

000 001 C²-AFCL: CROSS-TASK CALIBRATION FOR ASYN- 002 CHRONOUS FEDERATED CONTINUAL LEARNING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Federated Continual Learning (FCL) aims to empower distributed devices to learn
012 a sequence of tasks over time. However, existing FCL research largely relies on
013 the impractical assumption of synchronous new task arrival. This overlooks the
014 reality of asynchronous user behavior and system latencies, forcing more efficient
015 clients to endure costly inactivity. The practical necessity of an asynchronous
016 method gives rise to Asynchronous Federated Continual Learning (AFCL). The
017 server constantly receives a mixture of updates from clients at different time steps,
018 leading to a catastrophic task drift that corrupts the global model and prevents ef-
019 fective learning. In this paper, we introduce a novel Cross-task Calibration frame-
020 work called C²-AFCL that is the first to tackle task drift at a semantic level within
021 an Asynchronous FCL setting. Its core is a two-stage orthogonal calibration mech-
022 anism. First, intra-client calibration uses task-aware caches to mitigate variance
023 from local client drift. Second, and more critically, inter-task interference calibra-
024 tion dynamically estimates an interference subspace from historical task knowl-
025 edge. New updates are orthogonally projected to isolate and remove components
026 that conflict with this subspace, preserving previous knowledge while learning
027 new tasks. Extensive experiments show that C²-AFCL significantly outperforms
028 existing methods, demonstrating robust and efficient learning in dynamic feder-
029 ated environments.

030 1 INTRODUCTION 031

032 Federated Learning (FL) enables collaborative model training on massive fleets of edge devices
033 while preserving user privacy McMahan et al. (2017); Wang et al. (2023a); Liu et al. (2024). In
034 recent years, this privacy-centric approach has attracted considerable research interest, leading to
035 successful applications in areas such as recommendation systems Yang et al. (2020); Li et al. (2024d)
036 and intelligent healthcare Xu et al. (2021); Nguyen et al. (2022a).

037 However, many existing works on FL assume a static environment where training data remains fixed.
038 In real-world applications, these devices must adapt to evolving environments, a scenario addressed
039 by Federated Continual Learning (FCL), where a sequence of tasks is learned over time. This
040 dynamic process frequently results in a sharp decline in performance on previously learned tasks
041 Yang et al. (2024); Wang et al. (2024a), a well-known issue termed catastrophic forgetting Ganin
042 et al. (2016). In addition, due to the federated context environment, different tasks may further
043 introduce data drift, which in turn affects the convergence of the global model.

044 To address these challenges, Federated Continual Learning (FCL) has emerged as a feasible solution
045 by enabling clients to learn from evolving data streams without forgetting previous knowledge Wang
046 et al. (2024c); Li et al. (2025b). Various strategies have been explored to this end Chen et al. (2025);
047 Liang et al. (2024). Some approaches focus on data replay, either by training a generative model to
048 reconstruct samples from previous tasks Qi et al. (2023); Wueraixi et al. (2023) or by selectively
049 caching important exemplars for rehearsal Li et al. (2024a). Other methods tackle specific scenarios
050 like class-incremental learning by introducing specialized loss functions to handle class imbalances
051 Dong et al. (2022; 2023a). Knowledge distillation has also been employed, using supplementary
052 data on both the server and clients to transfer knowledge and preserve model performance over time
053 Ma et al. (2022a). The authors in Li et al. (2025c) aim to save computation costs and enhance data
privacy by improving synaptic intelligence algorithms without sample replay.

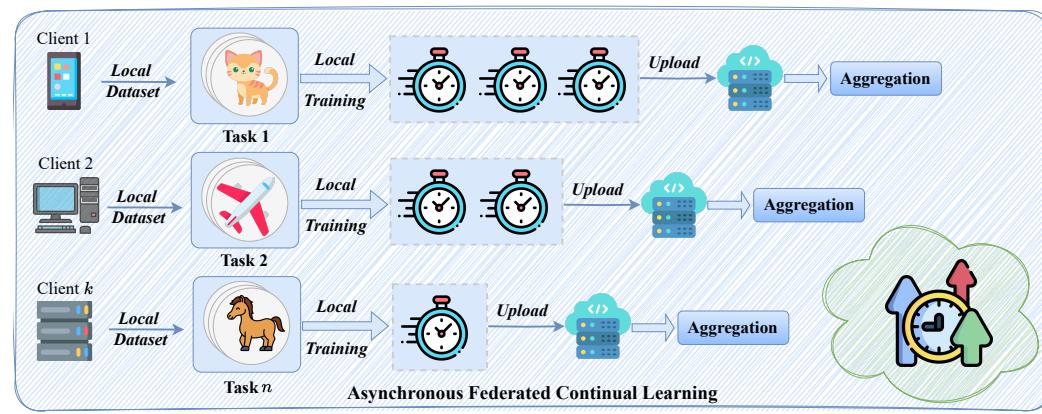


Figure 1: The illustration of asynchronous federated continual learning (AFCL). AFCL allows clients to handle different tasks at different times without waiting for unified aggregation, reducing waiting and improving efficiency.

Although these methods are all effective in handling catastrophic forgetting, a critical and often overlooked flaw in existing FCL research is the unrealistic assumption of synchronous task arrival, that all clients encounter and begin a new task at the same moment Li et al. (2025a). In practice, task arrival is inherently asynchronous. Different clients will start new tasks at different time steps due to varied user behavior, network latency in receiving task data, or device availability. Forcing synchronization in such a setting would compel faster clients, who are ready for the next task, to remain idle and wait for the slowest clients to catch up. This introduces substantial downtime and negates the core efficiency benefits of FCL. Therefore, an asynchronous operational method is not merely an option but a practical necessity for realistic FCL.

Recently, AFCL has attracted some attention, but not extensively. Shenaj et al. (2023) was the first to focus on this scenario by using fractal pre-training, a contrastive prototype-based loss for clients, and a modified server aggregation strategy to address catastrophic forgetting with a workshop research. Li et al. (2025a) surveyed hundreds of existing works and pointed out this research direction as a potential future work. However, these studies have not yet systematically explored AFCL, mainly due to the unprecedented challenge of *task heterogeneity*. At any given time, the server may receive a mixture of updates from clients at different time steps. This temporal misalignment of tasks, compounded by Non-IID data heterogeneity, induces a dual drift:

- **Client Drift:** The conventional inconsistency between local and global models caused by Non-IID data and update staleness.
- **Task Drift:** A more severe issue where the global model collapses between conflicting tasks from different clients, ultimately failing to learn any single task effectively and leading to catastrophic forgetting.

To tackle this challenge, we propose a novel cross-task calibrated AFCL framework **C²-AFCL**. Our core idea is to elevate update calibration from a statistical level to a semantic level. We no longer treat each streaming task in isolation but actively manage and leverage the relations between them. The key is an innovative two-stage orthogonal calibration and aggregation process. We first maintain a task-aware update for each client. By computing the difference between a new update and the client's last contribution for the same task, we first eliminate the local variance arising from the client's specific data and system delays. Then, the server leverages the historical task updates of all clients to dynamically construct an interference subspace that represents knowledge from previous tasks. Before any new update is aggregated, it is orthogonally projected onto this subspace. Its projection is identified and isolated, while its orthogonal component is used to update the model. In this manner, C²-AFCL can explicitly decouple new knowledge from potential conflicts at the fine-grained update level, thereby striking a superior balance between plasticity and stability.

Through extensive experiments on two types of incremental learning tasks (Class-Incremental / Domain-Incremental) with four datasets and various settings, we verify both the effectiveness and

108 robustness of C²-AFCL, and outperform the state-of-the-art baselines by up to xx.xx% in terms of
 109 average test accuracy. Our main contributions are as follows:
 110

- 111 • We pioneer in motivating and defining the problem of the asynchronous federated continual
 112 learning as the practical paradigm for FCL. Moreover, we identify the task heterogeneity
 113 as its core challenge and provide a deep in-depth analysis.
- 114 • We propose C²-AFCL, a novel framework that resolves the AFCL problem through a two-
 115 stage orthogonal calibration, elevating update calibration from statistical variance reduction
 116 to semantic knowledge management.
- 117 • We theoretically analyze the convergence for C²-AFCL, which proves the same conver-
 118 gence rate as traditional FL baselines.
- 119 • Extensive experiments on multiple FCL benchmarks demonstrate that our method signifi-
 120 cantly outperforms existing techniques on key metrics.

123 2 BACKGROUND AND RELATED WORK

125 **Asynchronous Federated Learning.** Federated Learning (FL) is a machine learning paradigm
 126 allowing multiple clients to collaboratively develop a shared global model by training on their re-
 127 spective local datasets while maintaining data privacy Li et al. (2020); Wang et al. (2023b); Li &
 128 Wang (2019). A foundational algorithm in this domain is FedAvg McMahan et al. (2017), which
 129 refines a central model through the periodic aggregation of parameters from locally trained models.
 130 A significant hurdle for conventional FL methods like FedAvg is the unrealistic assumption that
 131 clients will upload the updates and do the global aggregation at the same time. To overcome the
 132 efficiency bottlenecks of synchronous FL, FedAsync Xie et al. (2019) introduced a weighted aver-
 133 aging scheme that adapts the contribution of an update based on its degree of staleness. FedBuff
 134 Nguyen et al. (2022b) employs a buffering strategy, where the server waits to collect a sufficient
 135 number of updates before aggregation to smooth the training process. More recently, CA²FL Wang
 136 et al. (2024b) proposed a cache-based calibration method where the server caches each client’s latest
 137 update and uses it to calibrate newly received updates, effectively reducing the variance caused by
 138 data heterogeneity. However, these works focus on asynchronous updates under the same task, and
 139 this paper investigates asynchronous updates across different tasks, which directly and significantly
 affect the performance of model aggregation and are therefore more challenging.

140 **Continual Learning.** Continual Learning (CL), also known as incremental learning, equips a model
 141 with the ability to sequentially acquire knowledge from a continuous stream of tasks without catas-
 142 tragically forgetting previously learned information Hsu et al. (2018); van de Ven & Tolias (2019).
 143 This learning paradigm encompasses various settings, including task-incremental learning Dantam
 144 et al. (2016); Maltoni & Lomonaco (2018), class-incremental learning Rebuffi et al. (2017); Yu et al.
 145 (2020), and domain-incremental learning Mirza et al. (2022); Churamani et al. (2021). Methodolo-
 146 gies in CL are generally grouped into three families: replay-based Rebuffi et al. (2017); Liu et al.
 147 (2020), regularization-based Jung et al. (2020); Yin et al. (2020), and parameter isolation methods
 148 Long et al. (2015); Fernando et al. (2017). In this paper, we explore the intersection of federated and
 149 continual learning, where each client trains the local model with streaming new tasks.

150 **Federated Continual Learning.** Federated Continual Learning (FCL) addresses the challenge of
 151 learning from sequential tasks within a federated setting, focusing on enabling the global model to
 152 adapt to new information while preserving previous knowledge. As an emerging field, FCL has seen
 153 pioneering efforts such as the work by Yoon et al. (2021), which tackles Task-IL by using separate
 154 masks for each task, thereby requiring task labels at inference time for personalization. Another line
 155 of research Bakman et al. (2023) prevents parameter overwriting by projecting updates for different
 156 tasks onto orthogonal subspaces. Other approaches employ knowledge distillation with a surrogate
 157 dataset at both the server and client levels to transfer knowledge Ma et al. (2022b). More recently,
 158 an importance-aware sampling method was proposed in Li et al. (2024b;a), which selectively stores
 159 samples based on their contribution to local and global distributions to mitigate catastrophic forget-
 160 ting. While some studies have expanded FCL to applications beyond image classification Jiang et al.
 161 (2021); Dong et al. (2023b), others have explored dynamic network architectures where clients train
 multiple personalized models, isolating or merging them based on task similarity Li et al. (2024c).
 However, these works are based on a fundamental assumption that all clients receive new tasks and

162 start training at the same time, which limits the practical deployment of such methods. In this work,
 163 we relax this assumption and investigate asynchronous federated continual learning.
 164

165 3 PROBLEM FORMULATION AND PRELIMINARIES

168 We consider a federated continual learning setting composed of a central server and a set of
 169 K clients. The system is designed to learn from a sequence of data tasks, denoted as $D =$
 170 $\{D^1, D^2, \dots, D^t\}$, where D^t denotes the data available at time steps t . The training for each task
 171 can encompass multiple rounds of communication between the server and clients. For any given
 172 task t , each client k possesses a local dataset $D_k^t = \{(x_i, y_i)\}$, where x_i is a data sample and y_i
 173 is its corresponding label from the cumulative label space Y^t . Thus, the local data D_k^t can feature
 174 samples from classes seen in prior tasks $\{Y^1, Y^2, \dots, Y^{t-1}\}$ as well as new classes introduced at
 175 stage t . Let w represent the classification model. The global model at stage t is denoted by w^t , while
 176 w_k^t is the local model for client k . The central objective is to train a unified global model w^t that
 177 performs well across the entire sequence of tasks, effectively capturing the data distribution from all
 learned stages. This goal can be formally stated as:

$$178 \min_{w^t} \sum_{j=1}^t \sum_{k=1}^K \frac{1}{|D_k^j|} \mathbb{E}_{x \sim P(x|y) \in D^j} \mathcal{L}(f(x; w_k^j), y), \text{ where } w^t = \sum_{k=1}^K p_k^t w_k^t. \quad (1)$$

182 where \mathcal{L} denotes the cross-entropy loss, and p_k^t is the aggregation weight. The formulation above
 183 assumes a *synchronous* update protocol, where the server must wait for a designated group of clients
 184 to return their local models before aggregating them.

185 Based on this, we then formulate the framework for an *asynchronous* protocol. In this paradigm, the
 186 server updates the global model as soon as it receives an update from any single client, rather than
 187 waiting for a full cohort.

188 Let τ index the version of the global model at the server, denoted by w^τ . When client k is ready for
 189 training, it downloads the current global model, say version w_k^τ . After completing its local training
 190 on task data D_k^t , it sends its updated parameters w_k^t back to the server. By the time this upload
 191 arrives, the server's global model may have already been updated by other clients and advanced to
 192 version τ , where $\tau \geq t$. The server immediately integrates the received model:

$$193 \quad 194 \quad w^{\tau+1} = (1 - \eta)w^\tau + \eta w_k^t. \quad (2)$$

195 where $\eta \in (0, 1]$ is a mixing parameter that functions as a server-side learning rate, controlling
 196 the influence of the incoming client update. The degree of staleness for this update is given by the
 197 difference $\tau - t$. On the client side, the local objective must be adapted to handle both the current
 198 task and the preservation of previous knowledge. Upon receiving w_k^τ , client k optimizes its local
 199 model by minimizing a composite loss function over its data D_k^t :

$$200 \quad 201 \quad \min_{w_k^t} \mathbb{E}_{(x, y) \in D_k^t} [\mathcal{L}(f(x; w_k^t), y) + \lambda \Omega(w_k^t, w_k^\tau)]. \quad (3)$$

203 where the term Ω is a continual learning regularizer, weighted by a hyperparameter λ , which pen-
 204 nalizes deviations from the downloaded model w_k^τ on parameters critical for previous tasks, thereby
 205 combating catastrophic forgetting.

207 4 C²-AFCL: MITIGATING DRIFT VIA DUAL ORTHOGONAL CALIBRATION

209 To address the task heterogeneity challenges in AFCL, we propose the C²-AFCL method. The key
 210 idea is to decompose any incoming update into a component beneficial for learning the new task and
 211 a component potentially harmful to previous tasks. This is achieved through a two-stage orthogo-
 212 nal calibration process before aggregation, which first mitigates client drift and then resolves task
 213 drift. The first stage targets client drift by normalizing updates against historical updates, thereby
 214 reducing variance from statistical heterogeneity. Then, we tackle task drift by projecting these cali-
 215 brated updates onto a dynamically estimated subspace of previous task knowledge. We illustrate the
 workflow in Algorithm 1.

216
217**Algorithm 1:** C²-AFCL

218 **Input** : R : communication rounds; K : number of clients; η : learning rate; $\{T^t\}_{t=1}^n$:
219 distributed dataset with n tasks; w^t : global model parameters for the t -th task.
220 **Output**: $\{w_1^t, w_2^t, \dots, w_K^t\}$: personalized target models for each client.
221 **for** $r = 1$ **to** R **do**
222 Server randomly selects a subset of clients S_t and sends w^t to them.
223 **for** *each selected client* $k \in S_t$ **in parallel do**
224 Client k downloads w^t and trains on its task T_k^t , obtaining raw update $\mathbf{u}_k^t = w_k^t - w^t$.
225 Send the raw update \mathbf{u}_k^t to the server.
226 **end**
227 // Intra-client calibration (mitigate client drift)
228 Retrieve the last cached update u_k^t for the same task;
229 Compute calibrated update: $\delta_k^t = \mathbf{u}_k^t - u_k^t$;
230 Update cache $u_k^t \leftarrow \mathbf{u}_k^t$.
231 // Inter-task orthogonal calibration (mitigate task drift)
232 Server maintains the interference subspace $\mathcal{F}_t = \text{Col}([a_1, a_2, \dots, a_{t-1}])$, where a_j are
233 average updates of past tasks;
234 Compute projection matrix $\mathcal{P}_t = b_d b_d^\top$ from top- d SVD basis;
235 Decompose calibrated update: $\delta_{\text{pre},k}^t = (\mathbb{I} - \mathcal{P}_t)\delta_k^t$, $\delta_{\text{int},k}^t = \mathcal{P}_t\delta_k^t$;
236 Keep only the preserving component $\delta_{k,t}^{\text{pre}}$;
237 Server aggregates safe updates: $w_{r+1}^t = w_r^t + \frac{\eta}{|S_t|} \sum_{k \in S_t} \delta_{k,t}^{\text{pre}}$.
238 **end**
239
240

241
242

4.1 INTRA-CLIENT CALIBRATION FOR CLIENT DRIFT MITIGATION

243
244
245
246
247
248
249
250

The first stage of our framework is designed to tackle client drift, a phenomenon where a client’s local update deviates significantly from the direction beneficial to the global model. In the AFCL scenario, this drift depends on two main factors: (1) Statistical heterogeneity, where each client’s unique Non-IID data distribution pulls its local model towards a local optimum, and (2) System heterogeneity, where asynchronous updates computed on global models introduce temporal misalignment and error. A raw update from a client is therefore a noisy and biased signal. Simply averaging these raw updates would introduce significant variance into the global model, hindering convergence and stability.

251
252
253
254
255
256
257
258
259
260
261
262
263

In this paper, we first shift the paradigm from aggregating absolute updates to aggregating relative updates. This helps to distinguish the contributions of different tasks and prevents severe knowledge conflicts. Specifically, we cache a task-aware update $U_k = \{u_k^1, u_k^2, \dots, u_k^t\}$ on the server for each k and u_k^t stores the last raw model update for the t -th task. When the server receives a new update \mathbf{u}_k^t , it retrieves the corresponding historical update u_k^t from the cache. The intra-client calibrated update δ_k^t is then computed as their difference: $\delta_k^t = \mathbf{u}_k^t - u_k^t$. This operation isolates the client’s learning progress during its most recent training round. By subtracting the previous update, we aim to cancel out the slowly-varying, static components of the client’s update vector that are attributable to its fixed data distribution and consistent system characteristics. The resulting δ_k^t is a more accurate representation of the client’s immediate learning trajectory, effectively reducing the variance caused by both statistical and systemic heterogeneity. After calibration, the cache is updated with the new update and prepares it for the next cycle.

264
265

4.2 INTER-TASK ORTHOGONAL CALIBRATION FOR TASK DRIFT MITIGATION

266
267
268
269

While intra-client calibration mitigates the statistical noise of the update, it does not address its potential to conflict with semantic knowledge from previous tasks. The core technical motivation for our second stage is to prevent an update for a new task T_k^t from destructively interfering with the consolidated knowledge of previous tasks $\{T_k^j | j < t\}$. Such interference occurs when the update δ_k^t contains components parallel to the critical gradient directions of previous tasks.

To resolve this, we propose a mechanism to identify and neutralize these harmful components through orthogonal projection. We construct an online interference subspace \mathcal{F}_t , which represents the accumulated knowledge of previous tasks. The server maintains a global average task update, $\mathcal{A} = \{a_1, a_2, \dots, a_t\}$, where each vector $a_t = \frac{1}{N} \sum_{i=1}^N a_t^i$ serves as a proxy for the N update direction for the previous t -th task. Then, the interference subspace \mathcal{F} is defined as the column space of the matrix whose columns are the historical global vectors for all previous tasks:

$$\mathcal{F}_t = \text{Col}([a_1, a_2, \dots, a_{t-1}]), \quad \mathcal{B}_d = [b_1, b_2, \dots, b_d] \in \mathbb{R}^{D \times d}. \quad (4)$$

For numerical stability and to focus on the most significant interference directions, we compute an orthonormal basis \mathcal{B}_d for this subspace via Singular Value Decomposition (SVD), where it contains the d principal left-singular vectors. The corresponding projection matrix onto this subspace is given by $\mathcal{P}_t = b_d b_d^\top$. Using this projection matrix, we decompose the calibrated update δ_k^t into an interference component, which lies within the subspace and is potentially harmful to previous tasks; and a preserving component, which is orthogonal to the subspace and represents novel knowledge for the t -th task:

$$\delta_{\text{int},k}^t = \mathcal{P}_t \cdot \delta_k^t, \quad \delta_{\text{pre},k}^t = \delta_k^t - \delta_{\text{int},k}^t = (\mathbb{I} - \mathcal{P}_t) \delta_k^t. \quad (5)$$

For the final global aggregation, the server only aggregates the preserving components from clients working on the same task. These safe updates are collected in a task-specific buffer and used to update the global model:

$$w_{r+1}^t = w_r^t + \frac{\eta}{K} \sum_{k=1}^K \delta_{\text{pre},k}^t. \quad (6)$$

where r denotes the communication round, this process ensures that the global model is updated only with information that is minimally disruptive to previously learned tasks.

5 THEORETICAL ANALYSIS

We first state the standard assumptions underpinning our analysis and then present a rigorous theoretical foundation for the algorithm's convergence.

Assumption 5.1 (*L*-Smoothness.) For all tasks $t \in \{1, 2, \dots, T\}$, the global loss function F^t and each client's local loss function F_k^t are *L*-smoothness. For any model parameters $x, y \in \mathbb{R}^D$, there exists a constant $L > 0$ such that (This also applies to the global loss function F^t):

$$\|\nabla F_k^t(x) - \nabla F_k^t(y)\| \leq L\|x - y\|.$$

Assumption 5.2 (Bounded Variance.) The clients' stochastic gradients are unbiased and have bounded variance. For any client k and task t , its stochastic gradient $g_k^t(x)$ is an unbiased estimator of the true gradient $\mathbb{E}[g_k^t(x)] = \nabla F_k^t(x)$, and its variance is bounded by σ^2 ; and the variance of local gradients across clients is bounded by σ_g^2 :

$$\mathbb{E}\|g_k^t(x) - \nabla F_k^t(x)\|^2 \leq \sigma^2, \quad \frac{1}{K} \sum_{k=1}^K \|\nabla F_k^t(x) - \nabla F^t(x)\|^2 \leq \sigma_g^2.$$

Assumption 5.3 (Bounded Update Norm.) The expected norm of the raw updates generated by clients after local training is bounded. There exists a constant $G > 0$ such that $\mathbb{E}\|\delta_k^t\|^2 \leq G^2$. This ensures that the norm of the cached vectors u_k^t is also bounded.

These three assumptions are the most fundamental ones in the theoretical analysis of federated optimization, making the theoretical analysis of FL possible Li et al. (2019); Zhao et al. (2018).

Assumption 5.4 (Bounded Asynchronous Delay.) The delay of client updates is bounded. There exists a constant τ_{\max} such that for any update submitted by a client at any round, its delay τ satisfies $0 \leq \tau \leq \tau_{\max}$, and we bound the maximum delay.

Lemma 5.5 (Projection Drift Bound Yu et al. (2015).) Let $\mathcal{A}_t^{(s)}$ denote the covariance matrix used to construct the interference subspace at SVD update time s for the t -th task, and define the increment $\mathcal{E}_t^{(s)} := \mathcal{A}_t^{(s+1)} - \mathcal{A}_t^{(s)}$ and the projection drift accumulation $\Delta_{\text{proj}}^t := \sum_{s=1}^{S-1} \|\mathcal{P}_t^{(s+1)} - \mathcal{P}_t^{(s)}\|_F^2$.

324 Assume that for every s the d -th and $(d+1)$ -th eigenvalues of \mathcal{A} are separated by a positive eigen
 325 gap $\delta_t^{(s)} := \lambda_d(A_t^{(s)}) - \lambda_{d+1}(A_t^{(s)})$, and denote $\delta_{\min}^t := \min_s \delta_t^{(s)} > 0$. Then the following hold:
 326

$$327 \quad \|\mathcal{P}_t^{(s+1)} - \mathcal{P}_t^{(s)}\|_F^2 \leq \frac{8d \|\mathcal{E}_t^{(s)}\|_2^2}{(\delta_t^{(s)})^2}, \text{ hence } \Delta_{\text{proj}}^t \leq \sum_{s=1}^{S-1} \frac{8d \|\mathcal{E}_t^{(s)}\|_2^2}{(\delta_t^{(s)})^2} \leq \frac{8d}{(\delta_{\min}^t)^2} \sum_{s=1}^{S-1} \|\mathcal{E}_t^{(s)}\|_2^2. \quad (7)$$

330 **Theorem 5.6** (Convergence Analysis.) Suppose Assumptions 5.1-5.4 hold, let the learning rate
 331 $\eta \leq 1/(4L)$ and $F^t(w^*) = \arg \min_w F^t(w)$. Then after R asynchronous aggregations with total K
 332 clients, the global model w_r^t of our method will satisfy:
 333

$$334 \quad \frac{1}{R} \sum_{r=0}^{R-1} \mathbb{E} \|(\mathbb{I} - \mathcal{P}_t) \nabla F^t(w_r)\|^2 \leq \frac{4(F^t(w_0) - F^t(w^*))}{\eta R} + 6L^2 \eta^2 \tau_{\max}^2 G^2 + 6\sigma_g^2 \\ 335 \quad + \frac{2L\eta\sigma^2(3L\eta\tau_{\max}^2 + 1)}{K} + 3G^2 \Delta_{\text{proj}}^t. \quad (8)$$

339 Consequently, if $\eta = O(1/\sqrt{R})$, the first three terms vanish at the standard $O(1/\sqrt{R})$ rate. The
 340 additional projection drift term is $O(1/T)$ if the projection is updated once every T iterations ($S \approx$
 341 R/T). Thus, the algorithm can converge to an expected projected first-order stationary point. We
 342 provide the detailed proof for both the lemma and the theorem in Appendix B.
 343

344 6 EXPERIMENTS

345 6.1 EXPERIMENT SETUP

348 **Datasets.** We evaluate our method under two federated incremental learning settings with hetero-
 349 geneous data partitions, leveraging four benchmark datasets: (1) Class-Incremental Learning with
 350 CIFAR100 Krizhevsky et al. (2009) and Tiny-ImageNet Le & Yang (2015), we divide the dataset into
 351 ten different tasks, each containing data from $\{10, 20\}$ classes to simulate streaming tasks for two
 352 datasets; (2) Domain-Incremental Learning with Office31 Saenko et al. (2010) and Office-Caltech-
 353 10 Zhang & Davison (2020), we treat each domain as a separate task. Further dataset descriptions
 354 and preprocessing details are provided in Appendix A.1.

355 **Baselines.** To ensure a fair comparison with existing studies, we adopt the experimental protocols
 356 from Shenaj et al. (2023); Li et al. (2024a) for constructing AFCL tasks. We select baselines from
 357 three complementary perspectives. First, we include three asynchronous FL methods to benchmark
 358 the challenge of asynchronous aggregation: FedAsync Xie et al. (2019), FedBuff Nguyen et al.
 359 (2022b), and CA²FL Wang et al. (2024b). Second, we choose several representative FCL approaches
 360 as widely adopted baselines: GLFC Dong et al. (2022), FedCIL Qi et al. (2023), Re-Fed Li et al.
 361 (2024a), FOT Bakman et al. (2023), and FedSSI Li et al. (2025c). Finally, we consider the only
 362 existing AFCL method to highlight its contrast with our design: FedSpace Shenaj et al. (2023).
 363 Through comparisons across these baselines, we provide a comprehensive and rigorous validation
 364 of the effectiveness and superiority of our proposed method. Comprehensive descriptions of the
 365 baselines are provided in Appendix A.2.

366 **Configurations.** We configure each task with $E = 20$ local training epochs and $T = 100$ commu-
 367 nication rounds, ensuring convergence before the introduction of the next task. The total number
 368 of clients is $K = 20$ with an active participation ratio of $r = 0.4$. We adopt ResNet18 He et al.
 369 (2016) as the backbone model. To introduce data heterogeneity, local samples are partitioned using
 370 a Dirichlet distribution $\text{Dir}(\alpha)$, where smaller α values correspond to higher Non-IID levels. For
 371 rehearsal-based FCL and asynchronous methods, each client is allocated a memory buffer of size
 372 300 to store synthetic or previous samples for comparison fairness. To simulate the asynchronous
 373 setting, we randomly assign task arrival times to clients rather than enforcing global synchronization.
 374 Each participating client becomes available with a probability of 0.8. We also allow update
 375 staleness of up to 25 rounds, which ensures persistent asynchrony while maintaining stable training.
 376 We evaluate performance by reporting the average accuracy $AC(\uparrow)$ and forgetting score $FS(\downarrow)$ over
 377 all tasks. Each experiment is repeated twice, and the average accuracy and standard deviation are
 378 computed from the last 10 rounds of each run. Optimization is performed using Adam with a linear
 379 learning rate schedule. All experiments are executed on a cluster with 24 RTX 4090 GPUs.

Table 1: Performance comparison of various methods on four datasets across two different incremental settings. We evaluate with two main metrics, and the best results are **bold**.

Method	CIFAR100		Tiny-ImageNet		Office31		Office-Caltech-10	
	$AC(\uparrow)$	$FS(\downarrow)$	$AC(\uparrow)$	$FS(\downarrow)$	$AC(\uparrow)$	$FS(\downarrow)$	$AC(\uparrow)$	$FS(\downarrow)$
FedAsync	30.66 ± 2.32	37.91 ± 5.15	28.64 ± 3.37	45.78 ± 2.78	41.97 ± 1.07	31.45 ± 5.19	43.68 ± 3.16	28.25 ± 4.30
FedBuff	29.50 ± 3.43	42.01 ± 1.04	26.15 ± 3.17	44.36 ± 5.64	39.61 ± 2.59	39.81 ± 4.41	40.42 ± 2.93	35.24 ± 3.22
CA ² FL	33.08 ± 1.73	36.12 ± 4.14	30.90 ± 2.91	41.59 ± 4.62	42.82 ± 3.83	29.71 ± 1.12	43.77 ± 5.59	28.03 ± 1.64
GLFC	31.11 ± 2.35	33.56 ± 1.97	27.71 ± 4.75	35.20 ± 1.99	44.03 ± 3.47	22.65 ± 1.86	45.92 ± 3.01	22.01 ± 1.89
FedCIL	31.93 ± 3.56	38.22 ± 1.17	31.52 ± 4.61	41.63 ± 2.40	45.96 ± 3.59	25.11 ± 3.82	47.41 ± 0.64	25.43 ± 1.69
Re-Fed	32.34 ± 3.43	36.72 ± 1.59	29.76 ± 3.26	39.69 ± 4.02	44.28 ± 5.45	28.73 ± 2.16	44.56 ± 3.80	27.29 ± 1.45
FOT	37.13 ± 2.94	28.76 ± 1.54	32.36 ± 2.15	30.92 ± 2.11	46.23 ± 4.75	22.76 ± 1.83	48.66 ± 3.16	21.58 ± 2.74
FedSSI	33.75 ± 2.88	30.36 ± 3.04	34.99 ± 5.13	33.52 ± 2.23	46.86 ± 3.59	24.91 ± 3.25	49.27 ± 1.29	22.36 ± 1.66
FedSpace	38.61 ± 1.73	30.99 ± 2.75	35.81 ± 2.42	35.07 ± 3.15	47.61 ± 1.46	21.94 ± 2.08	48.32 ± 0.87	23.72 ± 2.12
C²-AFCL	42.57 ± 2.93	27.36 ± 1.31	38.24 ± 2.90	30.11 ± 1.95	50.54 ± 3.16	20.79 ± 2.06	52.66 ± 2.44	20.32 ± 3.71

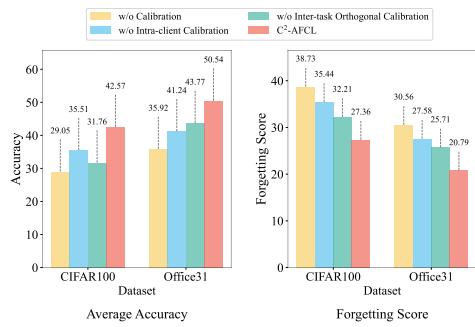


Figure 2: Ablation study of C^2 -AFCL on two datasets with three components ($\alpha=1$).

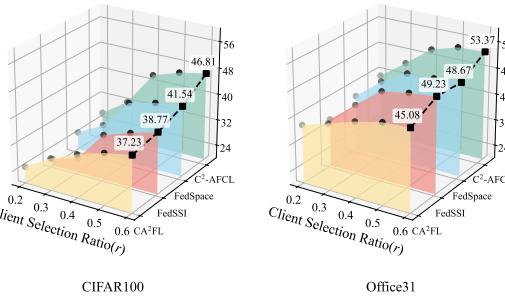


Figure 3: Performance comparison of various methods w.r.t. ratio r between active clients and total clients in each round ($\alpha=1$).

6.2 PERFORMANCE OVERVIEW

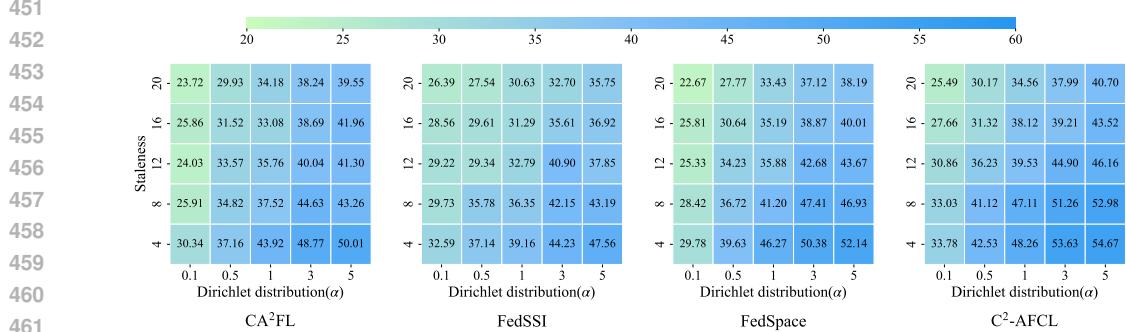
Main Results. Table 1 shows that C^2 -AFCL achieves the best balance between accuracy and forgetting across datasets and settings. Conventional asynchronous FL baselines like FedAsync fail to maintain stability under streaming tasks, while FCL methods reduce forgetting via replay or regularization but remain fragile in asynchronous environments due to their assumption of task alignment. FedSpace, the only existing AFCL method, improves stability through prototype-based calibration, yet its reliance on contrastive objectives limits its ability to decouple inter-task interference. In contrast, C^2 -AFCL addresses both client and task drift while intra-client calibration aligns updates with true task progress, and inter-task orthogonal projection preserves historical knowledge. This mechanism enables continual learning with higher accuracy and lower forgetting across diverse scenarios.

Ablation Study. Figure 2 highlights the contributions of the two calibration modules in C²-AFCL. Without intra-client calibration, updates are dominated by statistical and temporal variance, reducing stability. Without inter-task orthogonal calibration, new task gradients interfere with previous knowledge, leading to higher forgetting. The full framework updates capture genuine task progress while remaining orthogonal to historical knowledge, thereby maintaining a robust balance between stability and plasticity under asynchronous conditions.

Communication Efficiency. Table 2 indicates that C²-AFCL attains favorable efficiency by converging within a comparable number of communication rounds while sustaining higher accuracy. This efficiency stems from the two-stage calibration: intra-client calibration filters out redundant local variance, reducing oscillations during aggregation, whereas inter-task calibration prevents destructive interference, ensuring that each update contributes meaningfully to the global model. As a result, the framework requires no additional communication overhead yet maintains stable optimization dynamics, achieving a better balance between convergence speed and final performance.

432
 433 Table 2: We evaluate different methods based on the number of communication rounds required
 434 to reach their best test accuracy. Specifically, we report the total communication rounds needed to
 435 achieve the best performance on each task and analyze the trade-off between accuracy and commu-
 436 nication cost. We further define “ Δ ” as the difference between the percentage gain in accuracy and
 437 the percentage increase in communication rounds of C^2 -AFCL compared to other baselines.

438 439 440 441 442 443 444 445 446 447 448 449 450	Method	CIFAR100		Tiny-ImageNet		Office31		Office-Caltech-10	
		Rounds	Δ	Rounds	Δ	Rounds	Δ	Rounds	Δ
FedAsync		841 \pm 2.17	37.07% \uparrow	893 \pm 0.74	30.38% \uparrow	213 \pm 1.53	20.89% \uparrow	181 \pm 1.07	16.14% \uparrow
FedBuff		820 \pm 0.94	39.91% \uparrow	871 \pm 1.90	40.49% \uparrow	199 \pm 1.45	21.06% \uparrow	170 \pm 0.66	19.10% \uparrow
C^2 FL		829 \pm 2.03	25.43% \uparrow	909 \pm 1.44	22.43% \uparrow	191 \pm 1.32	7.04% \uparrow	177 \pm 1.71	13.53% \uparrow
GLFC		849 \pm 2.12	36.02% \uparrow	901 \pm 0.76	35.78% \uparrow	219 \pm 1.83	17.99% \uparrow	193 \pm 2.31	16.75% \uparrow
FedCIL		810 \pm 2.47	27.64% \uparrow	879 \pm 0.98	16.54% \uparrow	204 \pm 0.94	6.05% \uparrow	176 \pm 1.19	3.68% \uparrow
Re-Fed		869 \pm 0.87	33.13% \uparrow	896 \pm 2.93	25.70% \uparrow	203 \pm 2.28	9.70% \uparrow	192 \pm 0.49	19.74% \uparrow
FOT		817 \pm 1.93	9.88% \uparrow	865 \pm 2.24	11.70% \uparrow	210 \pm 1.11	8.37% \uparrow	180 \pm 1.30	3.22% \uparrow
FedSSI		834 \pm 1.65	23.49% \uparrow	924 \pm 1.09	9.61% \uparrow	223 \pm 1.59	12.78% \uparrow	185 \pm 0.91	4.72% \uparrow
FedSpace		877 \pm 0.82	12.65% \uparrow	946 \pm 0.74	9.43% \uparrow	206 \pm 1.56	3.24% \uparrow	197 \pm 1.60	13.04% \uparrow
C^2 -AFCL		856 \pm 1.69	/	921 \pm 1.92	/	212 \pm 1.43	/	189 \pm 2.01	/



451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 Figure 4: Performance comparison of various methods w.r.t. Dirichlet distribution $Dir(\alpha)$ and staleness τ of asynchronous settings on CIFAR100.

Parameter Sensitivity Analysis. Figure 3 illustrates that C^2 -AFCL remains robust across different client participation ratios. While other methods exhibit clear fluctuations when fewer clients are selected, our framework maintains stable accuracy. This robustness arises from the calibration design where intra-client calibration suppresses noise from sparse participation, and inter-task calibration ensures that limited updates still align with the preserved knowledge subspace. Thus, even under reduced client availability, the model preserves a stable learning trajectory without severe performance collapse. Figure 4 shows that C^2 -AFCL adapts well to varying degrees of Non-IID distributions and asynchronous delays. Unlike baselines that accumulate bias as heterogeneity or staleness increases, our dual calibration effectively decomposes updates into informative and interfering components, filtering out the harmful directions. This prevents divergence caused by inconsistent task arrivals or skewed data partitions, leading to a smoother performance across challenging federated conditions.

7 CONCLUSION

In this work, we introduced C^2 -AFCL, a cross-task calibration framework designed to address the fundamental challenge of asynchronous federated continual learning. Unlike prior works that assume synchronized task arrivals, our method explicitly handles both client drift and task drift through a dual orthogonal calibration strategy. We further provided a theoretical convergence analysis and demonstrated through extensive experiments that our approach consistently outperforms state-of-the-art baselines across diverse settings. We believe this work establishes AFCL as a practical and scalable paradigm for real-world federated continual learning and opens promising directions for future research in dynamic distributed environments.

486 REFERENCES
487

488 Yavuz Faruk Bakman, Duygu Nur Yaldiz, Yahya H Ezzeldin, and Salman Avestimehr. Federated
489 orthogonal training: Mitigating global catastrophic forgetting in continual federated learning.
490 *arXiv preprint arXiv:2309.01289*, 2023.

491 Jiao Chen, Jiayi He, Jianhua Tang, Weihua Li, and Zihang Yin. Knowledge efficient federated
492 continual learning for industrial edge systems. *IEEE Transactions on Network Science and Engi-*
493 *neering*, 2025.

494 Nikhil Churamani, Ozgur Kara, and Hatice Gunes. Domain-incremental continual learning for
495 mitigating bias in facial expression and action unit recognition. *ArXiv*, abs/2103.08637, 2021.

496 Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri, and Lydia E. Kavraki. Incremental task
497 and motion planning: A constraint-based approach. In *Robotics: Science and Systems*, 2016.

498 Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu, Xiao Wang, and Qi Zhu. Federated
499 class-incremental learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
500 *Pattern Recognition*, pp. 10164–10173, 2022.

501 Jiahua Dong, Hongliu Li, Yang Cong, Gan Sun, Yulun Zhang, and Luc Van Gool. No one left
502 behind: Real-world federated class-incremental learning. *IEEE Transactions on Pattern Analysis*
503 and *Machine Intelligence*, 2023a.

504 Jiahua Dong, Duzhen Zhang, Yang Cong, Wei Cong, Henghui Ding, and Dengxin Dai. Federated
505 incremental semantic segmentation. In *Proceedings of the IEEE/CVF Conference on Computer*
506 *Vision and Pattern Recognition (CVPR)*, pp. 3934–3943, June 2023b.

507 Chrisantha Fernando, Dylan S. Banarse, Charles Blundell, Yori Zwols, David R Ha, Andrei A.
508 Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in
509 super neural networks. *ArXiv*, abs/1701.08734, 2017.

510 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
511 Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
512 works. *The journal of machine learning research*, 17(1):2096–2030, 2016.

513 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
514 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
515 770–778, 2016.

516 Yen-Chang Hsu, Yen-Cheng Liu, and Zsolt Kira. Re-evaluating continual learning scenarios: A
517 categorization and case for strong baselines. *ArXiv*, abs/1810.12488, 2018.

518 Ziyue Jiang, Yi Ren, Ming Lei, and Zhou Zhao. Fedspeech: Federated text-to-speech with continual
519 learning. *arXiv preprint arXiv:2110.07216*, 2021.

520 Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. Continual learning with node-
521 importance based adaptive group sparse regularization. *arXiv: Learning*, 2020.

522 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
523 2009.

524 Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

525 Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning via model distillation. *arXiv*
526 *preprint arXiv:1910.03581*, 2019.

527 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
528 Federated optimization in heterogeneous networks. *Proceedings of Machine Learning and Sys-*
529 *tems*, 2:429–450, 2020.

530 Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
531 fedavg on non-iid data. *arXiv preprint arXiv:1907.02189*, 2019.

540 Yichen Li, Qunwei Li, Haozhao Wang, Ruixuan Li, Wenliang Zhong, and Guannan Zhang. Towards
 541 efficient replay in federated incremental learning. *The Thirty-Fifth IEEE/CVF Conference on*
 542 *Computer Vision and Pattern Recognition (CVPR 2024)*, Seattle, USA, June 17-21, 2024a.
 543

544 Yichen Li, Wenchao Xu, Yining Qi, Haozhao Wang, Ruixuan Li, and Song Guo. Sr-fdil: Synergistic
 545 replay for federated domain-incremental learning. *IEEE Transactions on Parallel and Distributed*
 546 *Systems*, 35(11):1879–1890, 2024b. doi: 10.1109/TPDS.2024.3436874.

547 Yichen Li, Wenchao Xu, Haozhao Wang, Ruixuan Li, Yining Qi, and Jingcai Guo. Personalized
 548 federated domain-incremental learning based on adaptive knowledge matching, 2024c. URL
 549 <https://arxiv.org/abs/2407.05005>.

550 Yichen Li, Haozhao Wang, Wenchao Xu, Tianzhe Xiao, Hong Liu, Minzhu Tu, Yuying Wang, Xin
 551 Yang, Rui Zhang, Shui Yu, et al. Unleashing the power of continual learning on non-centralized
 552 devices: A survey. *IEEE Communications Surveys & Tutorials*, 2025a.

553 Yichen Li, Yuying Wang, Jiahua Dong, Haozhao Wang, Yining Qi, Rui Zhang, and Ruixuan
 554 Li. Resource-constrained federated continual learning: What does matter? *arXiv preprint*
 555 *arXiv:2501.08737*, 2025b.

556 Yichen Li, Yuying Wang, Haozhao Wang, Yining Qi, Tianzhe Xiao, and Ruixuan Li. FedSSI:
 557 Rehearsal-free continual federated learning with synergistic synaptic intelligence. In *Forty-second*
 558 *International Conference on Machine Learning*, 2025c. URL <https://openreview.net/forum?id=9hFQvmC17P>.

559 Zhiwei Li, Guodong Long, and Tianyi Zhou. Federated recommendation with additive personaliza-
 560 tion, 2024d. URL <https://arxiv.org/abs/2301.09109>.

561 Jinglin Liang, Jin Zhong, Hanlin Gu, Zhongqi Lu, Xingxing Tang, Gang Dai, Shuangping Huang,
 562 Lixin Fan, and Qiang Yang. Diffusion-driven data replay: A novel approach to combat forgetting
 563 in federated class continual learning. In *European Conference on Computer Vision*, pp. 303–319.
 564 Springer, 2024.

565 Bingyan Liu, Nuoyan Lv, Yuanchun Guo, and Yawen Li. Recent advances on federated learning: A
 566 systematic survey. *Neurocomputing*, 597:128019, 2024. ISSN 0925-2312. doi: <https://doi.org/10.1016/j.neucom.2024.128019>. URL <https://www.sciencedirect.com/science/article/pii/S0925231224007902>.

567 Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bogdan Raducanu, Andrew D Bagdanov,
 568 Shangling Jui, and Joost van de Weijer. Generative feature replay for class-incremental learn-
 569 ing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 570 Workshops, pp. 226–227, 2020.

571 Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning transferable features
 572 with deep adaptation networks. *ArXiv*, abs/1502.02791, 2015.

573 Yuhang Ma, Zhongle Xie, Jue Wang, Ke Chen, and Lidan Shou. Continual federated learning based
 574 on knowledge distillation. In Lud De Raedt (ed.), *Proceedings of the Thirty-First International*
 575 *Joint Conference on Artificial Intelligence, IJCAI-22*, pp. 2182–2188. International Joint Con-
 576 ferences on Artificial Intelligence Organization, 7 2022a. doi: 10.24963/ijcai.2022/303. URL
 577 <https://doi.org/10.24963/ijcai.2022/303>. Main Track.

578 Yuhang Ma, Zhongle Xie, Jue Wang, Ke Chen, and Lidan Shou. Continual federated learning based
 579 on knowledge distillation. In *IJCAI*, pp. 2182–2188, 2022b.

580 Davide Maltoni and Vincenzo Lomonaco. Continuous learning in single-incremental-task scenarios.
 581 *Neural networks : the official journal of the International Neural Network Society*, 116:56–73,
 582 2018.

583 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 584 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelli-
 585 gence and statistics*, pp. 1273–1282. PMLR, 2017.

594 M Jehanzeb Mirza, Marc Masana, Horst Possegger, and Horst Bischof. An efficient domain-
 595 incremental learning approach to drive in all weather conditions. In *Proceedings of the IEEE/CVF*
 596 *Conference on Computer Vision and Pattern Recognition*, pp. 3001–3011, 2022.

597

598 Dinh C Nguyen, Quoc-Viet Pham, Pubudu N Pathirana, Ming Ding, Aruna Seneviratne, Zihui Lin,
 599 Octavia Dobre, and Won-Joo Hwang. Federated learning for smart healthcare: A survey. *ACM*
 600 *Computing Surveys (CSUR)*, 55(3):1–37, 2022a.

601 John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and
 602 Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In *International*
 603 *conference on artificial intelligence and statistics*, pp. 3581–3607. PMLR, 2022b.

604

605 Daiqing Qi, Handong Zhao, and Sheng Li. Better generative replay for continual federated learning.
 606 *arXiv preprint arXiv:2302.13001*, 2023.

607

608 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
 609 Incremental classifier and representation learning. In *Proceedings of the IEEE conference on*
 610 *Computer Vision and Pattern Recognition*, pp. 2001–2010, 2017.

611

612 Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to
 613 new domains. In *Computer Vision–ECCV 2010: 11th European Conference on Computer Vision,*
 614 *Heraklion, Crete, Greece, September 5–11, 2010, Proceedings, Part IV 11*, pp. 213–226. Springer,
 2010.

615

616 Donald Shenaj, Marco Toldo, Alberto Rigon, and Pietro Zanuttigh. Asynchronous federated con-
 617 tinual learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 618 *Recognition*, pp. 5055–5063, 2023.

619

620 Gido M. van de Ven and Andreas Savas Tolias. Three scenarios for continual learning. *ArXiv*,
 621 [abs/1904.07734](https://arxiv.org/abs/1904.07734), 2019.

622

623 Haozhao Wang, Yichen Li, Wenchao Xu, Ruixuan Li, Yufeng Zhan, and Zhigang Zeng. Dafkd:
 624 Domain-aware federated knowledge distillation. In *Proceedings of the IEEE/CVF Conference on*
 625 *Computer Vision and Pattern Recognition*, pp. 20412–20421, 2023a.

626

627 Haozhao Wang, Haoran Xu, Yichen Li, Yuan Xu, Ruixuan Li, and Tianwei Zhang. Fedcda: Fed-
 628 erated learning with cross-rounds divergence-aware aggregation. In *The Twelfth International*
 629 *Conference on Learning Representations*, 2023b.

630

631 Qiang Wang, Bingyan Liu, and Yawen Li. Traceable federated continual learning. In *Proceedings*
 632 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12872–12881,
 633 2024a.

634

635 Yujia Wang, Yuanpu Cao, Jingcheng Wu, Ruoyu Chen, and Jinghui Chen. Tackling the data het-
 636 erogeneity in asynchronous federated learning with cached update calibration. In *The Twelfth In-*
 637 *ternational Conference on Learning Representations*, 2024b. URL <https://openreview.net/forum?id=4aywmeb97I>.

638

639 Zi Wang, Fei Wu, Feng Yu, Yurui Zhou, Jia Hu, and Geyong Min. Federated continual learning for
 640 edge-ai: A comprehensive survey. *arXiv preprint arXiv:2411.13740*, 2024c.

641

642 Abdukelimu Wuerkaixi, Sen Cui, Jingfeng Zhang, Kunda Yan, Bo Han, Gang Niu, Lei Fang,
 643 Changshui Zhang, and Masashi Sugiyama. Accurate forgetting for heterogeneous federated con-
 644 tinual learning. In *The Twelfth International Conference on Learning Representations*, 2023.

645

646 Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. *arXiv preprint*
 647 *arXiv:1903.03934*, 2019.

648

649 Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei Wang. Federated
 650 learning for healthcare informatics. *Journal of Healthcare Informatics Research*, 5:1–19, 2021.

651

652 Liu Yang, Ben Tan, Vincent W Zheng, Kai Chen, and Qiang Yang. Federated recommendation
 653 systems. *Federated Learning: Privacy and Incentive*, pp. 225–239, 2020.

648 Xin Yang, Hao Yu, Xin Gao, Hao Wang, Junbo Zhang, and Tianrui Li. Federated continual learning
 649 via knowledge fusion: A survey. *IEEE Transactions on Knowledge and Data Engineering*, 2024.
 650

651 Dong Yin, Mehrdad Farajtabar, and Ang Li. Sola: Continual learning with second-order loss ap-
 652 proximation. *ArXiv*, abs/2006.10974, 2020.

653 Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. Federated contin-
 654 ual learning with weighted inter-client transfer. In *International Conference on Machine Learn-
 655 ing*, pp. 12073–12086. PMLR, 2021.

656

657 Lu Yu, Bartłomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling
 658 Jui, and Joost van de Weijer. Semantic drift compensation for class-incremental learning. 2020
 659 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6980–6989,
 660 2020.

661 Yi Yu, Tengyao Wang, and Richard J Samworth. A useful variant of the davis–kahan theorem for
 662 statisticians. *Biometrika*, 102(2):315–323, 2015.

663

664 Youshan Zhang and Brian D. Davison. Impact of imagenet model selection on domain adaptation,
 665 2020.

666 Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
 667 learning with non-iid data. *arXiv preprint arXiv:1806.00582*, 2018.

668

669

670 THE USE OF LARGE LANGUAGE MODELS (LLMs)

671 In preparing this work, we have used Large Language Models (LLMs) exclusively for the purposes
 672 of translation and language polishing. The content, arguments, and conclusions presented herein
 673 are entirely my own, and the use of LLMs did not contribute to the generation of original ideas or
 674 substantive content.

675 ETHICS STATEMENT

676 This work complies with the ICLR Code of Ethics. No human subjects, personally identifiable data,
 677 or sensitive datasets were involved. The use of Large Language Models (LLMs) was strictly limited
 678 to translation and language polishing; they did not contribute to the generation of original ideas,
 679 methodology, results, or conclusions.

680 REPRODUCIBILITY STATEMENT

681 We have taken steps to ensure the reproducibility of our work. The theoretical assumptions are
 682 explicitly stated in Section 5, with complete proofs provided in the Appendix. The experimental
 683 setup, including datasets, preprocessing steps, and hyperparameters, is detailed in Section 4 and the
 684 Appendix. Source code and instructions for reproducing our results are available if needed.

685 A EXPERIMENTAL SETTINGS

686 A.1 DATASETS

687 Class-Incremental Datasets

688 **CIFAR-100** Krizhevsky et al. (2009) is a widely used benchmark for image classification, consisting
 689 of 60,000 images across 100 object categories with balanced class distributions. In our setting, we
 690 split the dataset into multiple class-incremental tasks, where each task contains 10 disjoint classes.

691 **Tiny-ImageNet** Le & Yang (2015) is a scaled-down version of ImageNet containing 200 classes
 692 with 500 training and 50 validation images per class at a resolution of 64×64 . Following existing
 693 works, we partition the dataset into class-incremental tasks with 20 classes per task.

702 **Domain-Incremental Datasets**
703704 **Office-31** Saenko et al. (2010) is a domain adaptation benchmark containing 4,652 images from
705 31 categories collected across three distinct domains: Amazon, Webcam, and DSLR. We adopt the
706 domain-incremental setting by treating each domain as a separate task, enabling evaluation under
707 distributional shifts.708 **Office-Caltech-10** Zhang & Davison (2020) is a variant of the Office dataset that overlaps 10 com-
709 mon categories with the Caltech-256 dataset across four domains: Amazon, Webcam, DSLR, and
710 Caltech. Each domain is regarded as a separate task in our experiments, providing a compact yet
711 diverse benchmark for domain-incremental learning.712
713
714 A.2 BASELINES
715716
717 **Representative Asynchronous Federated Learning**
718719 **FedAsync** Xie et al. (2019) is an asynchronous variant of federated learning where the server imme-
720 diately integrates each client update upon arrival. It mitigates the idle time caused by synchronization
721 but suffers from update staleness when clients operate at different speeds. This method serves
722 as a fundamental baseline for evaluating asynchronous aggregation schemes.723 **FedBuff** Nguyen et al. (2022b) introduces a buffering mechanism that collects a fixed number of
724 client updates before aggregation. By controlling the buffer size, it strikes a balance between stal-
725 eness and synchronization efficiency. It is widely used as a strong asynchronous FL baseline in
726 heterogeneous environments.727 **CA²FL** Wang et al. (2024b) enhances asynchronous FL by caching the latest client updates and cal-
728ibrating incoming updates against them. This calibration reduces the impact of client and data het-
729 erogeneity on the aggregated global model. It provides a more stable alternative to purely staleness-
730 based methods like FedAsync.731 **Federated Continual Learning**
732733 **GLFC** Dong et al. (2022) addresses federated class-incremental learning by maintaining a gener-
734 ative model to replay samples from previous tasks. This alleviates catastrophic forgetting without
735 requiring raw data sharing among clients. It is one of the earliest works extending continual learning
736 principles to the federated setting.737 **FedCIL** Qi et al. (2023) improves federated class-incremental learning by integrating generative
738 replay with class-balanced loss. This design tackles both catastrophic forgetting and class imbalance
739 across clients. It is a representative baseline for continual learning with replay-based strategies.740 **Re-Fed** Li et al. (2024a) leverages efficient replay mechanisms by selectively storing informative
741 samples across clients. The method reduces memory usage while maintaining strong performance
742 under federated continual learning. It highlights the trade-off between communication efficiency
743 and forgetting mitigation.744 **FOT** Bakman et al. (2023) prevents knowledge interference by projecting task updates onto orthogo-
745 nal subspaces. This strategy preserves previously learned knowledge while integrating new tasks. It
746 represents a regularization-based approach tailored for continual learning in federated environments.747 **FedSSI** Li et al. (2025c) introduces a rehearsal-free continual learning method by extending synap-
748 tic intelligence to federated settings. It eliminates the need for data replay while retaining plas-
749 ticity across sequential tasks. This makes it particularly suitable for privacy-sensitive or resource-
750 constrained scenarios.751 **Asynchronous Federated Continual Learning**
752753 **FedSpace** Shenaj et al. (2023) is the first dedicated method for asynchronous federated continual
754 learning. It employs fractal pre-training and prototype-based contrastive learning to alleviate task
755 drift. This baseline directly targets the AFCL problem and provides a critical reference point for
comparison with our method.

756 B THEORETICAL ANALYSIS FOR C²-AFCL

758 *Proof of Lemma 5.5.* Denote by $0 \leq \theta_1 \leq \dots \leq \theta_d \leq \pi/2$ the principal angles between the
 759 subspaces $\text{Col}(b_d)$ and $\text{Col}(b_d^\top)$, and let $\sin \Theta = \text{diag}(\sin \theta_1, \dots, \sin \theta_d)$. A standard formulation
 760 of the Davis–Kahan sin Θ theorem gives $\|\sin \Theta\|_2 \leq \|E\|_2/\delta$.

761 The nonzero singular values of $\mathcal{P}^{(s+1)} - \mathcal{P}^{(s)}$ are exactly $\{\sin(2\theta_i)\}_{i=1}^d$. Hence

$$763 \|\mathcal{P}^{(s+1)} - \mathcal{P}^{(s)}\|_2 = \max_{1 \leq i \leq d} |\sin(2\theta_i)| = \sin(2\theta_{\max}),$$

765 where $\theta_{\max} = \max_i \theta_i$. Using $\sin(2x) = 2 \sin x \cos x \leq 2 \sin x$ for $x \in [0, \frac{\pi}{2}]$ we obtain

$$767 \|\mathcal{P}^{(s+1)} - \mathcal{P}^{(s)}\|_2 \leq 2 \sin \theta_{\max} = 2 \|\sin \Theta\|_2 \leq \frac{2\|\mathcal{E}^{(s)}\|_2}{\delta}.$$

769 This proves the operator-norm bound.

770 Since $\mathcal{P}^{(s+1)} - \mathcal{P}^{(s)}$ is the difference of two rank- d projectors, its rank is at most $2d$. For any matrix
 771 M of rank r we have $\|M\|_F \leq \sqrt{r} \|M\|_2$. Applying this with $M = \mathcal{P}^{(s+1)} - \mathcal{P}^{(s)}$ and $r \leq 2d$
 772 yields

$$774 \|\mathcal{P}^{(s+1)} - \mathcal{P}^{(s)}\|_F \leq \sqrt{2d} \|\mathcal{P}^{(s+1)} - \mathcal{P}^{(s)}\|_2 \leq \sqrt{2d} \cdot \frac{2\|\mathcal{E}^{(s)}\|_2}{\delta} = \frac{2\sqrt{2d} \|\mathcal{E}^{(s)}\|_2}{\delta}.$$

776 Squaring both sides gives

$$777 \|\mathcal{P}^{(s+1)} - \mathcal{P}^{(s)}\|_F^2 \leq \frac{8d \|\mathcal{E}^{(s)}\|_2^2}{\delta^2},$$

779 which completes the proof.

782 *Proof of Theorem 5.6.* For the active task t at round r , by L -smoothness,

$$784 F^t(w_{r+1}) \leq F^t(w_r) + \langle \nabla F^t(w_r), w_{r+1} - w_r \rangle + \frac{L}{2} \|w_{r+1} - w_r\|^2.$$

786 With $w_{r+1} - w_r = \eta g_r$ and $g_r = \frac{1}{K} \sum_{k=1}^K \delta_{\text{pre},k}^t$ this gives:

$$788 F^t(w_{r+1}) \leq F^t(w_r) + \eta \langle \nabla F^t(w_r), g_r \rangle + \frac{L\eta^2}{2} \|g_r\|^2. \quad (9)$$

791 Take full expectation and denote $a_r = (\mathbb{I} - \mathcal{P}_t) \nabla F^t(w_r)$ and $\bar{g}_r = \mathbb{E}[g_r \mid w_r]$. Because g_r lies in
 792 the range of $(\mathbb{I} - \mathcal{P}_t)$ we have $\langle \nabla F^t(w_r), g_r \rangle = \langle a_r, g_r \rangle$. Hence,

$$793 \mathbb{E}[F^t(w_{r+1})] \leq \mathbb{E}[F^t(w_r)] + \eta \mathbb{E}[\langle a_r, g_r \rangle] + \frac{L\eta^2}{2} \mathbb{E}\|g_r\|^2. \quad (10)$$

796 Use $\langle u, v \rangle = \|u\|^2 + \langle u, v - u \rangle$ and the inequality $\langle u, v - u \rangle \geq -\frac{1}{2} \|u\|^2 - \frac{1}{2} \|v - u\|^2$. Taking
 797 expectation and using $\mathbb{E}[\langle a_r, g_r \rangle] = \mathbb{E}[\langle a_r, \bar{g}_r \rangle]$ we can get:

$$798 \mathbb{E}[\langle a_r, g_r \rangle] \geq \frac{1}{2} \mathbb{E}\|a_r\|^2 - \frac{1}{2} \mathbb{E}\|\bar{g}_r - a_r\|^2. \quad (11)$$

800 Substitute equation 11 into equation 10 and rearrange:

$$802 \eta \left(\frac{1}{2} \mathbb{E}\|a_r\|^2 - \frac{1}{2} \mathbb{E}\|\bar{g}_r - a_r\|^2 \right) \leq \mathbb{E}[F^t(w_r)] - \mathbb{E}[F^t(w_{r+1})] + \frac{L\eta^2}{2} \mathbb{E}\|g_r\|^2.$$

804 Multiply by $2/\eta$ to obtain the central one-step inequality:

$$806 \mathbb{E}\|a_r\|^2 \leq \frac{2}{\eta} \left(\mathbb{E}[F^t(w_r)] - \mathbb{E}[F^t(w_{r+1})] \right) + \mathbb{E}\|\bar{g}_r - a_r\|^2 + L\eta \mathbb{E}\|g_r\|^2. \quad (12)$$

808 Let $\tilde{g}_r = g_r - \bar{g}_r$. Then,

$$809 \|g_r\|^2 = \|\bar{g}_r + \tilde{g}_r\|^2 = \|\bar{g}_r\|^2 + 2\langle \bar{g}_r, \tilde{g}_r \rangle + \|\tilde{g}_r\|^2.$$

810 Taking the conditional expectation given w_r ,

$$812 \mathbb{E}[\|g_r\|^2 \mid w_r] = \|\bar{g}_r\|^2 + 2\mathbb{E}[\langle \bar{g}_r, \tilde{g}_r \rangle \mid w_r] + \mathbb{E}[\|\tilde{g}_r\|^2 \mid w_r].$$

814 Since \bar{g}_r is w_r -measurable and $\mathbb{E}[\bar{g}_r \mid w_r] = 0$, the cross term vanishes:

$$815 \mathbb{E}[\langle \bar{g}_r, \tilde{g}_r \rangle \mid w_r] = \langle \bar{g}_r, \mathbb{E}[\tilde{g}_r \mid w_r] \rangle = \langle \bar{g}_r, 0 \rangle = 0.$$

817 Taking expectation over w_r gives:

$$819 \mathbb{E}\|g_r\|^2 = \mathbb{E}\|\bar{g}_r\|^2 + \mathbb{E}\|g_r - \bar{g}_r\|^2.$$

821 The average variance of client increments bounds the variance term. Since $\text{Var}(\delta_{\text{pre},k}^t) \leq \text{Var}(\delta_k^t) \leq \sigma^2$ and clients are averaged:

$$824 \mathbb{E}\|g_r - \bar{g}_r\|^2 \leq \frac{1}{K^2} \sum_{k=1}^K \sigma^2 = \frac{\sigma^2}{K}.$$

826 For $\|\bar{g}_r\|^2$ use $\bar{g}_r = a_r + (\bar{g}_r - a_r)$ and $(x + y)^2 \leq 2x^2 + 2y^2$:

$$828 \|\bar{g}_r\|^2 \leq 2\|a_r\|^2 + 2\|\bar{g}_r - a_r\|^2.$$

830 Thus,

$$831 \mathbb{E}\|g_r\|^2 \leq \frac{\sigma^2}{K} + 2\mathbb{E}\|a_r\|^2 + 2\mathbb{E}\|\bar{g}_r - a_r\|^2. \quad (13)$$

833 Insert equation 13 into equation 12:

$$835 \mathbb{E}\|a_r\|^2 \leq \frac{2}{\eta} \Delta_r + \mathbb{E}\|\bar{g}_r - a_r\|^2 + L\eta \left(\frac{\sigma^2}{K} + 2\mathbb{E}\|a_r\|^2 + 2\mathbb{E}\|\bar{g}_r - a_r\|^2 \right).$$

837 where $\Delta_r = \mathbb{E}[F^t(w_r)] - \mathbb{E}[F^t(w_{r+1})]$. Rearrange left-hand side terms:

$$839 (1 - 2L\eta)\mathbb{E}\|a_r\|^2 \leq \frac{2}{\eta} \Delta_r + (1 + 2L\eta)\mathbb{E}\|\bar{g}_r - a_r\|^2 + \frac{L\eta}{K} \sigma^2.$$

841 With the step-size condition $\eta \leq 1/(4L)$ we have $2L\eta \leq 1/2$ and the crude bounds:

$$843 \frac{1}{1 - 2L\eta} \leq 2, \quad \frac{1 + 2L\eta}{1 - 2L\eta} \leq 3.$$

845 Dividing both sides by $1 - 2L\eta$ gives

$$847 \mathbb{E}\|a_r\|^2 \leq \frac{4}{\eta} \Delta_r + 3\mathbb{E}\|\bar{g}_r - a_r\|^2 + \frac{2L\eta}{K} \sigma^2. \quad (14)$$

850 Denote $m_k^r = \mathbb{E}[\delta_k^t \mid w_r]$, using the operator-norm inequality and the fact that $(\mathbb{I} - \mathcal{P}_t)$ is an 851 orthogonal projector, we can get:

$$853 \|\bar{g}_r - a_r\| = \|(\mathbb{I} - \mathcal{P}_t)\left(\frac{1}{K} \sum_{k=1}^K m_k^r - \nabla F^t(w_r)\right)\| \leq \left\| \frac{1}{K} \sum_{k=1}^K m_k^r - \nabla F^t(w_r) \right\|.$$

855 Decompose

$$858 \frac{1}{K} \sum_{k=1}^K m_k^r - \nabla F^t(w_r) = \left(\frac{1}{K} \sum_k (m_k^r - \nabla F_k^t(w_r)) \right) + \left(\frac{1}{K} \sum_k \nabla F_k^t(w_r) - \nabla F^t(w_r) \right).$$

860 Apply $(u + v)^2 \leq 2u^2 + 2v^2$ and take expectation to get:

$$863 \mathbb{E}\|\bar{g}_r - a_r\|^2 \leq 2\mathbb{E}\left\| \frac{1}{K} \sum_{k=1}^K (m_k^r - \nabla F_k^t(w_r)) \right\|^2 + 2\mathbb{E}\left\| \frac{1}{K} \sum_{k=1}^K \nabla F_k^t(w_r) - \nabla F^t(w_r) \right\|^2.$$

864 By Assumption 5.2, the second term is at most $2\sigma_g^2$:
 865

$$866 \mathbb{E} \left\| \frac{1}{K} \sum_{k=1}^K \nabla F_k^t(w_r) - \nabla F^t(w_r) \right\|^2 \leq \sigma_g^2 \implies 2\sigma_g^2 \text{ in the bound.}$$

$$867$$

$$868$$

869 For the first term note each m_k^r is computed at some delayed model $w_{r-\tau_k}$ with $\tau_k \leq \tau_{\max}$. We now
 870 introduce the modeling error: $\varepsilon_k^r = m_k^r - \nabla F_k^t(w_{r-\tau_k})$ and then we can get:
 871

$$872 m_k^r - \nabla F_k^t(w_r) = (m_k^r - \nabla F_k^t(w_{r-\tau_k})) + (\nabla F_k^t(w_{r-\tau_k}) - \nabla F_k^t(w_r))$$

$$873 = \varepsilon_k^r + (\nabla F_k^t(w_{r-\tau_k}) - \nabla F_k^t(w_r)).$$

$$874$$

875 By Assumption 5.1, the gradient difference is bounded as:
 876

$$\|m_k^r - \nabla F_k^t(w_r)\| \leq L \|w_{r-\tau_k} - w_r\| + \|\varepsilon_k^r\|.$$

$$877$$

878 We assume the client's expected increment equals the stale-point gradient, and $w_r - w_{r-\tau_k} =$
 879 $\sum_{j=r-\tau_k}^{r-1} \eta g_j$, so $\|m_k^r - \nabla F_k^t(w_r)\| \leq L\eta \sum_{j=r-\tau_k}^{r-1} \|g_j\|$. Using $\tau_k \leq \tau_{\max}$ and Cauchy-Schwarz
 880 we get the squared bound:

$$881 \|m_k^r - \nabla F_k^t(w_r)\|^2 \leq L^2 \eta^2 \tau_{\max} \sum_{j=r-\tau_k}^{r-1} \|g_j\|^2.$$

$$882$$

$$883$$

884 Taking expectations and averaging over k iterations and the standard conservative bound:
 885

$$886 \mathbb{E} \left\| \frac{1}{K} \sum_{k=1}^K (m_k^r - \nabla F_k^t(w_r)) \right\|^2 \leq L^2 \eta^2 \tau_{\max}^2 (G^2 + \frac{\sigma^2}{K}).$$

$$887$$

$$888$$

889 Thus, the bias bound becomes:
 890

$$891 \mathbb{E} \|\bar{g}_r - a_r\|^2 \leq 2L^2 \eta^2 \tau_{\max}^2 (G^2 + \frac{\sigma^2}{K}) + 2\sigma_g^2. \quad (15)$$

$$892$$

893 Put equation 15 into equation 14. Substitute to get:
 894

$$895 \mathbb{E} \|a^r\|^2 \leq \frac{4}{\eta} \Delta_r + 6L^2 \eta^2 \tau_{\max}^2 G^2 + 6\sigma_g^2 + \frac{2L\eta\sigma^2(3L\eta\tau_{\max}^2 + 1)}{K}. \quad (16)$$

$$896$$

897 Summing equation 16 over $r = 0, \dots, R-1$ and dividing by R iterations:
 898

$$899 \frac{1}{R} \sum_{r=0}^{R-1} \mathbb{E} \|a_r\|^2 \leq \frac{4}{\eta R} \sum_{r=0}^{R-1} \Delta_r + 6L^2 \eta^2 \tau_{\max}^2 G^2 + 6\sigma_g^2 + \frac{2L\eta\sigma^2(3L\eta\tau_{\max}^2 + 1)}{K}.$$

$$900$$

$$901$$

902 Using $\sum_{r=0}^{R-1} \Delta_r = \mathbb{E}[F^t(w_0)] - \mathbb{E}[F^t(w_R)] \leq F^t(w_0) - F^t(w^*)$, we can obtain:
 903

$$904 \frac{1}{R} \sum_{r=0}^{R-1} \mathbb{E} \|a_r\|^2 \leq \frac{4(F^t(w_0) - F^t(w^*))}{\eta R} + 6L^2 \eta^2 \tau_{\max}^2 G^2 + 6\sigma_g^2 + \frac{2L\eta\sigma^2(3L\eta\tau_{\max}^2 + 1)}{K}.$$

$$905$$

$$906$$

907 The above derivation assumed the projector \mathcal{P}_t used in definitions of a_r and in $(\mathbb{I} - \mathcal{P}_t)\delta_k^t$ is fixed.
 908 When \mathcal{P}_t is updated periodically, there is a mismatch between the projector used to produce some
 909 historical δ_k^t and the projector used in the inner product; this mismatch yields an additional additive
 910 term which can be shown (see Lemma 5.5 below) to be upper-bounded by $3G^2 \Delta_{\text{proj}}$ in the average.
 911 Adding this term to the right-hand side yields the claimed bound:

$$912$$

$$913 \frac{1}{R} \sum_{r=0}^{R-1} \mathbb{E} \|(\mathbb{I} - \mathcal{P}_t)\nabla F^t(w_r)\|^2 \leq \frac{4(F^t(w_0) - F^t(w^*))}{\eta R} + 6L^2 \eta^2 \tau_{\max}^2 G^2 + 6\sigma_g^2$$

$$914$$

$$915 + \frac{2L\eta\sigma^2(3L\eta\tau_{\max}^2 + 1)}{K} + 3G^2 \Delta_{\text{proj}}^t.$$

$$916$$

$$917$$

This completes the proof.