
Accelerating Iterative Retrieval-augmented Language Model Serving with
Speculation

Zhihao Zhang 1 Alan Zhu 1 Lijie Yang 1 Yihua Xu 2 Lanting Li 1 Phitchaya Mangpo Phothilimthana 3

Zhihao Jia 1

Abstract
This paper introduces RaLMSpec, a framework
that accelerates iterative retrieval-augmented lan-
guage model (RaLM) with speculative retrieval
and batched verification. RaLMSpec further in-
troduces several important systems optimizations,
including prefetching, optimal speculation stride
scheduler, and asynchronous verification. The
combination of these techniques allows RaLM-
SPec to significantly outperform existing systems.
For document-level iterative RaLM serving, eval-
uation over three LLMs on four QA datasets
shows that RaLMSpec improves over existing ap-
proaches by 1.75-2.39×, 1.04-1.39×, and 1.31-
1.77× when the retriever is an exact dense re-
triever, approximate dense retriever, and sparse
retriever respectively. For token-level iterative
RaLM (KNN-LM) serving, RaLMSpec is up to
7.59× and 2.45× faster than existing methods
for exact dense and approximate dense retrievers,
respectively.

1. Introduction
Recent advancements in large language models such as
LLaMA-2, GPT-3, and PaLM have shown promising results
in diverse NLP tasks (Touvron et al., 2023; Brown et al.,
2020; Chowdhery et al., 2022). However, encoding a mas-
sive amount of knowledge into a fully parametric model
requires excessive effort in both training and deployment.
The situation can be further exacerbated when the foun-
dation model is required to adapt to new data or various
downstream tasks (Asai et al., 2023). To address this chal-
lenge, recent work introduces retrieval-augmented language
models (RaLM), which integrate the parametric language

1Carnegie Mellon University 2University of California, Berke-
ley 3Google DeepMind. Correspondence to: Zhihao Zhang <zhi-
haoz3@cs.cmu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

model with a non-parametric knowledge base through re-
trieval augmentation (Khandelwal et al., 2019; Shi et al.,
2023; Ram et al., 2023; Khattab et al., 2022).

Existing RaLM methods can be categorized into two classes
based on the interaction between the knowledge base and
language model. First, one-shot RaLM performs retrieval
once for each request and combines the retrieved documents
with the original request to assist generation. On the other
hand, iterative RaLM enables iterative interactions between
the language model and knowledge base for a request so
that the language model can opportunistically query the
knowledge base to retrieve more relevant documents during
generation. Compared to iterative RaLM, one-shot RaLM
introduces less retrieval overhead but is inherently limited
when the required information varies from time to time
during the generation process. On the other hand, itera-
tive RaLM achieves better generative performance while
suffering from frequent retrievals and, thus, high retrieval
overhead. This paper answers the following research ques-
tion: can we reduce the overhead of iterative RaLM without
affecting generative quality?

We propose RaLMSpec, a framework that employs specula-
tive retrieval with batched verification to reduce the serving
overhead for iterative RaLM while provably preserving the
model output. A critical bottleneck of existing iterative
RaLM methods is the inefficiency of retrieval. In particular,
due to the auto-regressive nature of generative language
models, the retrieval step is usually performed with a single
query summarizing the current context. As shown in Fig-
ure 1(a), existing iterative RaLM approaches interleave the
retrieval step and the generation step by constantly retrieving
from the knowledge base with the latest context-dependent
queries (i.e., q0, q1, and q2). The corresponding retrieved
contents (A, B, C) can then assist the generation process
by contributing relevant information to the language model
through a prompt or attention-level combination. However,
issuing these queries for knowledge base retrieval sequen-
tially is inefficient.

The idea of speculative retrieval is conceptually similar to
speculative execution from the computer architecture litera-
ture (Burton, 1985). More specifically, RaLMSpec replaces

1

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

the expensive, iterative retrieval steps of existing RaLM
methods with more efficient but less accurate speculative
retrieval steps. Consequently, RaLMSpec uses a batched
verification step to correct any incorrect speculation result
and preserve the model’s generative quality. More precisely,
after several speculative retrieval steps, RaLMSpec initiates
a verification step by performing a batched retrieval (i.e.,
➅ in Figure 1(b)), where the queries in the batch are the
corresponding queries in the speculative retrieval steps. If
there is a mismatch between the speculated documents and
the ground truth documents retrieved in the verification step,
RaLMSpec automatically corrects the mismatch by rolling
back to the first mis-speculated position and rerunning lan-
guage model decoding using the ground truth documents.
As a result, a subpar speculation method with an early mis-
match can result in additional overhead. In observing that
the same or consecutive entries can be repetitively retrieved
from the knowledge base when generating the response (i.e.,
temporal and spatial locality), RaLMSpec maintains a local
retrieval cache to store past documents for each request, and
performs speculative retrieval by retrieving from the local
cache instead of the knowledge base. RaLMSpec updates
the local cache by directly adding the same or consecutive
documents retrieved from the knowledge base in each ver-
ification step. Figure 1(c) shows a timeline comparison
between RaLMSpec and existing iterative RaLM methods.
RaLMSpec’s latency saving is obtained through efficient
batched retrieval, i.e., retrieving from the knowledge base
with n batched queries is more efficient than executing n re-
trievals sequentially. We show evidence of the above claim
in Appendix A.1.

Besides maintaining a local cache for speculative retrieval,
we propose three additional techniques to further reduce
RaLM serving latency. First, RaLMSpec can support cache
prefetching by updating the local cache with the top-k re-
trieved documents from the knowledge base to boost RaLM-
Spec’s speculative performance. Second, RaLMSpec en-
ables an optimal speculation stride scheduler that dynami-
cally adjusts the speculation stride (i.e., the number of con-
secutive speculation steps between two verification steps) to
minimize the speculation overhead. Third, RaLMSpec can
exploit concurrency by allowing asynchronous verification,
which enables an extra speculation step to be performed
asynchronously with a verification step.

We test RaLMSpec against two serving tasks: document-
level and token-level iterative RaLM serving. For document-
level iterative RaLM serving, extensive evaluation of RaLM-
Spec over the Wiki-QA (Yang et al., 2015), Web Questions
(Berant et al., 2013), Natural Questions (Kwiatkowski et al.,
2019), and Trivia QA (Joshi et al., 2017) datasets on the
GPT-2, OPT, and LLaMA-2 models show that RaLMSpec
can automatically adapt the speculation configuration and
reduce the serving latency of the baseline implementation

by up to 2.4×, 1.4×, 1.8× with an exact dense, approximate
dense, and sparse retriever, respectively. For token-level it-
erative RaLM (KNN-LM) serving, RaLMSpec can achieve
a speed-up ratio up to 7.59× and 2.45× when the retriever
is an exact dense retriever and approximate dense retriever,
respectively.

Contributions. This paper makes the following contribu-
tions:

• We propose RaLMSpec, a framework that reduces the
serving latency of generic iterative RaLM approaches
while preserving the same model outputs.

• Technically, by leveraging the temporal/spatial locality
of the retrieved documents, RaLMSpec uses a caching-
based speculative retrieval mechanism with batched
verification to reduce the retrieval overhead. We pro-
pose three additional techniques to reduce RaLM serv-
ing latency: cache prefetching, asynchronous verifica-
tion, and optimal speculation stride scheduling.

• Empirically, we validate that RaLMSpec achieves sig-
nificant RaLM serving latency reduction across dif-
ferent tasks, datasets, language models, and retriever
types. These results indicate RaLMSpec can be a
generic acceleration framework for serving iterative
RaLMs.

2. Related Work
Retrieval-augmented language models. Since Guu et al.
(2020) first proposed to provide relevant information to the
language model with retrieved documents from an external
knowledge base, numerous works have started to leverage
retrieval to improve the language model generation qual-
ity (Shi et al., 2023; Park et al., 2023; Wang et al., 2023a;
Zhu et al., 2023; Rubin & Berant, 2023; Wang et al., 2023b;
Zhou et al., 2023). As these works only perform retrieval
once before the language model generation starts, we refer
to them as one-shot RaLM. Besides one-shot RaLM ap-
proaches, another line of work performs retrieval regularly
when serving a single request. Ram et al. (2023); Lewis et al.
(2020); Jiang et al. (2023); Borgeaud et al. (2022); Khattab
et al. (2022); Shao et al. (2023) retrieve constantly from the
external database with the latest context and leverage the re-
trieved documents to improve the generation quality either
through direct concatenation or intermediate layer cross-
attention, which we refer to as document-level iterative
RaLM approaches. K-Nearest Neighbour Language Models
(KNN-LM), on the other hand, produce the next token distri-
bution by interpolating between a weighted distribution over
k retrieved documents and the language model output (Khan-
delwal et al., 2019; Drozdov et al., 2022), which we refer to
as token-level iterative RaLM approaches. Compared with

2

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

: Language model decoding
: Knowledge base retrieval (slow) : Local cache retrieval (fast)

Language Model

A

Why do retrieval
augmented language

models work?

B C
q0 q1 q2

Knowledge base

Document

Retrieval

LM
Decoding

Document

Retrieval

LM
Decoding

Document

Retrieval

LM
DecodingLM

1

2

3

4

5

6

(a) Iterative RaLM.

A

Why do retrieval
augmented language

models work?

B A
q0 q1 q2

Local Cache

Document

Retrieval

LM
Decoding

LM
Decoding

LM
Decoding

Language Model

LM

Document

Retrieval

Document

Retrieval

()q0
q1
q2 Document

Retrieval A B C

Speculative Retrieval

Batched Verification

C

Update Local Cache

Correction

Local Cache

Knowledge base

1

2

3

4

5

7

6

A B A B C

(b) RaLMSpec (ours).

Iterative RaLM 1 2 3 4 5 6

2 4 71 3 5 6RaLMSpec

Speculative Retrieval Batched Verification

(c) Timeline comparison.

Figure 1. {q0, q1, q2} denotes context-dependent query embeddings and A, B, C are document entries. Figure 1(a) shows the workflow
of existing iterative RaLM, which suffers from high retrieval overhead. Figure 1(b) shows an overview of RaLMSpec, which enables
faster speculative retrieval steps (➀, ➂, ➄) followed by a batched verification step (➅) to guarantee correctness (we leave out the cache
initialization phase for better illustration). Consequently, RaLMSpec achieves a lower latency while preserving model quality as shown in
Figure 1(c).

one-shot RaLM, iterative RaLM methods have been shown
to provide higher quality responses at the cost of excessive
latency overhead (Khandelwal et al., 2019; Drozdov et al.,
2022; Ram et al., 2023). For instance, Khandelwal et al.
(2019) retrieves up to 1024 documents for each token gen-
erated, which results in unaffordable serving overhead in
practice. Reducing the serving overhead of iterative RaLM
methods while preserving its high-quality output is thus the
core of our work.

Retrievers for RaLM. Different retrievers have different
tradeoffs between retrieval overheads and retrieval accuracy
when serving RaLMs. Instead of using conventional sparse
retrievers such as TF-IDF or BM25 (Ramos et al., 2003;
Robertson et al., 2009), Karpukhin et al. (2020) trains a
dense retriever particularly for RaLM. Similarly, Izacard
et al. (2021) proposes to train a dense retriever by unsuper-
vised contrastive learning. Later work further explores the
possibility of end-to-end pretraining, where the retriever and
language model are trained collaboratively (Izacard et al.,
2022; Zhong et al., 2022; Khattab & Zaharia, 2020; San-
thanam et al., 2021). Exact dense retrievers are inefficient

but accurate, while approximate retrievers are fast to query
but less accurate (He et al., 2021; Xiong et al., 2020). To
demonstrate the generality of our design, we experiment
RaLMSpec with different retrievers (sparse, exact dense,
and approximate dense retrievers).

Iterative RaLM serving. As for efficient iterative RaLM
serving approaches, the work most relevant to ours is Alon
et al. (2022). By using a pre-computed automaton state
when a complete retrieval for the KNN-LM is unnecessary,
Alon et al. (2022) can reduce the number of calls to the ex-
ternal knowledge base and thus save latency. However, Alon
et al. (2022) is not guaranteed to preserve the same model
output and hence might compromise model generation qual-
ity. To this end, our goal is to achieve generic and efficient
serving for existing iterative RaLM approaches while guar-
anteeing to preserve model quality. To the best of our knowl-
edge, RaLMSpec is the first work that achieves inference
time speed-up for generic iterative RaLM approaches with-
out compromising model output. The key intuition behind
RaLMSpec is speculative retrieval and batched verification.
Speculation has a long history in the computer architecture

3

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

field (Burton, 1985). Recent works further bring the con-
cept of speculative decoding into Large Language Models
(LLM) serving, which essentially reduces serving latency
(Leviathan et al., 2022; Stern et al., 2018; Chen et al., 2023;
Miao et al., 2023; Xia et al.; Joao Gante, 2023; Yang et al.,
2023; Cai et al., 2024). However, as far as we know, RaLM-
Spec is the first work that incorporates the concept of spec-
ulative retrieval in RaLM serving and is orthogonal to the
speculative inference technique for large language models
(LLMs).

3. RaLMSpec
A key observation that motivates the design of RaLMSpec
is that the same or consecutive documents in a knowledge
base can be retrieved multiple times during the iterative
retrievals of a generative task (e.g., the sequence of the re-
trieved documents can be A,B,A,B,C), also known as the
temporal/spatial locality in the system domain. Leveraging
this observation, RaLMSpec enables a caching-based mech-
anism for speculative retrieval. Combined with batched
verification, RaLMSpec can thus reduce the serving latency
of iterative RaLM while provably preserving its generative
quality. We describe the pipeline of RaLMSpec in Algo-
rithm 1.

Algorithm 1 RaLMSpec Pipeline.
1: Input: Input tokens X = {x0, x1, · · · , xt−1}, external

corpus C, language model f(·)
2: Output: RaLM generated outputs
3: Initialize local cache Q = {}, speculation stride s,

model generation stride k
4: q = encode(X), Q.insert(C.retrieve(q)) ▷ cache

prefetching
5: while EOS not in X do
6: for i = 1 to s do
7: qi = encode(X), d̂i = Q.retrieve(qi) ▷

speculative retrieval
8: X̂i = f(X, d̂i, k) ▷ model generation step that

generates k new tokens
9: X = [X, X̂i]

10: end for
11: d1, · · · , ds = C.retrieve(q1, · · · , qs) ▷ batched

verification
12: m = argmini d̂i ̸= di
13: if m ≤ s then ▷ do correction if needed
14: Roll X back to the m-th speculation step
15: X̂ = f(X, di, k)
16: X = [X, X̂]
17: end if
18: end while

Speculative retrieval. For speculative retrieval, we main-
tain a local cache for each new request to store retrieved
documents. As shown in Figure 2, RaLMSpec utilizes the
local cache as a “retrieval” cache instead of a typical exact
match cache in the system literature, where a local cache re-
trieval is performed similarly to a knowledge base retrieval
except for the number of documents in the local cache is
far less. As there is no entry in the local cache at the start
of the process, we perform a retrieval from the knowledge
base using the initial query and populate the local cache
with the retrieved key and value pairs. The key is usually
a vectorized representation of the retrieved documents for
dense retrievers or a set of local information (e.g., word
level frequency) for sparse retrievers, while the value is the
retrieved documents. For a retrieval step, instead of retriev-
ing from the knowledge base, RaLMSpec retrieves from
the local cache speculatively. However, the speculative re-
trieval results might deviate from the actual retrieval results.
To guarantee correctness, a verification step is required for
every s consecutive number of speculative retrieval steps
performed. We refer to s as the speculation stride. For
instance, s = 3 in the example in Figure 1(b).

A fundamental property that ensures the effectiveness of
leveraging a local cache for speculative retrieval is that for
most dense and sparse retrievers, relative ranking between
documents is preserved between the local cache and the
knowledge base. More importantly, if the top-ranked entry
in the knowledge base is present in our local cache for a
given query, the same entry is guaranteed to be ranked at
the top when retrieving from our local cache using the same
retrieval metric for this query. For most dense retrievers,
this property can be naturally satisfied as the distance metric
used by the dense retrievers can be locally computed. For
sparse retrievers like BM25 (Robertson et al., 2009), we
store the corpus-related information throughout the gener-
ation process so that the score can be locally computed on
the fly. Thus, combined with the temporal locality of the re-
trieved documents, leveraging a local cache for speculative
retrieval can significantly boost the speculation success rate.

Batched verification. During a verification step, we ver-
ify the speculated results with a batched retrieval from the
knowledge base. For instance, as Figure 1(b) shows, with
a speculation stride s = 3, the corresponding queries and
cache-retrieved documents for the three consecutive specula-
tive retrieval steps (➀, ➂, ➄) are q0→q1→q2 and A→B→A,
respectively. During the verification process, we will re-
trieve from the external knowledge base with the batched
query {q0, q1, q2}. Suppose the documents retrieved from
the knowledge base are {A, B, C} for the verification step1.

1Note that we actually don’t need to perform the last speculative
retrieval step. We show it in our toy example only to demonstrate
the verification process.

4

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

We can then validate that the third speculative retrieval step
mismatches with the ground truth results. In case of a mis-
match, the generation process will roll back to the first
mismatch position in the sequence and redo the generation
with the correct value (i.e., replacing the third speculated
document A with the ground truth document C and con-
tinuing generation for the request). In the meantime, we
can populate the local cache with the documents retrieved
during the verification step. Aside from the top-1 cache
update approach, RaLMSpec also supports top-k cache up-
date as demonstrated in Figure 2. Similar to the concept
of prefetching, the top-k cache update aims to fetch more
relevant entries to the local cache per verification step to
further boost the speculation success rate.

A B C

Local Cache

LM A LM

Local Cache
B

Speculative Retrieval

0.6 0.2 0.1

A B C

0.3 0.5 0.2

q0 q1

Verification

A D

Update

Local Cache

Top-1

Top-1 Cache Update
q0 q1

Verification

A DAA AD

Top-k
Top-k Cache Update (Prefetching)

Update

Local Cache

q1q0

Figure 2. For speculative retrieval, we maintain a local cache for
each request and use the same scoring metric as the original re-
triever to rank the entries within the local cache for a given query.
In the verification step, we populate the local cache with either
the top-1 or top-k retrieved documents from the knowledge base,
where the latter one is referred to as prefetching.

Observe that batched retrieval is more efficient by exploiting
parallelism, and the speculative retrieval latency is negligi-
ble compared to retrieving from the knowledge base. Con-
sequently, in the former toy example, we complete three re-
trieval steps with only one batched knowledge base retrieval,
while a naive implementation requires three knowledge base
retrievals. Note that if there is an early mismatch for the
speculative retrieval steps, we will incur additional spec-
ulation overhead for generating extra tokens. As a result,
the speculation stride is a crucial parameter exploiting the
trade-off between speculation overhead and retrieval saving.
We will elaborate more on choosing an optimal speculation
stride s in Section 4.

In addition to a single-thread implementation, RaLMSpec
also considers asynchronous verification. Instead of stalling
the speculation step during verification, we can launch an
extra speculation step asynchronously while the verification
of the previous step occurs. This asynchronous verification
technique is especially beneficial when the verification la-
tency is smaller than the language model’s decoding latency
as shown in Figure 3. In fact, in this case, asynchronous
verification with a speculation stride s = 1 is the optimal
strategy for speculative retrieval. Intuitively, since the verifi-

cation results can be returned before a speculative retrieval
and language model decoding step is completed, we can
always hide the latency of a verification step behind a spec-
ulation step if the speculation succeeds. More specifically,
if the verification succeeds, the model can continue the gen-
eration process, saving the verification latency. On the other
hand, as soon as the verification fails, the model can regen-
erate the output based on the corrected information, which
falls back to the naive implementation with no speculation
overhead.

Verification Thread
Speculation Thread

Single Thread

A A B C

A B B C

Latency Saving
Regenerate due
to mismatch

Figure 3. Asynchronous verification obtains latency saving by hid-
ing the verification latency behind a valid speculation step. In
case a mismatch is detected between the speculated document and
ground truth document, the language model will regenerate outputs
using the ground truth document.

4. Optimal Speculation Stride Scheduler
RaLMSpec uses speculation stride s (defined in Section 3)
as a hyperparameter to control the number of speculation
steps performed before a verification step. It plays a cru-
cial role in our system due to its effect on the trade-off
between speculation overhead and latency saving. Too large
a speculation stride would incur high speculation overhead
if verification fails early in the stage, while too small a spec-
ulation stride does not exploit the benefits of speculation to
the fullest. Additionally, depending on different language
models, retrieval methods, and speculation accuracy, the op-
timal choice of the speculation stride varies across diverse
setups.

Instead of hand-tuning the speculation stride, we propose
the Optimal Speculation Stride Scheduler (OS3), which for-
malizes this trade-off into an objective function and solves
an optimal speculation stride across different configurations
adaptively. Given that the goal is to correctly verify a fixed
number of documents with minimal latency, we formulate
our objective function as the expected number of documents
verified successfully per unit time. The goal is therefore to
maximize the objective function by optimizing speculation
stride s.

More precisely, let a denote the latency of a speculation
step (speculative retrieval + language model decoding), b
denote the latency of a verification step, di be the ground
truth documents retrieved from the corpus, and d̂i be
the speculated documents retrieved from the local cache.
If we define γ(X) = P (di = d̂i | X),∀i ∈ [s] as the

5

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

speculation accuracy given the current context X , then the
expected number of verified documents is given by 1−γ(X)s

1−γ(X)

with a speculation stride s. We include the derivation
in Appendix A.2. For synchronous verification, the latency
is calculated as sa + b. For asynchronous verification,
if all speculated documents match with the ground truth
documents in the verification step with a probability of
γ(X)s, we can benefit from the asynchronous verification
with a latency of (s − 1)a + max(a, b). Otherwise,
with probability 1 − γ(X)s, we incur a mismatch, so
asynchronous verification brings no gain at all with a
latency of sa + b. Therefore, the expected latency is
[γ(X)s ((s− 1)a+max(a, b)) + (1− γ(X)s)(sa+ b)]
for asynchronous verification. By defining the objective
function as 1−γ(X)s

(1−γ(X))(sa+b) for synchronous verification

or 1−γ(X)s

(1−γ(X))[γ(X)s((s−1)a+max(a,b))+(1−γ(X)s)(sa+b)] for
asynchronous verification, we can adaptively solve for the
optimal s with an estimation of a, b, γ(X). Appendix A.2
describes how we estimate a, b, γ(X).

5. Evaluation
5.1. Experimental Setups

We describe our experimental setups in this section, in-
cluding language models, downstream datasets, retrievers,
and the implementation details of the baseline, as well
as our approach. Evaluation code is publicly available at
https://github.com/JackFram/ralm-sys

Language Models. To demonstrate the effectiveness of
our framework with different language models, we select
models from three standard natural language generation
(NLG) model classes, namely GPT2, OPT, and LLaMA-
2 (Radford et al., 2019; Zhang et al., 2022; Touvron et al.,
2023). More specifically, we choose GPT2-medium, OPT-
1.3B, and LLaMA-2-7/13/70B, which are commonly used
as base language models in RaLM and, at the same time,
span across different model sizes. For KNN-LM serving,
we use the same language model as in Khandelwal et al.
(2019), which is a 16-layer decoder-only transformer model
that has 247M trainable parameters.

Datasets. For the downstream workload, we mainly fo-
cus on the knowledge-intensive open-domain question-
answering tasks. We thus include four QA datasets in
our experiments: Wiki-QA, Web Questions, Natural Ques-
tion, and Trivia-QA (Yang et al., 2015; Berant et al., 2013;
Kwiatkowski et al., 2019; Joshi et al., 2017). For all QA
datasets, we use the Wikipedia corpus as our external knowl-
edge base (Chen et al., 2017). For the KNN-LM evaluation,
we use the same WikiText-103 dataset (Merity et al., 2016)
as the corpus following the original KNN-LM work (Khan-
delwal et al., 2019) and test the results over the Wiki-QA
dataset.

Retrievers. To demonstrate the consistency of our ap-
proach, we test our method against both dense retrievers
(vector-based) and sparse retrievers (bag-of-words-based).
For dense retrievers, we further experiment with the exact
and approximate methods, where the approximate method
is much faster but less accurate. We use the Dense Pas-
sage Retriever (DPR) (Karpukhin et al., 2020) as the exact
dense retriever (EDR), and its approximate version DPR-
HNSW as the approximate dense retriever (ADR) (Malkov
& Yashunin, 2018). For the sparse retriever (SR), we use
the BM25 retriever (Robertson et al., 2009). We use the
implementation from Pyserini (Lin et al., 2021) for all dense
and sparse retrievers, where the dense retrievers are built on
top of the standard FAISS library (Johnson et al., 2019).

Baseline. For document-level iterative RaLM serving, we
follow directly from the implementation as in Ram et al.
(2023); Jiang et al. (2023); Shao et al. (2023) when ap-
plicable. The latest retrieved document chunk is directly
prepended to the prompt and replaces previous documents.
We use RaLMSeq to denote the baseline implementation for
iterative RaLM serving. For KNN-LM serving, we use the
implementation from Khandelwal et al. (2019) as the base-
line, where retrieval is performed for every token generated.

Implementation Details. For both RaLMSpec and RaLM-
Seq, we set the maximum input prompt length to be 512
tokens and the maximum generation length to be 128 tokens.
For document-level iterative RaLM serving, the maximum
length of the retrieved document chunk is set to 256 as
in Ram et al. (2023). When OS3 is disabled, RaLMSpec
uses a constant speculation stride s = 3. Whenever OS3 is
enabled, RaLMSpec initializes the speculation stride with
s = 1 and lets the scheduler adapt onwards. In all our ex-
periments, we set the window size w = 5 and γmax = 0.6
for estimating γ. For prefetching, we use a prefetch size of
20. We also test with a prefetch size of 256 for the ablation
study. Due to the existence of Global Interpreter Lock (GIL)
in Python, the potential of asynchronous verification cannot
be fully realized. Thus, for asynchronous verification only,
we use a simulated latency by calculating the ideal running
time without additional overhead2. Except for asynchronous
verification, all latencies are measured in wall-clock time,
including the cache initialization phase. We want to note
that asynchronous verification is not a significant factor con-
tributing to the speed-up; details are provided in the ablation
study in Section 5.2. For simplicity, we don’t enable asyn-
chronous verification in RaLMSpec for KNN-LM serving
and leave it as future work. All implementations are written
in Python. We use the VM.GPU.A10 instance on the Ora-
cle cloud, which contains one A10 GPU and 15 CPUs for
models that can fit into a single device. For larger models

2Enabling an asynchronous verification only requires two par-
allel threads (one thread for model generation and one thread for
retrieval), thus the overhead should be minimal.

6

https://github.com/JackFram/ralm-sys

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

Figure 4. Latency comparison between RaLMSeq, RaLMSpec, and RaLMSpec+PSA on GPT2-medium, OPT-1.3B, and LLaMA-2-7B
over four QA datasets with three different types of retrievers, where EDR, ADR, SR stand for exact dense retriever, approximate dense
retriever, and sparse retriever respectively. We decompose the overall latency into the language model generation latency (G) and retrieval
latency (R) to demonstrate the trade-off.

(LLaMA-2-70B) we use instances with four A100-80G and
20 CPUs.

5.2. Document-Level Iterative RaLM Serving

In this section, we empirically verify our approach against
diverse language models, retrievers, and downstream
datasets. We demonstrate our main results in Figure 4.
RaLMSpec+P denotes RaLMSpec with prefetching enabled,
RaLMSpec+S denotes RaLMSpec with the optimal specu-
lation stride scheduler (OS3) enabled, and RaLMSpec+A
denotes RaLMSpec with asynchronous verification enabled.
RaLMSpec+PSA indicates RaLMSpec with all three compo-
nents enabled. We randomly select 100 questions from each
dataset to test the latency results with RaLMSeq and RaLM-
Spec. We plot the mean and standard deviation over five
independent runs for each setup to show the confidence inter-
val. With the exact dense retriever (EDR), RaLMSpec+PSA
can reduce the latency by 2.39× for GPT2, 2.33× for OPT,
and 1.75× for LLaMA-2 compared with RaLMSeq. With
the approximate dense retriever (ADR), RaLMSpec+PSA

can reduce the latency by 1.05× for GPT2, 1.39× for OPT,
and 1.04× for LLaMA-2 compared with RaLMSeq. With
the sparse retriever (SR), RaLMSpec+PSA can reduce the
latency by 1.53× for GPT2, 1.77× for OPT, and 1.31× for
LLaMA-2 compared with RaLMSeq. We include the full
results in Appendix A.7.

In order to demonstrate the effectiveness of RaLMSpec on
larger language models as well as more diverse workloads.
We also include the evaluations of RaLMSpec+S and RaLM-
Spec+PSA on LLaMA-2-70B over the wiki QA dataset
in Appendix A.3 and LLaMA-2-7B over the wiki QA dataset
for the iter-retgen (Shao et al., 2023) and FLARE (Jiang
et al., 2023) workloads in Appendix A.4.

Analysis. As shown in Figure 4, RaLMSpec+PSA
achieves the best performance consistently across all sce-
narios. However, the most significant speed-up ratio is
achieved when the retriever is the exact dense retriever. This
is because our approach can only optimize for the retrieval
latency (R), not the language model generation latency (G).

7

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

Thus, our speed-up is intrinsically bottlenecked by the ratio
of the retrieval latency over the end-to-end latency. When
we use the approximate dense or sparse retriever, the naive
implementation of RaLMSpec performs worse than the base-
line for some cases. This relates to a constant speculation
stride being used, and consequently, the trade-off between
the speculation overhead and gain might not be optimal.
More specifically, as the language model decoding step la-
tency outweighs the retrieval latency, being too optimistic
in the speculation stride can result in excessive specula-
tion overhead due to an early mismatch in the verification
step. On the other hand, if we enable the optimal spec-
ulation stride scheduler (OS3), we can resolve this issue
as the speculation stride can then be optimally adapted.
Combined with prefetching and asynchronous verification,
RaLMSpec+PSA achieves the best speed-up ratio perfor-
mance consistently and automatically across all scenarios.

5.3. Token-Level Iterative RaLM (KNN-LM) Serving

k=1 k=2 k=4 k=8 k=1024
Number of nearest neighbours (k)

0

1

2

3

4

5

6

7

Sp
ee

d-
up

 R
at

io

2.79 2.75 2.68 2.78 2.57

4.87

3.61 3.6 3.82
3.47

7.59

4.05
4.34

4.67

3.88

s = 3
s = 5
OS3

(a) Exact dense retriever.

k=1 k=2 k=4 k=8 k=1024
Number of nearest neighbours (k)

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

d-
up

 R
at

io

1.83

1.39 1.33

1.11

1.9

2.39

1.42 1.37

1.01

1.89

2.45

1.48 1.42

1.14

2.37

(b) Approximate dense retriever

Figure 5. Speedup Ratio Results for RaLMSpec on kNN-LMs over
Wikipedia-QA. k stands for the number of nearest neighbors in
kNN-LMs, s stands for stride size, and OS3 stands for optimal
scheduler stride.

We further evaluate our approach against a retrieval-
intensive workload KNN-LM (Khandelwal et al., 2019).
For KNN-LM, the knowledge base is constructed for each
training token, with the key being the embedding of its left-
ward context and the value being the token itself. Instead

of relying on a single language model to generate the sub-
sequent token sampling distribution, KNN-LM retrieves k
closest entries in a knowledge base along with their target
tokens using an embedding of the current context. A dis-
tribution over these k target tokens is then computed based
on their distance with respect to the current context embed-
ding. The distribution is then interpolated with the original
language model distribution to get the next token sampling
distribution. Khandelwal et al. (2019) indicates KNN-LM
can improve the perplexity of the base language model to
state-of-the-art without extra training. While effective, the
inference overhead of KNN-LM models is prohibitive as
retrieval will be performed for every token generation step.
To this end, we are interested in testing our system against
the KNN-LM models. Different from the original specula-
tion cache design, we cannot populate the cache by adding
the same documents, as it will likely not be retrieved again
in future decoding steps. However, for speculation, we can
populate the cache with the following n entries directly after
the currently retrieved item (due to observed spatial local-
ity). In our experiments, we use an n = 10. In addition,
instead of defining a successful speculation step as retriev-
ing the same set of items that should have been retrieved,
we identify that equivalency can be preserved as long as the
speculated next token matches the ground truth next token.
This relaxation is critical when k is large, e.g., k = 1024.
Matching all 1024 entries with the ground truth one is expo-
nentially hard, but matching the ground truth decoded token
can be more accessible.

By modifying the cache update rule and verification protocol
as above, we can achieve significant speed-up ratios com-
pared with the naive implementation as shown in Figure 5.
We have verified our approach against different k values
ranging from 1 to 1024. When the retriever is an exact
dense retriever, RaLMSpec can achieve up to 7.59× accel-
eration rate with the optimal speculation stride scheduler
(OS3) and even 3.88× acceleration rate when k = 1024.
When the retriever is an approximate dense retriever, RaLM-
Spec can achieve up to 2.45× acceleration rate with the
optimal speculation stride scheduler (OS3) and even 2.37×
acceleration rate when k = 1024. The reason why RaLM-
Spec can achieve a more significant speed-up for the exact
dense retriever is due to its higher retrieval overhead. We
have further experimented with different speculation stride
sizes to have some ablation studies on the importance of the
stride. The results show that a larger stride is consistently
better for the exact dense retriever but not for all choices of k
when we use the approximate dense retriever. However, en-
abling the optimal speculation stride scheduler can achieve
the best performance consistently across all scenarios.

8

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

6. Conclusion
In this work, we introduce RaLMSpec, a speculation-
inspired framework that accelerates the serving of generic
retrieval augmented generation approaches that suffer from
frequent retrieval-generation interactions. By leveraging the
temporal and spatial locality of retrieved documents, we
enable a request-level local cache for speculative retrieval
and a batched verification step to guarantee correctness. In
addition, we introduce cache prefetching, an optimal spec-
ulation stride scheduler, and asynchronous verification to
boost the speculation performance further. The effectiveness
of RaLMSpec has been verified empirically against different
tasks, language models, retrievers, and downstream datasets.
The results demonstrate that RaLMSpec can have substan-
tial speed-ups consistently in all scenarios compared with
the baseline.

Acknowledgements
We appreciate all valuable comments and suggestions from
ICML reviewers, which helped us in improving the quality
of the paper. This research is partially supported by NSF
awards CNS-2147909, CNS-2211882, and CNS-2239351,
and research awards from Amazon, Cisco, Google, Meta,
Oracle, Qualcomm, and Samsung.

Impact Statement
This paper presents work whose goal is to advance the field
of iterative retrieval augmented language model serving.
There are many potential societal consequences of our work;
for instance, latency savings can result in energy savings,
thus reducing CO2 emissions.

References
Alon, U., Xu, F., He, J., Sengupta, S., Roth, D., and Neubig,

G. Neuro-symbolic language modeling with automaton-
augmented retrieval. In International Conference on Ma-
chine Learning, pp. 468–485. PMLR, 2022.

Asai, A., Min, S., Zhong, Z., and Chen, D. Acl 2023 tutorial:
Retrieval-based language models and applications. ACL
2023, 2023.

Berant, J., Chou, A., Frostig, R., and Liang, P. Semantic
parsing on Freebase from question-answer pairs. In Pro-
ceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pp. 1533–1544, Seattle,
Washington, USA, October 2013. Association for Com-
putational Linguistics. URL https://www.aclweb.
org/anthology/D13-1160.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford,
E., Millican, K., Van Den Driessche, G. B., Lespiau, J.-B.,

Damoc, B., Clark, A., et al. Improving language models
by retrieving from trillions of tokens. In International
conference on machine learning, pp. 2206–2240. PMLR,
2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Burton, F. W. Speculative computation, parallelism, and
functional programming. IEEE Transactions on Comput-
ers, 100(12):1190–1193, 1985.

Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D.,
and Dao, T. Medusa: Simple llm inference acceleration
framework with multiple decoding heads. arXiv preprint
arXiv:2401.10774, 2024.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Chen, D., Fisch, A., Weston, J., and Bordes, A. Reading
wikipedia to answer open-domain questions. In 55th
Annual Meeting of the Association for Computational
Linguistics, ACL 2017, pp. 1870–1879. Association for
Computational Linguistics (ACL), 2017.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Drozdov, A., Wang, S., Rahimi, R., McCallum, A., Zamani,
H., and Iyyer, M. You can’t pick your neighbors, or can
you? when and how to rely on retrieval in the k nn-lm.
arXiv preprint arXiv:2210.15859, 2022.

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.
Retrieval augmented language model pre-training. In
International conference on machine learning, pp. 3929–
3938. PMLR, 2020.

He, J., Neubig, G., and Berg-Kirkpatrick, T. Efficient
nearest neighbor language models. arXiv preprint
arXiv:2109.04212, 2021.

Izacard, G., Caron, M., Hosseini, L., Riedel, S., Bojanowski,
P., Joulin, A., and Grave, E. Unsupervised dense infor-
mation retrieval with contrastive learning. arXiv preprint
arXiv:2112.09118, 2021.

Izacard, G., Lewis, P., Lomeli, M., Hosseini, L., Petroni,
F., Schick, T., Dwivedi-Yu, J., Joulin, A., Riedel, S., and
Grave, E. Few-shot learning with retrieval augmented lan-
guage models. arXiv preprint arXiv:2208.03299, 2022.

9

https://www.aclweb.org/anthology/D13-1160
https://www.aclweb.org/anthology/D13-1160

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

Jiang, Z., Xu, F. F., Gao, L., Sun, Z., Liu, Q., Dwivedi-Yu,
J., Yang, Y., Callan, J., and Neubig, G. Active retrieval
augmented generation. arXiv preprint arXiv:2305.06983,
2023.

Joao Gante. Assisted generation: a new direc-
tion toward low-latency text generation, 2023.
URL https://huggingface.co/blog/
assisted-generation.

Johnson, J., Douze, M., and Jégou, H. Billion-scale similar-
ity search with GPUs. IEEE Transactions on Big Data, 7
(3):535–547, 2019.

Joshi, M., Choi, E., Weld, D., and Zettlemoyer, L. triv-
iaqa: A Large Scale Distantly Supervised Challenge
Dataset for Reading Comprehension. arXiv e-prints, art.
arXiv:1705.03551, 2017.

Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L., Edunov,
S., Chen, D., and Yih, W.-t. Dense passage retrieval
for open-domain question answering. arXiv preprint
arXiv:2004.04906, 2020.

Khandelwal, U., Levy, O., Jurafsky, D., Zettlemoyer, L.,
and Lewis, M. Generalization through memorization:
Nearest neighbor language models. arXiv preprint
arXiv:1911.00172, 2019.

Khattab, O. and Zaharia, M. Colbert: Efficient and effective
passage search via contextualized late interaction over
bert. In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information
Retrieval, pp. 39–48, 2020.

Khattab, O., Santhanam, K., Li, X. L., Hall, D., Liang, P.,
Potts, C., and Zaharia, M. Demonstrate-search-predict:
Composing retrieval and language models for knowledge-
intensive nlp. arXiv preprint arXiv:2212.14024, 2022.

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M.,
Parikh, A., Alberti, C., Epstein, D., Polosukhin, I., Devlin,
J., Lee, K., et al. Natural questions: a benchmark for ques-
tion answering research. Transactions of the Association
for Computational Linguistics, 7:453–466, 2019.

Leviathan, Y., Kalman, M., and Matias, Y. Fast infer-
ence from transformers via speculative decoding. arXiv
preprint arXiv:2211.17192, 2022.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,
T., et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Pro-
cessing Systems, 33:9459–9474, 2020.

Lin, J., Ma, X., Lin, S.-C., Yang, J.-H., Pradeep, R., and
Nogueira, R. Pyserini: A Python toolkit for reproducible

information retrieval research with sparse and dense rep-
resentations. In Proceedings of the 44th Annual Inter-
national ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR 2021), pp.
2356–2362, 2021.

Malkov, Y. A. and Yashunin, D. A. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. IEEE transactions on
pattern analysis and machine intelligence, 42(4):824–
836, 2018.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models, 2016.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z., Wong,
R. Y. Y., Chen, Z., Arfeen, D., Abhyankar, R., and Jia,
Z. Specinfer: Accelerating generative llm serving with
speculative inference and token tree verification. arXiv
preprint arXiv:2305.09781, 2023.

Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R.,
Liang, P., and Bernstein, M. S. Generative agents: In-
teractive simulacra of human behavior. arXiv preprint
arXiv:2304.03442, 2023.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Ram, O., Levine, Y., Dalmedigos, I., Muhlgay, D., Shashua,
A., Leyton-Brown, K., and Shoham, Y. In-context
retrieval-augmented language models. arXiv preprint
arXiv:2302.00083, 2023.

Ramos, J. et al. Using tf-idf to determine word relevance in
document queries. In Proceedings of the first instructional
conference on machine learning, volume 242, pp. 29–48.
Citeseer, 2003.

Robertson, S., Zaragoza, H., et al. The probabilistic rele-
vance framework: Bm25 and beyond. Foundations and
Trends® in Information Retrieval, 3(4):333–389, 2009.

Rubin, O. and Berant, J. Long-range language modeling
with self-retrieval. arXiv preprint arXiv:2306.13421,
2023.

Santhanam, K., Khattab, O., Saad-Falcon, J., Potts, C.,
and Zaharia, M. Colbertv2: Effective and efficient re-
trieval via lightweight late interaction. arXiv preprint
arXiv:2112.01488, 2021.

Shao, Z., Gong, Y., Shen, Y., Huang, M., Duan, N., and
Chen, W. Enhancing retrieval-augmented large language
models with iterative retrieval-generation synergy. In
Findings of the Association for Computational Linguis-
tics: EMNLP 2023, pp. 9248–9274, 2023.

10

https://huggingface.co/blog/assisted-generation
https://huggingface.co/blog/assisted-generation

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

Shi, W., Min, S., Yasunaga, M., Seo, M., James, R., Lewis,
M., Zettlemoyer, L., and Yih, W.-t. Replug: Retrieval-
augmented black-box language models. arXiv preprint
arXiv:2301.12652, 2023.

Stern, M., Shazeer, N., and Uszkoreit, J. Blockwise parallel
decoding for deep autoregressive models. Advances in
Neural Information Processing Systems, 31, 2018.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Wang, W., Dong, L., Cheng, H., Liu, X., Yan, X., Gao, J.,
and Wei, F. Augmenting language models with long-term
memory. arXiv preprint arXiv:2306.07174, 2023b.

Xia, H., Ge, T., Chen, S.-Q., Wei, F., and Sui, Z. Speculative
decoding: Lossless speedup of autoregressive translation.

Xiong, L., Xiong, C., Li, Y., Tang, K.-F., Liu, J., Bennett, P.,
Ahmed, J., and Overwijk, A. Approximate nearest neigh-
bor negative contrastive learning for dense text retrieval.
arXiv preprint arXiv:2007.00808, 2020.

Yang, N., Ge, T., Wang, L., Jiao, B., Jiang, D., Yang, L.,
Majumder, R., and Wei, F. Inference with reference:
Lossless acceleration of large language models. arXiv
preprint arXiv:2304.04487, 2023.

Yang, Y., Yih, W.-t., and Meek, C. WikiQA: A challenge
dataset for open-domain question answering. In Pro-
ceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pp. 2013–2018, Lis-
bon, Portugal, September 2015. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D15-1237. URL
https://aclanthology.org/D15-1237.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., Mi-
haylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D.,
Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer,
L. Opt: Open pre-trained transformer language models,
2022.

Zhong, Z., Lei, T., and Chen, D. Training language
models with memory augmentation. arXiv preprint
arXiv:2205.12674, 2022.

Zhou, W., Jiang, Y. E., Cui, P., Wang, T., Xiao, Z., Hou,
Y., Cotterell, R., and Sachan, M. Recurrentgpt: Interac-
tive generation of (arbitrarily) long text. arXiv preprint
arXiv:2305.13304, 2023.

Zhu, X., Chen, Y., Tian, H., Tao, C., Su, W., Yang, C.,
Huang, G., Li, B., Lu, L., Wang, X., et al. Ghost in the
minecraft: Generally capable agents for open-world envi-
roments via large language models with text-based knowl-
edge and memory. arXiv preprint arXiv:2305.17144,
2023.

11

https://aclanthology.org/D15-1237

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

A. Appendix
A.1. Batched Retrieval

2 4 6 8 10
Batch Size

1

2

3

4

La
te

nc
y

pe
r Q

ue
ry

 (s
)

(a) Exact dense retriever.

2 4 6 8 10
Batch Size

0.030

0.035

0.040

0.045

0.050

0.055

La
te

nc
y

pe
r Q

ue
ry

 (s
)

(b) Approximate dense retriever

2 4 6 8 10
Batch Size

0.05

0.10

0.15

La
te

nc
y

pe
r Q

ue
ry

 (s
)

(c) Sparse retriever

Figure 6. Effect of batch size on latency per query for three different types of retrievers. 95% confidence bands for the true mean latency
are included.

We demonstrate the benefit of batched retrievals by examining the latency per query for increasing batch sizes. For all three
retrieval methods, latency per query decreases with increasing batch size. This is most noticeable with the exact dense
retriever and sparse retriever, where total retrieval time was essentially constant across all batch sizes. The approximate
dense retriever exhibited latency that scaled linearly with batch size; however, there was a significant intercept term in the
linear relationship. With batch retrievals, repeated incurrences of this latency under individual retrievals are saved. The
result is less latency per query for approximate dense retrievers as well, though not to the extent of exact dense retrievers or
sparse retrievers.

A.2. Detailed Derivations

Expected matching length. Given a speculation accuracy of γ(X) ∈ [0, 1] for single-step speculation, the expected
number of matched documents with a speculation stride s can be calculated as:

E [# of verified documents | X, s] = 1 +

s−2∑
i=1

iγ(X)i(1− γ(X)) + (s− 1)γ(X)(s−1)

= 1 +

s−2∑
i=1

iγ(X)i −
s−1∑
i=1

(i− 1)γ(X)i + (s− 1)γ(X)(s−1)

=

s−1∑
i=0

γ(X)i

=
1− γ(X)s

1− γ(X)

Parameter estimation for OS3 To get an optimal stride s, we need to adaptively estimate a, b, γ(X). For a, b, we directly
estimate their value with the profiling results from the most recent steps. For the exact dense retriever and sparse retriever, we
observe that the latency of batched retrieval with a batch size smaller than 10 is nearly constant, while for the approximate
dense retriever, the latency is surprisingly linear to the batch size but with a large intercept (batch retrieval is still more
efficient due to the intercept is non-zero). We include the batched retrieval latency analysis for three different retrievers
in Appendix A.1. For γ(X), we use the maximum log-likelihood estimation within a specific window size w so that the
estimated γ̂ can have both locality and less variance. More specifically, denoting s(t), t ∈ [w] as the speculation stride (also
the batch size) in the t-th most recent verification step, M(s(t), X) as the corresponding number of matched documents, we
estimate γ(X) with

γ̂(X) =

∑
t M(s(t), X)∑

t M(s(t), X) +
∑

t 1(M(s(t), X) < s(t))

12

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

where 1(·) is the indicator function. To prevent the over-optimistic estimation and division-by-zero error when γ̂ approaches
probability 1 in some cases, we further set a constant upper bound γmax and truncate γ̂ accordingly.

A.3. LLaMA-2-13/70B Serving Evaluation

Table 1. RaLMSpec+PSA speed-up ratio compared against the baseline on LLaMA-2-13B over four downstream datasets (Wiki QA, Web
Questions, Natural Questions, and Trivia-QA).

Retriever Wiki QA Web Questions Natural Questions Trivia-QA

EDR 1.70× 1.85× 1.73× 1.78×
ADR 1.03× 1.04× 1.02× 1.03×
SR 1.18× 1.21× 1.22× 1.26×

Table 2. RaLMSpec+S and RaLMSpec+PSA speed-up ratio compared against the baseline on LLaMA-2-70B over Wiki QA.

Method EDR ADR SR

RaLMSpec+S 1.29× 1.00× 1.02×
RaLMSpec+PSA 1.44× 1.03× 1.11×

To demonstrate the effectiveness of RaLMSpec, we further evaluate RaLMSpec with the LLaMA-2-13B model over the
Wiki QA, Web Questions, Natural Questions, and Trivia-QA and present the results in Table 1 and LLaMA-2-70B model
over the Wiki QA in Table 2. We can still observe RaLMSpec+PSA can achieve up to 1.85× speed-up for LLaMA-2-13B
and 1.44× speed-up for LLaMA-2-70B compared against RaLMSeq when the retriever is the exact dense retriever. We
observe marginal improvement for the approximate dense retriever because language model generation latency has far
outweighed the retrieval latency. Thus, the retrieval latency saving is amortized within the end-to-end latency saving.

A.4. Diverse Workload Evaluation

In order to show the effectiveness of our method over more diverse workloads, we further conduct experiments on two
iterative RaLM workloads iter-retgen (Shao et al., 2023) and FLARE (Jiang et al., 2023), where the retrieval operation is
triggered on demand. The results are in Table 3 and Table 4 respectively.

Table 3. RaLMSpec+S and RaLMSpec+PSA speed-up ratio compared against the baseline on LLaMA-2-7B over Wiki QA for the
Iter-RetGen workload.

Method EDR ADR SR

RaLMSpec+S 1.53× 1.00× 1.09×
RaLMSpec+PSA 1.68× 1.08× 1.16×

Table 4. RaLMSpec+S and RaLMSpec+PSA speed-up ratio compared against the baseline on LLaMA-2-7B over Wiki QA for the FLARE
workload.

Method EDR ADR SR

RaLMSpec+S 1.27× 1.01× 1.11×
RaLMSpec+PSA 1.41× 1.07× 1.07×

We can see that RaLMSpec with the optimal speculation stride scheduler (RaLMSpec+S) and RaLMSpec+PSA can still

13

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

achieve reasonable speed-ups in both the iter-retgen and FLARE workloads due to the locality. Though the speed-ups
brought by RaLMSpec are less significant for an RAG workload, RaLMSpec still demonstrates its effectiveness on the
iterative RAG workload.

Table 5. Ablation results of speed-up ratio compared with baseline of each component. P stands for prefetching, S stands for optimal
speculation stride scheduler and A stands for asynchronous verification. (∗) and (∗∗) denote the most speed-up and the second most
speed-up respectively.

Retriever Method GPT2 OPT LLaMA-2

EDR

RaLMSpec 2.04× 1.76× 1.70×
RaLMSpec+P 2.10× 2.16×(∗∗) 1.75×(∗∗)
RaLMSpec+S 2.26×(∗∗) 2.15× 1.69×
RaLMSpec+A 2.03× 1.74× 1.74×

RaLMSpec+PSA 2.39×(∗) 2.32×(∗) 1.75×(∗)

ADR

RaLMSpec 0.62× 0.61× 0.58×
RaLMSpec+P 0.59× 0.76× 0.58×
RaLMSpec+S 0.92×(∗∗) 1.17×(∗∗) 1.01×(∗∗)
RaLMSpec+A 0.66× 0.46× 0.55×

RaLMSpec+PSA 1.05×(∗) 1.39×(∗) 1.04×(∗)

SR

RaLMSpec 1.34× 1.18× 0.97×
RaLMSpec+P 1.39× 1.42× 0.98×
RaLMSpec+S 1.32× 1.52×(∗∗) 1.05×(∗∗)
RaLMSpec+A 1.41×(∗∗) 1.27× 1.01×

RaLMSpec+PSA 1.53×(∗) 1.77×(∗) 1.31×(∗)

A.5. Ablation Study on Different System Components

We further present the contribution of each component (prefetching, OS3, and asynchronous verification) in Table 5 on
GPT2, OPT, and LLaMA-2 with the exact dense retriever (EDR), approximate dense retriever (ADR), and sparse retriever
(SR). The speed-up ratio is compared against the baseline (RaLMSeq) and averaged over the four datasets. In most cases,
enabling OS3 brings the most significant gain among the three components, while combining all three elements achieves
the best performance consistently. This reflects that controlling the trade-off between speculation overhead and latency
reduction with the speculation stride is critical for achieving the optimal speed-up under various scenarios. The results
demonstrate that OS3 can find a better stride scheduling solution than the naive hand-tuned constant speculation stride
in most cases. Prefetching can also improve performance by caching more entries in the local cache to obtain a higher
speculation accuracy. However, increasing a prefetching size can introduce higher retrieval overhead. As shown in Table 6,
when we increase the prefetching size from 20 to 256, the performance decreases in most cases due to the diminished
prefetching gain and increased retrieval overhead. Asynchronous verification improves the performance by introducing an
extra speculation step when doing verification. However, if the verification fails at an earlier stage, the benefit of doing
asynchronous verification cannot be realized. As prefetching, OS3, and asynchronous verification compensate one another,
combining all of them fully realizes our approach’s potential.

Table 7. Speed-up contribution of different combinations of prefetching (P), optimal speculation stride scheduler (S), and asynchronous
verification (A). We report the average serving latency over 100 requests evaluated over LLaMA-2-7B and the Wiki QA dataset.

Retriever B P S A PS SA PA PSA

EDR 144.39s 82.23s 85.19s 90.49s 81.64s 85.13s 81.60s 79.06s
ADR 8.06s 14.25s 8.14s 13.90s 8.17s 7.83s 12.84s 7.89s
SR 10.75s 11.27s 10.38s 10.88s 10.21s 8.26s 10.61s 8.28s

14

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

Table 6. Ablation results of speed-up ratio of different prefetching size compared with the baseline.

Retriever Method GPT2 OPT LLaMA-2

EDR RaLMSpec+P(20) 2.10× 2.16× 1.75×
RaLMSpec+P(256) 2.15× 1.72× 1.63×

ADR RaLMSpec+P(20) 0.59× 0.76× 0.58×
RaLMSpec+P(256) 0.67× 0.25× 0.34×

SR RaLMSpec+P(20) 1.39× 1.42× 0.98×
RaLMSpec+P(256) 1.02× 0.93× 0.84×

: RaLMSeq(Baseline) : RaLMSpec+P
: RaLMSpec+PS : RaLMSpec+PSA

(a) Exact dense retriever. (b) Approximate dense retriever (c) Sparse retriever

Figure 7. Ablation study on the contribution of the prefetching (P), optimal speculation stride scheduler (S), and asynchronous verification
(A) components.

To demonstrate the effect of different component groups, we have evaluated all combinations among prefetching (P),
optimal speculation stride scheduler (S), and asynchronous verification (A) with the LLaMA-2-7B model on the Wiki
QA dataset and presented the results in Table 7 and Figure 7. When the retriever is the exact dense retriever, prefetching
can improve more effectively than the optimal speculation stride scheduler and asynchronous verification. In addition,
prefetching+asynchronous verification can even outperform RaLMSpec+PSA. This is due to the prefixed stride (s=3) for the
exact dense retriever is already near-optimal, and the optimal speculation stride scheduler needs a warm-up phase at the start
to adapt to the optimal stride, thus incurring some additional overheads. We can observe that the optimal speculation stride
scheduler is the most crucial component for the approximate dense and sparse retriever and achieves the best performance
when combined with asynchronous verification. Prefetching can even affect performance negatively because the overhead of
prefetching outweighs its gain. To sum up, enabling the optimal speculation stride scheduler for all workloads can help
achieve a near-optimal stride adaptively. For workloads where retrieval dominates most of the latency, enabling prefetching
can further improve the serving latency while the contribution of asynchronous verification is marginal. For workloads where
retrieval is not the most time-consuming step, asynchronous verification can benefit the serving latency while prefetching’s
overhead can outweigh its benefit if the prefetching size has not been chosen properly.

A.6. Ablation Study on Speculation Stride

Table 8. Ablation results on different speculation strides (S=2,4,8) and the optimal speculation stride scheduler (OS3). We report the
average serving latency over 100 requests evaluated over LLaMA-2-7B and the Wiki QA dataset.

Retriever S=2 S=4 S=8 OS3

EDR 92.17s 81.06s 81.90s 85.19s
ADR 9.86s 14.93s 25.88s 8.14s
SR 10.65s 12.48s 16.66s 10.38s

15

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

To demonstrate the effect of the optimal speculation stride scheduler, we have conducted ablation studies on different fixed
speculation strides (s=2, 4, 8) with LLaMA-2-7B over the Wiki QA dataset. The results are presented in Table 8. We can
observe from the results that a larger speculation stride is better when the exact dense retriever is used. This is because the
retrieval latency is much larger for the exact dense retriever and way exceeds the language model generation latency. Thus,
an aggressive speculation stride will incur little overhead while having the opportunity for a longer match. On the other
hand, the approximately dense and sparse retrievers prefer a smaller speculation stride because the retrieval is more efficient,
and the cost-performance ratio for doing more speculations is low. Thus, the optimal speculation stride scheduler is designed
to tackle this dynamism and can achieve near-optimal stride scheduling in all scenarios. OS3 performs slightly worse than
s = 4, 8 in the case of EDR because a warm-up phase is required for OS3 to start its adaptation, i.e., we initialize s=1 when
we enable OS3. Thus, the warm-up phase can introduce non-optimal strides and, thus, slightly worse performance.

A.7. Additional Experimental Results

This section presents the full evaluation results with GPT2, OPT, and LLaMA-2 over Wiki QA, Web Questions, Natural
Questions, and Trivia-QA against the exact dense, approximate dense, and sparse retriever.

Table 9. Averaged latency measured in seconds over GPT-2. OPT and LLaMA-2 with the exact dense retriever.

Model Method Wiki QA WQ NQ Trivia QA

GPT2

Baseline 142.14± 0.96 141.38± 1.50 144.22± 1.17 144.82± 0.96
RaLMSpec 69.82± 0.22 69.88± 0.52 70.79± 1.27 69.83± 0.28

RaLMSpec+P(20) 68.22± 0.18 68.09± 0.18 68.06± 0.37 68.14± 0.06
RaLMSpec+P(256) 66.14± 0.39 65.22± 0.79 67.10± 0.59 66.64± 0.23

RaLMSpec+S 62.72± 0.48 62.43± 0.19 63.48± 0.69 64.63± 0.44
RaLMSpec+A 69.92± 1.06 69.36± 0.60 71.00± 0.74 70.40± 0.78

RaLMSpec+P(20)SA 58.35± 0.31 59.24± 0.46 60.21± 0.78 61.39± 0.99
RaLMSpec+P(256)SA 53.95± 0.72 53.36± 1.08 56.26± 0.95 56.95± 1.34

OPT

Baseline 126.86± 1.39 55.60± 0.08 62.02± 0.11 91.50± 0.01
RaLMSpec 77.81± 0.84 29.99± 0.54 34.75± 0.19 48.20± 0.09

RaLMSpec+P(20) 40.37± 0.07 29.09± 0.07 33.79± 0.60 52.09± 0.11
RaLMSpec+P(256) 72.68± 0.75 31.94± 1.16 39.90± 3.18 50.24± 0.02

RaLMSpec+S 40.77± 0.52 29.49± 0.53 35.13± 0.10 50.82± 0.49
RaLMSpec+A 77.76± 4.99 30.28± 0.59 36.16± 1.18 47.83± 0.03

RaLMSpec+P(20)SA 39.00± 0.58 28.31± 0.62 31.88± 1.67 45.51± 2.93
RaLMSpec+P(256)SA 59.21± 0.04 27.79± 0.11 30.02± 0.01 45.13± 0.04

LLaMA

Baseline 144.39± 1.71 146.52± 1.92 149.76± 0.95 147.76± 2.80
RaLMSpec 81.05± 0.78 87.20± 1.83 86.92± 1.30 90.44± 2.01

RaLMSpec+P(20) 83.94± 1.11 84.23± 0.37 84.74± 0.47 81.86± 0.76
RaLMSpec+P(256) 82.23± 1.95 94.15± 1.60 97.14± 1.89 85.65± 1.46

RaLMSpec+S 85.19± 2.26 88.95± 0.99 89.45± 1.28 84.28± 2.93
RaLMSpec+A 90.49± 6.12 85.74± 1.94 84.37± 0.62 77.39± 1.11

RaLMSpec+P(20)SA 81.94± 0.91 85.81± 1.82 85.47± 1.70 82.03± 2.73
RaLMSpec+P(256)SA 79.06± 3.61 87.34± 4.63 95.54± 3.36 73.64± 0.80

16

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

Table 10. Averaged latency measured in seconds over GPT-2. OPT and LLaMA-2 with the approximate dense retriever.

Model Method Wiki QA WQ NQ Trivia QA

GPT2

Baseline 4.48± 0.11 4.50± 0.41 4.38± 0.60 3.78± 0.10
RaLMSpec 7.26± 0.07 6.44± 0.44 6.41± 0.71 7.47± 0.16

RaLMSpec+P(20) 6.92± 0.10 7.38± 0.56 7.37± 0.58 7.28± 0.28
RaLMSpec+P(256) 6.65± 0.07 5.97± 0.46 5.64± 0.74 6.96± 0.63

RaLMSpec+S 4.59± 0.28 4.77± 0.32 4.65± 0.61 4.51± 0.45
RaLMSpec+A 6.50± 0.54 6.49± 0.38 5.70± 0.70 6.94± 0.84

RaLMSpec+P(20)SA 4.24± 0.14 4.34± 0.35 4.03± 0.68 3.64± 0.54
RaLMSpec+P(256)SA 4.01± 0.21 3.81± 0.02 3.40± 0.01 3.86± 0.31

OPT

Baseline 4.43± 0.05 1.31± 0.01 1.83± 0.01 2.42± 0.03
RaLMSpec 7.15± 0.06 2.34± 0.01 3.04± 0.03 3.79± 0.04

RaLMSpec+P(20) 3.44± 0.02 2.34± 0.01 2.70± 0.06 4.66± 0.03
RaLMSpec+P(256) 16.03± 0.03 6.06± 0.01 7.06± 0.04 10.17± 0.01

RaLMSpec+S 2.21± 0.01 1.47± 0.01 1.88± 0.05 2.97± 0.05
RaLMSpec+A 7.55± 0.05 2.25± 0.01 5.41± 1.32 6.20± 0.02

RaLMSpec+P(20)SA 1.98± 0.03 1.30± 0.01 1.50± 0.01 2.37± 0.01
RaLMSpec+P(256)SA 9.41± 0.66 4.14± 0.02 4.31± 0.02 6.19± 0.02

LLaMA

Baseline 8.06± 0.07 7.97± 0.06 8.11± 0.11 8.68± 0.10
RaLMSpec 14.10± 0.31 13.44± 0.37 14.35± 0.15 14.23± 0.35

RaLMSpec+P(20) 14.25± 0.39 13.45± 0.28 14.08± 0.32 14.21± 0.30
RaLMSpec+P(256) 20.63± 0.48 26.44± 3.11 27.38± 3.39 21.04± 0.43

RaLMSpec+S 8.14± 0.19 8.08± 0.07 8.08± 0.07 8.16± 0.09
RaLMSpec+A 13.90± 0.36 13.28± 0.17 13.72± 0.14 18.35± 1.11

RaLMSpec+P(20)SA 7.89± 0.22 7.84± 0.15 7.90± 0.12 7.91± 0.03
RaLMSpec+P(256)SA 14.06± 0.08 14.96± 1.34 14.59± 2.04 12.94± 0.03

17

Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

Table 11. Averaged latency measured in seconds over GPT-2. OPT and LLaMA-2 with the sparse retriever.

Model Method Wiki QA WQ NQ Trivia QA

GPT2

Baseline 7.41± 1.34 7.03± 1.15 7.23± 0.11 6.80± 0.09
RaLMSpec 5.18± 0.13 5.30± 0.95 5.34± 0.11 5.40± 0.03

RaLMSpec+P(20) 5.23± 0.23 4.58± 0.01 5.17± 0.05 5.50± 0.04
RaLMSpec+P(256) 6.88± 0.66 7.16± 1.34 6.76± 0.27 6.91± 0.13

RaLMSpec+S 5.62± 0.96 5.03± 0.68 5.24± 0.13 5.61± 0.11
RaLMSpec+A 5.34± 0.89 4.99± 0.86 4.76± 0.14 5.04± 0.12

RaLMSpec+P(20)SA 4.49± 0.09 4.57± 0.81 4.54± 0.02 4.99± 0.01
RaLMSpec+P(256)SA 6.66± 1.25 6.50± 1.39 5.54± 0.02 5.91± 0.03

OPT

Baseline 7.68± 0.01 1.83± 0.01 2.62± 0.01 4.71± 0.02
RaLMSpec 5.63± 0.01 1.93± 0.01 2.60± 0.01 4.07± 0.02

RaLMSpec+P(20) 3.00± 0.01 2.06± 0.01 2.50± 0.02 4.27± 0.01
RaLMSpec+P(256) 7.13± 0.01 2.45± 0.01 3.22± 0.01 5.24± 0.02

RaLMSpec+S 2.79± 0.01 1.69± 0.01 2.32± 0.01 4.27± 0.01
RaLMSpec+A 5.27± 0.02 1.86± 0.01 2.28± 0.01 3.82± 0.02

RaLMSpec+P(20)SA 2.46± 0.01 1.57± 0.01 1.88± 0.01 3.59± 0.01
RaLMSpec+P(256)SA 6.37± 0.01 1.92± 0.04 2.44± 0.02 4.53± 0.01

LLaMA

Baseline 10.75± 0.32 10.55± 0.07 10.72± 0.10 11.06± 0.25
RaLMSpec 11.47± 0.17 11.02± 0.31 11.10± 0.27 10.79± 0.20

RaLMSpec+P(20) 11.27± 0.14 11.04± 0.22 10.69± 0.15 10.66± 0.23
RaLMSpec+P(256) 12.83± 0.21 13.35± 0.81 12.48± 0.22 12.60± 0.36

RaLMSpec+S 10.38± 0.28 10.19± 0.19 9.95± 0.04 10.18± 0.08
RaLMSpec+A 10.88± 0.26 10.66± 0.12 10.56± 0.20 10.16± 0.18

RaLMSpec+P(20)SA 8.28± 0.18 8.18± 0.10 8.26± 0.14 8.09± 0.18
RaLMSpec+P(256)SA 9.46± 0.17 10.42± 0.74 9.64± 0.08 9.36± 0.16

18

