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Abstract
Zeroth-order optimization (ZO) is a memory-
efficient strategy for fine-tuning Large Language
Models using only forward passes. However,
the application of ZO fine-tuning in memory-
constrained settings such as mobile phones and
laptops is still challenging since full precision
forward passes are infeasible. In this study, we
address this limitation by integrating sparsity and
quantization into ZO fine-tuning of LLMs. Specif-
ically, we investigate the feasibility of fine-tuning
an extremely small subset of LLM parameters
using ZO. This approach allows the majority of
un-tuned parameters to be quantized to accom-
modate the constraints of limited device memory.
Our findings reveal that the pre-training process
can identify a set of “sensitive parameters” that
can guide the ZO fine-tuning of LLMs on down-
stream tasks. Our results demonstrate that fine-
tuning 0.1% sensitive parameters in the LLM with
ZO can outperform the full ZO fine-tuning perfor-
mance, while offering wall-clock time speedup.
Additionally, we show that ZO fine-tuning target-
ing these 0.1% sensitive parameters, combined
with 4 bit quantization, enables efficient ZO fine-
tuning of an Llama2-7B model on a GPU device
with less than 8GiB of memory and notably re-
duced latency.

1. Introduction
Large language models (LLMs) have demonstrated supe-
rior performance in general-purpose language generation
(Brown et al., 2020; Radford et al., 2019; Liu et al., 2019).
Despite their success, it remains necessary to fine-tune
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LLMs for specific tasks to achieve optimal results. However,
fine-tuning LLMs often requires much more memory result-
ing from 4 parts: (1) the weight parameter itself; (2) the
optimizer state, which contains the information about the
past gradient (Kingma & Ba, 2015); (3) the weight gradient
used to update the parameters; (4) the activation cached to
calculate the weight gradient (Liu et al., 2024b); In previous
work like QLoRA (Dettmers et al., 2023), it can reduce both
(1) and (2) by combining weight quantization and low-rank
adaption (Hu et al., 2021), which enables fine-tuning huge
LLMs under data-center level GPUs. However, under more
memory-constraint hardware like cell phones, the memory
of caching (3) and (4) still cannot be overlooked. This limits
the adaptability of LLMs, especially when personalizing
them for edge devices.

Efficient ZO LLM Fine-Tuning with Sparsity. Although
ZO methods remove the need for backpropagation, a signif-
icant drawback of these methods is the slow convergence
rate(Zhao et al., 2024; Liu et al., 2024a). A recent approach
addresses this by fine-tuning with a sparse mask (Liu et al.,
2024a; Zhang et al., 2024), achieving approximately ∼ 75%
sparsity. Nonetheless, this sparsity level barely reduces
computational overhead, as the latency during the forward
pass with even ∼ 90% sparsity is still comparable to that of
dense matrix operations. 1 This latency increase can greatly
impact user experience on applications such as personal as-
sistants, where even a twofold increase in latency is percep-
tible. In addition, merging the sparse weights back into the
base model is impractical on these devices due to memory
constraints prohibiting dequantization and re-quantization.
Empirical evidence suggests that higher sparsity levels can
significantly decrease the time required for sparse matrix
operations. This raises the question:

Is it possible to leverage the benefits of higher sparsity levels
in reducing inference latency while preserving performance
on downstream tasks? If so, how far can sparsity be pushed
in this context?

Our Proposal: ZO LLM Fine-Tuning with Fisher-
Informed, Transferable Sparsity. In this paper, we answer
the raised research question by proposing an efficient sparse
ZO LLM fine-tuning strategy. We observe an extreme spar-

1We show this in Figure 6b in Appendix D.4.2.
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sity pattern in LLM parameters: a subset, determined by se-
lecting the top k magnitude entries from the empirical Fisher
information matrix, is effective for ZO fine-tuning. More-
over, we find this sparsity pattern can be obtained through
LLM’s continuous pre-training process and be transferred
to various downstream tasks without modification.

Summary of Contributions:

•We identify that only an extremely small portion (0.1%)
of LLM parameters should be updated during ZO LLM
fine-tuning. Moreover, we utilize this insight to guide the
memory-efficient on-device personalization of LLMs by
low-bit quantization of model parameters.
•We observe the sparsity pattern in LLM pre-training can be
transferred across different tasks while maintaining good
ZO performance. Based on this observation, we develop
a computational framework to perform parameter-efficient
ZO fine-tuning of LLMs.
•We conduct extensive experiments across various LLMs
and demonstrate that our method achieves competitive per-
formance across various downstream tasks.

2. ZO optimization
Given a dataset D = {(x1, y1), . . . , (xn, yn)} and a loss
function f with model parameters w ∈ Rd, ZO optimizer
estimates the gradient via ZO surrogate gradient estimator.

Definition 2.1 (Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) (Spall, 1992)). SPSA estimates the
gradient with a data example (x, y), a small constant ϵ ∈ R,
and a sampled random vector z ∼ N (0, Id) as follows:

ĝ(w, (x, y), z) =
f(w + ϵz; (x, y))− f(w − ϵz; (x, y))

2ϵ
z

(1)
Definition 2.2 (ZO-SGD update rule). ZO-SGD uses ZO
surrogate gradients to update parameters wt with learning
rate ηt and a data example (xt, yt) at timestep t:

wt+1 = wt − ηtĝw(wt, (xt, yt), zt) (2)

3. Chasing Extreme Sparsity in ZO LLM
Fine-Tuning

In this section, we describe the extreme sparsity pattern we
observed in LLMs and how we utilize it for efficient ZO
fine-tuning including on-device personalization of LLMs.

3.1. Extreme Sparsity Pattern in LLM

Sensitive parameters are parameters whose corresponding
FO coordinate-wise gradient square values are maximized.

Definition 3.1 (Sensitive parameter mask). Given model
parameters w, a loss function f , a data example (x, y), a
sensitive sparse mask mk ∈ {0, 1}d with k nonzero entries
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Figure 1: Cumulative normalized sum of coordinate-wise
gradient square [∇F(w)]2i of linear layers during Llama2-
7B (Touvron et al., 2023) fine-tuning. For each linear layer,
we first sort parameters by the decreasing order of their gra-
dient square value [∇F(w)]2i , i ∈ [dlayer], and we take the
cumulative sum and normalize it to draw a blue curve, and
the red-shaded region is the mean ± std of all blue curves.
More similar figures are in Figure 4. We observe that
roughly 0.1% parameters in all linear layers contribute
about 50% gradient norm square.

(
∑

i m(i) = k) is defined as

mk = argmaxm∥m⊙∇f(w; (x, y))∥22. (3)

In the context of ZO optimization, we will update sensi-
tive parameters only. Denote that z̄ = z ⊙ mk. We will
modify the SPSA gradient estimator from ĝ(w, (x, y), z) to
ĝ(w, (x, y), z̄), and accordingly:
Definition 3.2 (Sensitive sparse ZO-SGD update rule).

wt+1 = wt − ηtĝw(wt, (xt, yt), z̄t) (4)

The theoretical intuition of our method is described in Ap-
pendix B.1 and a convergence rate under standard non-
convex optimization setting is provided in Appendix B.2.

3.2. An Opportunity for On-Device LLM
Personalization

As LLMs are often pre-trained with user-agnostic public
datasets, personalizing LLMs with individual user’s prefer-
ences and needs before real-world deployment is vital (Tan
et al., 2024b; Mairittha et al., 2020). Transferring the user-
specific data to upstream cloud before fine-tuning LLMs
would raise privacy concerns (Xu et al., 2018), while per-
forming full fine-tuning on personal devices would easily
exceed the device memory budget. We utilize the following
observations to make on-device LLM fine-tuning possible.

The essence of our method is to extract fixed surrogate sen-
sitive parameters with gradients from pre-training datasets
and only optimize them during ZO fine-tuning.

Transferability of Sparsity Pattern in ZO Fine-Tuning
Recent works show fine-tuning performance of LLMs could
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Figure 2: On-device LLM personalization workflow via integrating sensitive sparse ZO optimization with quantization.

Table 1: Performance of difference methods on Llama2-7B fine-tuning tasks. In the first column, “Q” means the full model
is quantized with 4-bit quantization method (SqueezeLLM (Kim et al., 2023)), and “ZO” means the model is finetuned
with ZO-SGD optimizer. For each cell, we use the same hyperparameters and repeat it with 3 random seeds. We report the
average and standard deviation of test set accuracy in the format of meanstd. In last 2 columns, “Acc” means the average
test set accuracy and “Rank” means the average rank among all methods across tasks.

Methods SST-2 RTE CB BoolQ WSC WiC COPA Acc Rank

Q, ZO Sensitive (C4, static) 94.70.4 74.71.2 66.72.2 83.00.5 57.43.9 65.20.9 85.02.2 75.2 2.43
LoRA 93.80.6 64.71.1 64.94.7 79.71.1 61.52.1 59.80.1 85.70.5 72.9 4.29
Prefix 80.54.3 65.51.2 63.13.0 80.30.2 54.511.4 58.31.3 82.00.8 69.2 5.86

ZO Sensitive (task, static) 94.80.1 73.60.9 69.12.2 83.50.8 57.44.7 64.21.1 83.72.4 75.2 2.29
Random (static) 94.10.3 68.01.7 64.93.4 77.00.7 59.63.6 64.81.1 83.31.7 73.1 4.14
Full fine-tuning 94.60.5 73.35.1 66.70.8 81.90.8 58.04.3 61.90.2 82.71.7 74.2 3.57

Zero-shot 89.00.0 57.80.0 32.10.0 69.90.2 50.20.0 36.50.0 79.00.0 59.2 7.29
ICL 94.80.2 71.54.3 72.615.2 77.54.6 53.21.1 61.14.3 87.02.2 74.0 3.43

be attributed to a fixed sparse subset of parameters (Pani-
grahi et al., 2023; Malladi et al., 2023b). The similarity of
gradient features during fine-tuning would imply that we do
not need to re-select our sensitive parameters during fine-
tuning i.e. select once before fine-tuning should be sufficient.
In our method, we would need ∇wf(wafter FT; (x, y)) ∼
∇wf(wbefore FT; (x, y)) to hold. This is supported by Mal-
ladi et al. (2023b)’s claim that some LLM fine-tuning tasks
would demonstrate fixed (gradient) features, and we also
empirically observe it in Figure 5 in Appendix D.3.

Zeroth-order parameter-efficient optimization on fixed
sparse parameters The sparse optimization on fixed pa-
rameters can be implemented as a parameter-efficient opti-
mization workflow, which will reduce the perturbation and
updating time during ZO optimization. Suppose we have
derived a sensitive sparse mask mk, and we know it is fixed
during fine-tuning. Instead of applying mk to z, we would
apply it directly to w and extract the nonzero parts as below:

wsparse = w ⊙mk, wdense = w ⊙ (1d −mk) (5)

Denote zk,t ∼ N (0k, Ik) as the Gaussian perturbation sam-
pled in timestep t. We will determine wsparse before fine-
tuning and optimize on wsparse only and leave wdense frozen
during fine-tuning. In this case, our sensitive sparse ZO-
SGD update rule will become:

wsparse,t+1 = wsparse,t − ηtĝ(wsparse,t, (xt, yt), zk,t) (6)

Integration with quantization. Since we know that we can
obtain surrogate sensitive sparse masks before fine-tuning.
We would first decompose sensitive w to wsparse and wdense.
We would then quantize wdense and only optimize wsparse.
During this process, we use surrogate gradient information
that many post-training quantization (PTQ) algorithms al-
ready have: they need gradients from pre-training datasets
to calibrate quantization errors.

On-device personalization workflow. The workflow is il-
lustrated in Figure 2. The high-level overview is that we use
surrogate gradient information from pre-training datasets
∇wpLLM(y|x) to extract sensitive parameters wsparse and
keep wsparse in 16 bits, while we quantize the remaining
dense weights wdense (Step 1-4). We send wsparse and
Q(wdense) to personal devices (Step 5), and we perform
on-device ZO fine-tuning only on wsparse (Step 6). In this
case, our memory consumption is nearly minimum: we can
fine-tune a Llama-2 7B model under 8 GiB GPU memory
without any offloading. This would satisfy the memory
constraint by a wide range of edge or mobile devices as
illustrated in Table 3 in Appendix D.1.
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4. Experiments
4.1. On-device personlization

We validate whether our sensitive sparse ZO optimization
method would fit with on-device personalization pipeline
described in Section 3.2 with Table 1. Results for Mistral-7B
and OPT-6.7B are in Table 4 in Appendix D.4.1. We follow
the exact recipe as described Figure 2 to report a number
as “Sensitive (C4, static)”, where we only optimize 0.1%
sensitive parameters on top of a 4-bit quantized model. As
ZO fine-tuning happens after model is quantized, ablating
on extracting 0.1% random subsets of parameters would
produce a different quantized model. So we choose to report
the result for optimizing a fixed random subset on top of the
16-bit model as the “Random (static)”.

We also compare with optimizing with LoRA (Hu et al.,
2021) and Prefix Tuning (Li & Liang, 2021) with ZO-SGD
optimizer on top of the same quantized model. We follow
the LoRA r and α and prefix length shown in Malladi et al.
(2023a), and for LoRA, we add it to all linear layers same as
where our sensitive parameters are extracted. We find that
integrating sensitive sparse ZO optimization with on-device
personalization pipelines would still yield good performance
exceeding all baselines across models and tasks. Particu-
larly, the performance is higher than In Context Learning
(ICL), and ZO full fine-tuning in 16 bits. In addition, we
have surpassed other ZO-PEFT methods and random sparse
ZO fine-tuning methods. This demonstrates the superiority
of optimizing sensitive parameters only in ZO fine-tuning
recipes. We also notice that optimizing sensitive parameters
derived from C4 gradients still produce close results as from
task-specific gradients. This indicates optimizing surrogate
sensitive parameters is still empirically successful.

4.2. Ablation study: Effectiveness of Sparse ZO
Fine-Tuning on Sensitive Parameters

We investigate the performance of optimizing our sensi-
tive parameters versus other subsets of parameters. Our
baseline sparsity methods are random subsets and weight
outliers. As illustrated in Figure 3a, we can find that ZO
fine-tuning would benefit from sparse optimization, as all
methods would achieve higher than ZO full fine-tuning at
90% sparsity. However, only sensitive parameters would
maintain its performance as we move to the extreme sparsity
region (> 99%). In fact, the performance curve of sensitive
parameters w.r.t. different sparsity levels is near a flat curve,
which indicates the performance loss by moving from 90%
to 99.9% is minimal. Therefore, we can optimize 100 ×
less parameters compared with random and weight outliers
and still get same performance.

We also validate whether optimizing fixed and surrogate sen-
sitive parameters should still yield satisfactory performance.

In Figure 3b, we compare the performance of optimizing
sensitive parameters with C4 gradients with its theoretical
upper bound: fixed sensitive parameters derived from task-
specific gradients as the solid line and its dynamic version as
the dash-dotted line. We also include the fixed and dynamic
random subset parameters as a baseline. We can find that
the gap of sensitive parameters between deriving from C4
gradients and task-specific gradients at sparsity level 99.9%
is small and blue line is still far above the random subset
and full-finetuning baseline.
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(a) Optimizing sensitive parameters with C4 gradients
versus optimizing weights with largest magnitude (out-
liers) and random subsets of weights. The trainable pa-
rameters are all determined before fine-tuning and other
parameters are kept unchanged.
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(b) Optimizing sensitive parameters with C4 gradients
versus task-specific gradients. “Static” means the param-
eters to optimize are determined before fine-tuning and
other parameters are kept unchanged during fine-tuning.
“Dyn.” means the parameters to optimize will change
every 100 training steps based on each algorithm.

Figure 3: Average performance of optimizing sensitive pa-
rameters in Llama2-7B fine-tuning on RTE, WiC, and COPA
tasks. The complete version of subfigure 3a and 3b can be
found in subfigure 7a and 7b in Appendix D.4.3.

5. Conclusion
We show that sensitive parameters provided by the pre-
training process can effectively assist in ZO LLMs fine-
tuning. Our experiment results also demonstrate that the
quantization of parameters other than sensitive parameters
allows us to effectively perform ZO fine-tuning of LLMs on
limited memory devices.
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Appendix
In Section A we describe all notations used in this paper. In Section B, we provide a high-level theoretical understanding
and a convergence rate of optimizing our sensitive parameters via the ZO-SGD optimizer. In Section C, we discuss how our
approach is positioned among sparsity-driven techniques in LLM community. In Section D, we include some additional
experiments, describe all details in our experiments, and provide a high-level recommendation on how to efficiently
implement our sensitive sparse ZO fine-tuning in forward passes of linear layers with existing quantization methods or
training / inference workflow.

A. Notations
We present the notations used in this work as follows.

Table 2: Notations

Term/Symbol Explanation
f loss function
t optimization timestep t

d number of model parameters
dlayer number of parameters in one linear layer. This means the total number of parameters per each

linear layer as the number of rows times the number of columns in each linear layer.

(xt, yt) a data example sampled at timestep t as a pair of input vector and training target

wt ∈ Rd weight/parameter vector at optimization timestep t

f(w; (x, y)) training loss of w evaluated at a single data example (x, y)

F(w) = E(x,y)f(w; (x, y)) full-batched training loss of w

ϵ a small perturbation scaling constant (close to 0)

zt ∈ Rd random Gaussian perturbation vector sampled at timestep t

ĝ(w, (x, y), z) estimated ZO surrogate gradient for w with a data example (x, y) and a sampled Gaussian
perturbation vector z (Definition 2.1)

ηt learning rate for ZO-SGD optimizer (Definition 2.2) at timestep t

mk ∈ {0, 1}d a sensitive sparse mask with k nonzero entries (Definition 3.1)

mk,t ∈ {0, 1}d a sensitive sparse mask with k nonzero entries, and it is derived at optimization timestep t

Id Identity matrix with shape Rd×d

Ĩd,mk Ĩd,mk is equal to the identity matrix Id with the main diagonal masked by mk

z̄t = zt ⊙mk a sampled Gaussian perturbation vector zt at timestep t that is masked by mk

Notice that z̄ is equivalent as being sampled from N (0d, Ĩd,mk )

1d a vector of size d with all entries equal to 1
Tr trace operation

Q(w) parameter vector w that is quantized by Q

F (true) Fisher information matrix

F̂ empirical Fisher information matrix
pLLM LLM as a probabilistic model
pD true data distribution
wsparse = w ⊙mk sensitive parameters with positions as the nonzero entries sensitive sparse mask mk (Equation 5)
L Lipschitz constant in Assumption B.3
µ PL condition number in Assumption B.4

σ2 stochastic gradient error term in Assumption B.2
WK weight matrix of linear projection for the key embedding matrix K in attention layers
WV weight matrix of linear projection for the value embedding matrix V in attention layers
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B. Theory
In Section B.1, we provide a high-level theoretical understanding of our sensitive parameters. In Section B.2, we include the
assumption and exact proof on the convergence rate (Theorem B.1)

B.1. Theoretical intuition

The theoretical support of sensitive parameters can be derived from the lens of SPSA gradient estimator and Fisher
information matrix as follows:

• Maximum zeroth-order loss value changes, from the lens of SPSA estimator.
The square (account for negativity) of loss value difference for ĝw(wt, (xt, yt), z̄t) is as follows:

Ez̄{f(w + ϵz̄; (x, y))− f(w − ϵz̄; (x, y))}2 ≈ Ez̄{2ϵz̄⊤∇wf(w; (x, y))}2 (7)

= 4ϵ2∥mk⊙∇wf(w; (x, y))∥2 (8)

Since by Definition 3.1 our sensitive mask would maximize ∥mk ⊙∇wf(w; (x, y))∥2 for a given sparsity ratio, we would
expect our sensitive mask to maximize the magnitude of the loss value difference for any given sparsity ratio.
• Maximum coverage of Hessian diagonal, from the lens of Fisher matrix.
LLMs are often pre-trained on large text corpus2 to reach low perplexity before entering the fine-tuning stage. In this case,
we would assume pLLM(y|x) ∼ pD(y|x), which implies the empirical Fisher F̂ should be close to the (true) Fisher matrix
F as follows:

F = Ex∼pD,ŷ∼pLLM(·|x)∇w log pLLM(ŷ|x)(∇w log pLLM(ŷ|x))⊤ (9)

≈ F̂ = E(x,y)∼pD∇w log pLLM(y|x)(∇w log pLLM(y|x))⊤ (10)

As we assume the empirical Fisher matrix approximates Fisher, which also approximates the Hessian, and empirical Fisher’s
diagonal is equal to the coordinate-wise gradient square vector when computing with downstream task-specific loss, our
sensitive parameters would cover a large fraction of the largest Hessian diagonal entries.

B.2. Theoretical Convergence Rate

We would investigate the theoretical convergence of sensitive sparse ZO-SGD on sensitive parameters under the non-convex
optimization settings. Our assumptions are included in Appendix B.4.

Theorem B.1 (Convergence rate of sensitive sparse ZO-SGD (Definition 3.2)). If we pick ηt = 1/(L(k + 2)), under
Assumptions B.2 (bounded gradient error), B.3 (Lipschitz smoothness), and B.5 (sparse sensitive parameters), we would
have

1

T

T−1∑
t=0

Ez̄,(x,y)∥∇wF(wt)∥2 ≤ O

(
k

c
· L
T

)
(F(w0)−F∗) + 3σ2. (11)

Moreover, if we still pick ηt = 1/(L(k + 2)), with an extra Assumption B.4 (P.L. condition), we would have

Ez̄,(x,y){F(wT )−F∗} ≤
(
1−O

(µ

L
· c
k

))T

(F(w0)−F∗) +
3σ2c

2L(k + 2)
. (12)

The proof for Inequality 11 is in Appendix B.4 and the proof for Inequality 12 is in Appendix B.5. If we choose k = d and
c = 1, both convergence rates trivially reduce to the standard zeroth-order convergence rate as O(d/T ) +O(constant) and
O((1/d)T ) +O(constant). As we assume c ≫ k/d, we know d ≫ k/c and therefore both O((k/c)(1/T )) and O((c/k)T )
are much lower than O(d/T ) +O(constant) and O((1/d)T ) +O(constant) that zeroth-order method will yield.

We want to emphasize that our contributions are more on empirical LLM fine-tuning instead of general machine learning
tasks, and in Section 4.2 we extensively compare our sparse ZO methods with other sparse ZO methods and we demonstrate
its superiority during LLM fine-tuning. We do not use the strict “local r-effective rank” assumption that Malladi et al.
(2023a) uses, and our Assumption B.5 can be easily observed empirically in Figure 1. Liu et al. (2024a) and Ohta et al.
(2020) also provide similar analysis on the convergence. However, they do not include our sensitive sparse mask in their
studies.

2Here we assume data examples (x, y) ∼ pD in fine-tuning datasets after verbalization would also appear in the large text corpus
during pre-training.
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B.3. Assumptions

We start with listing standard assumptions in nonconvex optimization literature:

Assumption B.2 (Bounded stochastic gradient errors). For any data example (x, y) ∈ D and for any w ∈ Rd, denote the
full-batched loss function F(w) = E(x,y)∈Df(w; (x, y)), we have

∥∇wf(w; (x, y))−∇wF(w)∥2 ≤ σ2. (13)

Assumption B.3 (Lipschitz smoothness). We assume that f(w,x) is L-Lipschitz smooth (L > 0): for any w,w′ ∈ Rd,

∥∇wf(w; (x, y))−∇wf(w′; (x, y))∥ ≤ L∥w −w′∥. (14)

Assumption B.4 (PL inequality). We assume that F(w) fulfills the Polyak-Lojasiewicz (PL) condition: there exists some
µ > 0, for any w ∈ Rd

1

2
∥∇wF(w)∥2 ≥ µ(F(w)−F∗), F∗ is the minimum value F∗ = inf

w
F(w). (15)

Inspired by Figure 4, we would assume the sensitive parameters of w are sparse.

Assumption B.5 (Sensitive parameters are sparse). We assume at timestep t ∃mt ∈ {0, 1}d with the number of nonzero
entries as k, ∃c ∈ [0, 1] such that

∥mt ⊙∇wf(wt; (xt, yt))∥2 = c∥∇wf(wt; (xt, yt))∥2.
Here we assume c ≫ k/d. 3

B.4. Proof for Equation 11, Theorem B.1

We will start with formulating the expectation of sensitive sparse ZO surrogate gradient norm square in terms of its
corresponding stochastic gradient norm square.

Lemma B.6 (Sensitive sparse ZO surrogate gradient norm square).

Ez̄[∥ĝ(wt, (xt, yt), z̄t)∥2] = (2 + k)c∥∇wf(w, (xt, yt))∥2

Proof for Lemma B.6. We know that our z̄ can be considered as being sampled from N (0, Ĩd,mk
) where Ĩd,mk

is the
identity matrix Id with the main diagonal masked by mk.

We expand the sensitive sparse ZO surrogate gradient covariance matrix Ez̄ĝ(w, (x, y), z̄)ĝ(w, (x, y), y), z̄)⊤ as follows:

Ez̄ĝ(w, (x, y), z̄)ĝ(w, (x, y), z̄)⊤

= Ez̄i [z̄iz̄
⊤
i

(
(mk ⊙∇wf(w; (x, y)))(mk ⊙∇wf(w; (x, y)))⊤

)
z̄iz̄

⊤
i ]

= 2
(
(mk ⊙∇wf(w; (x, y)))(mk ⊙∇wf(w; (x, y)))⊤

)
+ ∥mk ⊙∇wf(w; (x, y))∥2Ĩd,mk

Then the sensitive sparse ZO surrogate gradient norm square is the square of the diagonal of its corresponding covariance
matrix:

Ez̄[∥ĝ(wt,xt, z̄t)∥2] = diag
(
Ez̄ĝ(w, (x, y), z̄)ĝ(w, (x, y), y), z̄)⊤

)2
= 2c∥∇wf(w, (xt, yt))∥2 + kc∥∇wf(w, (xt, yt))∥2

= (2 + k)c∥∇wf(w, (xt, yt))∥2

Then we are in good shape of deriving the convergence rate under the Lipschitz smoothness condition:

3From Figure 4, we know that for c ∼ 0.5, we only need k/d ∼ 0.001. In this case k/c ∼ 0.002d.

9



Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

Proof for Equation 11, Theorem B.1.

f(wt+1,xt) ≤ f(wt; (xt, yt)) + ⟨∇f(wt; (xt, yt)),wt+1 −wt⟩+
L

2
∥wt+1 −wt∥2

≤ f(wt; (xt, yt))− ηt⟨∇f(wt; (xt, yt)), ĝ(wt,xt, z̄t)⟩+
Lη2t
2

∥ĝ(wt,xt, z̄t)∥2

Ez̄f(wt+1,xt) ≤ Ez̄f(wt; (xt, yt))− ηtEz̄∥mk,t ⊙∇f(wt; (xt, yt))∥2 +
Lη2t
2

Ez̄∥ĝ(wt,xt, z̄)∥2

Ez̄f(wt+1,xt) ≤ Ez̄f(wt; (xt, yt))− cηtEz̄∥∇f(wt; (xt, yt))∥2 +
Lη2t
2

c(k + 2)Ez̄∥∇wf(wt; (xt, yt))∥2

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)− cηt∥∇wF(wt)∥2 + cσ2ηt +
Lη2t
2

c(k + 2)∥∇wF(wt)∥2 +
Lη2t
2

c(k + 2)σ2}

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)−
(
cηt −

Lη2t
2

c(k + 2)

)
∥∇wF(wt)∥2 +

(
cσ2ηt +

Lη2t
2

c(k + 2)σ2

)
}

Denote α = Lc(k + 2), we will have

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)− ηt

(
c− α

2
ηt

)
∥∇wF(wt)∥2 +

(
cσ2ηt +

α

2
σ2η2t

)
}

Set ηt <
c

α
=

1

L(k + 2)
, we have

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)−
cηt
2

∥∇F(wt)∥2 +
(
cσ2ηt +

α

2
σ2η2t

)
}

If we apply our sparse ZO update rule recursively for T steps,

1

T

T−1∑
t=0

Ez̄,(x,y)∥∇wF(wt)∥2 ≤ 2α

Tc2
(F(w0)−F∗) +

1

T

T−1∑
t=0

(
cσ2ηt +

α

2
σ2η2t

)
cηt
2

≤ 2α

Tc2
(F(w0)−F∗) + (2σ2 + σ2)

≤ 2L(k + 2)

c

1

T
(F(w0)−F∗) + 3σ2

≤ O

(
k

c
· L
T

)
(F(w0)−F∗) + 3σ2

B.5. Proof for Equation 12, Theorem B.1

We can derive a convergence rate of sensitive sparse ZO-SGD optimization method under PL inequality and Lipschitz-
smoothness as follows (this proof resumes from our prior proof with the Lipschitz-smoothness condition alone):

Proof for Equation 12, Theorem B.1. Denote κ as the condition number κ =
µ

L
.
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Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)−
cηt
2

∥∇F(wt)∥2 +
(
cσ2ηt +

α

2
σ2η2t

)
}

≤ Ez̄,(x,y){F(wt)− cµηt(F(wt)−F∗) +
(
cσ2ηt +

α

2
σ2η2t

)
}

Ez̄,(x,y){F(wt+1)−F∗} ≤ Ez̄,(x,y){(F(wt)−F∗)− cµηt(F(wt)−F∗) +
(
cσ2ηt +

α

2
σ2η2t

)
}

Ez̄,(x,y){F(wt+1)−F∗} ≤ Ez̄,(x,y){(F(wt)−F∗)− cµηt(F(wt)−F∗) +
(
cσ2ηt +

α

2
σ2η2t

)
}

Plugging in ηt ≤
c

α
and applying recursively for T iterations.

Ez̄,(x,y){F(wT )−F∗} ≤ (1− cκ

(k + 2)
)T (F(w0)−F∗) +

3σ2c2

2α

≤ (1− cκ

(k + 2)
)T (F(w0)−F∗) +

3σ2c

2L(k + 2)

≤
(
1−O

(µ

L
· c
k

))T

(F(w0)−F∗) +
3σ2c

2L(k + 2)
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C. Sparsity in LLMs
Sparsity-driven techniques are widely adopted in improving ML model’s efficiency (Tan et al., 2024a; Xia et al., 2023; Liu
et al., 2023; Peng et al., 2013; Frankle & Carbin, 2019) and robustness (Zhong et al., 2024; 2021). Frankle & Carbin (2019)
showed that within large feed-forward networks, there exists a subnetwork that, when trained in isolation, can achieve
test accuracy comparable to that of the original network. In the foundation models era, Liu et al. (2023) demonstrated
that transformer-based models, such as OPT (Zhang et al., 2022), exhibit great sparsity (≥ 95%) in activations. Moreover,
Panigrahi et al. (2023) discovered that for RoBERTa (Liu et al., 2019), fine-tuning a very small subset of parameters
(∼ 0.01%) can yield performance exceeding 95% of that achieved by full fine-tuning.

In the context of ZO optimization, Liu et al. (2024a) and Zhang et al. (2024) also suggest that sparsity would potentially
accelerate ZO optimization convergence. We believe that ZO has an intrinsic need for sparse training, as the procedure of
ZO gradient estimator usually requires nearly uniform coordinate-wise scale (in expectation) perturbation which grows with
d. In tradition, people usually resolve this with knowledge from parameter-wise loss curvature heterogeneity (replace z with
Σ1/2z where Σ1/2 serves as a Hessian-informed preconditioner) (Ye et al., 2018; Zhao et al., 2024). However, they do not
provide a comprehensive investigation on massive parameter models like LLMs. In particular, we also observe that during
first-order (FO) fine-tuning of LLMs, the FO gradient can be quite sparse. We will elaborate more on this insight in the
following section (see Figure 1 and Figure 4). We would like to explore how sparsity can benefit the ZO LLM fine-tuning.

D. Supplementary Experiment Details
D.1. On-device memory constraints

We include a table of common memory constraints imposed by edge or mobile devices as Table 3. We can find that a wide
range of these devices impose a memory constraint of 8 GiB as our main main constraint that we consider when we develop
our on-device personalization recipe in Section 3.2.

Table 3: Device memory of some mobile devices or consumer-graded GPUs.

Devices Memory

Nvidia GeForce GTX 1080 Ti 11 GiB
Nvidia GeForce RTX 3060 Ti 8 GiB
Nvidia Jetson TX2 8 GiB
OPPO Find X7 Ultra (Li et al., 2024) 12 GiB
Samsung Galaxy S10 with Mali-G76 GPU (Gim & Ko, 2022) 8 GiB

D.2. Gradient sparsity during LLM fine-tuning

In Figure 1, we explore the FO gradient sparsity of Llama2-7B during fine-tuning (at Epoch 5). Here we follow the identical
setting and plot the FO gradient sparsity for Llama2-7B, Mistral-7B, and OPT-6.7B during epoch 1, 5, and 10 (end of
fine-tuning).

We observe that the gradient sparsity is exhibited throughout the fine-tuning with slightly increasing towards the end.
OPT-6.7B which uses ReLU as the activation function would demonstrate greater sparsity across tasks compared with
Llama2-7B and Mistral-7B which uses SwiGLU and SiLU respectively. Nevertheless, the gradient sparsity pattern holds
across architectures, tasks, and fine-tuning time in general.
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Figure 4: Cumulative normalized sum of coordinate-wise gradient square [∇F(w)]2i of linear layers for Llama2-7B
(subfigure 4a), Mistral-7B (subfigure 4b), and OPT-6.7B (subfigure 4c) across RTE, WiC, and COPA tasks during FO-
SGD fine-tuning. For each linear layer, we first sort parameters by the decreasing order of their gradient square value
[∇F(w)]2i , i ∈ [dlayer], and we take the cumulative sum and normalize it to draw a blue curve, and the red-shaded region is
the mean ± std of all blue curves.
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D.3. Transferability of gradient features from pre-training datasets to downstream tasks

Here we will explore the transferability of gradient features from pre-training datasets (C4) to downstream tasks, as shown
in Figure 5. As there are no solid lines (top-(1e-2,1e-3,1e-4)) parameters with C4 gradient entries prior to fine-tuning)
vanish to 0, we know the transferability of gradient features from C4 datasets to downstream datasets hold across models
and downstream tasks. In this case, sensitive parameters determined from C4 gradients would still be similar to sensitive
parameters determined from downstream task-specific gradients across models.
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Figure 5: Cumulative normalized gradient square values of Llama2-7B (subfigure 5a), Mistral-7B (subfigure 5b), and
OPT-6.7B (subfigure 5c)’s linear layers during FO fine-tuning. For a given model and training checkpoint, we report the
average value across all linear layers as a line in each subfigure. For each line, the colors represent the fraction of parameters
(1e-2,1e-3,1e-4) and the line style represents the category. “task grad, dyn.” refers to the sensitive parameters selected at the
given timestep (x-axis), and “task grad, static” refers to the sensitive parameters selected before fine-tuning. “C4 grad, static”
refers to the sensitive parameters selected with gradients taken from causal language modeling on C4 datasets, and we keep
it unchanged during fine-tuning.
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D.4. More experiments

We include the complete version of Table 1 as Table 4, a complete version of subfigure 3a and 3b in subfigure 7a and 7b. We
also discuss wall-clock time convergence speedup and iteration-wise training / token-wise inference speedup by optimizing
only 0.1% parameters by sensitive sparse ZO in Figure 6.

D.4.1. ON-DEVICE PERSONALIZATION

Here we include the complete version of Table 1 as Table 4. The analysis of this Table 4 is the same as our discussion in
Section 4.1.

Table 4: Performance of difference methods on Llama2-7B fine-tuning tasks. In the first column, “Q” means the full model
is quantized with 4-bit quantization method (SqueezeLLM (Kim et al., 2023)), and “ZO” means the model is finetuned
with ZO-SGD optimizer. For each cell, we use the same hyperparameters and repeat it with 3 random seeds. We report the
average and standard deviation of test set accuracy in the format of meanstd. In last 2 columns, “Acc” means the average
test set accuracy and “Rank” means the average rank among all methods across tasks.

(a) Llama2-7B

Methods SST-2 RTE CB BoolQ WSC WiC COPA Acc Rank

Q, ZO Sensitive (C4, static) 94.70.4 74.71.2 66.72.2 83.00.5 57.43.9 65.20.9 85.02.2 75.2 2.43
LoRA 93.80.6 64.71.1 64.94.7 79.71.1 61.52.1 59.80.1 85.70.5 72.9 4.29
Prefix 80.54.3 65.51.2 63.13.0 80.30.2 54.511.4 58.31.3 82.00.8 69.2 5.86

ZO Sensitive (task, static) 94.80.1 73.60.9 69.12.2 83.50.8 57.44.7 64.21.1 83.72.4 75.2 2.29
Random (static) 94.10.3 68.01.7 64.93.4 77.00.7 59.63.6 64.81.1 83.31.7 73.1 4.14
Full fine-tuning 94.60.5 73.35.1 66.70.8 81.90.8 58.04.3 61.90.2 82.71.7 74.2 3.57

Zero-shot 89.00.0 57.80.0 32.10.0 69.90.2 50.20.0 36.50.0 79.00.0 59.2 7.29
ICL 94.80.2 71.54.3 72.615.2 77.54.6 53.21.1 61.14.3 87.02.2 74.0 3.43

(b) Mistral-7B

Q, ZO Sensitive (C4, static) 94.00.3 74.22.7 70.22.2 75.12.4 59.64.9 61.20.9 88.31.2 74.7 2.86
LoRA 94.00.4 65.31.3 64.94.5 70.33.7 60.93.7 61.10.4 88.30.5 72.1 3.57
Prefix 86.92.1 57.31.4 63.75.9 62.20.9 60.34.6 49.00.3 81.31.7 65.8 4.86

ZO Sensitive (task, static) 94.70.3 77.10.9 69.00.8 78.42.2 58.04.3 61.40.2 89.31.3 75.4 1.86
Random (static) 87.91.9 50.20.8 66.14.4 60.61.7 57.61.4 57.30.8 82.31.7 66.0 5.29
Full fine-tuning 94.60.1 74.62.1 68.86.2 76.60.2 54.86.2 62.60.5 88.30.5 74.3 2.86

Zero-shot 54.80.0 50.50.0 37.50.0 43.41.8 50.80.0 39.40.0 78.00.0 50.6 7.00
ICL 60.716.7 55.24.7 33.313.1 46.86.5 50.40.6 63.80.9 88.70.5 57.0 5.43

(c) OPT-6.7B

Q, ZO Sensitive (C4, static) 94.90.5 72.83.6 83.35.1 73.10.9 59.35.3 60.90.4 84.01.4 75.5 1.29
LoRA 94.20.2 69.61.6 69.01.7 69.62.0 57.19.1 57.20.8 83.02.2 71.4 4.57
Prefix 93.30.4 71.21.0 72.01.7 68.92.8 62.52.4 59.40.5 80.02.4 72.5 4.14

ZO Sensitive (task, static) 94.50.4 75.51.4 82.13.6 72.50.8 57.45.2 60.61.4 83.31.7 75.1 2.14
Random (static) 87.32.0 68.41.7 70.66.3 66.01.0 58.07.0 56.41.3 79.00.8 69.4 5.71
Full fine-tuning 94.40.3 72.71.2 79.83.0 72.11.2 57.44.6 60.20.9 82.32.6 74.1 3.29

Zero-shot 61.00.0 60.70.0 46.40.0 55.71.0 55.50.0 36.50.0 77.00.0 56.1 7.71
ICL 74.014.6 65.811.2 54.85.9 67.92.1 53.21.7 41.04.5 80.72.9 62.5 6.57

D.4.2. WALL-CLOCK TIME EFFICIENCY

By employing parameter-efficient ZO fine-tuning with extreme sparsity, we also achieve 1.2 - 2.5× wall-clock time
convergence speedup compared with ZO full fine-tuning as we nearly eliminate the ZO perturbation and optimizer update
time, as Figure 6a shows. This also boosts the GPU utilization rate as large-batched ZO forward is often compute-bounded
while the perturbation and optimization steps are often memory-bounded. Furthermore, the reduced memory footprint of
parameter-efficient ZO fine-tuning allows for training larger models on the same hardware, potentially leading to even better
performance. As a result, we answer this question that optimizing extremely sparse and fixed parameters leads to substantial
iteration-wise and total wall-clock time improvements.

In addition, in Figure 7a we know optimizing 0.1% sensitive sparse parameters reach the performance of optimizing 10%
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random subsets, and we translate such comparison to iteration-wise training time and token-wise inference time in Figure 6b.
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(b) Training & inference speed of Llama2-7B. As the
sensitive sparse fine-tuning method achieves great per-
formance via optimizing only 0.1% parameters (per-
formance comparable to ZO full-finetuning and 10%
random subsets), during inference we achieve an end-
to-end 1.49× speedup, with 2.15× speedup at sparse
operations.

Figure 6: Wall-clock convergence time of sensitive sparse ZO optimization versus ZO full fine-tuning (subfigure 6a), and
iteration-wise training and inference speedup by optimizing less parameters than random subsets (subfigure 6b).

D.4.3. ABLATION STUDY: EFFECTIVENESS OF SPARSE ZO FINE-TUNING ON SENSITIVE PARAMETERS

Here we include the complete figure of subfigure 3a and 3b in subfigure 7a and 7b. The analysis of these 2 figures is the
same as our discussion in Section 4.2.
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Figure 7: Performance of optimizing sensitive parameters in Llama2-7B fine-tuning on RTE, WiC, and COPA tasks.
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D.5. Hyperparameters in experiments

For all experiments, we use 20,000 training steps with ZO-SGD optimizer (Definition 2.2). We will save a model checkpoint
every 500 steps, and load the checkpoint with the lowest loss on the validation set at the end of the training, and report its
test set accuracy as result. Usually, the training/validation set will be sampled from the original dataset with size 1000/500
respectively and the test set is of size min(1000, |original test set|), except for CB and COPA that we use 100 for the
validation set size. For all ZO experiments (Table 5 and Table 6), we use batch size of 16. This experiment setting is identical
to Malladi et al. (2023a).

Table 5: The chosen hyperparameters for experiments in Table 4. We repeat each hyperparameters for 3 random trials and
report the average and standard deviation in Table 4.

(a) Llama2-7B

Methods SST-2 RTE CB BoolQ WSC WiC COPA

Q, ZO Sensitive (C4, static) (ϵ =1e-3) 5e-7 1e-6 1e-6 1e-6 5e-7 1e-6 1e-6
LoRA (ϵ =1e-3) 1e-5 5e-5 1e-5 2e-5 1e-5 2e-5 1e-5
Prefix (ϵ =1e-2) 1e-4 2e-4 5e-4 5e-4 1e-4 5e-4 2e-4

ZO Sensitive (task, static) (ϵ =1e-3) 5e-7 1e-6 1e-6 1e-6 1e-6 1e-6 2e-6
Random (static) (ϵ =1e-3) 2e-4 5e-4 2e-4 5e-4 2e-4 5e-4 5e-4
Full fine-tuning (ϵ =1e-3) 5e-7 5e-7 5e-7 5e-7 2e-7 5e-7 5e-7

ICL (#examples) 16 16 16 8 16 8 8

(b) Mistral-7B

Q, ZO Sensitive (C4, static) (ϵ =1e-4) 2e-8 5e-8 2e-8 2e-8 1e-8 2e-8 2e-8
LoRA (ϵ =1e-4) 2e-6 5e-6 2e-6 2e-6 2e-6 2e-6 2e-6
Prefix (ϵ =1e-3) 1e-3 2e-3 1e-3 1e-2 5e-4 1e-3 5e-4

ZO Sensitive (task, static) (ϵ =1e-4) 5e-8 5e-8 2e-8 2e-8 2e-8 2e-8 2e-8
Random (static) (ϵ =1e-4) 1e-5 2e-6 5e-6 1e-5 1e-6 2e-6 2e-5
Full fine-tuning (ϵ =1e-4) 2e-8 2e-8 1e-8 1e-8 1e-8 1e-8 2e-8

ICL (#examples) 4 8 4 16 4 4 8

(c) OPT-6.7B

Q, ZO Sensitive (C4, static) (ϵ =1e-3) 2e-7 5e-7 5e-7 5e-7 2e-7 5e-7 2e-7
LoRA (ϵ =1e-3) 1e-5 2e-5 1e-5 2e-5 1e-5 2e-5 2e-5
Prefix (ϵ =1e-2) 2e-3 1e-2 1e-3 5e-3 5e-3 1e-2 5e-3

ZO Sensitive (task, static) (ϵ =1e-3) 2e-7 5e-7 5e-7 2e-7 2e-7 5e-7 2e-7
Random (static) (ϵ =1e-3) 1e-4 5e-5 2e-5 5e-5 2e-4 5e-5 5e-5
Full fine-tuning (ϵ =1e-3) 2e-7 2e-7 2e-7 2e-7 2e-7 2e-7 5e-7

ICL (#examples) 16 4 16 16 16 8 16

Our hyperparameters (learning rate η, perturbation scaling constant ϵ, and the number of ICL examples) for Table 4 is
reported in Table 5 for reproducibility. We use constant η and ϵ throughout our experiments. We also report the chosen
hyperparameter for Figure 7a and Figure 7b in Table 6. For LoRA, we always add to all linear layers with r = 8 and α = 16,
and for Prefix Tuning, we always add to WK and WV with length as 5, as what Malladi et al. (2023a) uses.
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Table 6: The chosen hyperparameters for experiments in Figure 7a and Figure 7b. We repeat each hyperparameters for 3
random trials and report the average to draw a line in Figure 7a and Figure 7b, and we use Llama2-7B for all experiments.
For each subtable, we include the fraction to optimize on its header and report the chosen learning rate on each cell.

(a) RTE

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

Sensitive (C4, static) (ϵ =1e-3) 1e-5 1e-6 1e-6 1e-6 1e-6
Sensitive (task-specific, static) (ϵ =1e-3) 1e-5 1e-6 1e-6 1e-6 1e-6

Sensitive (task-specific, dynamic) (ϵ =1e-3) 1e-5 1e-6 1e-6 1e-6 1e-6
Random (static) (ϵ =1e-3) 2e-2 5e-3 5e-4 5e-5 5e-5

Random (dynamic) (ϵ =1e-3) 2e-2 5e-3 2e-4 5e-5 5e-6
Weight outliers (static) (ϵ =1e-3) 2e-3 1e-3 2e-4 5e-5 1e-5

(b) WiC

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

Sensitive (C4, static) (ϵ =1e-3) 1e-5 2e-6 1e-6 1e-6 1e-6
Sensitive (task-specific, static) (ϵ =1e-3) 1e-5 2e-6 1e-6 1e-6 1e-6

Sensitive (task-specific, dynamic) (ϵ =1e-3) 1e-5 2e-6 1e-6 1e-6 1e-6
Random (static) (ϵ =1e-3) 2e-2 5e-3 5e-4 5e-5 5e-6

Random (dynamic) (ϵ =1e-3) 2e-2 5e-3 5e-4 5e-5 5e-6
Weight outliers (static) (ϵ =1e-3) 1e-3 5e-4 2e-4 1e-4 2e-5

(c) COPA

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

Sensitive (C4, static) (ϵ =1e-3) 5e-6 1e-6 1e-6 1e-6 5e-7
Sensitive (task-specific, static) (ϵ =1e-3) 5e-6 2e-6 2e-6 1e-6 1e-6

Sensitive (task-specific, dynamic) (ϵ =1e-3) 5e-6 1e-6 1e-6 1e-6 1e-6
Random (static) (ϵ =1e-3) 1e-2 2e-3 5e-4 5e-5 5e-6

Random (dynamic) (ϵ =1e-3) 2e-3 1e-3 2e-4 2e-5 2e-6
Weight outliers (static) (ϵ =1e-3) 1e-3 5e-4 5e-4 1e-4 1e-5
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D.6. Task-specific prompts in experiments

We describe our task templates in Table 7.

Table 7: Task templates for all experiments. On the left column we include the task name and the model name, and on the
right column we describe the exact prompt with answer candidates.

Task Prompts

SST-2
(Llama2-7B)

### Sentence: <text> ### Sentiment: negative/positive

SST-2
(Mistral-7B, OPT-6.7B)

<text> It was terrible/great

RTE
(Llama2-7B)

Suppose "<premise>" Can we infer that "<hypothesis>"? Yes or No?
Yes/No

RTE
(Mistral-7B, OPT-6.7B)

<premise>
Does this mean that "<hypothesis>" is true? Yes or No?
Yes/No

CB
(Llama2-7B, Mistral-7B, OPT-6.7B)

Suppose <premise> Can we infer that "<hypothesis>"? Yes, No, or
Maybe?
Yes/No/Maybe

BoolQ
(Llama2-7B)

<passage> <question>? Yes/No

BoolQ
(Mistral-7B, OPT-6.7B)

<passage> <question>?
Yes/No

WSC
(Llama2-7B, Mistral-7B, OPT-6.7B)

<text>
In the previous sentence, does the pronoun "<span2>" refer to <span1>?
Yes or No?
Yes/No

WiC
(Llama2-7B, Mistral-7B, OPT-6.7B)

Does the word "<word>" have the same meaning in these two sentences?
Yes, No?
<sent1>
<sent2>
Yes/No

COPA
(Llama2-7B, Mistral-7B, OPT-6.7B)

<premise> so/because <candidate>
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D.7. Implementation of sparse operations in linear layers

Linear layers in LLMs often contribute most parameters (Kaplan et al., 2020). Since from Equation 5 we know

wsparse = w ⊙mk, wdense = w ⊙ (1d −mk), w = wsparse +wdense (16)

and since wdense would have same shape (and same computational intensities) as w, we need to improve wall-clock time
efficiency of wsparsex to improve the computational efficiency of linear layers after extracting the sparse parameters. In this
case, we would have two different methods to implement the forward pass of linear layers (with induced sparse operation
colored in red):

wx = wdensex+wsparsex (17)
= SparseAddMM(DenseMM(wdense,x),wsparse,x) faster with token generation (18)
= (wdense+wsparse)x (19)
= DenseMM(SparseAdd(wsparse,wdense),x) faster with ZO training (20)
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Figure 8: Time of SparseAdd (Equation 20) versus SparseAddMM (Equation 18) in Llama2-7B ZO training forward &
inference. In subfigure 1 and 3, we use Nvidia RTX A6000 and Intel Xeno Gold 6342 CPUs, with PyTorch version 2.2,
HuggingFace version 4.36, and CUDA 12.2. In subfigure 2 and 4, we use Nvidia A100-SXM4 (40 GiB) and AMD EPYC
7543P 32-Core CPU with PyTorch version 2.1, HuggingFace version 4.38.2, and CUDA 12.2. We use Flash Attention 2
(Dao, 2023) for all 4 subfigures.

The specific choice of employing Equation 18 or Equation 20 needs careful consideration and benchmarking, but here we
can provide a general guideline based on the size of input vector (or arithmetic intensity) and potential integration with
weight quantization method:

Size of input vectors x and arithmetic intensity. wsparsex in Equation 18 would have a computational dependency over
x. During large-batched ZO training, x would be large enough such that Equation 18 would induce large computational
overhead, as shown in subfigure 1 of Figure 8. In contrast, the computational complexity of Equation 20 is independent of x
and when x is large, we would expect Equation 20 is much faster than Equation 18. As an example, we use sequence length
of 512 and batch size 16 sampled from WikiText-2 dataset (Merity et al., 2016) as a representative computational intensity
for ZO training in subfigures 1 and 2 in Figure 8.

However, during autoregressive token generation, on each step we would only append a single token to the previously
cached embeddings, and in this case x is small and computing wdense +wsparse is generally not worthwhile, especially given
that wsparse is already sparse. This is also illustrated in subfigure 3 and 4 in Figure 8. However, we note that the specific
implementation choice is hardware and task dependent and requires thorough benchmarking and we will leave it as a future
work.

We recommend using Equation 20 during large-batched ZO training and Equation 18 during small-batched
autoregressive token generation.
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In light of this observation, in our Figure 6b, we implement both “SparseAdd” and “SparseAddMM” methods for “Sensitive
(0.1%)” and “Random (10%)”. For each method we report the lowest time out of these 2 implementations: for “Sensitive
(0.1%)” training and “Random (10%)” training and inference, we use “SparseAdd” approach. For “Sensitive (0.1%)”
inference, we use the “SparseAddMM” approach.

Integration with weight quantization method. Weight quantization algorithms can be categorized into 2 categories:
uniform quantization method and non-uniform quantization method. For uniform quantization method, (Xi et al., 2023)
indicates that we could use integer matrix multiplication to compute Q(wdense)x efficiently without first dequantizing
Q(wdense) to 16 bits. However, this creates difficulty on our “SparseAdd” approach as we will violate the constraint of
uniformly-spaced quantization bins by computing SparseAdd(Q(wdense) +wsparse). In this case, we also have 3 different
implementations:

Q(w)x ∼ Q(wdense)x+wsparsex (21)

= SparseAddMM
(
Dequantize

(
IntMM(Q(wdense),x)

)
,wsparse,x

)
fits with integer matmul (22)

= SparseAddMM
(

Dequantize(Q(wdense)),x,wsparse

)
similar to Equation 18 (23)

= (Dequantize(Q(wdense))+wsparse)x (24)
= DenseMM(SparseAdd (wsparse,Dequantize(Q(wdense)),x) similar to Equation 20 (25)

Equation 22 would compute IntMM(Q(wdense),x) before dequantizing it to 16 bits. This would make “SparseAdd”
approach infeasible and we can only employ “SparseAddMM” approach in this case. Notice that both Equation 23 and
Equation 25 would still dequantize Q(wdense) first and the choice of implementation would follow into our discussion of
input vector size x in last paragraph. We leave a practical implementation and thorough benchmarking into a future work.

We recommend using Equation 22 when we use efficient integer matmul to compute Q(wdense)x and in other cases,
using Equation 23 or Equation 25 follows our previous recommendation based on the size of input vectors.

D.8. Hardware, platform, libraries, and other details for fine-tuning and benchmarking

Figure 6a, Figure 6b, and Figure 8 (subfigure 1 and 3) are trained and evaluated on an internal cluster with 8 Nvidia
RTX A6000 GPUs and 2 Intel Xeon Gold 6342 CPUs, with PyTorch version 2.2, HuggingFace version 4.36, and CUDA
12.2. In subfigure 2 and 4 in Figure 8, we use Nvidia A100-SXM4 (40 GiB) and AMD EPYC 7543P 32-Core CPU with
PyTorch version 2.1, HuggingFace version 4.38.2, and CUDA 12.2. We use Flash Attention 2 (Dao, 2023) in HuggingFace
Transformers library throughout our experiments, and the base model for ZO full fine-tuning and benchmarking is always
Llama2-7B with Float16 datatype (torch.float16). We also use the Float16 datatype (torch.float16) for all of our sparse
parameters (sensitive sparse, random subsets, etc.) in ZO fine-tuning experiments. Notice that for all of the FO fine-tuning
demonstrations (Figure 4 and Figure 5) we use the BrainFloat16 datatype (torch.bfloat16) to avoid the NaN issue from the
Float16 datatype.

In Figure 6b and Figure 8, we use sequence length of 512 and batch size 16 sampled from WikiText-2 dataset (Merity
et al., 2016) as a representative computational intensity for ZO training, and for inference we generate 128 tokens with
top-p (p = 0.9) sampling from the prompt “Please describe the effect of sparse zeroth-order optimization methods on
memory-efficient LLM fine-tuning: ”.
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