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Abstract

We consider the problem of learning differentially private linear and logistic regression models
that do not exhibit disparate performance for minority groups in the data. Small-sized
datasets pose a challenging regime for differential privacy; that is, satisfying differential
privacy while learning models from data can lead to models with worse accuracy for minority—
in size—subgroups. To address this challenge, inspired by Abowd & Schmutte (2018), we
propose: (i) to systematically tailor the privacy budget to the different groups, (ii) use
linear optimization oracles in a grid to optimize Lagrangian objectives that correspond to
fair learning and optimization. We present efficient differentially private algorithms for
linear and logistic regression subject to fairness constraints (e.g., bounded group loss) that
allocate the privacy budget based on the private standard error of each subgroup in the
data. Consequently, the formulation reduces the amount of noise added to these groups,
which leads to more accurate models for such groups. We validate the proposed, group-aware
budget allocation, method on synthetic and real-world datasets where we show significant
reductions in prediction error for the smallest groups, while still preserving sufficient privacy
to protect the minority group from re-identification attacks. In addition, we provide sample
complexity lower bounds for our problem formulation.

1 Introduction

Learning predictive models that satisfy differential privacy (DP) (Dwork et al., 2006)—a worst-case crypto-
graphic privacy definition—is an increasingly important requirement in healthcare (Pfohl et al., 2019), social
science (Evans et al., 2020), and federated learning (McMahan et al., 2017). Overparametrized deep models
increasingly memorize portions of the input training data (Carlini et al., 2020); however, such memorization
behavior is neutralized when these models are optimized via differentially private procedures (Carlini et al.,
2018; Chen et al., 2020). Despite such benefit, Bagdasaryan et al. (2019) show that models optimized to
satisfy DP via privatized versions of (stochastic) gradient descent (DPSGD) (Bassily et al., 2014; Chaudhuri
et al., 2011; Abadi et al., 2016) have worse performance—test accuracy for example—for minority (in size)
groups in the data if the privacy budget is split equally amongst all groups. Disparate performance due
to DP hampers its deployment in high-stakes applications like healthcare (Santos-Lozada et al., 2020) and
synthetic census data release (Petti & Flaxman, 2019; Kenny et al., 2021). Consequently, we consider the
challenge of learning differentially private models—from data via (stochastic) gradient descent—that do not
exhibit disparate performance for minority subgroups in the data.

The key insight in our proposed approach is to apportion the privacy budget across different subgroups in the
data. We propose a two-stage group-aware scheme in which we instantiate this insight in the linear regression
setting. The proposed algorithm can handle the case where an individual can be in multiple groups. While
we instantiate our formulation for linear regression, the key idea of allocating the privacy budget across
sub-groups in the data can be applied more broadly.

First, we estimate the standard error (SE) of the prediction across sub-groups in the data for a ‘precursor’
model. We then assign the privacy budget for DP according to the estimated SE of the predictions—allocating
more privacy budget to subgroups with higher standard error. Larger standard errors in a particular group
suggests a form of underfitting and structural uncertainty in the group statistic; hence, larger DP noise
addition to such groups exacerbates the uncertainty in the parameter estimates for these groups.

1



Under review as submission to TMLR

We justify the group-aware privacy budget allocation with a theoretical analysis of an idealized 2-mixture of
Gaussians model (in Lemma 3.1). We analyze the expected loss of a randomized linear regression coefficient
vector on the mixture model, and show that naively applying differential privacy disadvantages the group
with higher standard prediction error—typically the smaller group.

In the second stage, we use the privacy budget allocation to learn DP linear regression estimates via gradient
descent. Private versions of gradient descent typically involve gradient clipping and calibrated Gaussian noise
addition. Group-aware privacy budget allocation based on standard errors of the prediction across groups
results in less noise addition to groups with larger standard errors of the prediction.

A potential objection to the proposed formulation is that relaxing the privacy requirement for minority
subgroups will make these input groups more susceptible to privacy attacks. Indeed, this could be the
case if caution is not exercised. However, recent empirical findings show that models produced by private
(stochastic) gradient descent with even minimal levels of privacy (budget of ε=89) are still effective at
stemming re-identification attacks (Carlini et al., 2018). In this work, we operate with zero-Concentrated
differential privacy (zCDP) and track the budget of our proposed mechanisms with ρ. A mechanism that
satisfies ρ-zCDP also satisfies (ε, δ) = (ρ+ 2

√
ρ log(1/δ), δ)-DP for all δ > 0, and equivalently, ε-DP satisfies

ε2/2-zCDP (Bun & Steinke, 2016).

The two-stage formulation that we present can also be extended to incorporate user-defined ‘fairness’ objectives
like bounded sub-group loss. To accomplish this, we consider a linear regression formulation subject to
bounded subgroup loss (BGL), and show how to incorporate the constraint into a reformed objective using
the Lagrangian approach of Agarwal et al. (2019). We then solve the Lagrangian formulation using the group
aware approach we proposed here.

We evaluate the performance of the two-stage group-aware DP linear regression formulation and the fair
constrained versions across synthetic and real world datasets. We find that the proposed two-stage formulation
results in a 10% to 50% reduction in the mean standard prediction error for the smallest groups in the
data both for traditional differentially private learning and the fair Lagrangian setting. Taken together, the
empirical results suggest that group-aware allocation of the privacy budget can ease the disparate utility
impact of differential privacy.

A series of closely related works (Xu et al. (2020), Abowd & Schmutte (2018), and Tran et al. (2021a))
consider a setting similar to ours. Xu et al. (2020) propose DPSGD-F, which adaptively performs gradient
clipping and noise addition to groups in the data. Abowd & Schmutte (2018) allocate the privacy parameter
to groups in the data, but focus on estimating the resulting economic costs of such decision. Similarly, Tran
et al. (2021a) study the underlying cause of disparate impact for output perturbation and DP-SGD, and find
that the noise due to privacy, gradient clipping, and a group difficulty term captured by the group-based
trace of the hessian of the loss govern the underlying group disparities. These findings align with ours, but
we focus on the privacy budget, which is the fundamental parameter that determines the level of noise added
to each group.

To conclude, we summarize our contributions as follows:

• We present a two-stage, end-to-end differentially private, scheme for linear regression that maintains
‘reasonable’ performance for minority subgroups in the data. To do this, we allocate the privacy
budget towards different subgroups in the data.

• We conduct extensive empirical evaluation of the two-stage formulation for synthetic and real world
data sets and observe 10% to 50% reduction in mean square standard prediction error for the smallest
groups across settings.

2 Background and Linear Regression with DP

In this section, we provide an overview of notation, definitions, and problem formulation.
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Setup. Let X denote the domain of non-sensitive features, A the domain of sensitive attributes, and Y
correspond to the set of possible labels. We take CP to denote a decision set from which a regression coefficient
vector θ is chosen. For example, CP can be the space of P -dimensional real vectors i.e., CP = RP . We use the
random variable (X,A, Y ) to specify a joint distribution over (X ,A,Y) and X, A, Y to represent marginal
distributions over X ,A,Y respectively. Given any dataset Z with row size n, we can categorize by sensitive
and insensitive attributes as follows: Z = (ZX , ZY , ZA) = (ZXY , ZA) where ZA ∈ An, ZXY ∈ (X × Y)n. For
example, A could be the set of all possible outcomes on a HIV medical test: {+,−}. Obviously, due to state
and federal privacy law, the results of a HIV test cannot be released without permission or without some
form of explicit privacy protection mechanisms; thus, A is sensitive. On the other hand, zip code might be
considered a non-sensitive attribute.

Remark. We assume that the dataset size, n, (and the size of all subgroups) is public information.

The notion of privacy that we consider in this work is record-level (bounded) differential privacy. Our
framework can also be instantiated in the unbounded (add-remove instead of swap) DP model without much
modification.
Definition 2.1 (Zero-Concentrated differential Privacy (Bun & Steinke, 2016)). An algorithmM : Zn → R is
ρ zero-concentrated differentially private (zCDP) if for all neighboring z′, z ∈ Zn, Dγ(M(z),M(z′)) ≤
ργ, for all γ ∈ (1,∞), where Dγ(A‖B) is the γ-Rényi divergence between random variables A and B. The
randomness is over the coin flips of the algorithmM. The privacy budget allocated to all groups is ρ.

Definition 2.1 reduces to standard pure DP (Dwork et al., 2006) as γ →∞.

Fairness Definitions. For this paper, we will focus on a single notion of fairness: Bounded Group Loss
(BGL). Intuitively, BGL requires that the prediction error for any protected group remain below a certain
pre-specified level. A more formal definition is given in Definition 2.2.
Definition 2.2 (Bounded Group Loss (Agarwal et al., 2019)). Let θ be a predictor over (X,A, Y ). Then
θ ∈ CP satisfies Bounded Group Loss if ∀a ∈ A, E[`(Y, θ(X)) | A = a] ≤ ηa, where ` : Y × X → R is a
loss function we wish to minimize and ηa is a loss constraint for group a ∈ A.

Linear Regression with Differential privacy (e.g., see (Alabi et al., 2022)). To set the stage, we
work through DP Gradient Descent for linear regression. Given a dataset Z = {(xi, yi)}ni=1, suppose that
CP ⊆ RP . We consider a function, h : CP → R, defined as h(θ) = 1

n

∑n
i=1(〈θ,xi〉 − yi)2 with gradient:

∇h(θ) = 2
n

∑n
i=1 xi(〈θ,xi〉 − yi) ∈ RP . To optimize h with zCDP, we add Gaussian noise to the gradients

∇h while optimizing for θ. This formulation requires two important hyper-parameters: (1) T : the number
of gradient calls to ∇h, and (2) ∆: clipping bound. The number of iterations determines how the privacy
budget ρ is apportioned. For any neighboring databases z, z′ and query q, if |q(z)− q(z′)| ≤ ∆ for a finite ∆,
then we can satisfy ρ-zCDP. In general, gradients can be unbounded so to satisfy zCDP, we clip the gradients
to lie in a certain range.

3 Group-Based Privacy Budget Allocation & Langrangian Fair Regression

In this section, we provide justification for the need to allocate the privacy budget in DP to groups in the
data in order to mitigate disparate model performance. To do this, we consider a mixture of 2 Gaussians and
analytically derive the expected prediction risk for the case where a single predictor is learned from data.
This analysis provide insight into how DP regression exacerbates performance disparity. Consequently, we
arrive at the natural insight that tailoring the privacy budget to groups in the data based on the standard
error of an initial—precursor—predictor helps mitigate performance disparity. In the second subsection, we
describe the Lagrangian formulation for fair regression.

3.1 Mixture Model Analysis for Standard Error

Consider a mixture model of two groups, for a linear model, where the output for each group is derived
as: Y1 ∼ N (X1β1, σ

2
1In1×n1), Y2 ∼ N (X2β2, σ

2
2In2×n2), and where X1 ∈ Rn1×d, X2 ∈ Rn2×d are the design
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matrices. Y1 ∈ Rn1 , Y2 ∈ Rn2 are the dependent variables. In this model, σ1, σ2 characterize the inherent
noise in the dependent while β1, β2 ∈ Rd are the regression coefficients.

Suppose we wish to learn a single linear predictor, β, for the mixture model c · N (X1β1, σ
2
1In1×n1) +

(1 − c) · N (X2β2, σ
2
2In2×n2) for any c ∈ (0, 1). Learning predictors with low error, in this case, requires

randomization (Kalai et al., 2010). To learn a single predictor when group membership is unknown, the
best predictor is one that predicts β1 with probability c and β2 with probability (1− c). Now we state the
expected square loss for this predictor.

Lemma 3.1. For any c ∈ (0, 1), β1, β2 ∈ Rd, X1 ∈ Rn1×d, X2 ∈ Rn2×d, σ1, σ2 > 0, n1, n2 ∈ Z+, define the
mixture model Y ∼ cN (X1β1, σ

2
1In1×n1) + (1 − c)N (X2β2, σ

2
2In2×n2) ∼ cY1 + (1 − c)Y2. Let β = β1 with

probability c and β = β2 with probability 1 − c, then the prediction Ŷ is Y1 with probability c and Y2 with
probability (1−c). The expected prediction loss of β on Y is c2 ·n1Cσ

2
1 +(1−c)2 ·n2Cσ

2
2 +c(1−c)Γ1 +c(1−c)Γ2

where Γ1 = ‖Y2 −X2β1‖2,Γ2 = ‖Y1 −X1β2‖2, C ∼ χ2
1, and χ2

k is the chi-squared distribution with k degrees
of freedom.

We refer to the appendix for a proof of the Lemma. As shown, the expected square loss for the optimal
predictor is c2 ·n1Cσ

2
1 +(1−c)2 ·n2Cσ

2
2 +c(1−c)Γ1 +c(1−c)Γ2, where Γ1 = ‖Y2−X2β1‖2,Γ2 = ‖Y1−X1β2‖2,

C ∼ χ2
1, and χ2

1 is the chi-squared distribution with one degree of freedom. The errors from c2 · n1χ
2
1σ

2
1 and

(1− c)2 · n2χ
2
1σ

2
2 can be controlled if σ1 or σ2 is small. On the other hand, the upper bounds of Γ1 and Γ2

depend on how much β1 differs from β2 based on fit to either Y1, Y2.

Why allocate privacy budget based on standard errors? Consider a dataset consisting of two groups
G1 = (X1, Y1), G2 = (X2, Y2) where G1 has strictly larger size than G2 and G1 has smaller prediction standard
error thanG2. We wish to minimize the `2 loss of a differentially private regression estimate, across these groups,
which is equivalent to minimizing: L1(β̂,∆, ρ1, n1) = 1

n1

∑n1
i=1(Y1i−〈X1i, β̂〉)2+N1(∆, ρ1, n1) = L(β̂,X1, Y1)+

N1(∆, ρ1, n1) and L2(β̂,∆, ρ2, n2) = 1
n2

∑n2
i=1(Y2i − 〈X2i, β̂〉)2 +N2(∆, ρ2, n2) = L(β̂,X2, Y2) +N2(∆, ρ2, n2)

where N1(∆, ρ1, n1) and N2(∆, ρ2, n2) are the random variables that ensure that the losses (and their
gradients) satisfy zCDP — for DPGD. Here N1(∆, ρ, n1) ∼ N (0,∆2/(2ρn1)) can be used for a ρ-zCDP
release if β̂ is public and ∆ is a bound on the per-example squared residuals. Up to scaling factors, L1 & L2
correspond to the standard errors for G1 & G2 respectively.

To illustrate the source of the disparate impact incurred due to DP, let ρ1 = ρ2 = ρ/2 and suppose that
the estimate β̂ is computed on the entire dataset. Without fairness constraints, the optimizer will aim to
minimize average loss by prioritizing minimizing loss on the larger group or the group with smaller standard
errors, resulting in β̂. Further with DP, the noise added will be agnostic to the relative sizes or standard errors
across groups. As a result, for a fixed privacy budget of ρ = ρ1 + ρ2, we have the inequality in expectation:
L1(β̂,∆, ρ1)− L(β̂,X1, Y1) ≤ L2(β̂,∆, ρ2)− L(X2, Y2, β̂), which could result in disparate impact that is not
necessarily present in the non-private case.

To resolve the disparate impact issue, we need mechanisms that will make N1(∆, ρ1, n1), a randomized function
of only two tunable quantities (∆, ρ), strictly greater than N2(∆, ρ2, n2). As a result, we can either decrease
∆ — which could result in further statistical measurement error — or increase the privacy budget ρ1 or ρ2.
Furthermore, the “right” scaling for ρ1 versus ρ2 should alleviate the non-private standard errors disparity
in L1, L2, thus justifying our allocation strategy by scaled standard errors. This strategy might increase
the average loss for the larger group (provably relatively small increase for larger groups which goes to 0
as n→∞) but decrease the average loss for the minority group. However, as we will see in our empirical
results we find, perhaps surprisingly, that our proposed strategy does not always hurt the performance in
the majority group.

3.2 Solving the Lagrangian Formulation of Fair Regression

We now setup the langrangian formulation for fair linear regression, which fits under the constrained group-
objective optimization formulation of Agarwal et al. (2019). In Section 4, we present algorithms to optimize
this formulation.
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Setup and Notation. Given a dataset, Z = (ZX , ZY , ZA), with K = |A| groups, and a hypothesis class, CP ,
the Lagrangian formulation for fair requires: 1) Group Losses: The function ` : CP × (X ×Y×A)n → [0, 1]K
that gives the average loss for each group for a predictor θ ∈ CP on the dataset Z; 2) Total Group-Agnostic
Loss: f : [0, 1]K → R which gives the average loss for all groups; 3) Group-Deviation Loss: g : [0, 1]K → R
a measure of loss deviation across groups.

Consider the composition of functions f ◦ ` : CP × (X × Y ×A)n → R and g ◦ ` : CP × (X × Y ×A)n → R.
To minimize f ◦ ` subject to a constraint on g ◦ `, we can for any θ ∈ CP , and G > 0, a Lagrange multiplier,
define the Lagrangian: h(θ, Z) = f ◦ `(θ, Z) +G ·max(0, g ◦ `(θ, Z)). The function h has gradient

∇h(θ, Z) = ∇`(θ, Z)∇f(`(θ, Z))+ (1)
G·1[g(`(θ, Z)) ≥ 0]∇`(θ, Z)∇g(`(θ, Z)) (2)

where ∇`(θ, Z) is a P ×K matrix of the gradient of `(θ, Z) (or the transpose of its Jacobian), and ∇g(`(θ, Z))
is a K × 1 column vector representing the gradient of g.

The Langrangian incorporates the constraint function g while minimizing f . Following Agarwal et al. (2019),
the Lagrangian for linear regression with BGL (definition 2.2) can be stated as follows:

min
θ∈CP

[
1
n

n∑
i=1

(yi − θ(xi))2

(
1 +

∑
a

λa
na
1[Ai = a]

)]
. (3)

Solving the formulation above is challenging because there is no efficient algorithm for selecting the Lagrange
multipliers in the general case. Agarwal et al. (2019) give a two-player game that eventually converges to an
equilibrium. However, this game is not guaranteed to converge in polynomial time. Consequently, we use
the constrained group objective optimization (CGOO) formulation to sidestep this issue. We now define the
CGOO problem.
Definition 3.2 (Constrained Group-Objective Optimization: CGOO(n,K, f, g, `, Z, α)). Let f : [0, 1]K → R
be a function we wish to minimize subject to a constraint function g : [0, 1]K → R. Specifically, for any excess
risk parameter α > 0, decision set C, and any dataset, Z, we wish to obtain a decision θ̂ ∈ C such that

f(`(θ̂, Z)) ≤ min
θ∈C:g(`(θ,Z))≤0

f(`(θ, Z)) + α, g(`(θ̂, Z)) ≤ α. (4)

Any procedure that takes input Z and returns a decision θ̂ ∈ C that satisfies Equation 4 is a Constrained
Group-Objective optimization algorithm that solves the problem specified by CGOO(n,K, f, g, `, Z, α) = θ̂.

In the Lagrangian setup, if f, and g are convex and Lipschitz, we can apply convex optimization algorithms
that will result in a solution close to the global optima in time polynomial in n, P,K. Given these properties,
we can solve the optimization problem using modified versions of (stochastic) gradient descent algorithms.

4 Group-aware DP Fair Regression

We now present our end-to-end differentially private two-stage algorithm for linear regression. The algorithms
we present also directly address the Lagrangian fair regression problem discussed in Section 3. Even though
we focus on linear regression in this work, our privacy allocation strategy is a meta-strategy that can be used
for other estimators.

In the first stage, we estimate a precursor differentially private regression model on the data. We then
calculate the standard error of the predictions for this regression model across all subgroups in the data.
Given group standard error estimates, we allocate the privacy budget to prioritize groups with larger standard
error of the prediction—i.e., more privacy budget is allocated to such groups. In the second stage, we solve
the constrained linear regression formulation described in Section 3.2. Assuming that the gradient calls
take constant time, it is easy to see that Algorithm 1 and Algorithm 2 runs in time O(K maxKk=1 nk). In
Algorithm 1, by using a privacy budget to sample a matrix, we mean that we compute the matrix in a
differentially private manner (e.g., via the use of the exponential or gaussian mechanism).
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Algorithm 1 Stage 1: τ -zCDP Standard Errors Computation for All Groups in Linear Regression
1: Input: Z ∈ (X × Y ×A)n,K,∆, τ > 0
2: Split dataset Z = (X,Y,A) into Z1, . . . , ZK for K = |A| groups as follows:
3: X1, X2, . . . , XK ∈ Rn×d
4: Y1, Y2, . . . , YK ∈ Rn
5: n1, n2, . . . , nK integers
6:
7: τk = τ/(K + 1)
8: Use budget of τk/2 to sample X̃TX, a differentially private estimate of XTX, the variance matrix
9: Use budget of τk/2 to sample X̃TY , a differentially private estimate of XTY , the covariance matrix

10:
11: if λmin(X̃TX) ≤ 0 then
12: return 1/

√
K · 1K

13: end if
14: // Calculate DP estimate of regression coefficients on entire dataset
15: β̃ = (X̃TX)−1X̃TY
16: for k = 1 to k = K do
17: Sk =

[∑nk

i=1(Yki − 〈Xki, β̃〉)2|∆2

0 +N (0,∆4/(2τk))
]

18: if Sk ≤ 0 then
19: return 1/

√
K · 1K

20: end if
21: sk =

√
Sk

nk

22: end for
23: Normalize s1, s2, . . . , sK so that

∑
s2
k = 1

24: return s1, s2, . . . , sK

Setup & Notation. In Algorithms 1 and 2, for any d ≥ 1, 1d is the all-ones d-dimensional vector and Id×d
is the identity diagonal d× d matrix. We rely on standard methods (e.g., see (Dwork et al., 2014)) to obtain
differentially private estimates of X̃TX, X̃TY , which are the variance and covariance matrices respectively
(see Lemma C.1 in the appendix for proof details and mechanism for exact computation). We use |∆0 to
denote the clipping operator. For a scalar v, v|∆0 returns v clipped to lie in the range [0,∆]. For a vector V ,
V |∆0 returns V clipped such that its `2-norm is at most ∆.

Stage 1: Standard Error Estimation. First, we estimate, privately, the standard error of the prediction
for a single linear regression model fit on data for all groups. Intuitively, the coefficients for this model
will have higher structural uncertainty and standard error of the prediction for the smaller groups in the
data. We then partition the data into K groups and estimate each group’s standard error by computing
sk = ‖Yk − Xkβ̃k‖/

√
nk − d but with noise added to ensure zCDP for the ‘global’ regression model β̃.

Following previous work, we also assume that the group sizes, n1, . . . , nK , are public, but that the record-level
data is not. We allocate a privacy budget of τ/K for each group’s standard error computation and normalize
so that their squares sum to 1.

Lemma 4.1 (Lemma B.1). For any τ > 0, Algorithm 1 is τ -zCDP.

Stage 2: DP-based optimization. In this stage of the formulation we use the privacy budget allocation
from the first stage to learn a single linear predictor that satisfies the CGOO formulation (Section 3) via a
differential private gradient descent scheme. Regular linear regression corresponds to the CGOO formulation
without any fairness (Bounded Group Loss) constraints. We refer readers to the appendix for a version of
Algorithm 2 for linear regression without fairness constraints. In this setting, we perform budget allocation
as follows: for any k ∈ [K], allocate µ · s2

k budget to calculating `k(c, Z) and ∇`k(c, Z). Recall that `k is the
loss for group k and ∇`k(c, Z) is its gradient.
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Algorithm 2 Stage 2: µ-zCDP Gradient Descent for Langrangian Fair Regression
1: Input: Z ∈ (X × Y ×A)n , ηt, ∆, T ≥ 1, µ > 0, G > 0
2: Obtain DP standard errors s1, s2, . . . , sK from Algorithm 1
3: Like in Algorithm 1, split dataset Z = (X,Y,A) into Z1, . . . , ZK for K = |A| groups
4: Arbitrarily set θ1 ∈ CP
5: for t = 1 to t = T do
6: for k = 1 to k = K do
7: ∇`k(θt, Z) =

∑nk

i=1 2(〈θt, Xki〉 − Yki)Xki =
∑nk

i=1∇`k(θt, Xki, Yki)
8: `k(θt, Z) =

∑nk

i=1(〈θt, Xki〉 − Yki)2 =
∑nk

i=1 `k(θt, Xki, Yki)
9: Use budget of µT = µ · s2

k/(2T ) to sample Mk
1 as follows:

10: ∇Lk(θt, Z) = 1
nk

∑nk

i=1∇`k(θ, xi, yi)|∆0 (`2-norm per-example gradient clipping)
11: Mk

1 = ∇Lk(c, Z) +N (0, IP×P · ∆2

2µT
)

12: Use budget of µT = µ · s2
k/(2T ) to sample Mk

2 as follows:
13: Lk(θ, Z) = 1

n

∑n
i=1 `k(θ,Xki, Yki)|∆

2

0

14: Mk
2 = Lk(θ, Z) +N (0, ∆4

2µT
)

15: end for
16: ∇h(θt, Z) using M1 = (M1

1 , . . . ,M
K
1 ) ∈ RP×K and M2 = (M1

2 , . . . ,M
K
2 )T ∈ RK×1 (via Equation 2)

as follows:
17: ∇h(θt, Z) = M1∇f(M2) +G · 1[g(M2) ≥ 0]M1∇g(M2)
18: θt+1 = ΠCP

(θt − ηt∇h(θt, Z))
19: end for
20: return θt

We implement DPGD following the algorithm of Bassily et al. (2014) specialized to the ordinary least squares
objective. For any fixed privacy budget µ > 0, we allocate µ/2 to ` and µ/2 to ∇`. Algorithm 2 spells out
the crux of our procedure, using learning rate ηt.

Lemma 4.2 (Lemma B.2). For any µ > 0, Algorithm 2 is µ-zCDP.

Based on Lemmas 4.1 and 4.2 and by basic composition of differential privacy (e.g., see (Dwork et al., 2006)),
the entire scheme (Algorithm 1 and 2) is (τ + µ) = ρ-zCDP.

5 Lower Bounds

For private constrained group-objective optimization, we now show excess risk bounds. Note that these
results are equivalent to a lower bound on the sample complexity required to solve the problem since these
bounds are a function of the dataset size n.

We attack the following question: over the randomness of any (ε, 0) or (ε, δ)-DP algorithm, for a fixed
dataset D of size n, what is a lower bound for the accuracy of the mechanism that solves the constrained
group-objective optimization problem (Definition 3.2)?

Assuming the dataset is also drawn from BK2 , we show a lower bound on the excess risk for decision set
CP = BK2 = {c ∈ RK : ‖c‖2 = 1}. That is, we consider the case where the decisions and datasets lie in the
unit ball with `2 norm. We show that for all n,K ∈ N and ε > 0 there exists a dataset D = {xi}ni=1 ⊆ BK2
for which there is a CGOO problem with functions f, g such that both f and g will have excess risk lower
bounds of α ≥ Ω(Kεn ) and α ≥ Ω(

√
K
εn ) for any (ε, 0), (ε, δ)-differentially private algorithms respectively.

5.1 (ε, 0) Lower Bound

The major idea in the proof of Theorem 5.1 is to reduce to the problem of optimizing 1-way marginals (a
standard method for lower bounding the accuracy of differentially private mechanisms).
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Theorem 5.1. Let n,K ∈ N, ε > 0 and α ∈ (0, 1]. For every ε-differentially private algorithm M that
produces a decision ĉ ∈ CP such that

f(`(ĉ, D)) ≤ min
c∈CP :g(`(c,D))≤0

f(`(c,D)) + α, g(`(ĉ, D)) ≤ α,

there is a dataset D = {x1, . . . ,xn} ⊆ BK2 such that, with probability at least 1/2, we must have α ≥ Ω
(
K
εn

)
(or equivalently, n ≥ Ω

(
K
εα

)
) where f, g are Lipschitz, smooth functions defined as follows:

f(`(c,D)) = − 1
n

n∑
i=1
〈c,xi〉, g(`(c,D)) = f(`(c,D)) + 1

n
‖
n∑
i=1

xi‖.

for all c ∈ BK2 .

Proof. We have defined f as f(`(c,D)) = − 1
n

∑n
i=1〈c,xi〉 which has minimum c∗ =

∑n

i=1
xi

‖
∑n

i=1
xi‖

by Lemma 5.3.

We defined g as g(`(c,D)) = f(`(c,D)) + 1
n‖
∑n
i=1 xi‖ = f(`(c,D))− f(`(c∗, D)) which has minimum c∗ so

that the constraint g(`(c∗, D)) ≤ 0 is satisfied.

Now by Lemma 5.4, we have that f(`(c,D))− f(`(c∗, D)) = ‖
∑n

i=1
xi‖

2n ‖c− c∗‖2. Now we invoke Lemma 5.5.
If ĉ is the output of any ε-differentially private mechanism M then we must have that ‖c − c∗‖ = Ω(1).
Suppose not. Then that would imply that we can construct a new mechanismM′ that outputs ĉ · ‖

∑n

i=1
xi‖

n

which would contradict Lemma 5.5. As a result, ‖c− c∗‖ = Ω(1) so that f(`(ĉ, D))− f(`(c∗, D)) = Ω(Kεn ) for
the output ĉ of any ε differentially private mechanism.

5.2 (ε, δ) Lower Bound

For the proof of Theorem 5.2, we follow the steps of the proof for Theorem 5.1 but invoke the lower bound
for 1-way marginals in the approximate DP case (and not the pure case).
Theorem 5.2. Let n,K ∈ N, ε > 0, α ∈ (0, 1], and δ = o( 1

n ). For every (ε, δ)-differentially private algorithm
M that produces a decision ĉ ∈ CP such that

f(`(ĉ, D)) ≤ min
c∈CP :g(`(c,D))≤0

f(`(c,D)) + α, g(`(ĉ, D)) ≤ α,

there is a dataset D = {x1, . . . ,xn} ⊆ BK2 such that, with probability at least 1/3, we must have α ≥ Ω
(√

K
εn

)
(or equivalently, n ≥ Ω

(√
K
εα

)
) where f, g are Lipschitz, smooth functions defined as follows:

f(`(c,D)) = − 1
n

n∑
i=1
〈c,xi〉, g(`(c,D)) = f(`(c,D)) + 1

n
‖
n∑
i=1

xi‖.

for all c ∈ BK2 .

Proof. Again, the way we have defined f , by Lemma 5.4, we have that f(`(c,D)))−f(`(c∗, D)) = ‖
∑n

i=1
xi‖

2n ‖c−
c∗‖2. Now we invoke Lemma 5.6.

If ĉ is the output of any (ε, δ)-differentially private mechanismM then we must have that ‖c− c∗‖ = Ω(1).
Suppose not. Then that would imply that we can construct a new mechanismM′ that outputs ĉ · ‖

∑n

i=1
xi‖

n

which would contradict Lemma 5.6. As a result, ‖c− c∗‖ = Ω(1) so that f(`(ĉ, D))− f(`(c∗, D)) = Ω(
√
K
εn )

for the output ĉ of any (ε, δ)-differentially private mechanism.

8
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Helper Lemmas

Lemma 5.3. Let c∗ = arg minc:‖c‖≥1− 1
n

∑n
i=1〈c,xi〉 where xi ∈ BK2 for all i ∈ [n], then c∗ =

∑n

i=1
xi

‖
∑n

i=1
xi‖

.

Proof. For any c ∈ BK2 we have |〈c,
∑n
i=1 xi〉| ≤ ‖c‖‖

∑n
i=1 xi‖ = ‖

∑n
i=1 xi‖ by Cauchy-Schwarz and this is

tight when c =
∑n

i=1
xi

‖
∑n

i=1
xi‖

or c = −
∑n

i=1
xi

‖
∑n

i=1
xi‖

. As a result, the minimum of − 1
n

∑n
i=1〈c,xi〉 is attained at

c =
∑n

i=1
xi

‖
∑n

i=1
xi‖

.

Lemma 5.4. Let f(`(c,D)) = − 1
n

∑n
i=1〈c,xi〉 where c,xi ∈ BK2 for all i ∈ [n], then

f(`(c,D))− f(`(c∗, D)) =
‖
∑n
i=1 xi‖
2n ‖c− c∗‖2

for any c ∈ BK2 and c∗ =
∑n

i=1
xi

‖
∑n

i=1
xi‖

.

Proof. We have that

f(`(c,D))− f(`(c∗, D)) = 1
n

n∑
i=1

(〈c∗,xi〉 − 〈c,xi〉) (5)

= 1
n

(
〈c∗,

n∑
i=1

xi〉 − 〈c,
n∑
i=1

xi〉
)

(6)

= 1
n

(
‖
n∑
i=1

xi‖ − 〈c,
n∑
i=1

xi〉
)

(7)

=
‖
∑n
i=1 xi‖
n

(1− 〈c, c∗〉) (8)

=
‖
∑n
i=1 xi‖
2n ‖c− c∗‖2 (9)

where we have used that ‖c− c∗‖2 = ‖c‖2 + ‖c∗‖2 − 2〈c, c∗〉 = 2− 2〈c, c∗〉 and c∗ =
∑n

i=1
xi

‖
∑n

i=1
xi‖

.

We now state lower bound lemmas for 1-way marginals. Lemma 5.5 shows the lower bound for 1-way marginals
for ε-differentially private algorithms and Lemma 5.6 is for (ε, δ)-differentially private algorithms.
Lemma 5.5 (Part 1 of Lemma 5.1 in (Bassily et al., 2014)). Let n,K ∈ N and ε > 0. There exists
a number M = Ω(min(n, Kε )) such that for every ε-differentially private algorithm M there is a dataset
D = {x1, . . . ,xn} ⊆ BK2 with ‖

∑n
i=1 xi‖2 ∈ [M − 1,M + 1] such that, with probability at least 1/2 (over the

randomness of the algorithm), we have

‖M(D)− q(D)‖2 = Ω(min(1, K
εn

)),

where q(D) = 1
n

∑n
i=1 xi.

Lemma 5.6 (Part 2 of Lemma 5.1 in (Bassily et al., 2014)). Let n,K ∈ N, ε > 0, and δ = o( 1
n ). There is a

number M = Ω(min(n,
√
K
ε )) such that for every (ε, δ)-differentially private algorithmM, there is a dataset

D = {x1, . . . ,xn} ⊆ BK2 with ‖
∑n
i=1 xi‖2 ∈ [M − 1,M + 1] such that, with probability at least 1/3 (over the

randomness of the algorithm), we have

‖M(D)− q(D)‖2 = Ω(min(1,
√
K

εn
)),

where q(D) = 1
n

∑n
i=1 xi.

9
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6 Empirical Evaluation

We now discuss the empirical performance of our proposed scheme for synthetic and real-world datasets.
We discuss the results for the law school dataset in the appendix. We find that the proposed group-aware
privacy budget allocation leads to 10% to 50% reduction in mean standard error of the prediction for the
smallest groups. For real-world datasets, we find even more substantial gains. For all our experiments, the
total privacy budget is ρ = τ + µ. We allocate 20% of the budget to stage 1 (i.e., τ = 0.2ρ) and 80% to
stage 2 (i.e., µ = 0.8ρ). We present results for other budget allocation schemes between the two stages in
the Appendix. In the results, ‘DPSE’ refers to our proposed scheme and ‘DPNoSE’ refers to standard linear
regression computed via DPGD (budget of ρ) but with no group aware budget allocation.

We also tried our methods on data with more than 2 groups (in particular, K = 5 and K = 10 groups). For
simplicity, we focus on the K = 2 case (one majority group and one minority group) since it is already very
nuanced in this case.

Setup for Synthetic Experiments. For the results presented here, we assume that CP = [−5, 5]P . We
define ` to be a multivariate function such that for any group k ∈ [K] and dataset Z with nk items with
features Xk1, Xk2, . . . , Xknk

∈ RP . Let `k(c, Z) =
∑nk

i=1(Yi − 〈Xki, c〉)2. Its gradient is ∇`k(c, Z). We set
f(l) =

∑K
i=1 li and g(l) = maxi∈[K] li. For the synthetic data experiments, we assume the following ordinary

least squares (OLS) generation model: for any group k ∈ [K] and for all i ∈ [nk], Yi = XT
kiβk +N (0, Iσ2

k)
where βk ∈ RP , σk > 0, Xki ∈ RP .

Overview of Results: Synthetic Datasets. Figure 6 shows different parameter settings for a two-group
synthetic scenario where we observe what happens to the MSPE as we vary the privacy parameter ρ. The
blue line shows the MSPE for the smallest subgroup when the privacy budget is set with our group-aware
scheme while the cyan line is the MSPE for the smallest group when the privacy budget is not tailored to any
group. For reasonable levels of privacy, we observe substantial (10% to 50%) reduction in the MSPE when
we set the privacy budget using our proposed formulation. When we incorporate fairness constraints, we find
that the group aware formulation (DPSE smaller group) still maintains the 10% to 50% reduction in the
MSPE for the smaller groups.

K > 2 Groups and Group Sizes. We also considered additional settings with more than 2 groups. In this
case, we still observe at least a 10 percent reduction in MSPE for the smallest groups without hurting the
larger groups. See Section 6.1 for more details. A concern might be that as K (the number of groups) gets
larger, the standard error calculation in stage 1 becomes more inaccurate. In this case, one could allocate
more privacy budget to stage 1.

Real-World Credit-Card Dataset. We further demonstrate our proposed approach on a credit dataset.
The task is to predict the credit limit for each customer given aggregate demographic and credit information
for each customer. We take Gender (Male & Female in the dataset) to be the sensitive attribute of interest,
and focus only on a subset of high earners (income > 6000 in local currency), and consider a subset of the
features: age, asset, and income. We get two groups: 11,480 males and 2,937 females.

Overview of Results for Real-World Credit-Card Dataset. In Table 4, we show the relative Mean
Squared Prediction error for male and female groups in this credit card dataset under ρ-zCDP for ρ value
between 0.12/2 and 52/2. In the Table DPSE/DPNoSE denotes the ratio of MSPE when using the group-aware
formulation based on standard errors versus the standard non group-aware variant. The DPSE/DPNoSE
column shows results all groups while the DPSE/DPNoSE Smallest column shows results for the smallest
group. Again, we observe that the ratio of the MSPE between the DPNoSE and DPSE methods is always
more pronounced in the smaller (female) group than the larger one. These results indicate that the proposed
approach might be even more promising for real-world datasets.

Beyond Linear Regression. We replicate the MNIST “8-vs-2" binary classification experiment from
Bagdasaryan et al. (2019). We use logistic regression model in the first stage, and a LeNet network for the
second stage (total ε = 5.73). This means that we tailor the group privacy budgets based on the residuals of
the logistic regression for the LeNet model. We find a 64 percent reduction in classification error, for the
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minority ‘8’ class, compared to the results of Bagdasaryan et al. (2019). This experiment suggests that our
approach can generalize to other model classes.

6.1 Increasing Number of Groups

We conducted additional comprehensive experiments for K = 2, 5, 10, 15, 20 groups. Similarly, we include
additional discussion empirical results on the law school and credit datasets in the Appendix of the original
paper. For the sake of brevity, we present tables here for the K = 5 case. In the first experiment, the largest
group (group 1) has size 10,000 and the smallest has size 500 (so a 20x ratio). In the second experiment,
the largest group has size 5,000 and the smallest has size 100 (so a 50x ratio). For all the other cases
(K = 10, 15, 20), we observe similar gains in Mean Squared Prediction Error (MSPE).

Group DPNoSE (ρ = 2) DPSE (ρ = 2)
1 1.02 1.27
2 18.71 15.75
3 21.09 17.75
4 21.35 17.94
5 18.11 15.29

Table 1: MSPE for DPSE vs. DPNoSE. (5 groups, 20x)

Group DPNoSE (ρ = 4.5) DPSE (ρ = 4.5)
1 1.01 1.26
2 18.69 15.73
3 21.07 17.73
4 21.34 17.93
5 18.09 15.28

Table 2: MSPE for DPSE vs. DPNoSE. (5 groups, 20x)

Group DPNoSE (ρ = 8) DPSE (ρ = 8)
1 1.01 1.25
2 18.64 15.71
3 21.02 17.71
4 21.29 17.91
5 18.05 15.26

Table 3: MSPE for DPSE vs. DPNoSE. (5 groups, 20x)

7 Additional Related Work

The Disparate Impact Due to Differential Privacy & Langrangian Approaches. Our work was
inspired by the findings of Bagdasaryan et al. (2019), who showed that predictors learned via DPSGD have
low performance for minority groups. Similarly, Pujol et al. (2020) show, in a resource allocation setting,
that under ε-differential privacy, the noise added disproportionately affects minority groups in the data.

Mahdi Khalili et al. (2020) provide an approach that uses the exponential mechanism as a post-processing
step to improve the downstream fairness and privacy properties of standard supervised learning model.Tran
et al. (2020) address satisfying privacy and fairness constraints through a Langrangian duality approach. We
also rely on a Langrangian framework to incorporate fairness constraints in the setting we consider. However,
we focus on bounded group loss definitions of fairness in our formulation, which Tran et al. (2020) does not
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consider. Using Lagrangian duality for privacy (via linear programming, for example) has been considered
before, in different contexts, in the differential privacy literature Nikolov et al. (2013); Hsu et al. (2014).

More recently, Xu et al. (2019); Esipova et al. (2023) show impossibility results for achieving differential
privacy and the equal opportunity notion of fairness (Hardt et al., 2016). These impossibility results do
not apply to bounded group loss, which is the notion of disparity that we consider in this work. Jagielski
et al. (2018) study the problem of satisfying group notions of fairness and differential privacy with respect to
the sensitive attributes simultaneously. Mozannar et al. (2020) consider the task of learning fair predictors
without access to sensitive attributes under local differential privacy.

Algorithmic Fairness. Predictors learned via empirical risk minimization (ERM) often exhibit poor
performance for minority, both in size and by category, groups in the data (Buolamwini & Gebru, 2018;
Koenecke et al., 2020; Barocas et al., 2019). In this work, we also consider learning regression models
subject to fairness constraints using a Lagrangian formulation that builds on the work of Agarwal et al.
(2019). Khalili et al. (2021); Tran et al. (2021b). Agarwal et al. (2019) present algorithms to obtain linear
regression predictors subject to statistical parity and bounded sub-group loss; specifically, how to transform
a fair regression problem with constraints to a generic loss minimization problem, via Lagrange duality,
without constraints. Weabstract the fair constrained regression problem into one they term a ‘constrained
group-objective optimization’ problem, where the goal is to minimize an objective with certain properties
(say Lipschitzness and/or Convexity), but for which there are ‘group’ constraints. The Lagrangian fair linear
regression formulation that we consider falls under their abstraction.

Group-Aware Learning. The principle underlying the group-aware scheme that we propose requires
treating different subgroups in the data differently. For example, Hébert-Johnson et al. (2018) proposed
multicalibration; a principle that requires calibrated predictions for all subgroups in the training data that
can be identified. Building on this work, Kim et al. (2019) propose multiaccuracy boost, an approach, using
group reweighting, to audit and improve the performance of the predictive model among subgroups in the
data that have low performance. Alternatively, one can also learn group-specific predictors for each subgroup
in the data (Dwork et al., 2018). Koyejo et al. (2014) and Hiranandani et al. (2020) explore the goal of
learning functions of partitions of the confusion matrix with applications to algorithmic fairness.

8 Conclusion

In this paper, we proposed a group-aware approach to set the privacy budget while learning regression
models for datasets with stratification. This proposed formulation seeks to overcome the disparate model
performance that naive application of differential privacy incurs for minority subgroups. We propose to
allocate the privacy budget for each subgroup of the dataset based on the standard error of a precursor
regression model. This formulation allows us to reduce the level of noise that DP adds to groups where the
parameter estimation will be most uncertain—usually groups with smaller sizes. We justify the group-aware
privacy budget allocation with a theoretical analysis of an idealized 2-mixture of Gaussians model. Finally,
we show that the proposed scheme leads to a reduction in the mean square prediction error, compared to the
standard privacy formulation, on synthetic and real-world datasets where we observe substantial (10% to
50%) reduction in the MSPE when we set the privacy budget using our proposed formulation.

Our proposed group-aware privacy budget allocation shows promise; however, there still remain open questions.
As it stands, it is unclear how to, optimally, split the overall privacy budget between the two stages of the
algorithm. We make this decision a user-dependent one, but future work will look at how to determine
the privacy split in an optimal fashion via analysis of the Pareto frontier of the utility-privacy trade-off.
We considered the bounded subgroup loss formulation here, however, future work can also consider more
sophisticated fairness constraints.

Our framework is centered on linear regression, a fundamental task; however, extensions to other estimators
including those with non-convex loss functions is also desirable. Taken together, we hope this work opens up
discussion about approaches for mitigating the disparate impact of differential privacy for small subgroups.
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A Additional Experimental Details

In this section, we present additional empirical evaluation of the our proposed group-aware differentially
private budget allocation algorithm. For our experimental evaluation, the method that uses standard error
information is called DPSE while the method that doesn’t use such information is called DPNoSE.
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Code We include a copy of a Numpy implementation of the algorithms that we present in the main paper
along with the a README and a requirements file.

Trials & Compute Used Our results are computed over different instances of mixtures. Each run on a
mixture is evaluated 1000 (random seeds) times and results are averaged over these Monte Carlo trials. We
find that the average standard deviation of the Mean Squared Prediction Error (MSPE) of our results is
less than 10% of the MSPE. All our experiments are run on a MacBook Pro (13-inch, 2018) with a 2.3GHz
Quad-Core Intel Core i5 with 16GB Memory.

Real-World Datasets In this section, we give a more detailed overview of the Credit dataset, which was
discussed in the paper. In addition, we present empirical results on the Law School dataset.

9.3cm

ρ (τ, µ) DPSE
DPNoSE

DPSE
DPNoSE (1)

0.12/2 (0.001, 0.004) 6.76 8.46
0.52/2 (0.025, 0.1) 34.13 39.91
12/2 (0.1, 0.4) 49.11 57.73
22/2 (0.4, 1.6) 46.11 54.17
32/2 (0.9, 3.6) 48.73 57.85
42/2 (1.6, 6.4) 47.64 56.3
52/2 (2.5, 10.0) 51.69 60.9

Table 4: Results on Credit Data. All results in the
table are scaled by 10−5. In the first column we show the
ratio of the MSPE, for all groups, for the group aware
privacy budget allocation (DPSE) and the standard set-
ting (DPNoSE). Similarly in the second column we show
a similar ratio for the smallest group.

Law School Dataset Description The second
real-world data set that we consider consists of
demographic variables for law school students de-
rived from the Longitudinal Bar Passage Study
(Wightman, 1998). In this data set, there are at-
tributes including the type of law school attended,
the LSAT score, the undergraduate grade point
average (GPA), the age, the race, the first year
law school GPA, and the final cumulative GPA of
each applicant. We consider the task of predicting
the final cumulative GPA of each applicant given
the underlying demographic variables. We take the
attribute race as the sensitive attribute in the fair
regression framework. We consider two groups: the
‘white’ students (22610 samples), and the ‘black’
students (1874 samples). We normalize all features
to lie in an `2 ball.
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Figure 1: Data set overview. We examine some statistics of the Credit dataset. A) The variables present
in the Credit dataset and the correlation heatmap amongst these variables. We see that asset, income, and
educational status are the variables relatively more highly correlated with the credit limit than gender. B)
The distribution of customer age for Females in the dataset. C) The distribution of customer age for Males
in the dataset. D) The distribution of credit limit for females in the dataset. E) The distribution of credit
limit for males in the dataset.

16



Under review as submission to TMLR

Credit Dataset. First, as discussed in the paper,
the key task in the credit setting is that of predicting the credit limit assigned to an individual given socio-
economic variables like income, asset, and Age. In Figure 1, we show a heat map of the correlation amongst
these variables as well as histograms of age and credit limit for the male and female groups in the dataset.
For the experiments performed, we subsampled the dataset into two: 11,480 males and 2,937 females.

A.1 MSPE Results for DPSE & DPNoSE for additional synthetic settings.

In all the synthetic data experiments below, the clipping bound (for the gradients and losses) is set to ∆ = 2.
We make this choice because given the synthetic setting that we consider, the Lipschitz constant of the is
Lagrangian formulation function is usually at most 2. We note here that the clipping bound here is applied
to the gradients and losses and not the OLS parameters learned.
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Figure 2: Additional Empirical Results for Synthetic Datasets. We vary the sample size ratio between
the larger and smaller groups from 20x to 50x. We also vary the slopes used to generate the OLS models
within each group. We consider group slopes {(−10, 10), (10,−10), (10, 1), (−10,−1)}. Across most regimes,
we see that the MSPE in the smallest group is reduced with the DPSE procedure.

In Figure 2, we show that DPSE outperforms DPNoSE on the smallest subgroup. Let β1, β2 denote the
slopes in the 2 groups in the dataset. We see about a > 50% improvement in MSPE, on average, for slopes
(β1, β2) = (−10, 10) and (β1, β2) = (10,−10) whether the ratio of sample sizes is 5x or 50x. The improvement
becomes small when the ratio of the slopes is much higher (i.e., when (β1, β2) = (−10,−1)). We vary the
privacy parameter from ρ = 0.12 to ρ = 102/2 and our Monte Carlo results are averaged over 1000 trials. σe is
the noise in the dependent variable for both groups. We set σe = 1. e.g., for group 1, Y1 ∼ N (X1β1, σ

2
eIn1×n1),

where n1 is the number of data points in group 1, the majority group.

Figure 5 shows the empirical results for regression models trained on the law school data. Again, we see that
the group-aware budget allocation approach (DPSE) provides a reduction in the mean squared prediction
error of the resulting models. Taken together, these results further demonstrate that our proposed approach
reduces the disparate impact of differential privacy in small groups.

Logistic Regression. Our methods can be easily translated to the logistic regression (for use in classifica-
tion) setting. For training data Z = {(xi, yi)}ni=1, the linear regression loss is

h(θ | Z) = 1
n

n∑
i=1

(〈θ, xi〉 − yi)2,
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Figure 3: Additional Empirical Results for Synthetic Datasets. We vary the sample size ratio between
the larger and smaller groups from 20x to 100x. We also vary the slopes used to generate the OLS models
within each group. We consider group slopes {(−1, 1), (1,−1)} (See Appendix for additional discussion and
results). We also vary the noise in the dependent variable and observe similar results. Across all regimes, we
see that the MSPE in the smallest group is reduced with the DPSE procedure.
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Figure 4: Empirical Results for Synthetic Datasets. We set the sample size ratio between the larger
and smaller groups to 100x. We vary the slopes used to generate the OLS models within each group. We
consider group slopes {(−10, 10), (10,−10), (10, 1), (−10,−1)}. Across most regimes, we see that the MSPE
in the smallest group is reduced with the DPSE procedure. In this case, the loss in the larger group is even
much smaller given the large size of the larger group.

which has an explicit gradient (as detailed in the main body). We can replace this with the logistic loss as
follows

h(θ | Z) = 1
n

n∑
i=1

log(1 + e−yiθ
T xi),
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Figure 5: Empirical Results on the Law School Dataset.
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Figure 6: Empirical Results for Synthetic Datasets. We observe, on average, a 10-20% reduction in
the MSPE. For small privacy parameters, we tend to overpenalize the larger group, leading to a quicker
convergence to the right parameters for the smaller group.

where yi are the labels in this case. The logistic loss also has an explicit gradient. And since our algorithms
require only oracle access to the gradients, the change to compute the logistic regression results is minimal.

B Proofs and Additional Detail on Algorithms for Group-Aware OLS

Lemma B.1. For any τ > 0, Algorithm 1 is τ -zCDP.

Proof. First, recall Lemma 2.3 in (Bun & Steinke, 2016) (for composition and postprocessing of zCDP) and
Lemmas 2.4, 2.5 for the application of the Gaussian Mechanism for zCDP. We use τ/(K + 1) to calculate DP
estimates of the covariance and variance matrices: X̃TX and X̃TY . If the minimum eigenvalue of X̃TX is
≤ 0 (which implies noninvertibility or non-positive variances), we return a normalized all-ones vector, a step
that is still private by postprocessing DP capabilities.
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We proceed to calculate the DP estimate of the standard error (SE) for each group using Lemma 2.4 in (Bun
& Steinke, 2016) to satisfy τ/(K + 1)-zCDP. Again, if the SE results in a value ≤ 0, we return a normalized
all-ones vector. Finally, by composition properties, the whole procedure satisfies τ -zCDP.

Lemma B.2. For any µ > 0, Algorithm 2 is µ-zCDP.

Proof. Again, we apply Lemma 2.3 in (Bun & Steinke, 2016) (for composition and postprocessing of zCDP)
and Lemmas 2.4, 2.5 for the Gaussian Mechanism zCDP application.

There are T iterations so we split our privacy budget into µ/T . Since from stage 1,
∑
s2
k = 1, for each group

k ∈ [K], we use budget of s2
k · µ/T (split into two for computing `k and its gradient ∇`k). By post-procesing

and composition properties of zCDP, the whole procedure satisfies µ-zCDP.

In this section, we provide a variation of Algorithm 2 with no fairness constraints but with a budget allocation
strategy. See Algorithm 3.

Algorithm 3 Stage 2 Variant: µ-zCDP DP OLS Regression
1: Input: Z;µ; ηt, ∆, T
2: Obtain standard errors s1, s2, . . . , sK from Algorithm 1
3: Initialize θ1 arbitrarily
4: for t = 1 to t = T do
5: for k = 1 to k = K do
6: ∇`k(θt, Z) =

∑nk

i=1 2(〈θt, Xki〉 − Yki)Xki =
∑nk

i=1∇`k(θt, Xki, Yki)
7: Use budget of µT = µ · s2

k/T to compute Mk as follows:
8: ∇Lk(θt, Z) =

∑nk

i=1
∇`k(θt,Xki,Yki)

max(1,‖∇`k(θt,Xki,Yki)‖2/∆) (`2-norm per-example gradient clipping)
9: Mk = ∇Lk(θt, Z) +N (0, IP×P · ∆2

2µT
)

10: end for
11: M = (M1, . . . ,MK) ∈ RP×K
12: θt+1 = ΠCP

(θt − ηt(M1K))
13: end for

return θt // public DP release

Lemma B.3. For any µ > 0, Algorithm 3 is µ-zCDP.

Proof. We apply Lemma 2.3 in (Bun & Steinke, 2016) (for composition and post-processing of zCDP) and
Lemmas 2.4, 2.5 for the zCDP guarantees via the application of the Gaussian Mechanism.

Each iteration t ∈ [T ] receives privacy budget of µ/T . From stage 1,
∑
s2
k = 1. We can use this to allocate

budget of s2
k ·µ/T for each group k ∈ [K]. By post-processing and composition properties of zCDP, the whole

procedure satisfies µ-zCDP.

C Mixture Model Analysis for Standard Error and Other Proof Details

In this section, we include proofs that we could not, because of space constraints, include in the main paper.
Lemma C.1. Let U be an upper bound on values in the design matrix X ∈ Rn×d and on values in Y . Then
X̃TX = XTX + U2

√
2τZ is τ -zCDP where Z ∈ Rd×d is a symmetric matrix with each entry in the upper

triangular matrix sampled from N (0, 1) and the lower triangle entries are copied from its upper triangle part.

Furthermore, X̃TY = XTY + U2
√

2τZ is τ -zCDP where Z ∼ N (0, Id×d).
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Proof. The proof of privacy follows from the Analyze-Gauss algorithm (see Algorithm 1 and Theorem 2
in (Dwork et al., 2014)) where we apply the Gaussian Mechanism to satisfy τ -zCDP, by Proposition 1.6
in (Bun & Steinke, 2016).

Lemma C.2. For any c ∈ (0, 1), β1, β2 ∈ Rd, X1 ∈ Rn1×d, X2 ∈ Rn2×d, σ1, σ2 > 0, n1, n2 ∈ Z+, define the
mixture model Y ∼ cN (X1β1, σ

2
1In1×n1) + (1− c)N (X2β2, σ

2
2In2×n2) ∼ cY1 + (1− c)Y2.

Let β = β1 with probability c and β = β2 with probability 1− c, then the prediction Ŷ is Y1 with probability
c and Y2 with probability (1− c). The expected prediction loss of β on Y is c2 · n1Cσ

2
1 + (1− c)2 · n2Cσ

2
2 +

c(1 − c)Γ1 + c(1 − c)Γ2 where Γ1 = ‖Y2 −X2β1‖2,Γ2 = ‖Y1 −X1β2‖2, C ∼ χ2
1, and χ2

k is the chi-squared
distribution with k degrees of freedom.

Proof. First note that ‖Y1 −X1β1‖2 ∼ n1χ
2
1σ

2
1 since Y1 −X1β1 ∼ N (0, σ2

1In1×n1) so that for any i ∈ [n1],
(Y1 −X1β1)i ∼ N (0, σ2

1) ∼ σ1N (0, 1). (Y1 −X1β1)2
i ∼ σ2

1χ
2
1 since χ2

k is the sum of squares of i.i.d. standard
normal random variables. Then ‖Y1 −X1β1‖2 ∼ n1σ

2
1χ

2
1. Similarly, ‖Y2 −X2β2‖2 ∼ n2σ

2
2χ

2
1.

Then the expected loss given the learned estimate β is

Eβ [‖Ŷ − Y ‖2] = Eβ [c‖Y1 −X1β‖2 + (1− c)‖Y2 −X2β‖2]
= c2‖Y1 −X1β1‖2 + (1− c)2‖Y2 −X2β2‖2 + c(1− c)‖Y1 −X1β2‖2 + c(1− c) · ‖Y2 −X2β1‖2

∼ c2 · n1Cσ
2
1 + (1− c)2 · n2Cσ

2
2 + c(1− c)Γ1 + c(1− c)Γ2,

where C ∼ χ2
1.

As shown above, even the best randomized predictor has dependence on group size and the standard error of
the prediction. Compounding this issue, the requirement for differential privacy necessitates additional noise,
which increases measurement error. To account for measurement error, we need to make sure that the error
in the estimates of Γ1,Γ2 are not exacerbated.

D Asymptotic Convergence Analysis of (Stochastic) Gradient Descent for CGOO
Problem

In this section, we give convergence guarantees for (stochastic) gradient descent for the CGOO problem. We
discuss the optimal setting of the learning rate when applying differentially private gradient descent to solve
constrained maximization problems defined on smooth functions for the CGOO problem. Assume that the
functions f and g have smoothness parameters βf and βg respectively. Recall that a function f : V → R is
β-smooth if its gradient f is β-Lipschitz. That is, ‖∇f(x)−∇f(x′)‖ ≤ β‖x− x′‖ for all x, x′ ∈ V.

In Algorithm 4, we reproduce Algorithm 2 but with a learning rate that depends on the privacy noise
parameter σ. We show that, after at most T = O(n) calls to a perturbed version of ∇h, we can differentially
privately minimize h to within α for any α > 0 for large enough sample size n. Note that we could still
minimize h to within α with smaller T in practice.

In Figures 7-A, we illustrate (graphically) how projected gradient descent behaves under differential privacy
constraints. The projection step in gradient descent becomes noisy because of the noisy gradient computation
process. For Frank-Wolfe under differential privacy, the vertices of the set C, if convex, appear to be moved
or perturbed. We illustrate differentially private Frank-Wolfe in Figure 7-B. Frank-Wolfe is, essentially, an
iterative first-order optimization algorithm that replaces the projection step of gradient descent with solving
linear approximation sub-problems.
Lemma D.1 (Composition of ρ-zCDP (Bun & Steinke, 2016))). Let M : Xn → Y and M′ : Xn → Z be
(randomized) algorithms that satisfy ρ-zCDP and ρ′-zCDP, respectively. Define M′′ : Xn → Y × Z where
M′′(x) = (M(x),M′(x)). ThenM′′ satisfies (ρ+ ρ′)-zCDP.
Lemma D.2 (Post-Processing of ρ-zCDP (Bun & Steinke, 2016))). Let M : Xn → Y and g : Y → Z be
(randomized) algorithms. Suppose that M satisfies ρ-zCDP. Define M′ : Xn → Z as M′(x) = g(M(x)).
ThenM′ satisfies ρ-zCDP.
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Algorithm 4 ρ-zCDP DP (Fair) Regression on Smooth Functions
Input: D,n, ρ, T, βf , βg, G
σ2 = K(βf +Gβg)2T

2ρn2

Arbitrarily set c1 ∈ CP
for t = 1 to t = T − 1 do
∇h(ct, D) = ∇`(ct, D)∇f(`(ct, D)) + 1[g(`(ct, D)) ≥ 0]∇`(ct, D)∇g(`(ct, D))
qt ∼ N (∇h(ct, D), σ2IP×P )
η(t) =

√
P√

t
√

(1+G)2+Pσ2

ct+1 = ΠCP
(ct − η(t)qt)

end for
return cT

(a) (b)

Figure 7: (a) Illustration of Projected Gradient Descent for private Constrained Group-Objective Optimization
using a noisy projection oracle. (b) Illustration of perturbed vertices when solving linear optimization
subproblems for private Constrained Group-Objective Optimization.
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Theorem D.3 (Theorem 2 from (Shamir & Zhang, 2013)). Suppose that h is a convex function and that
for some constants S,Q, it holds that E[‖q̂t‖2] ≤ Q2 for all t and supc,c′∈C‖c− c′‖ ≤ S. Then the stochastic
gradient descent algorithm with initialization rule c1 ∈ C, and update rule

ct+1 = ΠC (ct − ηtq̂t) ,

and step size ηt = c/
√
t (where c > 0 is a constant) has the following guarantee for any T > 1:

E[h(cT )− h(c∗)] ≤
(
S2

c
+ cQ2

)
2 + log T√

T
,

where c∗ ∈ arg minc∈C h(c), q̂t ∈ ∂h(ct) is a subgradient of h and ΠC is a projection oracle into feasible set C.
Theorem D.4 (Theorem 3.7 from (Bubeck, 2015)). On the set C let projected gradient descent be of the form
ct+1 = ΠC (ct − η∇h(ct)) for t > 1 and c1 be an arbitrary decision in C. Suppose h is convex and β-smooth
on C. Then projected gradient descent with step size η = 1

β satisfies

h(ct)− h(c∗) ≤ 3β‖c1 − c∗‖2 + h(c1)− h(c∗)
t

,

where c∗ ∈ arg minc∈C h(c).

Algorithm 5 Gradient Descent for Constrained Group-Objective Optimization.
Input: D, ρ, T,ΠC , G
Arbitrarily set c1 ∈ C
for t = 1 to t = T − 1 do
η(t) =

√
K

(1+G)
√
t

∇h(ct, D) = ∇`(ct, D)∇f(`(ct, D)) + 1[g(`(ct, D)) ≥ 0]∇`(ct, D)∇g(`(ct, D))
ct+1 = ΠC (ct − η(t)∇h(ct, D))

end for
return ĉ = cT

Algorithm 6 Gradient Descent for Constrained Group-Objective Convex Smooth Optimization.
Input: D, ρ, T,ΠC , G
Arbitrarily set c1 ∈ C
for t = 1 to t = T − 1 do
η(t) = 1

(βf +Gβg)
∇h(ct, D) = ∇`(ct, D)∇f(`(ct, D)) + 1[g(`(ct, D)) ≥ 0]∇`(ct, D)∇g(`(ct, D))
ct+1 = ΠC (ct − η(t)∇h(ct, D))

end for
return ĉ = cT

Algorithms 5 and 6 correspond to the algorithms for solving the CGOO problem with learning rates from
Theorem D.3 and Theorem D.4 (for the smooth case).
Lemma D.5. For any Lipschitz continuous functions f, g : [0, 1]K → R, suppose that there exists y ∈ [0, 1]K
such that g(y) ≤ 0.

For any G > 0, define the function h : [0, 1]K → R as follows: h(x) = f(x) + G · max(0, g(x)) for any
x ∈ [0, 1]K . Then for all x′ ∈ [0, 1]K , α > 0 such that h(x′) ≤ minx∈[0,1]K h(x) + α, we are guaranteed that

f(x′) ≤ min
x∈[0,1]K :g(x)≤0

f(x) + α, g(x′) ≤ α+ Lf
√
K

G

where Lf is the Lipschitz constant for the function f .
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Using Lemma D.5, we can solve the CGOO problem by composition of functions f, g into h. So for the rest of
this section, we will focus on optimizing the Lagrangian formulation via the function h. We assume that f, g
are 1-smooth but all theorems can be generalized to handle any f, g with smoothness parameters βf , βg > 0.
Theorem D.6. Suppose we are given convex, 1-Lipschitz, 1-smooth functions f, g : [0, 1]K → R, loss function
` : C × (X × Y ×A)n → [0, 1]K , and privacy parameter ρ ≥ 0.

Then assuming that

n = max
{

Ω̃
(
KP

α4

)
,Ω
(
KP

ρ

)}
,

after T = O(n) iterations, Algorithm 4 is a ρ-zCDP differentially private algorithm that returns a decision
c̃ ∈ C with the following guarantee:

f(`(c̃, D))] ≤ f(`(c∗, S)) + α, g(`(c̃, D))] ≤ α

with probability at least 9/10 where c∗ ∈ arg minc∈C:g(`(c,S))≤0 f(`(c, S)) is the best decision in the feasible set
C ⊆ RP , α > 0. We assume access to a projection oracle ΠC and that C ⊆ RP lies in a P -dimensional space
that is bounded in each axis.

Proof. We combined f and g into a “new” convex function h(`(c,D)) = f(`(c,D)) + Gmax(0, g(`(c,D)))
defined for all c ∈ C. Its gradient is given as ∇h(c,D) = ∇`(c,D)∇f(`(c,D)) + 1[g(`(c,D)) ≥
0]∇`(c,D)∇g(`(c,D)). Then note that h has smoothness parameter at most βf + Gβg if βf , βg are the
smoothness parameters for functions f, g respectively.

First, we go through the proof of privacy of Algorithm 4. We invoke Lemma 2.5 in (Bun & Steinke,
2016), which states that ifM : Xn → Rd is a mechanism that releases N (q(x), σ2Id×d) for some function
q : Xn → Rd, thenM satisfies ρ-zCDP for

ρ = 1
2σ2 sup

D,D′
‖q(D)− q(D′)‖22,

where D,D′ are neighboring databases that differ in one entry.

Then since `(c,D) = 1
n

∑n
i=1 `(c,Di) and `(c,D) ∈ [0, 1]K ,

‖∇h(`(c,D))−∇h(`(c,D′)‖ ≤ (βf +Gβg)‖`(c,D)− `(c,D′)‖ (10)

≤ (βf +Gβg)
√
K/n. (11)

As a result, qt ∼ N (∇h(ct, D), σ2IP×P ) satisfies ρ-zCDP (where we split the budget amongst the T rounds).

For the utility guarantees, we will rely on Theorem D.3 which requires a bound G2 on the norm of
subgradients q̂t and a bound on the norm of maximum difference between any two c, c′ ∈ C which is
supc,c′‖c− c′‖ ≤ ‖C‖ = O(

√
P ) = S. We have that the subgradients are qt ∼ N (∇h(ct, D), σ2IP×P ) so that

‖∇h(ct, D)‖2 = ‖∇f(`(ct, D)) +G · 1[g(`(ct, D)) ≥ 0] · ∇g(`(ct, D))‖2 (12)
≤ ‖∇f(`(ct, D))‖2 +G2‖∇g(`(ct, D))‖2 + 2G〈∇f(`(ct, D)),∇g(`(ct, D))〉 (13)
≤ ‖∇f(`(ct, D))‖2 +G2‖∇g(`(ct, D))‖2 + 2G‖∇f(`(ct, D))‖‖∇g(`(ct, D))‖ (14)
≤ (1 +G)2 (15)

by the Cauchy–Schwarz inequality and the bound on the gradients of f, g.

Then since qt ∼ N (∇h(ct, D), σ2IP×P ) = ∇h(ct, D) + at with at ∼ N (0, σ2IP×P ) we have that

E[‖q̂t‖2] = E[‖∇h(ct, D)‖2] + E[‖at‖2] + 2E[〈∇h(ct, D), at〉] (16)
≤ (1 +G)2 + σ2P, (17)
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by Fact D.7 so that E[‖q̂t‖2] ≤ Q2 = (1 +G)2 + σ2P .

Algorithm 4 uses the optimal settings — up to constants — of the learning rate (can be derived via
differentiation and solving for the constant c) based on Theorem D.3:

η(t) = c√
t

= S

Q
√
t

=
√
P

√
t
√

(1 +G)2 + Pσ2
.

Then it follows from Theorem D.3 that the “new” function h : [0, 1]K → R for the setting of η(t) has the
following convergence guarantees:

E[h(c̃, D)]− h(`(c∗, S)) ≤ 2 log T (2SQ)√
T

(18)

= O

(
log T√
T

(√
P
√

(1 +G)2 + Pσ2
))

(19)

and plugging in σ we get

O

(
log T√
T

√
P

√
(1 +G)2 + TPK(1 +G)2

ρn2

)
.

Setting T = O(n) and using that n = Ω(PK/ρ), we can further simplify to obtain that

E[h(c̃, D)]− h(`(c∗, S)) ≤ α,

if n = Ω̃(PK/α4) for G =
√
K/α. And by Lemma D.5 this implies that

E[f(`(c̃, D))] ≤ f(`(c∗, S)) + α, E[g(`(c̃, D))] ≤ α.

Applying Markov’s inequality then gives the desired result.

Fact D.7. Let Z ∼ N (0, IP×P ). Then for any (fixed) vector v ∈ RP ,

〈Z, v〉 ∼ N (0, ‖v‖22).
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