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LUMITEX: TOWARDS HIGH-FIDELITY PBR TEXTURE
GENERATION WITH ILLUMINATION CONTEXT
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Figure 1. A collection of textured meshes with PBR materials generated by LumiTex, capturing
both intricate details and convincing physical realism across diverse object categories.

ABSTRACT

Physically-based rendering (PBR) provides a principled standard for realistic ma-
terial–lighting interactions in computer graphics. Despite recent advances in gen-
erating PBR textures, existing methods fail to address two fundamental chal-
lenges: 1) materials decomposition from image prompts under limited illumina-
tion cues, and 2) seamless and view-consistent texture completion. To this end,
we propose LumiTex, an end-to-end framework that comprises three key compo-
nents: (1) a multi-branch generation scheme that disentangles albedo and metal-
lic–roughness under shared illumination priors for robust material understanding,
(2) a lighting-aware material attention mechanism that injects illumination context
into the decoding process for physically grounded generation of albedo, metallic,
and roughness maps, and (3) a geometry-guided inpainting module based on a
large view synthesis model that enriches texture coverage and ensures seamless,
view-consistent UV completion. Extensive experiments demonstrate that Lumi-
Tex achieves state-of-the-art performance in texture quality, surpassing both ex-
isting open-source and commercial methods. Project page: Anonymous Link.

1 INTRODUCTION

Physically-based rendering (PBR) is the industry standard for material and lighting representation
in games, films, and AR/VR. PBR textures encode key surface properties such as albedo and metal-
lic–roughness (MR), allowing for realistic visual interactions under diverse lighting conditions. Nev-
ertheless, it is challenging to generate PBR textures, which requires both accurate physical charac-
terization of materials and consistency across multiple viewpoints.

To obtain the high-quality texture from a mesh and image, multi-view texturing has emerged as the
dominant framework across both research (Huang et al., 2024c; Liang et al., 2025b; Zhang et al.,
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2024a; Zhao et al., 2025) and commercial systems (TripoAI, 2025; Meshy, 2025; Team, 2025b). At
the core of this framework are multi-view diffusion models, which jointly reason about the underly-
ing 3D structure and consistent appearance across all views through multi-view attention (Shi et al.,
2023). This mechanism links pixels across viewpoints to ensure coherent geometry and appearance,
after which a back-projection step aggregates the synthesized views into UV texture maps. A key
strength of this paradigm is that it inherits the visual quality and diversity of pre-trained image dif-
fusion models. Consequently, adapting these models to handle PBR-aware multi-view generation
provides a unified pipeline that naturally bridges reference images with textured 3D assets.

Recent advances in PBR texture generation, primarily driven by the remarkable capabilities of multi-
view diffusion models, can be broadly categorized into two main approaches. The first line of re-
search (Zhang et al., 2024c; Zhu et al., 2025; Hong et al., 2024; Munkberg et al., 2025) adopts a
two-stage approach: it first generates multi-view images that encode baked environment lighting
(shaded images), and then obtains PBR textures either through optimization or by employing dedi-
cated multi-view inference models, e.g., IDArb (Li et al., 2025b). These shaded images supply rich
illumination cues that are crucial for accurate material decomposition. However, optimization-based
methods such as DreamMat (Zhang et al., 2024c) are severely limited by long optimization time.
While multi-view inference models can help in efficiency, existing methods like MuMA (Zhu et al.,
2025) often produce inferior materials, as the generated intermediates are frequently suboptimal and
poorly aligned with the training inputs, as illustrated in Fig. 2(a).
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Figure 2. Illustration of Different PBR Model-
ing. Unlike (a) two-stage PBR texture generation
with suboptimal intermediates, and (b) end-to-end
approach w/o multi-view shaded features, (c) our
multi-branch design leverages multi-view consistent
lighting features and surpasses the generation qual-
ity of other models.

The second stream (Zhao et al., 2025; He
et al., 2025; Zhu et al., 2024; Huang et al.,
2025) focuses on jointly generating multi-
view albedo, metallic, and roughness images
with multi-channel diffusion (see Fig. 2(b))
and subsequently baking multi-view images
to the UV space via camera projection (Chen
et al., 2023b; Richardson et al., 2023). How-
ever, these methods suffer from three key lim-
itations. Firstly, generating accurate multi-
view material images is challenging since im-
age diffusion models (Ho et al., 2020; Podell
et al., 2023; Lin et al., 2024; Esser et al.,
2024) lack sufficient material priors, and ref-
erence images provide only limited illumina-
tion cues. Secondly, the domain gap between
albedo and metallic-roughness (MR) is often
overlooked. Albedo reflects the intrinsic surface color, whereas MR encodes illumination-dependent
material properties. However, multi-channel approaches typically predict them jointly within a
shared output space. This entangled representation, without explicit contextual guidance, hinders
accurate material decomposition and compromises the physical plausibility of the generated tex-
tures. Lastly, existing datasets suffer from severe data imbalance. While shaded and albedo images
are relatively abundant, high-quality metallic and roughness maps are much more scarce, limiting
effective supervision for PBR materials.

To address these limitations, we propose LumiTex, an end-to-end framework that jointly generates
multi-view shaded images and PBR maps. Our key idea is to integrate multi-stage inference into
a single one to overcome the reliance on imperfect shaded intermediates while alleviating the data
imbalance and retaining rich illumination cues via multi-stage training. Specifically, we first train
a multi-view illumination context branch to reconstruct shaded images across views, capturing rich
and consistent lighting cues as an explicit illumination context. To address the domain gap between
albedo and MR in joint modeling, we then introduce a lighting-aware material attention mecha-
nism in the material branches that separately guide albedo and MR by the illumination context for
channel-specific reasoning. By combining the generative prior of diffusion models with the rich
illumination context extended from reference images, LumiTex enables high-fidelity and physically
plausible texture generation in a fully end-to-end manner.

To further enhance the quality and completeness of generated textures, we introduce a general texture
inpainting strategy based on a large view synthesis model (LVSM) (Jin et al., 2025). Specifically,
we train a geometry-guided LVSM to synthesize novel views for missing or occluded regions based
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on the generated views. Given input views, geometry maps, and camera poses, the model synthe-
sizes new viewpoints from arbitrary target poses, effectively densifying the texture observations.
In contrast to UV-based methods (Yu et al., 2023; Cheng et al., 2024; Yu et al., 2024; Zeng et al.,
2024a), which suffer from discontinuities and topological ambiguities in UV space, our approach
performs view-space completion, enabling seamless and globally consistent texture generation.

The contributions of this work are summarized as follows:
• We propose an end-to-end multi-branch framework for high-quality PBR texture generation,

where a multi-view illumination context branch captures consistent lighting priors to alleviate
data imbalance and reliance on imperfect intermediates in two-stage designs.

• We introduce a lighting-aware material attention mechanism that conditions albedo and metal-
lic–roughness generation on shared illumination priors, enabling disentangled material reasoning
and improving physical plausibility.

• We propose an advanced texture inpainting strategy, leveraging LVSM to extend the generated
views to a denser set for seamless and globally consistent texture completion.

• Extensive experiments demonstrate that our method surpasses existing state-of-the-art open-
source and commercial methods.

2 RELATED WORK

Texture Generation. The advances of foundation models have opened new directions for automat-
ing texture generation in 3D content creation. Early works leverage 2D diffusion priors via Score
Distillation Sampling (SDS) to optimize 3D assets (Poole et al., 2022; Lin et al., 2023; Wang et al.,
2023; Po & Wetzstein, 2024; Metzer et al., 2022; Chen et al., 2023a; Khalid et al., 2022; Michel
et al., 2021; Chen et al., 2022). These approaches iteratively optimize renderings of 3D shapes to
align with the distribution learned by pre-trained diffusion models (Podell et al., 2023; Rombach
et al., 2021; Esser et al., 2024; Lin et al., 2024), but the results are often over-saturated and unreg-
ulated for 3D shapes, making them inapplicable for practical use. To enhance geometric fidelity,
some methods (Yu et al., 2023; Bensadoun et al., 2024; Cao et al., 2023; Liu et al., 2024a) incorpo-
rate explicit 3D features, such as vertex positions, normals, or depths, to progressively inpaint the
mesh across pre-defined views. Although the geometry fidelity is improved, the results are deterio-
rated by the synchronization process of multi-view latents. Another line of research (Yu et al., 2023;
Zeng et al., 2024a; Bensadoun et al., 2024; Yu et al., 2024) projects the 3D point cloud information
and supervises the training in the UV space, addressing the occlusion problem in the multi-view
approaches. However, they introduce topological ambiguity inherent from the UV representation,
deteriorating the capability of the diffusion model to generate high-fidelity textures.

More recently, methods like MV-Adapter (Huang et al., 2024c) and Hunyuan3D-Paint (Zhao et al.,
2025) have shown promising results in generating globally consistent textures via multi-view atten-
tion (Li et al., 2024; Kant et al., 2024; Huang et al., 2024d; Shi et al., 2023; Wang & Shi, 2023; Feng
et al., 2025). These methods efficiently leverage the capability of pre-trained diffusion models and
the 3D geometry condition, ensuring both realistic results and spatial consistency.

PBR Texture Generation. Recent approaches leverage pre-trained diffusion models to generate
PBR materials for 3D assets. Early works employ SDS for PBR generation and typically (Chen et al.,
2023c; Zhang et al., 2024c; Liu et al., 2024b; Youwang et al., 2024a; Wu et al., 2023; Xu et al., 2023;
Yeh et al., 2024) incorporate the BRDF in the diffusion process to learn material properties. Methods
like Material-Anything (Huang et al., 2024a) and CLAY (Zhang et al., 2024a) iteratively denoise and
synchronize latents across multiple viewpoints. TexGaussian (Xiong et al., 2024) leverages octant-
aligned 3DGS (Kerbl et al., 2023) for real-time PBR texture synthesis. Other approaches (Zhang
et al., 2024b; Dang et al., 2024; Wang et al., 2024; Fang et al., 2024) leverage LLMs to improve
semantic alignment with retrieval-augmented generation. However, these methods struggle with
physically grounded decomposition, view consistency, or accurate separation of albedo and MR.
Some approaches (He et al., 2025; Zhu et al., 2024; Vainer et al., 2024; Vecchio et al., 2024; Sartor
& Peers, 2023) fine-tune image models to generate multi-channel PBR materials, but the domain
gap between albedo and MR is not well addressed.

Image Intrinsic Decomposition. Material decomposition aims to estimate intrinsic materials from
image inputs with unknown lighting, serving as a fundamental task in material understanding. Early
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Figure 3. Overview of LumiTex. We first train a multi-view illumination-consistent base model to
generate shaded images. Then, we freeze this branch and utilize its shaded features to train material
branches for high-fidelity PBR texture generation. Finally, our geometry-guided LVSM synthesizes
novel views from novel perspectives to enable seamless, view-consistent texture inpainting.
works (Wimbauer et al., 2022; Sang & Chandraker, 2020; Boss et al., 2020; Yi et al., 2023) formu-
late this task as an optimization problem, recovering the PBR materials from the images by solving
the rendering equation (Kajiya, 1986). Recently, generative approaches (Chen et al., 2024; Hong
et al., 2024; Kocsis et al., 2024; Li et al., 2025b; Zhu et al., 2022; Huang et al., 2024b) utilize dif-
fusion models to decompose materials from images with promising results. RGB-X (Zeng et al.,
2024b) and DiffusionRenderer (Liang et al., 2025a) propose a unified forward and inverse process
for image synthesis and material decomposition. However, estimating individual properties from a
single image with unknown illumination is ill-posed due to the inherent ambiguity between illumi-
nation and materials. Our work designs a multi-view pipeline that incorporates illumination context,
enabling physically plausible and coherent material generation.

3 METHOD

Given an input mesh with a reference image I , our goal is to generate N view-consistent PBR
images and achieve seamless material textures. We describe the overall pipeline architecture in Sec-
tion 3.1. As shown in Fig. 3, we first train a multi-view illumination context branch that reconstructs
multi-view shaded images to capture consistent lighting cues as an explicit illumination context.
This context then guides the albedo and MR branches through a lighting-aware material attention
mechanism to generate multi-view material maps (Section 3.2). Finally, a geometry-guided LVSM
is trained to synthesize M novel views from generated N views for texture inpainting (Section 3.3).

3.1 MULTI-VIEW PBR GENERATION TRANSFORMER

Our model integrates a multi-modal Transformer (MM-T) and a multi-view Transformer (MV-T).
The multi-modal transformer fuses diverse modalities for each view, while the multi-view trans-
former enforces consistency across views. The detailed operations are presented below.

Multi-Modal DiT. The MM-T is designed to integrate geometry information, reference appearance,
and material semantics (albedo or MR) for each view. Specifically, for each view i = 1, ..., N ,
we concatenate tokens derived from the input image encoded by VAE and DINOv2 (Oquab et al.,
2023), the mesh geometry (normal Ni and canonical coordinate Ci) encoded by VAE, and learnable
material embeddings e, as well as view latent zi, and feed them into a stack of l1 transformer blocks:

Tgeo = Lineargeo
[
VAE(Ni)⊕ VAE(Ci)

]
∈ RN×L×C , (1)

Timg = Linearimg
[
VAE(I); DINO(I)

]
∈ R1×2L×C , (2)

zl1
i = MM-Tl1

(
zi,Timg,Tgeo, e

)
∈ RN×3L×C . (3)

Multi-View DiT. After fusing multi-modal features in the first stage, we discard the image and
domain tokens, and shift focus to enforcing cross-view consistency in the second stage. Specifically,
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we concatenate their latent tokens from N views into a unified sequence that is processed by a
sequence of l2 transformer blocks, allowing each token to interact with others for global consistency:

{ẑi}Ni=1 = MV-Tl2(zl1
1 , zl1

2 , ...,zl1
N ) ∈ RNL×C , (4)

where ẑi is the denoised latent for the i-th view, L is the token length, and C is the feature dimension.
The whole model is trained end-to-end using a flow matching loss on multi-view images.

3.2 LIGHTING-AWARE MATERIAL ATTENTION

Multi-view shaded images provide rich illumination cues for high-fidelity PBR reconstruction, serv-
ing as a reliable prior for high-fidelity PBR reconstruction. Following this insight, we design a multi-
branch generative framework, where a multi-view illumination context branch provides shaded em-
beddings for material reasoning. The lighting-aware material branch then consumes this context
to produce physically plausible PBR maps. This framework alleviates the data scarcity problem in
PBR texture generation, mitigates the domain gap between albedo and MR maps, and yields more
physically consistent material predictions.

Multi-View Illumination Context Branch. Unlike prior two-stage works that rely on multi-view
shaded images as intermediates, we introduce a multi-view illumination context branch to learn the
shaded embeddings, as illustrated in Fig. 3. Specifically, this branch is trained to reconstruct multi-
view shaded images to ensure the learned embeddings capture consistent illumination across views.
To model view-dependent illumination effects, shaded latent tokens S = {si}NL

i=1 from all views are
encoded with a view-aware RoPE (Su et al., 2024), which preserves both spatial alignment and view
identity. Then, we perform cross-view attention to produce shaded keys and values that condition
the material branches:

si =
∑

j
Softmaxj

(
qik

T
j + ϕ(t, i, j)

)
vj , Kshaded = WKS, Vshaded = WV S, (5)

where ϕ(t, i, j) is a view-specific positional embedding tied to the index of query view t, encoding
illumination relationships between views. We provide the details in Sec. A.2 of the Appendix.

This design alleviates the data imbalance issue in open-source 3D datasets, where high-quality PBR
maps are scarce. In this way, even data that lack plausible MR maps can be utilized, as they still pro-
vide supervision for multi-view illumination reconstruction under physically consistent materials.

Lighting-Aware Material Branch. Some works generate PBR materials via jointly modeling the
albedo and MR maps, overlooking the domain gap between these two modalities. To address this
problem, we leverage the illumination context learned from the previous branch and guide albedo
and MR generation separately, while conditioning both on the same shaded features to maintain
the consistency of the two branches. Specifically, we introduce a lighting-aware material attention
mechanism in which albedo and MR branches perform shaded-guided cross-attention. The shaded
keys Kshaded and values Vshaded supply illumination cues to inform material-specific queries:

Attnalbedo = Softmax

(
QalbedoK

T
shaded√

d

)
· Vshaded, (6)

Attnmr = Softmax

(
QmrK

T
shaded√
d

)
· Vshaded. (7)

This design provides a rich illumination context for the decoding process, enabling the model to
separate reflectance properties from lighting effects and avoid the error accumulation problem in the
two-stage design. By complementarily attending to shaded priors, the albedo branch emphasizes
diffuse consistency while the MR branch captures specular characteristics, together improving both
the physical plausibility and multi-view coherence of generated PBR textures.

3.3 TEXTURE INPAINTING AS NOVEL VIEW SYNTHESIS

Texture inpainting is a post-processing step that fills missing or occluded regions to ensure seamless
integration with surrounding textures. Previous methods usually perform inpainting on partially
textured meshes in the UV space. However, due to inherent UV discontinuities and topological
ambiguities, the inpainted regions often fail to align with their surrounding areas, particularly when
the UV mapping is highly fragmented, as is common for shapes produced by generative models.
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Figure 4. Texture Inpainting with Geometry-
guided LVSM (Jin et al., 2025). Our model
infers dense novel views from sparse inputs and
aligns with the geometry.

Incomplete textures typically result from lim-
ited surface coverage in the generated sparse
multi-view images. To address this, we aim to
synthesize a dense set of views that fully cover
the object’s surface, enabling seamless texture
completion through direct back-projection. To
this end, we train a geometry-guided variant
of LVSM (Jin et al., 2025), a scalable large
view synthesis model known for high-quality
novel view generation, to infer additional views
that cover previously unobserved regions of the
mesh. These synthesized views, combined with
the initial ones, form a dense set that is pro-
jected back to UV space, resulting in a seamless
and complete texture. The proposed framework
is illustrated in Fig. 4.

Novel View Generation. Given N generated sparse view images {Ii}Ni=1, pixel-aligned Plücker ray
maps {Pi}Ni=1 that encode camera intrinsics and extrinsics, and geometry conditions {Gi}Ni=1, we
infer additional M target views with conditions {P t

i }Mi=1 and {Gt
i}Mi=1 to inpaint the occluded re-

gions. To effectively embed conditions, we tokenize and map the inputs into a unified representation
with a linear layer. Formally,

xi = MLP([Pi,Gi, Ii]), xt
i = MLP([P t

i ,G
t
i]) ∈ Rd, (8)

where d is the feature dimension, xi represents the set of condition tokens, and xt
i denotes the set

of target tokens. Following LVSM (Jin et al., 2025), we employ a decoder-only transformer to infer
target views from input tokens that avoid explicit 3D representation to minimize the inductive bias:

{yi}Ni=1, {yt
i}Mi=1 = Transformer

(
{xi}Ni=1, {xt

i}Mi=1

)
, (9)

where the output condition tokens yi and target tokens yt
i are updated from the corresponding inputs.

Then, we discard condition tokens and map target tokens to the RGB space with an MLP, followed
by reshaping to form the final predicted images Ît:

Ît
1, . . . , Î

t
M = Reshape

(
MLP(yt

1, . . . ,y
t
M )

)
. (10)

To further improve the quality of the synthesized novel views, we adopt the test-time training method
proposed in Zhang et al. (2025). The geometry-guided LVSM generates two dense sets of albedo
and MR separately for texture inpainting, where MR is encoded in the ORM convention with the
occlusion channel set to a constant value.

View Selection. Inspired by Zhao et al. (2025), we select target views from a predefined dense set
V = {v1, ..., vK}. We first project the generated N views into the UV space to obtain an incomplete
texture. Then, we greedily rank the views in V by the area of uncovered UV regions they observe
and select the top M as target views.

4 EXPERIMENTS

In this section, we evaluate our method with both open-source and commercial state-of-the-art meth-
ods, including shaded texture generation, PBR generation, and texture inpainting methods. We con-
duct comprehensive qualitative and quantitative comparisons, and a user study with 3D modelers, to
demonstrate that our generated PBR textures align well with human perceptual preferences.

4.1 IMPLEMENTATION DETAILS

We curate a dataset from Objaverse and Objaverse-XL (Deitke et al., 2023b;a), containing 92K
objects as our training set. For each 3D object, we sample cameras from 30 views and render the
object with 3 environment maps. We also render multi-view albedo, metallic, roughness maps, and
HDR images at a resolution of 1024 × 1024. For the model training, we initialize our DiT from
FLUX.1-dev (BlackForestLabs, 2024), utilizing the flow matching as the training objective. We first
train our shaded model on 512× 512 and then scale up to 768× 768. The entire training procedure
requires approximately 106 GPU days. We provide datasets and training details in Sec. A.2.

6
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UniTEX OursStep1X-3DMV-AdapterSyncMVD-IPAInputs

Figure 5. Qualitative Results on Texture Generation Methods. Our method generates plausible
materials for relighting, avoids baked-in lighting, and is robust under diverse reference illuminations.

Hunyuan3D-2.1* OursTripo AI v2.5*Meshy-5*DreamMatInputs

Figure 6. Qualitative Results on PBR Generation Methods. Our method generates high-fidelity
PBR materials, avoids light baking, and achieves competitive PBR maps compared to state-of-the-
art open-source and commercial methods. Each object has: the albedo on the left, the metallic on the
top right, and the roughness on the bottom right. * denotes the method trained on private datasets.

Partial Textured Mesh Reference Paint3D TexGen Ours Reference Paint3D TexGen OursPartial Textured Mesh

Figure 7. Comparison with Texture Inpainting Methods. Our approach effectively recovers local
details and exhibits greater robustness than other methods, producing semantically coherent results
without visible seams.

4.2 COMPARISON WITH EXISTING METHODS

Baselines. We compare our method with comprehensive texture synthesis baselines to demonstrate
its effectiveness. The baselines include shaded texture synthesis: SyncMVD (Liu et al., 2024a),
MV-Adapter (Huang et al., 2024c), Step1X-3D (Li et al., 2025a), UniTEX (Liang et al., 2025b);
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Table 1. Quantitative comparison with state-of-the-art methods. We compare two classes of meth-
ods, texture-only generation and PBR texture generation. Our method achieves the best performance
compared with both classes. * denotes the method trained on private datasets.

Texture Evaluation Relighting Evaluation

Method Type FID↓ CLIP-FID↓ CMMD↓ CLIP-I↑ LPIPS↓ FID↓ CLIP-FID↓ CMMD↓ CLIP-I↑ LPIPS↓
SyncMVD-IPA (Liu et al., 2024a) Texture 222.1 21.10 1.8263 0.9187 0.2504 149.1 18.04 0.7394 0.9101 0.1202
MV-Adapter (Huang et al., 2024c) Texture 237.3 24.95 2.4510 0.9022 0.2574 123.2 13.82 0.5405 0.9246 0.1034

Step1X-3D (Li et al., 2025a) Texture 240.9 24.32 2.2090 0.9053 0.2540 120.0 12.90 0.4038 0.9288 0.1000
UniTEX (Liang et al., 2025b) Texture 230.7 22.20 1.9891 0.9133 0.2473 124.8 13.50 0.4707 0.9282 0.0974

Paint-it (Youwang et al., 2024b) PBR 293.3 35.50 3.4137 0.8648 0.3769 162.9 26.77 1.2514 0.8666 0.1564
DreamMat (Zhang et al., 2024c) PBR 231.6 25.49 2.1722 0.9016 0.2816 160.1 19.97 0.8386 0.8983 0.1346
Hunyuan3D-2.1*(Team, 2025a) PBR 196.6 18.84 1.7195 0.9268 0.2413 103.7 10.89 0.3610 0.9420 0.0808

Ours PBR 160.8 14.89 1.3669 0.9417 0.1903 99.6 10.63 0.3151 0.9436 0.0831

Figure 8. Relighting Results. We generate 3D assets from various input images and relight them
under diverse environments to demonstrate the physical plausibility of our PBR textures.

and PBR texture synthesis: Paint-it (Youwang et al., 2024b), DreamMat (Zhang et al., 2024c),
and Hunyuan3D-2.1 (Team, 2025a) (MaterialMVP (Huang et al., 2025) enhanced with purchased
dataset). Additionally, we compare LumiTex with proprietary methods such as Meshy-5 (Meshy,
2025) and Tripo AI v2.5 (TripoAI, 2025). We improve the original text-conditioned SyncMVD (Liu
et al., 2024a) by incorporating the SDXL-base model (Podell et al., 2023) (the vital component) and
an IP-Adapter (Ye et al., 2023) to align with an image-to-texture task and compare it (referred to
as SyncMVD-IPA) with our approach. We generate some image prompts using GPT-4o and obtain
meshes from Hunyuan3D-2.5 (Team, 2025b) and Objaverse (Deitke et al., 2023b). For the texture
inpainting, we compare our method with Paint3D (Zeng et al., 2024a) and TexGen (Yu et al., 2024).

Evaluation Metrics. We follow Hunyuan3D (Team, 2025a;b; Zhao et al., 2025) to use FID (Heusel
et al., 2017), CLIP-FID, and LPIPS (Zhang et al., 2018) to evaluate texture fidelity. CLIP Maximum-
Mean Discrepancy (CMMD) (Jayasumana et al., 2024) assesses the diversity of the generated texture
details, and CLIP-I (Radford et al., 2021) measures prompt alignment. We further assess relighting
quality under novel lighting as an indicator of the physical accuracy of the generated PBR materials.

4.3 QUALITATIVE RESULTS

We qualitatively compare LumiTex with recent baselines in texture generation and inpainting. Lu-
miTex surpasses baselines in physical realism, lighting decoupling, and prompt fidelity. In terms of
realism, LumiTex exhibits realistic appearances under novel lighting, while others often copy input
highlights as in Fig. 5, failing to produce realistic reflections due to the absence of PBR materials.
As shown in Figs. 5 and 6, LumiTex effectively decouples lighting effects to ensure that models
interact correctly with environment-dependent illumination. In contrast, baselines often produce
diffuse maps with baked-in lighting, which deteriorates realism and hinders 3D asset reuse. Com-
pared to SyncMVD, Step1X-3D, and DreamMat, which exhibit color shifts, our method produces
semantically faithful PBR textures that preserve fine details. LumiTex can also generate high-quality
textures across complex shapes and diverse object categories (see Fig. 1), retaining realistic appear-
ances under diverse lighting (see Fig. 8), supporting downstream applications like IP design.

In Fig. 7, we compare texture inpainting results across baselines. Paint3D completes textures with
a UV refinement model but often produces over-smoothed and semantically inconsistent results, as
spatially unrelated regions are treated equally in the UV domain. For example, the Beetle’s underside
and wheels are inpainted without spatial awareness, leading to texture bleeding. TexGen mitigates
this issue via 3D spatial encoding, yet still suffers from disrupted semantic coherence and seams,
due to the inherent topological ambiguities of UV mapping. Our method, conditioned on 2D views
and 3D cameras, avoids the adverse effects caused by UV representation. By unifying condition and
target views in a framework, our method preserves fine details while ensuring global consistency.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

w/ Multi-view Illumination Branch (ours)
Albedo MR maps M/R Rendering

w/o Multi-view Illumination Branch
Albedo MR maps M/R RenderingReference Image

(c) Multi-view Illumination Branch

one-stage (ours) two-stage multi-branch (ours) multi-channel
(a) One-stage Generation (b) Multi-branch Generation.

Figure 9. We ablate the one-stage generation, multi-branch generation, and multi-view illumination
context branch (top: metallic, down: roughness) to validate the effectiveness of our method.

4.4 QUANTITATIVE RESULTS

We evaluate 133 objects excluded from training on two aspects: texture quality and relighting eval-
uation. Texture quality assesses fidelity and alignment with the reference image, while relighting
evaluation involves rendering each object from 32 views sampled on the Fibonacci sphere with ran-
dom environment maps and comparing them against ground-truth renderings. As shown in Tab. 1,
our method surpasses both texture-only and PBR-based baselines, achieving better FID and LPIPS
for visual fidelity, lower CMMD for richer and more diverse texture generation, and stronger seman-
tic alignment with the reference images as reflected by higher CLIP-I and lower CLIP-FID scores.

Table 2. User study results on rendering quality,
completeness, and PBR material accuracy.
Method Quality↑ Compl.↑ Diffuse↑ Metallic↑ Rough.↑
SyncMVD (Liu et al., 2024a) 2.29 3.27 2.39 – –
MV-Adapter (Huang et al., 2024c) 2.65 3.06 2.65 – –
Step1X-3D (Li et al., 2025a) 2.70 2.98 2.58 – –
UniTEX (Liang et al., 2025b) 2.96 2.98 2.75 – –
Paint-it (Youwang et al., 2024b) 2.27 2.97 2.19 2.46 2.57
DreamMat (Zhang et al., 2024c) 2.05 2.92 2.58 2.40 2.33
Hunyuan3D-2.1*(Team, 2025a) 3.69 3.98 3.57 3.34 3.61
Ours 4.48 4.61 4.34 4.14 4.07

To evaluate perceptual quality, we conduct a
user study, where 23 3D modelers rate results
(ranging from 1 to 5) generated from differ-
ent methods on five criteria that are difficult to
quantify: rendering quality, albedo, roughness,
metallic accuracy, and texture completeness,
with input images and meshes provided for ref-
erence. As shown in Tab. 2, our method outper-
forms all baselines across all criteria, demon-
strating strong alignment with human preference.

4.5 ABLATION STUDY

One-Stage Generation. To validate the effectiveness of our end-to-end pipeline, we compare it to a
two-stage variant that first generates multi-view shaded images, followed by a PBR decomposition
model. This variant is fine-tuned from our illumination context branch and IDArb (Li et al., 2025b).
As shown in Fig. 9(a), it often produces inaccurate material predictions, such as excessive metallic-
ity, plastic-like surfaces, or overly uniform albedos, likely due to error accumulation across stages.
In contrast, our unified design produces more realistic results, showing stronger fidelity for this task.
Multi-Channel Generation. To evaluate our disentangled multi-branch design, we compare it with
a multi-channel variant that jointly predicts albedo and MR in a unified output space, following prior
works (He et al., 2025; Zhang et al., 2024a). As shown in Fig. 9(b), this joint prediction often results
in inaccurate outputs, especially in metallic regions. Our illumination-guided, material-specific de-
sign maintains channel separation and produces more physically and semantically accurate results.
Multi-View Illumination Context Branch. We show the importance of illumination context branch
by training a material-only variant on the same dataset until convergence. As shown in Fig. 9(c), the

9
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variant fails to produce accurate MR maps in metallic regions, resulting in a plastic-like appearance
under relighting. The illumination context contributes greatly to accurate PBR generation.

5 CONCLUSION

We present LumiTex, an end-to-end multi-branch pipeline for high-fidelity PBR texture generation.
By combining a multi-view illumination context branch with a novel lighting-aware material atten-
tion mechanism, LumiTex enables physically plausible PBR map generation. To ensure global sur-
face coverage and coherence, we train a geometry-guided LVSM for texture inpainting. Extensive
experiments demonstrate that LumiTex outperforms existing methods in texture quality, semantic
alignment, and relighting fidelity, offering a practical solution for PBR texture generation.
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A APPENDIX

A.1 MORE VISUAL RESULTS OF LUMITEX

Multi-View PBR Material Results. To evaluate the generalization capability of LumiTex in es-
timating multi-view G-buffers from in-the-wild images, we present results based on real-captured
images (Fig. 10) and AI-generated images (Fig. 11). As illustrated, LumiTex produces consistent
multi-view RGB renderings and corresponding materials in both cases, demonstrating strong ro-
bustness to images beyond the training distribution. The material renderings are scaled to avoid
pure white regions, which may visually blend with the background and hinder clarity.

Results on Real-World Scanned Meshes. We further evaluate LumiTex on real-captured scenes
with casual image prompts and noisy geometry reconstructed from photogrammetry. As shown in
Fig. 13, LumiTex generates high-quality PBR textures that remain physically plausible and consis-
tent across novel views, despite challenging lighting conditions and imperfect inputs. Notably, our
model preserves fine details and produces realistic material, highlighting its robustness in real-world
scenarios without requiring clean geometry or controlled lighting.

Relighting Comparisons. To demonstrate the quality of our PBR textures, we compare relight-
ing results against several state-of-the-art PBR generation methods. As shown in Fig. 12, LumiTex
consistently generates realistic, lighting-consistent renderings across diverse scenes and materials,
and robustly handles structured patterns like text. In contrast, competing methods often exhibit
inaccurate material predictions or texture artifacts under novel lighting. Additionally, we provide
supplementary videos demonstrating dynamic relighting, including static objects under rotating en-
vironment lighting and rotating objects under fixed illumination. These visualizations showcase the
photorealism and physical plausibility of our results.

More PBR Decomposition Results. We report the G-buffer results of the teaser in Fig. 15, contain-
ing 38 assets with both real and AI generated meshes and references.

Robustness under Extreme Conditions. To further assess generalization, we evaluate LumiTex
on inputs exhibiting highly reflective materials and strong backlighting, two challenging scenarios
where shading leakage and highlight imprinting are common. As shown in Fig. 16, our method
consistently maintains clean albedo maps and stable MR predictions without baked-in reflections,
while baseline methods struggle under the same conditions.

A.2 IMPLEMENTATION DETAILS

In this section, we elaborate on the implementation details, including the dataset construction and
augmentation, the details of the implementation of the multi-view PBR generation transformer, and
the geometry-conditioned LVSM for texture inpainting.

Dataset Details. We curate a dataset from Objaverse and Objaverse-XL (Deitke et al., 2023b;a),
comprising 92K 3D objects for training both our PBR generation model and the large view syn-
thesis model. For each object, we sample 6 predefined camera viewpoints with the following ele-
vation–azimuth pairs for PBR generation transformer training: {20◦, 0◦}, {20◦, 90◦}, {20◦, 180◦},
{20◦, 270◦}, {90◦, 0◦}, and {−90◦, 0◦}. Then, we sample 24 random camera viewpoints to train
our LVSM-based texture inpainting model. To ensure dense and diverse coverage, each selected
view is required to differ from all others by at least 5◦ in either azimuth or elevation. Each object is
rendered under 3 randomly selected environment maps from a lighting database to provide diverse
illumination. We use Blender Cycles and Nvdiffrast with custom shaders to generate multi-view
shaded images and G-buffers (including normal, XYZ, albedo, metallic, and roughness maps). All
images are rendered at a resolution of 1024× 1024 and downsampled to 512× 512 and 768× 768
for multi-scale training.

Data Augmentation. To enhance the robustness of our method for real-world applications, such
as user-generated content (UGC) platforms where inputs may be AI-generated or casually captured,
we employ several commonly used data augmentation strategies. To simulate the variability of user-
provided reference images, which often deviate from the canonical viewpoints in our training set,
we apply random transformations including scaling, rotation, translation, perspective warping, and
lumination scaling with probabilities 0.1, 0.25, 0.25, 0.1, 0.1, respectively.
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RoughnessMetallicAlbedoRenderReference RoughnessMetallicAlbedoRender

Figure 10. Multi-view rendered images and materials generated by LumiTex. All of the input
images are real captured images. We present novel view renderings, along with corresponding
albedo, metallic, and roughness maps, from two different views.

RoughnessMetallicAlbedoRenderReference RoughnessMetallicAlbedoRender

Figure 11. Multi-view rendered images and materials generated by LumiTex. All of the input
images are real AI-generated images. We present novel view renderings, along with corresponding
albedo, metallic, and roughness maps, from two different views.
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Figure 12. Relighting Comparisons. Relighting results of state-of-the-art PBR generation methods
under two novel lighting conditions. The top row shows the reference images.
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Figure 13. Generalization to Real-world Scanned Meshes. LumiTex generates consistent PBR
textures and realistic relighting results from real-world images and noisy scanned geometry, demon-
strating strong robustness to uncontrolled lighting and diverse inputs. We provide renderings under
casual illumination conditions from two different views.

Reference View 1 View 2 Reference View 1 View 2

Figure 14. Failure Cases. LumiTex faces several limitations. We provide the reference image
and the generated textures rendered from two different views. First, the current resolution restricts
the generation of fine details such as small printed text or specifications (left). Second, the model
struggles with transparent materials due to the lack of alpha channel modeling (right).

Training Details of Multi-View PBR Generation Transformer. As introduced in Sec. 4.1 of the
main paper, we initialize our model weights from FLUX.1-dev (BlackForestLabs, 2024). Then we
adapt the model to a geometry-conditioned multi-view image generation generator by improving
both multi-modal DiT and multi-view DiT as illustrated in Sec. 3.1. Specifically, to generate multi-
view images of N = 6 views, for each view, we concatenate the latent features with geometry
tokens and reference image tokens. These inputs are fused using a multi-modal DiT comprising
l1 = 19 double-stream transformer blocks. After fusion, we drop the geometry and reference tokens
and concatenate the latents from all N views. To encode view identity into each latent, we modify
the factorized 3D Rotary Positional Embedding (3D RoPE), indexing each token by its space-view
coordinate as (t, i, j) = (0, h, w) + t × (1, 0, o), where t is the view index and o is a fixed offset
controlling inter-view separation. Finally, the multi-view DiT denoises the aggregated latents using
l2 = 38 single-stream transformer blocks. We train the model with the flow matching loss. The
feature dimension is C=3072, and the token length is L=1024 for a resolution of 512 × 512. At
each training timestep t, the model Gθ generates diffusion noise Gθ(I) for image latent I , and the
optimization loss Lpbr is calculated as:

Lpbr = Et

[
N∑
i=1

∥Gθ(I
i
t)− Îi

t ∥22

]
, (11)

where Iit is the noisy latent of the ground truth shaded image from the i-th view. We first train the
multi-view illumination context branch for 20,000 steps. Then we freeze their weights and train
the PBR generation transformer for 20,000 steps. We utilize the prodigy optimizer (Mishchenko &
Defazio, 2024) to self-adjust the learning rate and correct the bias. The β1, β2 are set to 0.9 and
0.999 respectively. During training, we use a batch size of 32 and apply a warmup phase of 2,000
steps. We apply gradient clipping at 1.0 and set the guidance scale to 1.0.

Benefiting from the rotary position embedding, our model could be trained with flexible aspect
ratios (Esser et al., 2024). We first train our model with the image resolution 512 × 512. Then, we
shift training to 768 × 768 for another 10,000 steps, and employ a timestep scheduler with a shift
value α = 3.0 (Esser et al., 2024).

Training Details of LVSM-based Texture Inpainting Model. The architecture of the texture in-
painting model is adopted from the LVSM, which contains 24 full self-attention transformer layers
with image patch size p = 8 and token dimension d = 768.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

To train the texture inpainting model, for each object in the dataset, we randomly sample rendered
images from N = 6 viewpoints along with their corresponding geometry images and camera pa-
rameters as conditions. The model is then tasked with generating the images for M = 8 additional
randomly selected viewpoints. We train the model with the photometric and perceptual loss, the loss
function is calculated as:

Llvsm =

M∑
i=1

(
MSE(Îi, Ii) + LPIPS(Îi, Ii)

)
, (12)

where Îi is the predicted novel view images and Ii is the ground truth. We train our model for
10,000 steps on 8 GPUs using AdamW optimizer (Kingma, 2014) with a learning rate 4e-5. The
β1, β2 are set to 0.9 and 0.95, respectively. During training, we use a batch size of 16 and apply
a warmup phase of 1,000 steps. We also use a weight decay of 0.05 on all parameters except the
weights of LayerNorm layers, following the original implementation of LVSM. During inference
stage, we select M = 18 target views from the predefined dense set V , which contains K = 48
candidate views.

Inference. We employ RMBG-2.0 (Zheng et al., 2024) to isolate the main foreground object from
the generated image by removing the background. To prepare the 3D asset, the input mesh is first
merged into a single connected component using Blender to avoid multiple UV lookups. We then
use Xatlas to automatically generate UV parameterizations for material texture assignment. During
inference, the guidance scale is set to 3.5. We implement a custom inverse renderer to map the
generated materials (albedo, roughness, and metallic) from multiple views onto a unified UV texture
space, producing ready-to-deploy 3D assets in GLB format with physically-based materials. To
address view-dependent variations and ensure view consistency, we apply angle-weighted averaging
across overlapping texels during projection. The resulting material maps are stored as UV textures
with resolution 2048× 2048, preserving the fine-grained details from the multi-view material maps.
Our model requires approximately 1.5 minutes and 28GB of GPU memory to run inference at a
per-view image resolution of 512× 512, and around 3 minutes with 40GB memory at 768× 768.

A.3 LIMITATIONS

Limited Resolution. While LumiTex demonstrates strong performance in generating high-quality
PBR textures, several limitations remain. First, generating multi-view images for PBR texture syn-
thesis using diffusion transformer (DiT) models is computationally demanding. As a result, our cur-
rent implementation is constrained to a per-view resolution of 768×768, which may be insufficient
for extremely high-fidelity applications such as small printed text or specifications (see Fig. 14), film
production or AAA game assets that require detailed textures at 4K or even higher resolution. Scal-
ing to such high-resolution outputs presents challenges in both memory usage and inference time.
Future work may explore improving the VAE compression ratio, optimizing transformer architec-
ture (e.g., via sparse attention), or leveraging cached latents and multi-view parallelism to accelerate
training and inference to improve quality.

Transparency Modeling. As shown in Fig. 14, our current pipeline does not support transparency
modeling and thus fails to generate transparent materials such as glass, water, or translucent plastics.
This limitation arises from the absence of an alpha channel or dedicated transmission parameter in
the current material representation. Accurate modeling of these effects would require additional su-
pervision, such as refraction-aware rendering or alpha/transmittance maps, which are not present in
our training data. Future work could incorporate transparency channels and simulate light transmis-
sion effects to support a broader range of real-world materials.

A.4 LLM USAGE DISCLOSURE

We used a Large Language Model (LLM), specifically GPT-4o, solely as a writing assistant to polish
grammar, improve clarity, and enhance the fluency of the manuscript. The model was not involved
in generating ideas, designing experiments, interpreting results, or contributing to the core research
content. All scientific contributions, methodologies, and analyses were solely developed by the
authors. The LLM’s role was limited to editorial support and did not rise to the level of authorship
or intellectual contribution.
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Albedo

Metallic

Roughness

Figure 15. G-Buffer Results of Fig. 1. We report the full decomposed PBR results, containing 38
assets with both real and AI generated meshes and references. MR is outlined by silhouettes.
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OursReference UniTEXHunyuan3D 2.1*GT

N.A N.A

Step1X-3D

N.A N.A

N.A N.A N.A

Figure 16. Comparisons under Extreme Conditions. We evaluate cases with highly reflective
materials and strong backlighting. Our results (left: rendering, middle: albedo, top right: metallic,
bottom right: roughness) avoid baked-in reflections and highlight artifacts, demonstrating greater
robustness than existing approaches.

RoughnessMetallicAlbedoReference
(Real) RoughnessMetallicAlbedo

Reference
(AI-generated)

Figure 17. Decomposed Material UVs for Fig. 10 and Fig. 11. We present the decomposed ma-
terial UV maps produced by our method. The left panel shows results generated from real rendered
images, while the right panel shows results obtained from AI-generated reference images.
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