

GridToM is generated based on the Multigrid library (Ogun-
tola et al., 2023), which builds on Minigrid (Chevalier-
Boisvert et al., 2023). It provides a multi-agent discrete
gridworld environment, a simple and commonly used set-
ting for ToM research in the machine learning community.
The complete dataset construction pipeline and accompany-
ing quality-control procedures are detailed in Appendix I.
It has been demonstrated that a simple 2D gridworld can
effectively support the development of diverse ToM tests
(Ma et al., 2023), encompassing all mental states defined in
ATOMS (Abilities in ToM Space) (Beaudoin et al., 2020).

Our dataset comprises 1,296 video-text pairs, with each
video having a resolution of 294×420 pixels and approxi-
mately 40 frames. Each map is a 10×7 grid featuring three
rooms and two agents. The dataset includes 27 distinct maps,
each with two initial agent positions, two orientations, six
sequences of agent movements into target rooms, and paired
True Belief (TB) and False Belief (FB) stories, generating
the 1,296 pairs. An example is shown in Figure 3.

3.2. Baseline

Our experiments reproduce the classic unexpected transfer
task (Baron-Cohen et al., 1985). We simulate a complete
interaction process within the gridworld environment. The
testing dataset consists of 500 samples. An additional 148
samples were used for training and validation of our model,
with 75% allocated for training and 25% for validation. To
ensure that each selected model processes the input without
errors, we use four key frames and three intermediate frames
between them as input for video-based tasks, instead of
providing all frames. The temperature of all models was set
to 0.

Human Participants To evaluate human performance in
the proposed dataset, 12 human participants were recruited
to answer the test questions, all of them gave informed
consent. The age range was from 23 to 32 years, with an
average of 24.8 (SD = 2.3). Each participant was randomly
assigned 100 samples from the 500-test dataset, and the
final performance score was obtained by averaging their
results. Importantly, in the video-only condition, core envi-
ronmental rules—including that closed doors block agents’
perception—were clearly explained prior to testing. Any
omitted narrative content was non-instructional and did not
impact task comprehension. This ensures that participants
were not misled or disadvantaged by the absence of textual
guidance.
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Figure 3. A FB sample in GridToM includes an omniscient-perspective video covering the entire event timeline, along with omniscient-
perspective textual descriptions for each time interval. For all agents involved in the event, we provide full physical perspective information
across the timeline. When an agent closes a door, we mask its perception of any information beyond the door to simulate realistic
sensory limitations. Each sample contains three types of questions (illustrated on the right). For each video-text pair, the accompanying
text annotations include environment descriptions, initial belief assessments, first-order belief assessments, and second-order belief
assessments. We provide the full text and the video in Appendix C.

MLLMs We evaluated MLLMs under both multimodal and
pure-video conditions, including GPT-4o (Achiam et al.,
2023), Doubao-1.5-vision-pro (Team, 2025), DeepSeek-vl2-
small (Liu et al., 2024), LLava-Next-Video-7b-hf (Touvron
et al., 2023), Qwen2-VL-7b-instruct (Bai et al., 2023). Ad-
ditionally, for fairness, we evaluated both subclasses of
MLLMs using the same methodology, following previous
work (Jin et al., 2024). Specifically, we sample a fixed set of
seven frames from the video (including four key frames and
three evenly sampled intermediate frames) along with the
corresponding annotations to evaluate Image-Text-to-Text
Models and Video-Text-to-Text Models.

LLMs We also evaluated GridToM on various large lan-
guage models (LLMs) using text-based input only, including
GPT-4o (Achiam et al., 2023), Doubao-1.5-Pro-32k (Team,
2025), DeepSeek-V3 (Liu et al., 2024), LLaMA-3.3-70B-
Instruct (Dubey et al., 2024), Mistral-7B-Instruct-V3 (Jiang
et al., 2023), LLaVA-Next-Video-7B-HF (Touvron et al.,

2023), and Qwen-VL-7B-Instruct (Bai et al., 2023).

We evaluate the models under three conditions (Jin et al.,
2024): Multimodal QA with both video and text inputs,Text-
only QA with text inputs only, and Video-only QA with
video inputs only. We list our detailed setting in Appendix F.
Results are in Table 1, we demonstrate baseline of existing
MLLMs on GirdToM, while the result of initial belief test
is in Appendix D.

4. Belief representation in MLLMs
4.1. Model

In the exploration and modification phases, we utilize the
LLaVA-Next-Video model, a MLLM specifically designed
for video understanding and generation tasks. Additionally,
we utilized the Qwen2-VL model to perform the aforemen-
tioned two phases, demonstrating the effectiveness of our
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approach.

4.2. Attention Feature Extraction

belief inference

Description
video

MLLM

The video shows a 2D grid world viewed 
from above, consisting of 10 rows and 
7 columns…

Question

which color room does the yellow agent 
believe the white agent should be in?

A.red B.purple

belief inference

perspective separation

belief inference

N layers

M heads

N layers

M heads
linear 

separability 

…

Top k
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Figure 4. Overview of Our Workflow. We first constructed the
GridToM dataset and conducted benchmark testing of MMLMs on
it. Subsequently, we input video-text pairs to probe the internal at-
tention representations of the models. Using logistic regression, we
performed binary classification on the representations of positive
and negative samples to identify attention heads that are sensitive
to perspective separation and belief representation. Targeted inter-
ventions were then applied to the top K most sensitive attention
heads during inference.

We begin by investigating whether MLLMs represent and
how they represent the beliefs of different agents. Our
objective is to decode the belief states of various agents
from the activations of attention heads, given multimodal
story narratives and corresponding belief statements.

Specifically, MLLMs first embed the input multimodal data
into high-dimensional spaces, including visual inputs V =
{v1, v2, ..., vm} and textual inputs X = {x1, x2, ..., xn},
where m and n represent the token lengths of the visual
and textual inputs, respectively. The model concatenates the
visual and textual embeddings into a unified input sequence
T = concat(V,X) ∈ R(m+n)×DH , where D denotes the
dimension of each attention head and H represents the num-
ber of attention heads. This unified input is then passed
through a Transformer architecture with L layers.

At each layer, the concatenated input undergoes multi-head
attention. The multi-head attention mechanism (MHA) can
be approximated as Equation (1):

Tl+1 = Tl +

H∑
h=1

Attnh
l (P

h
l Tl) ·W o

l , (1)

Where Attnh
l denotes the attention operation of the n-th

head at the l-th layer, Ph
l ∈ RD×DH maps stream activation

into a D-dimensional head space, and W o
l ∈ RD×DH is the

output projection matrix. Inspired by (Li et al., 2024), the
probing and intervention steps occur after Attn and before
W .

We extract the output of each attention head at every layer,
capturing the activation at the final token position, denoted
as X ∈ RL×H×D. Each attention head activation is asso-
ciated with belief labels Yp and Yo , which represent the
correctness of the protagonist’s perspective and the omni-
scient perspective, respectively.

Due to the simplicity of the 2D gridworld, in TB scenar-
ios, the protagonist’s perceptual information is equivalent
to omniscient information. This allows the protagonist’s
perspective video to be substituted by the omniscient per-
spective video. In TB scenarios, the protagonist’s belief
labels Yp = True and Yp = False help identify the layers
and heads sensitive to reasoning based on perceptual infor-
mation. In FB scenarios, the protagonist’s belief labels help
identify the layers and heads that are sensitive to integrating
belief information across perspectives. For the omniscient
belief label Yo, the correct label corresponds to multimodal
data with an omniscient perspective and accurate belief in-
ference, while the incorrect label includes either an incorrect
perspective or an incorrect inference result.

This design of correct and incorrect labels targets two as-
pects: perspective separation and belief inference, integrat-
ing them into a unified framework. Targeted interventions
are applied to the heads that are sensitive to these two as-
pects. We collectively define correct perspective separation
and correct belief inference as true labels, and their oppo-
sites as false labels. In our approach, we only use the correct
and incorrect labels from the protagonist’s perspective to
indicate and guide perspective separation and belief reason-
ing.

Yp = {Y TB
p ∩ Y FB

p } (2)

For different belief tasks, our probing strategies vary slightly,
while the interference strategy remains consistent, as de-
tailed in Appendix B.

4.3. Probing

Probe is a standard tool for analyzing the internal represen-
tations of networks (Köhn, 2015; Gupta et al., 2015). The
idea is to train a classifier (probe) on the activations of the
network to distinguish specific types of inputs or outputs.
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(A) (B) (C) (D)

Figure 5. (A) The linear probing accuracy of all heads across all layers in LLaVA-Next-Video on the test set. The x-axis represents the
heads, and the y-axis represents the layers. Dark green indicates higher accuracy, with 50% serving as the baseline accuracy for random
guessing. (B) Kernel density estimation (KDE) plot of activations in layer 28, head 15 of LLaVA-Next-Video, projected onto the top
two true directions, showing real (green) and false (orange) pairs. Marginal distributions are displayed along the top and right axes. (C)
& (D) The linear separability of belief representations is explained through a visual interpretation of the typical representation space,
demonstrating the attention feature extraction strategy proposed in Appendix B. The binary combinations of Yp and Yo labels correspond
to the combinations of TB and FB with correct and false beliefs. For belief-sensitive heads (e.g., head 15 in layer 28), they can effectively
estimate the boundaries of the belief states for both the omniscient perspective and the protagonist’s perspective, whereas insensitive
heads cannot. These four combinations form distinct clusters in the representation space without overlap, with clearly defined decision
boundaries. The probing weight direction represents the decision boundary, effectively separating these belief combinations.

fh
l =

1

1 + e−(xθ+b)
, (3)

where fh
l denotes a logistic sigmoid function for (xθ + b),

while θ ∈ RD and b ∈ R represent the weight vector and
bias, respectively. The parameters θ and b are optimized by
minimizing the cross-entropy loss.

We first conducted probing experiments on GridToM. The
results are shown in Figure 5. The probing results for dif-
ferent models are listed in Appendix G. Subsequently, we
performed the same probing experiments on the real-world
multimodal ToM dataset MMToM-QA, to validate the gener-
alizability of our probing method. The detailed information
of the MMToM-QA dataset is presented in Appendix H, as
shown in Figure 22.

For each attention head at every layer, we train a separate
linear binary probe to fit the belief labels Yp and Yo. Given
a dataset of size N , we obtain the corresponding activations
of a single attention head, denoted as X ∈ RN×D , the
corresponding belief labels are Y ∈ {0, 1}N . We use a
logistic regression model to predict the probability of the
belief being true. In simple terms, we select the top K atten-
tion heads ranked by accuracy in Figure 5 (A) and use the
decision boundary in Figure 5 (C) as the direction for inter-
vention weights. Figure 5 (A) shows the validation accuracy
of the linear probe, indicating that many attention heads can
accurately capture belief states from the protagonist’s per-
spective. These abundant informational representations are

distributed across different heads in various layers, starting
from middle layers to the final layers, whereas the initial
layers lack this capability.

Meanwhile, Figure 5 (C) demonstrates the linear separa-
bility of belief representations. We visualize the attention
feature extraction strategy proposed in Appendix B, where
the four clusters represent the correctness of perspective
separation and belief inference. These four combinations
are distinctly clustered without overlap, with clear decision
boundaries. This suggests that MLLMs indeed develop in-
termediate representations reflecting multi-perspective infor-
mation extraction and belief inference based on the complete
information provided. This phenomenon indicates that these
attention heads implicitly encode the belief states of other
perspectives in a linearly decodable manner. Furthermore,
due to the simplified information in the 2D grid world, these
implicit beliefs are easily propagated to the final layers.

To further understand belief representations in the activa-
tion space of attention heads, we visualized the geometric
shapes within the activation space, as shown in Figure 5(b).
Specifically, we reduced the activation space dimensions to
two using Principal Component Analysis and selected two
orthogonal directions (θ⊥θ′) with the maximum variance
for separating true and false features. We visualized the ge-
ometric projections onto θ and θ′, observing partial overlap
and distinct representations between the two distributions.
Notably, the second direction still exhibits unique represen-
tation distributions, suggesting that the concepts of “true”
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and “false” coexist in subspaces within the attention space,
rather than being confined to a single unified space.

4.4. Intervention

Although the probing results have demonstrated that
MLLMs possess internal mental representations, we still
aim to intervene with the attention activation heads to fur-
ther validate the practical significance of the classifier’s
directional representations during probing. Due to dataset
limitations, MMToM-QA can only provide positive and neg-
ative samples in the text modality rather than multimodal
ones, so we performed the intervention experiments exclu-
sively on GridToM.

We first select the top K attention heads with the highest
sensitivity on the validation set, representing those most
responsive to the differences between true and false beliefs.
We then intervene on these selected heads after multi-head
attention computation but before mapping back to the output,
as computed as follows:

Tl+1 = Tl +

H∑
h=1

(Attnh
l (P

h
l Tl) + ασh

l θ
h
l ) ·W o

l , (4)

where σh
l denotes the standard deviation of activations along

the target direction, and θhl represents the intervention target
direction, derived from the weight vector of the selected
attention head. The parameter α controls the strength of the
intervention. For the selected K heads, α scales the acti-
vation along the original direction by α times the standard
error in the target direction.

We provide an analysis of the effects of hyperparameters
K and α on the intervention results in the Appendix E.
The analysis shows that our approach relies on an inter-
pretable intervention based on internal representations and
input perturbations, rather than on hyper-parameter tuning.
By identifying the attention heads responsible for true be-
lief representation and applying targeted interventions, we
enhance the sensitivity of the model to perspective sepa-
ration and belief representation. This ultimately improves
the MLLM’s ability to perceive and represent beliefs more
effectively.

5. Experiments
5.1. Result

We present a summary of our results in Table 1. For each
task, we include human accuracy as a benchmark to repre-
sent the upper bound of task performance.

In the multimodal setting, humans achieved high accuracy
across TB, FB, and Both conditions, demonstrating the
consistency of our design. However, in video-only tasks,

performance on TB tasks declined slightly, as humans in-
ferred the protagonist’s perspective but were occasionally
misled by scenarios contradicting physical intuition, such
as omniscient visibility through a doorway. The absence of
textual clarification further amplified these misjudgments,
as prior knowledge influenced their reasoning. Similarly,
in the text-only setting, human performance experienced a
slight decline due to excessive textual interference, which
introduced confusion and contributed to errors.

In first-order belief task, the baseline results in the mul-
timodal setting indicate that MLLMs achieve high accu-
racy on FB tasks (e.g., both ChatGPT-4.0 and Doubao-1.5-
Vision-Pro reach 100%), even slightly surpassing human
performance (99.9%). However, their performance on TB
tasks is significantly weaker (e.g., ChatGPT-4.0 achieves
6.2%, Doubao-1.5-Vision-Pro achieves 16.8%, and 0% on
second-order belief tasks). We attribute this discrepancy
to the models’ overreliance on patterns learned from FB
tasks, which may lead to misgeneralization in TB scenarios.
This sensitivity prevents MLLMs from recognizing critical
contextual details, such as the fact that the protagonist’s
door is open in TB tasks. This inference is supported by the
following observations: When the influence of visual fac-
tors related to physical spatial positions is removed, LLMs
(e.g., ChatGPT-4.0, Llama) still perform poorly when pro-
cessing text-only inputs. However, MLLMs (e.g., ChatGPT-
4.0, LLava-Next-Video, and Qwen2-VL) demonstrate better
performance when presented with pure video containing
physical spatial information (excluding textual influences).
This highlights the importance of establishing reasonable
reasoning processes in both visual and textual modeling to
balance task performance.

In both multimodal and video-only conditions, the poor
performance on TB tasks negatively impacts all MLLMs’
performance on Both tasks (i.e., correctly answering both
TB and FB tasks for the same set). The performance on Both
tasks provides an intuitive reflection of MLLMs’ ability to
handle belief reasoning tasks; high accuracy on a single task
may indicate excessive sensitivity rather than a balanced
reasoning capability. Under the text-only condition, LLMs
(e.g., ChatGPT-4.0, Doubao, and Deepseek) alse exhibit
relatively high accuracy on TB tasks. Interestingly, Doubao-
1.5-Pro-32k stands out by achieving 100% accuracy on both
tasks. In second-order belief tasks, MLLMs perform near
the random guessing baseline (50%) and struggle on the
Both task, highlighting the challenge. In contrast, LLMs
excel in text-only tasks.

Table 1 also presents the results of applying our activation
interference strategy to two MLLMs. While our attention
feature extraction strategies are slightly adjusted for differ-
ent belief tasks, the probing and interference methodology
remains consistent, as detailed in Appendix B. The table
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Table 1. Model performance comparison on the GridToM benchmark. TB = True Belief. FB = False Belief. For TB and FB, the
expectation for random guesses is 50%. Both indicates a situation where both TB and FB are judged as correct for a given set.

METHOD SETTING
FIRST-ORDER SECOND-ORDER

TB(%) FB(%) BOTH(%) TB(%) FB(%) BOTH(%)

M
U

LT
IM

O
D

A
L

HUMAN

BASELINE

99.9 99.9 99.8 99.9 99.8 99.8
CHATGPT 4O 6.2 100.0 6.2 50.0 47.3 5.3

DOUBAO-1.5-VISION-PRO 16.8 100.0 16.8 50.0 45.2 17.1
DEEPSEEK-VL2-SMALL 68.4 43.8 13.4 56.9 46.8 7.0

LLAVA-NEXT-VIDEO-7B-HF 53.2 42.8 0.8 48.7 39.8 0.2
QWEN2-VL-7B-INSTRUCT 26.6 97.0 23.6 64.3 37.8 15.4

LLAVA-NEXT-VIDEO-7B-HF +α 63.8(+10.6) 51.6(+8.8) 22.0(+21.2) 61.1(+12.4) 42.2(+2.4) 10.2(+10.0)
QWEN2-VL-7B-INSTRUCT +α 60.4(+33.8) 97.4(+0.4) 31.2(+7.6) 75.1(+10.8) 46.6(+8.8) 24.2(+8.8)

V
ID

E
O

HUMAN

BASELINE

84.6 99.8 84.6 81.0 99.8 81.0
CHATGPT 4O 69.6 30.4 5.6 49.2 37.8 3.4

DOUBAO-1.5-VISION-PRO 46.6 55.8 7.2 50.6 42.0 1.1
DEEPSEEK-VL2-SMALL 55.6 44.0 2.8 48.9 48.4 3.7

LLAVA-NEXT-VIDEO-7B-HF 50.8 48.2 0.4 50.1 41.2 0.3
QWEN2-VL-7B-INSTRUCT 52.2 48.6 5.2 49.1 40.0 2.1

LLAVA-NEXT-VIDEO-7B-HF +α 54.4(+3.6) 51.2(+3.0) 16.4(+16.0) 55.9 (+5.8) 42.2(+1.0) 12.3(+12.0)
QWEN2-VL-7B-INSTRUCT +α 53.8(+1.6) 52.2(+3.6) 18.6(+13.4) 52.1(+3.0) 46.0(+6.0) 19.5(+17.4)

T
E

X
T

HUMAN

BASELINE

98.0 98.1 96.6 97.6 98.0 96.3
CHATGPT 4O 14.2 100.0 14.2 50.0 72.3 39.9

DOUBAO-1.5-PRO-32K 100.0 100.0 100.0 75.6 71.1 50.9
DEEPSEEK-V3 84.4 100.0 84.4 61.5 70.9 41.4

LLAMA-3.3-70B-INSTRUCT 0.0 100.0 0.0 50.7 70.3 23.7
MISTRAL-7B-INSTRUCT-V0.3 77.8 47.6 25.4 62.9 39.9 14.5

LLAVA-NEXT-VIDEO-7B-HF 40.8 56.4 0.0 49.3 50.1 0.7
QWEN2-VL-7B-INSTRUCT 48.6 66.2 14.8 61.4 52.7 16.3

highlights that our method effectively modifies the mod-
els’ behavior, resulting in substantial performance improve-
ments across first-order and second-order belief tasks under
multimodal conditions, including TB, FB, and Both.

Additionally, in Figures 15 and 16 of Appendix E, we il-
lustrate the impact of hyperparameters on the interference
effect. Specifically, the weight direction of the probed pro-
tagonist’s perspective has a significant impact on baseline
performance, highlighting its critical role in the ToM reason-
ing process. As expected, steering the reasoning direction
of MLLMs toward this perspective consistently improves
the accuracy of TB and FB tasks. Throughout this process,
no invalid responses are generated until the maximum value
is reached, at which point all responses become invalid.
We also tested interference directed toward the omniscient
perspective. Due to the differing effects of perspective sepa-
ration, its interference effect was observed to be lower than
that of the protagonist’s perspective. This finding aligns
with our expectations, further confirming the importance of
correctly aligning the models’ reasoning direction with the
protagonist’s perspective for improved task performance.

5.2. Discussion

In this study, we introduced GridToM, a novel multimodal
dataset characterized by its incorporation of diverse belief-
testing tasks and perceptual information from multiple per-
spectives. Designed to evaluate the ToM capabilities of
MLLMs, this dataset enables comprehensive assessments
of their reasoning abilities across varied scenarios. We
conducted comprehensive tests of existing MLLMs on this
dataset. We observed that these models perform better on
text-based data compared to video data. While the ToM
capabilities exhibited in multimodal settings may be less
pronounced than in unimodal scenarios, real-world appli-
cations, such as real-time human-machine collaboration,
often necessitate multimodal data inputs. Moreover, in such
contexts, the feasibility of providing purely textual input in
real-time is limited, emphasizing the necessity of evaluating
ToM capabilities and interpretability in MLLMs.

Through analysis of MLLMs’ internal mechanisms, we iden-
tified attention heads capable of distinguishing different per-
spective information and reasoning about correct beliefs.
By modifying the reasoning attention direction based on
the activation direction indicated by these attention heads,
we achieved significant enhancement of ToM capabilities
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in both first-order and second-order belief tasks, further
validating the effectiveness of this mechanism.

However, our study has certain limitations. First, the tasks
in our dataset are limited to first-order and second-order
belief tasks within the ATOMs framework (Beaudoin et al.,
2020), whereas ToM theory encompasses a broader range
of tasks that remain unexplored. Second, due to restrictions
in accessing model code, our approach was only validated
on a limited selection of MLLMs.
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Beaudoin, C., Leblanc, É., Gagner, C., and Beauchamp,
M. H. Systematic review and inventory of theory of mind

measures for young children. Frontiers in psychology, 10:
2905, 2020.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y., Lund-
berg, S., and others. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Chen, Z., Wang, T., Wang, Y., Kosinski, M., Zhang, X.,
Fu, Y., and Li, S. Through the theory of mind’s eye:
Reading minds with multimodal video large language
models. arXiv preprint arXiv:2406.13763, 2024.

Chevalier-Boisvert, M., Dai, B., Towers, M., Lazcano, R. d.,
Willems, L., Lahlou, S., Pal, S., Castro, P. S., and Terry,
J. Minigrid & Miniworld: Modular & Customizable
Reinforcement Learning Environments for Goal-Oriented
Tasks. CoRR, abs/2306.13831, 2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Eysenbach, B., Vondrick, C., and Torralba, A. Who is
mistaken? arXiv preprint arXiv:1612.01175, 2016.

Gandhi, K., Stojnic, G., Lake, B. M., and Dillon, M. R.
Baby intuitions benchmark (bib): Discerning the goals,
preferences, and actions of others. Advances in neural
information processing systems, 34:9963–9976, 2021.

Grant, E., Nematzadeh, A., and Griffiths, T. L. How can
memory-augmented neural networks pass a false-belief
task? In CogSci, 2017.

Gupta, A., Boleda, G., Baroni, M., and Padó, S. Distribu-
tional vectors encode referential attributes. In Proceed-
ings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pp. 12–21, 2015.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jin, C., Wu, Y., Cao, J., Xiang, J., Kuo, Y.-L., Hu, Z.,
Ullman, T., Torralba, A., Tenenbaum, J., and Shu, T.
MMToM-QA: Multimodal theory of mind question an-
swering. In Ku, L.-W., Martins, A., and Srikumar, V.
(eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pp. 16077–16102, Bangkok, Thailand,
August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.851. URL https:
//aclanthology.org/2024.acl-long.851/.

9

https://aclanthology.org/2024.acl-long.851/
https://aclanthology.org/2024.acl-long.851/


Evaluating and Enhancing ToM in Multimodal LLMs

Kosinski, M. Theory of Mind May Have Spontaneously
Emerged in Large Language Models, March 2023. URL
http://arxiv.org/abs/2302.02083.

Kosinski, M. Evaluating large language models in theory
of mind tasks. Proceedings of the National Academy of
Sciences, 121(45):e2405460121, 2024.
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Appendix

A. Benchmark Details

Table 2. A comparison of Theory of Mind benchmarks (1s and 2nd belief tasks).

DATASET TOM ASPECT TESTED CONCEPTS TEST SIZE MODALITY PERCEPTUAL INFORMATION

TOMI(LE ET AL., 2019) 1ST & 2ND FB 400 TEXT NO

MINDGAMES(SILEO & LERNOULD, 2023) 1ST & 2ND FB 400 TEXT NO

ADV-CSFB(KOSINSKI, 2023) 1ST & 2ND FB & TB 183 TEXT NO

HI-TOM(WU ET AL., 2023) 1ST FB & TB 600 TEXT NO

MMTOM-QA(JIN ET AL., 2024) 1ST FB & TB 600 TEXT & VIDEO NO

GRIDTOM(OURS) 1ST & 2ND FB & TB 1296 TEXT & VIDEO YES

B. Attention feature extraction strategies
B.1. First-order Belief

First-order True Belief False Belief

X

Information

Belief The white agent is now 
in the purple room.

The white agent is now 
in the red room. The white agent is now in the purple room. The white agent is now in the red room.

Y Label
𝒚𝒑𝒓𝒐𝒕𝒂𝒈𝒐𝒏𝒊𝒔𝒕 = 𝑻𝒓𝒖𝒆
𝒚𝒐𝒎𝒏𝒊𝒔𝒄𝒊𝒆𝒏𝒕 = 𝑻𝒓𝒖𝒆

𝒚𝒑𝒓𝒐𝒕𝒂𝒈𝒐𝒏𝒊𝒔𝒕 = 𝑭𝒂𝒍𝒔𝒆
𝒚𝒐𝒎𝒏𝒊𝒔𝒄𝒊𝒆𝒏𝒕 = 𝑭𝒂𝒍𝒔𝒆

𝒚𝒑𝒓𝒐𝒕𝒂𝒈𝒐𝒏𝒊𝒔𝒕 = 𝑭𝒂𝒍𝒔𝒆
𝒚𝒐𝒎𝒏𝒊𝒔𝒄𝒊𝒆𝒏𝒕 = 𝑻𝒓𝒖𝒆

𝒚𝒑𝒓𝒐𝒕𝒂𝒈𝒐𝒏𝒊𝒔𝒕 = 𝑻𝒓𝒖𝒆
𝒚𝒐𝒎𝒏𝒊𝒔𝒄𝒊𝒆𝒏𝒕 = 𝑭𝒂𝒍𝒔𝒆

Omniscient 
perspective

=
Protagonist
perspective

Omniscient 
perspective

≠ 
Protagonist
perspective

Omniscient 
perspective

≠ 
Protagonist
perspective

Figure 6. In the attention feature extraction process for first-order belief tasks, the information obtained from the omniscient and protagonist
perspectives is consistent in the TB task. We identify belief-reasoning-sensitive features in attention by comparing correct and incorrect
belief pairs. However, in the FB task, the protagonist’s perspective has limited information. Therefore, we use the visual information from
the protagonist’s perspective along with the corresponding annotations as positive samples, while the omniscient perspective serves as
negative samples. By comparing positive and negative samples, we identify attention features sensitive to perspective separation.
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B.2. Second-order Belief

Second-order True Belief

X

Information

Belief

The yellow agent 
believes the white
agent is now in the 

purple room.

The yellow agent 
believes the white
agent is now in the 

red room.

The yellow agent 
believes the white
agent is now in the 

purple room.

The yellow agent 
believes the white
agent is now in the 

red room.

Y Label
𝒚𝒑𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 = 𝑻𝒓𝒖𝒆
𝒚𝒑𝒓𝒐𝒕𝒂𝒈𝒐𝒏𝒊𝒔𝒕 = 𝑻𝒓𝒖𝒆

𝒚𝒑𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 = 𝑭𝒂𝒍𝒔𝒆
𝒚𝒑𝒓𝒐𝒕𝒂𝒈𝒐𝒏𝒊𝒔𝒕 = 𝑭𝒂𝒍𝒔𝒆

𝒚𝒑𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 = 𝑭𝒂𝒍𝒔𝒆
𝒚𝒑𝒓𝒐𝒕𝒂𝒈𝒐𝒏𝒊𝒔𝒕 = 𝑭𝒂𝒍𝒔𝒆

𝒚𝒑𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 = 𝑻𝒓𝒖𝒆
𝒚𝒑𝒓𝒐𝒕𝒂𝒈𝒐𝒏𝒊𝒔𝒕 = 𝑻𝒓𝒖𝒆

Second-order False Belief

X

Information

Belief

The yellow agent 
believes the white
agent is now in the 

purple room.

The yellow agent 
believes the white
agent is now in the 

red room.

The yellow agent 
believes the white
agent is now in the 

purple room.

The yellow agent 
believes the white
agent is now in the 

red room.

Y Label
𝒚𝒑𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 = 𝑭𝒂𝒍𝒔𝒆
𝒚𝒑𝒓𝒐𝒕𝒂𝒈𝒐𝒏𝒊𝒔𝒕 = 𝑻𝒓𝒖𝒆

𝒚𝒑𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 = 𝑻𝒓𝒖𝒆
𝒚𝒑𝒓𝒐𝒕𝒂𝒈𝒐𝒏𝒊𝒔𝒕 = 𝑭𝒂𝒍𝒔𝒆

𝒚𝒑𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 = 𝑻𝒓𝒖𝒆
𝒚𝒑𝒓𝒐𝒕𝒂𝒈𝒐𝒏𝒊𝒔𝒕 = 𝑭𝒂𝒍𝒔𝒆

𝒚𝒑𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 = 𝑭𝒂𝒍𝒔𝒆
𝒚𝒑𝒓𝒐𝒕𝒂𝒈𝒐𝒏𝒊𝒔𝒕 = 𝑻𝒓𝒖𝒆

Figure 7. In the attention feature extraction process for second-order belief tasks, both the TB and FB tasks include the TB and FB tasks
from first-order belief tasks. Unlike first-order belief tasks, the FB task in second-order belief reasoning contains the participant’s incorrect
perception of the protagonist’s belief, achieved through a carefully designed timing setup. Since second-order belief reasoning involves the
participant’s belief about the protagonist’s belief and does not include perspective separation tasks, we identify belief-reasoning-sensitive
features in attention solely by comparing correct and incorrect belief pairs.
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C. Full Version of the Example Questions in Figure 3
C.1. Videos

TB test

The task of TB refers to the situation where the protagonist’s beliefs align with those from an omniscient perspective,
meaning the protagonist has access to all the information about the events. In the TB experiment, when the protagonist enters
the room and leaves the door open, they are able to observe the situation outside the room, including the movements of the
participants. We select a representative example from the dataset and present the video frame sequences from three distinct
perspectives: the omniscient perspective (Figure 8, A), the protagonist’s perspective (Figure 8, C), and the participant’s
perspective (Figure 8, B).

#frame1#frame0

#frame8

#frame36

#frame1#frame0

#frame8

#frame36

(A) (B) (C)

#frame1#frame0

#frame8

#frame36

Figure 8. (A) The video frames from the omniscient perspective (36 frames in total) in TB test are shown in the figure. (B) The video
frames from the participant’s perspective (36 frames in total) in TB test are shown in the figure. (C) The video frames from the protagonist’s
perspective (36 frames in total) in TB test are shown in the figure.

FB test

The task of FB refers to the situation where the protagonist’s beliefs diverge from those of an omniscient perspective,
meaning the protagonist does not have access to all the information about the events. In the FB experiment, the protagonist
enters the room and does not observe critical events, such as the movements of the participants outside the room, due to the
door being closed. We select a representative example from the dataset and present the corresponding video frame sequences
from three distinct perspectives: the omniscient perspective (Figure 9, A), the protagonist’s perspective (Figure 9, C), and
the participant’s perspective (Figure 9, B).

(A) (B) (C)

#frame1#frame0
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#frame1#frame0
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#frame1#frame0
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#frame36

Figure 9. (A) The video frames from the omniscient perspective (36 frames in total) in FB test are shown in the figure. (B) The video
frames from the participant’s perspective (36 frames in total) in FB test are shown in the figure. (C) The video frames from the protagonist’s
perspective (36 frames in total) in FB test are shown in the figure.
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C.2. Text

Initial Belief

The concept of initial belief refers to the foundational understanding or assumption MLLMs hold about the scenario before
answering the ToM questions. In the context of this study, initial belief encompasses the MLLMs’ pre-existing mental
representation regarding three specific aspects of the task (see Figure 10):

• Quantity and Color A single question evaluates the agent’s ability to interpret and reason about the numerical or
visual attributes of objects based on its initial belief.

• Spatial Understanding Two questions assess the agent’s capacity to comprehend and reason about the spatial
arrangement or movement of objects within the environment.

This structured approach ensures that the evaluation effectively measures the agent’s ToM capabilities within a multimodal
framework.

Spatial location information

Spatial Location Information
The video shows a 2D grid world viewed from above, consisting of 10 rows and 7 columns. Gray represents the wall and cannot be 
penetrated. Black squares with gray borders represent the corridor floor. There are three rooms in this grid world, each with
its own color (and each room's door has the same color as the room). There are two triangles here, representing the agents.

Initial Belief
"Question1": How many agents (triangles) are there? What colors are they? Choose from the following colors and just answer the 
color(s). (white, green, red, yellow, purple)
"section1": [0,36]
"answer1": ["white", "yellow"]

"Question2": What color room did the white agent walk into? Choose from the following colors and just answer the color. (red, 
green, purple)
"section2": [0,11]
"answer2": ["red"]

"Question3": What color room did the yellow agent walk into? Choose from the following colors and just answer the color. (red, 
green, purple)
"section3": [0,19]
"answer3": ["green"]

Figure 10. The textual annotations for the initial belief task are shown in the figure.

First-order belief

The concept of first-order belief refers to the direct inferences or reasoning that MLLMs make about the mental states of
others, grounded in their observable actions or statements. To facilitate the subsequent training of classifiers and identifying
the representational direction of perspective information, the dataset includes a single first-order belief question, along
with two answer options and the correct answer. Additionally, the dataset provides the corresponding contents of the True
TB and FB tests associated with the question. Furthermore, detailed descriptions of the story progression across different
temporal segments are included to capture the sequence of events. This design ensures that the dataset not only facilitates
the evaluation of first-order belief reasoning in MLLMs but also establishes a structured framework for identifying and
analyzing perspective-based information through temporal and belief-based annotations (see Figure 11).
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Spatial location information

First Order Belief

"Question": At the very end of the video, which color room does the yellow agent believe the white agent should be in?
"options": ["red", "purple"]
"answer": "purple"
"belief true": "The white agent is now in the purple room. "
"belief false": "The white agent is now in the red room."
"caption": "The story proceeds as follows: 1. Initially, the white agent stands in the corridor. It walks towards the red room, opens
the red door, enters the room, and closes the red door behind itself. Throughout this time, the yellow agent is in the corridor and
sees the white agent go into the red room. 2. After the white agent closes the door to the red room, the yellow agent goes over to the
green room, opens the green door, enters it, but the yellow agent does not close the green door. Therefore, the yellow agent can see
everything happening outside the green room. 3. While the yellow agent is inside the green room (with the green door open), the white
agent opens the red room door, leaves the red room, then walks to the purple room, opens the purple door, goes inside, and closes the
purple door. That is where the video ends."

True Belief

"Question": At the very end of the video, which color room does the yellow agent believe the white agent should be in?"
"options": ["red", "purple"]
"answer": "red"
"belief true": "The white agent is now in the red room."
"belief false": "The white agent is now in the purple room. "
"caption": "The story proceeds as follows: 1. Initially, the white agent stands in the corridor. It walks towards the red room, opens
the red door, enters the room, and closes the red door behind itself. Throughout this time, the yellow agent is in the corridor and
sees the white agent go into the red room. 2. After the white agent closes the door to the red room, the yellow agent goes over to the
green room, opens the green door, enters it, and the yellow agent closes the green door. Therefore, the yellow agent cannot see
anything happening outside the green room. 3. While the yellow agent is inside the green room (with the green door closed), the white
agent opens the red room door, leaves the red room, then walks to the purple room, opens the purple door, goes inside, and closes the
purple door. That is where the video ends."

False Belief

Figure 11. The textual annotations for the first order belief task in the TB and FB tests are shown in the figure.

Second-order belief

The concept of second-order belief pertains to the reasoning and inferences that MLLMs make regarding an agent’s beliefs
about another agent’s mental state, based on observed actions or interactions. This evaluation also encompasses the question,
answer options, the corresponding TB and FB conditions, as well as the story descriptions (see Figure 12 and Figure 13).

Spatial location information

Second Order Belief

"Question": At the very end of the video, which color room does the white agent believe the yellow agent thinks the white agent should 
be in?
"options": ["red", "purple"] 
"answer": "red"
"belief true": "The yellow believes the white agent is now in the red room."
"belief false": "The yellow believes the white agent is now in the purple room."
"caption": "The story proceeds as follows: 1. Initially, the white agent stands in the corridor. It walks towards the red room, opens 
the red door, enters the room, and closes the red door behind itself. Throughout this time, the yellow agent is in the corridor and 
sees the white agent go into the red room. 2. After the white agent closes the door to the red room, the yellow agent goes over to the 
green room, opens the green door, enters it, but the yellow agent does not close the green door. Therefore, the yellow agent can see 
everything happening outside the green room. 3. While the yellow agent is inside the green room (with the green door open), the white 
agent opens the red room door, leaves the red room, at the same time, it sees the green room door open, then it walks to the purple 
room, opens the purple door, goes inside, and closes the purple door. That is where the video ends."

True Belief

"Question": At the very end of the video, which color room does the white agent believe the yellow agent thinks the white agent should 
be in?
"options": ["red", "purple"]
"answer": "purple"
"belief true": "The yellow believes the white agent is now in the purple room." 
"belief false": "The yellow believes the white agent is now in the red room." 
"caption": "The story proceeds as follows: 1. Initially, the white agent stands in the corridor. It walks towards the red room, opens 
the red door, enters the room, and closes the red door behind itself. Throughout this time, the yellow agent is in the corridor and 
sees the white agent go into the red room. 2. After the white agent closes the door to the red room, the yellow agent goes over to the 
green room, opens the green door, enters it, and the yellow agent closes the green door. Therefore, the yellow agent cannot see 
anything happening outside the green room. 3. While the yellow agent is inside the green room (with the green door closed), the white 
agent opens the red room door, leaves the red room, at the same time, it sees the green room door closed, then it walks to the purple 
room, opens the purple door, goes inside, and closes the purple door. That is where the video ends."

Figure 12. The textual annotations for the second order belief task in the TB tests are shown in the figure.
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Spatial location information

Second Order Belief

"Question": At the very end of the video, which color room does the white agent believe the yellow agent thinks the white agent should 
be in?
"options": ["red", "purple"] 
"answer": "purple"
"belief true": "The yellow believes the white agent is now in the purple room."
"belief false": "The yellow believes the white agent is now in the red room."
"caption": "The story proceeds as follows: 1. Initially, the white agent stands in the corridor. It walks towards the red room, opens 
the red door, enters the room, and closes the red door behind itself. Throughout this time, the yellow agent is in the corridor and 
sees the white agent go into the red room. 2. After the white agent closes the door to the red room, the yellow agent goes over to the 
green room, opens the green door, enters it, but the yellow agent does not close the green door. Therefore, the yellow agent can see 
everything happening outside the green room. 3. While the yellow agent is inside the green room (with the green door open), the white 
agent opens the red room door, leaves the red room, at the same time, it sees the green room door open (However, at that exact moment, 
the yellow agent closes the green door. Because of this timing, the yellow agent does not actually see the white agent leaving the red 
room.), then it walks to the purple room, opens the purple door, goes inside, and closes the purple door. That is where the video 
ends."

False Belief
"Question": At the very end of the video, which color room does the white agent believe the yellow agent thinks the white agent should 
be in?
"options": ["red", "purple"]
"answer": "red"
"belief true": "The yellow believes the white agent is now in the red room." 
"belief false": "The yellow believes the white agent is now in the purple room." 
“caption”: “The story proceeds as follows: 1. Initially, the white agent stands in the corridor. It walks towards the red room, opens 
the red door, enters the room, and closes the red door behind itself. Throughout this time, the yellow agent is in the corridor and 
sees the white agent go into the red room. 2. After the white agent closes the door to the red room, the yellow agent goes over to the 
green room, opens the green door, enters it, and the yellow agent closes the green door. Therefore, the yellow agent cannot see 
anything happening outside the green room. 3. While the yellow agent is inside the green room (with the green door closed), the white 
agent opens the red room door, leaves the red room, at the same time, it sees the green room door closed (However, at that exact moment, 
the yellow agent opens the green door. Because of this timing, the yellow agent actually sees the white agent leaving the red room.), 
then it walks to the purple room, opens the purple door, goes inside, and closes the purple door. That is where the video ends."

Figure 13. The textual annotations for the second order belief task in the FB tests are shown in the figure.

（A） (B) (C)

(D) (E) (F)

Figure 14. The figure presents video sequence frames extracted from three different rooms in the dataset as examples, where (A)(B),
(C)(D), and (E)(F) correspond to different rooms. (A) and (B) illustrate examples of the same room configuration but with different agent
states and action trajectories. Specifically, (A) represents the FB experiment, while (B) corresponds to the TB experiment. Similarly, (C)
and (D) depict the FB and TB experiments, respectively, and (E) and (F) show the FB and TB experiments in another room configuration.
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Furthermore, in our dataset, we apply randomized manipulations to the evaluation data for each story, including variations
in room configurations, agent states, and action trajectories. This approach ensures diversity while preventing repetitive
patterns that might result in spurious statistical correlations. To illustrate this, we have provided ten examples from the
dataset, as shown in the Figure 14.

D. Result of initial belief test in Section 3.2
D.1. Result

We evaluated the initial belief accuracy (ACC%) of these MLLMs on the GridToM dataset. The results are shown in the
table below (Table 3).

Table 3. Initial Belief

MODEL ACC(%)

M
U

LT
IM

O
D

A
L

HUMAN 99.9
CHATGPT 4O 75.9

DOUBAO-1.5-VISION-PRO 76.0
DEEPSEEK-VL2-SMALL 5.9

LLAVA-NEXT-VIDEO-7B-HF 37.4
QWEN2-VL-7B-INSTRUCT 69.4

The variance in accuracy highlights the disparity in reasoning or belief assessment capabilities among these models.
This indicates that model architecture, training data, or multimodal integration plays a critical role in achieving higher
performance in such tasks. The deepseek-vl2-small model achieved only 5.9% accuracy rate on 1944 initial belief tasks, and
the reason for this low error rate was that 89.9% were invalid responses.

E. Hyperparameters’ analysis in Section 4.4
The impact of hyperparameters K and α on intervention strength is shown in Figures 15 to 18. We treat generated
invalid responses as incorrect answers. Across all intervention results, the intervention direction based on the protagonist’s
perspective achieves the best performance, which aligns with our expectations and is applied in our experiments.

Specifically, Figures 15 to 18 illustrate a wide span of hyper-parameter settings. We find that the effect of the intervention is
confined to a valid interval; once this interval is exceeded, the MLLMs’ responses deteriorate. The parameter α remains
effective roughly within the range [–50, 50], and the choice of K is informed by the number of hidden heads in the MLLMs.
Within the valid region, these two hyper-parameters affect model performance by no more than 10% on average, and their
tuning produces a smoothly varying perturbation until the edge of the valid interval is reached. These results show that our
approach relies on an interpretable intervention based on internal representations and input perturbations, rather than on
hyper-parameter tuning, and that it is not highly sensitive to the specific hyper-parameter values chosen.
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Figure 15. The impact of the hyperparameters K and α on the LLaVA-NeXT-Video-7B-hf model on the First-order TB task.
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Figure 16. The impact of the hyperparameters K and α on the LLaVA-NeXT-Video-7B-hf model on the First-order FB task.
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Figure 17. The impact of the hyperparameters K and α on the Qwen2-VL-7B-Instruct model on the First-order TB task.
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Figure 18. The impact of the hyperparameters K and α on the Qwen2-VL-7B-Instruct model on the First-order FB task.

F. Evaluation protocol of baseline test
Our objective is to provide MLLMs with complete third-person perceptual information in both visual and textual formats
(representing an omniscient perspective) and require MLLMs to separate perceptual information corresponding to different
perspectives. This allows the models to infer the correct beliefs from each perspective.

Following the standard zero-shot settings for ToM QA evaluations as described in the literature (Shapira et al., 2024), we
assess all models without any additional training. The evaluation includes questions related to initial beliefs, first-order
beliefs, and second-order beliefs. The evaluation metrics include the accuracy of correctly answering TB, FB, and both TB
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and FB simultaneously.

F.1. Objective

The primary goal of this evaluation is to provide MLLMs with complete third-person perceptual information in both visual
and textual formats, representing an omniscient perspective. MLLMs are tasked with separating perceptual information
corresponding to different perspectives, enabling them to infer correct beliefs associated with each perspective.

F.2. Setup

In line with the standard zero-shot settings for ToM QA evaluations, as outlined in the literature (Shapira et al., 2024), all
models are assessed without any additional training or fine-tuning. This ensures that the evaluation reflects the inherent ToM
reasoning capabilities of the models without being influenced by dataset-specific optimizations.

F.3. Evaluation Scope

The evaluation employs the following accuracy metrics to measure the model’s performance:

Accuracy of initial belief test Measures the model’s ability to correctly understand the scenario.

TB Accuracy of first order belief test Evaluates the model’s performance in identifying true beliefs within first-order
reasoning scenarios.

FB Accuracy of first order belief test Assesses the model’s capacity to correctly infer false beliefs in first-order reasoning
tasks.

TB Accuracy of second order belief test Tests the model’s ability to discern true beliefs in second-order reasoning contexts.

FB Accuracy of second order belief test Measures the model’s effectiveness in identifying false beliefs in second-order
reasoning scenarios.

The model’s responses are scored based on their ability to correctly answer questions in each belief category. Each category
and the performance of both together are reported separately.

G. Additional Probing Results
We present the full probing results in first-order belief task and second-order belief task for both models using logistic
regression models in Figure 19 and Figure 20. The probing accuracies vary across models and tasks.

LLaVA-Next-Video

First-order Belief Second-order Belief

Figure 19. Probe accuracies on first-order belief task and second-order belief task based on the attention head activations in all layers of
LLaVA-Next-Video.
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Qwen2-VL-7B-Instruct

First-order Belief Second-order Belief

Figure 20. Probe accuracies on first-order belief task and second-order belief task based on the attention head activations in all layers of
Qwen2-VL-7B-Instruct.

H. Probing on Different Dataset (MMToM-QA)
We further validated the effectiveness of our method on the MMToM-QA dataset. The MMToM-QA dataset consists of 134
videos, capturing an individual searching for everyday objects in a home environment. This aligns with cognitive science
research on mental state attribution in navigational agents.

On average, each video contains 1,462 frames and depicts 36 types of human behaviors. Based on these videos, the dataset
includes 600 questions designed to assess both goal reasoning and belief reasoning abilities. Each question is paired with a
video clip representing the complete activity (e.g., RGB-D frames), a textual description of the scene, and the actions taken
by the individual in the clip. The questions follow a binary-choice format and are categorized into seven reasoning types
(as detailed in the original dataset documentation). Specifically, the belief reasoning task consists of 300 questions (100
per type), while the goal reasoning task comprises 300 questions (75 per type). Additionally, the dataset provides 1,000
procedurally generated videos, annotated with ground-truth information on scenes, objects, goals, and beliefs for model
training.

In our experiments, we utilized only the belief reasoning subset of the dataset (Figure 21). However, due to the absence
of explicit positive-negative video pairs, we manually curated and filtered the dataset, constructing first-order TB and FB
samples. This refinement enables a more precise evaluation of the model’s ToM reasoning capabilities.

Figure 21. Sample examples from the MMToM-QA dataset. The question types utilized in MMToM-QA are also illustrated.
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(A) (B)

(C) (D)

Figure 22. (A) Omniscient. (B) Protagonist. The linear probing accuracy of all heads across all layers in LLaVA-Next-Video on the test
set. (C) Insensitive. (D) Sensitive. The linear separability of belief representations is explained through a visual interpretation of the
typical representation space.

I. Dataset Construction Pipeline
Our dataset is produced almost entirely through automated generation and verification, with only minimal manual annotation
and rigorous quality checks. Although Theory-of-Mind (ToM) reasoning is intrinsically complex, our script-driven workflow
guarantees consistent alignment among visual inputs, agent actions, and narrative descriptions.

I.1. Construction and Annotation

Map design. We manually created 27 distinct 10× 7 maps in Excel, each with 3 rooms and unique layouts.

Automated validation and rendering. Map validity was verified with Python scripts (e.g., enclosed rooms, door
placement). Then, using the MultiGrid library, we rendered maps with:

• Colour palette: assigned from 6 highly distinguishable colors (red, green, blue, yellow, purple, white).

• Agent placement: two groups of agents were randomly placed in hallways with colors distinct from rooms; initial
orientations were randomized.

• Path planning: agent trajectories were generated using Breadth-first search to ensure valid, logical movement without
dead ends.

Task generation. The combination of different variables results in 648 basic samples. For each sample, we generate both
“door open” (TB) and “door closed” (FB) conditions, totaling 1296 samples. Second-order belief tasks follow the same
structure with minor narrative adjustments.
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I.2. Quality Assurance

• Automation-first: key elements (layout, paths, doors, task type) were generated and verified via script, minimizing
subjective error.

• Human review: we manually reviewed samples for layout issues, trajectory logic, and narrative coherence.

• Staged execution: tasks were divided into three stages with controlled timing to ensure logical, coherent event flow.

• Controlled variables: we used unified logic for all visual and script elements, systematically varying only key factors
(room order, agent orientation, colors, door state).

I.3. On ToM Difficulty and Dataset Validity

• Controlled scenarios: carefully constrained scenes reduce noise, allowing clearer focus on ToM and multimodal
reasoning.

• Scalability: current difficulty is moderate and sufficient for analyzing belief reasoning. We plan to expand with more
complex scenarios in future releases.
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