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ABSTRACT

Federated Continual Learning (FCL) aims to empower distributed devices to learn
a sequence of tasks over time. However, existing FCL research largely relies on
the impractical assumption of synchronous new task arrival. This overlooks the
reality of asynchronous user behavior and system latencies, forcing more efficient
clients to endure costly inactivity. The practical necessity of an asynchronous
method gives rise to Asynchronous Federated Continual Learning (AFCL). The
server constantly receives a mixture of updates from clients at different time steps,
leading to a catastrophic task drift that corrupts the global model and prevents ef-
fective learning. In this paper, we introduce a novel Cross-task Calibration frame-
work called C2-AFCL that is the first to tackle task drift at a semantic level within
an Asynchronous FCL setting. Its core is a two-stage orthogonal calibration mech-
anism. First, intra-client calibration uses task-aware caches to mitigate variance
from local client drift. Second, and more critically, inter-task interference calibra-
tion dynamically estimates an interference subspace from historical task knowl-
edge. New updates are orthogonally projected to isolate and remove components
that conflict with this subspace, preserving previous knowledge while learning
new tasks. Extensive experiments show that C2-AFCL significantly outperforms
existing methods, demonstrating robust and efficient learning in dynamic feder-
ated environments.

1 INTRODUCTION

Federated Learning (FL) enables collaborative model training on massive fleets of edge devices
while preserving user privacy McMahan et al. (2017); Wang et al. (2023a); Liu et al. (2024). In
recent years, this privacy-centric approach has attracted considerable research interest, leading to
successful applications in areas such as recommendation systems Yang et al. (2020); Li et al. (2024d)
and intelligent healthcare Xu et al. (2021); Nguyen et al. (2022a).

However, many existing works on FL assume a static environment where training data remains fixed.
In real-world applications, these devices must adapt to evolving environments, a scenario addressed
by Federated Continual Learning (FCL), where a sequence of tasks is learned over time. This
dynamic process frequently results in a sharp decline in performance on previously learned tasks
Yang et al. (2024); Wang et al. (2024a), a well-known issue termed catastrophic forgetting Ganin
et al. (2016). In addition, due to the federated context environment, different tasks may further
introduce data drift, which in turn affects the convergence of the global model.

To address these challenges, Federated Continual Learning (FCL) has emerged as a feasible solution
by enabling clients to learn from evolving data streams without forgetting previous knowledge Wang
et al. (2024c); Li et al. (2025b). Various strategies have been explored to this end Chen et al. (2025);
Liang et al. (2024). Some approaches focus on data replay, either by training a generative model to
reconstruct samples from previous tasks Qi et al. (2023); Wuerkaixi et al. (2023) or by selectively
caching important exemplars for rehearsal Li et al. (2024a). Other methods tackle specific scenarios
like class-incremental learning by introducing specialized loss functions to handle class imbalances
Dong et al. (2022; 2023a). Knowledge distillation has also been employed, using supplementary
data on both the server and clients to transfer knowledge and preserve model performance over time
Ma et al. (2022a). The authors in Li et al. (2025c) aim to save computation costs and enhance data
privacy by improving synaptic intelligence algorithms without sample replay.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Client 1

Client 2

Client 

Client 1

Client 2

Client 

UploadLocal 
Dataset

Task 1

Local
 

Training

Upload

Upload

Waiting

Aggregation

Task 1

Aggregation

Asynchronous Federated Continual Learning

Synchronous Federated Continual Learning

Task 2

Task 

Local 
Dataset

Local 
Dataset

Local
 

Training

Local
 

Training
Waiting

Local 
Dataset

Local 
Dataset

Local 
Dataset

Local
 

Training

Local
 

Training

Local
 

Training

Upload

Upload

Upload

Aggregation

Aggregation

Figure 1: The illustration of asynchronous federated continual learning (AFCL). AFCL allows
clients to handle different tasks at different times without waiting for unified aggregation, reduc-
ing waiting and improving efficiency.

Although these methods are all effective in handling catastrophic forgetting, a critical and often
overlooked flaw in existing FCL research is the unrealistic assumption of synchronous task arrival,
that all clients encounter and begin a new task at the same moment Li et al. (2025a). In practice,
task arrival is inherently asynchronous. Different clients will start new tasks at different time steps
due to varied user behavior, network latency in receiving task data, or device availability. Forcing
synchronization in such a setting would compel faster clients, who are ready for the next task, to
remain idle and wait for the slowest clients to catch up. This introduces substantial downtime and
negates the core efficiency benefits of FCL. Therefore, an asynchronous operational method is not
merely an option but a practical necessity for realistic FCL.

Recently, AFCL has attracted some attention, but not extensively. Shenaj et al. (2023) was the first to
focus on this scenario by using fractal pre-training, a contrastive prototype-based loss for clients, and
a modified server aggregation strategy to address catastrophic forgetting with a workshop research.
Li et al. (2025a) surveyed hundreds of existing works and pointed out this research direction as a
potential future work. However, these studies have not yet systematically explored AFCL, mainly
due to the unprecedented challenge of task heterogeneity. At any given time, the server may receive
a mixture of updates from clients at different time steps. This temporal misalignment of tasks,
compounded by Non-IID data heterogeneity, induces a dual drift:

• Client Drift: The conventional inconsistency between local and global models caused by
Non-IID data and update staleness.

• Task Drift: A more severe issue where the global model collapses between conflicting
tasks from different clients, ultimately failing to learn any single task effectively and lead-
ing to catastrophic forgetting.

To tackle this challenge, we propose a novel cross-task calibrated AFCL framework C2-AFCL.
Our core idea is to elevate update calibration from a statistical level to a semantic level. We no
longer treat each streaming task in isolation but actively manage and leverage the relations between
them. The key is an innovative two-stage orthogonal calibration and aggregation process. We first
maintain a task-aware update for each client. By computing the difference between a new update and
the client’s last contribution for the same task, we first eliminate the local variance arising from the
client’s specific data and system delays. Then, the server leverages the historical task updates of all
clients to dynamically construct an interference subspace that represents knowledge from previous
tasks. Before any new update is aggregated, it is orthogonally projected onto this subspace. Its
projection is identified and isolated, while its orthogonal component is used to update the model.
In this manner, C2-AFCL can explicitly decouple new knowledge from potential conflicts at the
fine-grained update level, thereby striking a superior balance between plasticity and stability.

Through extensive experiments on two types of incremental learning tasks (Class-Incremental /
Domain-Incremental) with four datasets and various settings, we verify both the effectiveness and
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robustness of C2-AFCL, and outperform the state-of-the-art baselines by up to xx.xx% in terms of
average test accuracy. Our main contributions are as follows:

• We pioneer in motivating and defining the problem of the asynchronous federated continual
learning as the practical paradigm for FCL. Moreover, we identify the task heterogeneity
as its core challenge and provide a deep in-depth analysis.

• We propose C2-AFCL, a novel framework that resolves the AFCL problem through a two-
stage orthogonal calibration, elevating update calibration from statistical variance reduction
to semantic knowledge management.

• We theoretically analyze the convergence for C2-AFCL, which proves the same conver-
gence rate as traditional FL baselines.

• Extensive experiments on multiple FCL benchmarks demonstrate that our method signifi-
cantly outperforms existing techniques on key metrics.

2 BACKGROUND AND RELATED WORK

Asynchronous Federated Learning. Federated Learning (FL) is a machine learning paradigm
allowing multiple clients to collaboratively develop a shared global model by training on their re-
spective local datasets while maintaining data privacy Li et al. (2020); Wang et al. (2023b); Li &
Wang (2019). A foundational algorithm in this domain is FedAvg McMahan et al. (2017), which
refines a central model through the periodic aggregation of parameters from locally trained models.
A significant hurdle for conventional FL methods like FedAvg is the unrealistic assumption that
clients will upload the updates and do the global aggregation at the same time. To overcome the
efficiency bottlenecks of synchronous FL, FedAsync Xie et al. (2019) introduced a weighted aver-
aging scheme that adapts the contribution of an update based on its degree of staleness. FedBuff
Nguyen et al. (2022b) employs a buffering strategy, where the server waits to collect a sufficient
number of updates before aggregation to smooth the training process. More recently, CA2FL Wang
et al. (2024b) proposed a cache-based calibration method where the server caches each client’s latest
update and uses it to calibrate newly received updates, effectively reducing the variance caused by
data heterogeneity. However, these works focus on asynchronous updates under the same task, and
this paper investigates asynchronous updates across different tasks, which directly and significantly
affect the performance of model aggregation and are therefore more challenging.

Continual Learning. Continual Learning (CL), also known as incremental learning, equips a model
with the ability to sequentially acquire knowledge from a continuous stream of tasks without catas-
trophically forgetting previously learned information Hsu et al. (2018); van de Ven & Tolias (2019).
This learning paradigm encompasses various settings, including task-incremental learning Dantam
et al. (2016); Maltoni & Lomonaco (2018), class-incremental learning Rebuffi et al. (2017); Yu et al.
(2020), and domain-incremental learning Mirza et al. (2022); Churamani et al. (2021). Methodolo-
gies in CL are generally grouped into three families: replay-based Rebuffi et al. (2017); Liu et al.
(2020), regularization-based Jung et al. (2020); Yin et al. (2020), and parameter isolation methods
Long et al. (2015); Fernando et al. (2017). In this paper, we explore the intersection of federated and
continual learning, where each client trains the local model with streaming new tasks.

Federated Continual Learning. Federated Continual Learning (FCL) addresses the challenge of
learning from sequential tasks within a federated setting, focusing on enabling the global model to
adapt to new information while preserving previous knowledge. As an emerging field, FCL has seen
pioneering efforts such as the work by Yoon et al. (2021), which tackles Task-IL by using separate
masks for each task, thereby requiring task labels at inference time for personalization. Another line
of research Bakman et al. (2023) prevents parameter overwriting by projecting updates for different
tasks onto orthogonal subspaces. Other approaches employ knowledge distillation with a surrogate
dataset at both the server and client levels to transfer knowledge Ma et al. (2022b). More recently,
an importance-aware sampling method was proposed in Li et al. (2024b;a), which selectively stores
samples based on their contribution to local and global distributions to mitigate catastrophic forget-
ting. While some studies have expanded FCL to applications beyond image classification Jiang et al.
(2021); Dong et al. (2023b), others have explored dynamic network architectures where clients train
multiple personalized models, isolating or merging them based on task similarity Li et al. (2024c).
However, these works are based on a fundamental assumption that all clients receive new tasks and
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start training at the same time, which limits the practical deployment of such methods. In this work,
we relax this assumption and investigate asynchronous federated continual learning.

3 PROBLEM FORMULATION AND PRELIMINARIES

We consider a federated continual learning setting composed of a central server and a set of
K clients. The system is designed to learn from a sequence of data tasks, denoted as D =
{D1, D2, . . . , Dt}, where Dt denotes the data available at time steps t. The training for each task
can encompass multiple rounds of communication between the server and clients. For any given
task t, each client k possesses a local dataset Dt

k = {(xi, yi)}, where xi is a data sample and yi
is its corresponding label from the cumulative label space Y t. Thus, the local data Dt

k can feature
samples from classes seen in prior tasks {Y 1, Y 2, . . . , Y t−1} as well as new classes introduced at
stage t. Let w represent the classification model. The global model at stage t is denoted by wt, while
wt

k is the local model for client k. The central objective is to train a unified global model wt that
performs well across the entire sequence of tasks, effectively capturing the data distribution from all
learned stages. This goal can be formally stated as:

min
wt

t∑
j=1

K∑
k=1

1

|Dj
k|
Ex∼P (x|y)∈DjL(f(x;wj

k), y), where wt =

K∑
k=1

ptkw
t
k. (1)

where L denotes the cross-entropy loss, and ptk is the aggregation weight. The formulation above
assumes a synchronous update protocol, where the server must wait for a designated group of clients
to return their local models before aggregating them.

Based on this, we then formulate the framework for an asynchronous protocol. In this paradigm, the
server updates the global model as soon as it receives an update from any single client, rather than
waiting for a full cohort.

Let τ index the version of the global model at the server, denoted by wτ . When client k is ready for
training, it downloads the current global model, say version wτ

k . After completing its local training
on task data Dt

k, it sends its updated parameters wt
k back to the server. By the time this upload

arrives, the server’s global model may have already been updated by other clients and advanced to
version τ , where τ ≥ t. The server immediately integrates the received model:

wτ+1 = (1− η)wτ + ηwt
k. (2)

where η ∈ (0, 1] is a mixing parameter that functions as a server-side learning rate, controlling
the influence of the incoming client update. The degree of staleness for this update is given by the
difference τ − t. On the client side, the local objective must be adapted to handle both the current
task and the preservation of previous knowledge. Upon receiving wτ

k , client k optimizes its local
model by minimizing a composite loss function over its data Dt

k:

min
wt

k

E(x,y)∈Dt
k
[L(f(x;wt

k), y) + λΩ(wt
k, w

τ
k)]. (3)

where the term Ω is a continual learning regularizer, weighted by a hyperparameter λ, which pe-
nalizes deviations from the downloaded model wτ

k on parameters critical for previous tasks, thereby
combating catastrophic forgetting.

4 C2-AFCL: MITIGATING DRIFT VIA DUAL ORTHOGONAL CALIBRATION

To address the task heterogeneity challenges in AFCL, we propose the C2-AFCL method. The key
idea is to decompose any incoming update into a component beneficial for learning the new task and
a component potentially harmful to previous tasks. This is achieved through a two-stage orthogo-
nal calibration process before aggregation, which first mitigates client drift and then resolves task
drift. The first stage targets client drift by normalizing updates against historical updates, thereby
reducing variance from statistical heterogeneity. Then, we tackle task drift by projecting these cali-
brated updates onto a dynamically estimated subspace of previous task knowledge. We illustrate the
workflow in Algorithm 1.
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Algorithm 1: C2-AFCL
Input : R: communication rounds; K: number of clients; η: learning rate; {T t}nt=1:

distributed dataset with n tasks; wt: global model parameters for the t-th task.
Output: {wt

1, w
t
2, . . . , w

t
K}: personalized target models for each client.

1 for r = 1 to R do
2 Server randomly selects a subset of clients St and sends wt to them.
3 for each selected client k ∈ St in parallel do
4 Client k downloads wt and trains on its task T t

k, obtaining raw update ut
k = wt

k − wt.
5 Send the raw update ut

k to the server.
6 end

// Intra-client calibration (mitigate client drift)
7 Retrieve the last cached update ut

k for the same task;
8 Compute calibrated update: δtk = ut

k − ut
k;

9 Update cache ut
k ← ut

k.
// Inter-task orthogonal calibration (mitigate task drift)

10 Server maintains the interference subspace Ft = Col([a1, a2, . . . , at−1]), where aj are
average updates of past tasks;

11 Compute projection matrix Pt = bdb
⊤
d from top-d SVD basis;

12 Decompose calibrated update: δtpre,k = (I− Pt)δ
t
k, δtint,k = Ptδ

t
k;

13 Keep only the preserving component δpre
k,t;

14 Server aggregates safe updates: wt
r+1 = wt

r +
η

|St|
∑

k∈St
δpre
k,t.

15 end

4.1 INTRA-CLIENT CALIBRATION FOR CLIENT DRIFT MITIGATION

The first stage of our framework is designed to tackle client drift, a phenomenon where a client’s
local update deviates significantly from the direction beneficial to the global model. In the AFCL
scenario, this drift depends on two main factors: (1) Statistical heterogeneity, where each client’s
unique Non-IID data distribution pulls its local model towards a local optimum, and (2) System
heterogeneity, where asynchronous updates computed on global models introduce temporal mis-
alignment and error. A raw update from a client is therefore a noisy and biased signal. Simply
averaging these raw updates would introduce significant variance into the global model, hindering
convergence and stability.

In this paper, we first shift the paradigm from aggregating absolute updates to aggregating relative
updates. This helps to distinguish the contributions of different tasks and prevents severe knowledge
conflicts. Specifically, we cache a task-aware update Uk = {u1

k, u
2
k, . . . , u

t
k} on the server for each

k and ut
k stores the last raw model update for the t-th task. When the server receives a new update

ut
k, it retrieves the corresponding historical update ut

k from the cache. The intra-client calibrated
update δtk is then computed as their difference: δtk = ut

k − ut
k. This operation isolates the client’s

learning progress during its most recent training round. By subtracting the previous update, we aim
to cancel out the slowly-varying, static components of the client’s update vector that are attributable
to its fixed data distribution and consistent system characteristics. The resulting δtk is a more accurate
representation of the client’s immediate learning trajectory, effectively reducing the variance caused
by both statistical and systemic heterogeneity. After calibration, the cache is updated with the new
update and prepares it for the next cycle.

4.2 INTER-TASK ORTHOGONAL CALIBRATION FOR TASK DRIFT MITIGATION

While intra-client calibration mitigates the statistical noise of the update, it does not address its
potential to conflict with semantic knowledge from previous tasks. The core technical motivation
for our second stage is to prevent an update for a new task T t

k from destructively interfering with the
consolidated knowledge of previous tasks {T j

k |j < t}. Such interference occurs when the update δtk
contains components parallel to the critical gradient directions of previous tasks.

5
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To resolve this, we propose a mechanism to identify and neutralize these harmful components
through orthogonal projection. We construct an online interference subspace Ft, which represents
the accumulated knowledge of previous tasks. The server maintains a global average task update,
A = {a1, a2, . . . , at}, where each vector at = 1

N

∑N
i=1 a

i
t serves as a proxy for the N update di-

rection for the previous t-th task. Then, the interference subspace F is defined as the column space
of the matrix whose columns are the historical global vectors for all previous tasks:

Ft = Col([a1, a2, . . . , at−1]), Bd = [b1, b2, . . . , bd] ∈ RD×d. (4)

For numerical stability and to focus on the most significant interference directions, we compute an
orthonormal basis Bd for this subspace via Singular Value Decomposition (SVD), where it contains
the d principal left-singular vectors. The corresponding projection matrix onto this subspace is
given by Pt = bdb

⊤
d . Using this projection matrix, we decompose the calibrated update δtk into an

interference component, which lies within the subspace and is potentially harmful to previous tasks;
and a preserving component, which is orthogonal to the subspace and represents novel knowledge
for the t-th task:

δtint,k = Pt · δtk, δtpre,k = δtk − δtint,k = (I− Pt)δ
t
k. (5)

For the final global aggregation, the server only aggregates the preserving components from clients
working on the same task. These safe updates are collected in a task-specific buffer and used to
update the global model:

wt
r+1 = wt

r +
η

K

K∑
k=1

δtpre,k. (6)

where r denotes the communication round, this process ensures that the global model is updated
only with information that is minimally disruptive to previously learned tasks.

5 THEORETICAL ANALYSIS

We first state the standard assumptions underpinning our analysis and then present a rigorous theo-
retical foundation for the algorithm’s convergence.

Assumption 5.1 (L-Smoothness.) For all tasks t ∈ {1, 2, . . . , T}, the global loss function F t and
each client’s local loss function F t

k are L-smoothness. For any model parameters x, y ∈ RD, there
exists a constant L > 0 such that (This also applies to the global loss function F t):

∥∇F t
k(x)−∇F t

k(y)∥ ≤ L∥x− y∥.

Assumption 5.2 (Bounded Variance.) The clients’ stochastic gradients are unbiased and have
bounded variance. For any client k and task t, its stochastic gradient gtk(x) is an unbiased esti-
mator of the true gradient E[gtk(x)] = ∇F t

k(x), and its variance is bounded by σ2; and the variance
of local gradients across clients is bounded by σ2

g :

E∥gtk(x)−∇F t
k(x)∥2 ≤ σ2,

1

K

K∑
k=1

∥∇F t
k(x)−∇F t(x)∥ ≤ σ2

g .

Assumption 5.3 (Bounded Update Norm.) The expected norm of the raw updates generated by
clients after local training is bounded. There exists a constant G > 0 such that E∥δtk∥2 ≤ G2. This
ensures that the norm of the cached vectors ut

k is also bounded.

These three assumptions are the most fundamental ones in the theoretical analysis of federated
optimization, making the theoretical analysis of FL possible Li et al. (2019); Zhao et al. (2018).

Assumption 5.4 (Bounded Asynchronous Delay.) The delay of client updates is bounded. There
exists a constant τmax such that for any update submitted by a client at any round, its delay τ satisfies
0 ≤ τ ≤ τmax, and we bound the maximum delay.

Lemma 5.5 (Projection Drift Bound Yu et al. (2015).) LetA(s)
t denote the covariance matrix used to

construct the interference subspace at SVD update time s for the t-th task, and define the increment
E(s)t := A(s+1)

t − A(s)
t and the projection drift accumulation ∆t

proj :=
∑S−1

s=1 ∥P
(s+1)
t − P(s)

t ∥2F .

6
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Assume that for every s the d-th and (d + 1)-th eigenvalues of A are separated by a positive eigen
gap δ

(s)
t := λd(A

(s)
t )− λd+1(A

(s)
t ), and denote δtmin := mins δ

(s)
t > 0. Then the following hold:

∥P(s+1)
t − P(s)

t ∥2F ≤
8d ∥E(s)t ∥22
(δ

(s)
t )2

, hence ∆t
proj ≤

S−1∑
s=1

8d ∥E(s)t ∥22
(δ

(s)
t )2

≤ 8d

(δtmin)
2

S−1∑
s=1

∥E(s)t ∥22. (7)

Theorem 5.6 (Convergence Analysis.) Suppose Assumptions 5.1-5.4 hold, let the learning rate
η ≤ 1/(4L) and F t(w⋆) = argminw F t(w). Then after R asynchronous aggregations with total K
clients, the global model wt

r of our method will satisfy:

1

R

R−1∑
r=0

E
∥∥(I− Pt)∇F t(wr)

∥∥2 ≤ 4
(
F t(w0)− F t(w⋆)

)
ηR

+ 6L2η2τ2maxG
2 + 6σ2

g

+
2Lησ2(3Lητ2max + 1)

K
+ 3G2∆t

proj. (8)

Consequently, if η = O(1/
√
R), the first three terms vanish at the standard O(1/

√
R) rate. The

additional projection drift term is O(1/T ) if the projection is updated once every T iterations (S ≈
R/T ). Thus, the algorithm can converge to an expected projected first-order stationary point. We
provide the detailed proof for both the lemma and the theorem in Appendix B.

6 EXPERIMENTS

6.1 EXPERIMENT SETUP

Datasets. We evaluate our method under two federated incremental learning settings with hetero-
geneous data partitions, leveraging four benchmark datasets: (1) Class-Incremental Learning with
CIFAR100 Krizhevsky et al. (2009) and Tiny-ImageNet Le & Yang (2015), we divide the dataset into
ten different tasks, each containing data from {10, 20} classes to simulate streaming tasks for two
datasets; (2) Domain-Incremental Learning with Office31 Saenko et al. (2010) and Office-Caltech-
10 Zhang & Davison (2020), we treat each domain as a separate task. Further dataset descriptions
and preprocessing details are provided in Appendix A.1.

Baselines. To ensure a fair comparison with existing studies, we adopt the experimental protocols
from Shenaj et al. (2023); Li et al. (2024a) for constructing AFCL tasks. We select baselines from
three complementary perspectives. First, we include three asynchronous FL methods to benchmark
the challenge of asynchronous aggregation: FedAsync Xie et al. (2019), FedBuff Nguyen et al.
(2022b), and CA2FL Wang et al. (2024b). Second, we choose several representative FCL approaches
as widely adopted baselines: GLFC Dong et al. (2022), FedCIL Qi et al. (2023), Re-Fed Li et al.
(2024a), FOT Bakman et al. (2023), and FedSSI Li et al. (2025c). Finally, we consider the only
existing AFCL method to highlight its contrast with our design: FedSpace Shenaj et al. (2023).
Through comparisons across these baselines, we provide a comprehensive and rigorous validation
of the effectiveness and superiority of our proposed method. Comprehensive descriptions of the
baselines are provided in Appendix A.2.

Configurations. We configure each task with E = 20 local training epochs and T = 100 commu-
nication rounds, ensuring convergence before the introduction of the next task. The total number
of clients is K = 20 with an active participation ratio of r = 0.4. We adopt ResNet18 He et al.
(2016) as the backbone model. To introduce data heterogeneity, local samples are partitioned using
a Dirichlet distribution Dir(α), where smaller α values correspond to higher Non-IID levels. For
rehearsal-based FCL and asynchronous methods, each client is allocated a memory buffer of size
300 to store synthetic or previous samples for comparison fairness. To simulate the asynchronous
setting, we randomly assign task arrival times to clients rather than enforcing global synchroniza-
tion. Each participating client becomes available with a probability of 0.8. We also allow update
staleness of up to 25 rounds, which ensures persistent asynchrony while maintaining stable training.
We evaluate performance by reporting the average accuracy AC(↑) and forgetting score FS(↓) over
all tasks. Each experiment is repeated twice, and the average accuracy and standard deviation are
computed from the last 10 rounds of each run. Optimization is performed using Adam with a linear
learning rate schedule. All experiments are executed on a cluster with 24 RTX 4090 GPUs.
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Table 1: Performance comparison of various methods on four datasets across two different incre-
mental settings. We evaluate with two main metrics, and the best results are bold.

Method
CIFAR100 Tiny-ImageNet Office31 Office-Caltech-10

AC(↑) FS(↓) AC(↑) FS(↓) AC(↑) FS(↓) AC(↑) FS(↓)
FedAsync 30.66±2.32 37.91±5.15 28.64±3.37 45.78±2.78 41.97±1.07 31.45±5.19 43.68±3.16 28.25±4.30

FedBuff 29.50±3.43 42.01±1.04 26.15±3.17 44.36±5.64 39.61±2.59 39.81±4.41 40.42±2.93 35.24±3.22

CA2FL 33.08±1.73 36.12±4.14 30.90±2.91 41.59±4.62 42.82±3.83 29.71±1.12 43.77±5.59 28.03±1.64

GLFC 31.11±2.35 33.56±1.97 27.71±4.75 35.20±1.99 44.03±3.47 22.65±1.86 45.92±3.01 22.01±1.89

FedCIL 31.93±3.56 38.22±1.17 31.52±4.61 41.63±2.40 45.96±3.59 25.11±3.82 47.41±0.64 25.43±1.69

Re-Fed 32.34±3.43 36.72±1.59 29.76±3.26 39.69±4.02 44.28±5.45 28.73±2.16 44.56±3.80 27.29±1.45

FOT 37.13±2.94 28.76±1.54 32.36±2.15 30.92±2.11 46.23±4.75 22.76±1.83 48.66±3.16 21.58±2.74

FedSSI 33.75±2.88 30.36±3.04 34.99±5.13 33.52±2.23 46.86±3.59 24.91±3.25 49.27±1.29 22.36±1.66

FedSpace 38.61±1.73 30.99±2.75 35.81±2.42 35.07±3.15 47.61±1.46 21.94±2.08 48.32±0.87 23.72±2.12

C2-AFCL 42.57±2.93 27.36±1.31 38.24±2.90 30.11±1.95 50.54±3.16 20.79±2.06 52.66±2.44 20.32±3.71
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Figure 2: Ablation study of C2-AFCL on two
datasets with three components (α=1).
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Figure 3: Performance comparison of various
methods w.r.t. ratio r between active clients and
total clients in each round (α=1).

6.2 PERFORMANCE OVERVIEW

Main Results. Table 1 shows that C2-AFCL achieves the best balance between accuracy and for-
getting across datasets and settings. Conventional asynchronous FL baselines like FedAsync fail to
maintain stability under streaming tasks, while FCL methods reduce forgetting via replay or regular-
ization but remain fragile in asynchronous environments due to their assumption of task alignment.
FedSpace, the only existing AFCL method, improves stability through prototype-based calibration,
yet its reliance on contrastive objectives limits its ability to decouple inter-task interference. In con-
trast, C2-AFCL addresses both client and task drift while intra-client calibration aligns updates with
true task progress, and inter-task orthogonal projection preserves historical knowledge. This mecha-
nism enables continual learning with higher accuracy and lower forgetting across diverse scenarios.

Ablation Study. Figure 2 highlights the contributions of the two calibration modules in C2-AFCL.
Without intra-client calibration, updates are dominated by statistical and temporal variance, reduc-
ing stability. Without inter-task orthogonal calibration, new task gradients interfere with previous
knowledge, leading to higher forgetting. The full framework updates capture genuine task progress
while remaining orthogonal to historical knowledge, thereby maintaining a robust balance between
stability and plasticity under asynchronous conditions.

Communication Efficiency. Table 2 indicates that C2-AFCL attains favorable efficiency by con-
verging within a comparable number of communication rounds while sustaining higher accuracy.
This efficiency stems from the two-stage calibration: intra-client calibration filters out redundant
local variance, reducing oscillations during aggregation, whereas inter-task calibration prevents de-
structive interference, ensuring that each update contributes meaningfully to the global model. As
a result, the framework requires no additional communication overhead yet maintains stable opti-
mization dynamics, achieving a better balance between convergence speed and final performance.
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Table 2: We evaluate different methods based on the number of communication rounds required
to reach their best test accuracy. Specifically, we report the total communication rounds needed to
achieve the best performance on each task and analyze the trade-off between accuracy and commu-
nication cost. We further define ”∆” as the difference between the percentage gain in accuracy and
the percentage increase in communication rounds of C2-AFCL compared to other baselines.

Method
CIFAR100 Tiny-ImageNet Office31 Office-Caltech-10

Rounds ∆ Rounds ∆ Rounds ∆ Rounds ∆

FedAsync 841±2.17 37.07%↑ 893±0.74 30.38%↑ 213±1.53 20.89%↑ 181±1.07 16.14%↑
FedBuff 820±0.94 39.91%↑ 871±1.90 40.49%↑ 199±1.45 21.06%↑ 170±0.66 19.10%↑
CA2FL 829±2.03 25.43%↑ 909±1.44 22.43%↑ 191±1.32 7.04%↑ 177±1.71 13.53%↑
GLFC 849±2.12 36.02%↑ 901±0.76 35.78%↑ 219±1.83 17.99%↑ 193±2.31 16.75%↑

FedCIL 810±2.47 27.64%↑ 879±0.98 16.54%↑ 204±0.94 6.05%↑ 176±1.19 3.68%↑
Re-Fed 869±0.87 33.13%↑ 896±2.93 25.70%↑ 203±2.28 9.70%↑ 192±0.49 19.74%↑

FOT 817±1.93 9.88%↑ 865±2.24 11.70%↑ 210±1.11 8.37%↑ 180±1.30 3.22%↑
FedSSI 834±1.65 23.49%↑ 924±1.09 9.61%↑ 223±1.59 12.78%↑ 185±0.91 4.72%↑

FedSpace 877±0.82 12.65%↑ 946±0.74 9.43%↑ 206±1.56 3.24%↑ 197±1.60 13.04%↑
C2-AFCL 856±1.69 / 921±1.92 / 212±1.43 / 189±2.01 /
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Figure 4: Performance comparison of various methods w.r.t. Dirichlet distribution Dir(α) and stale-
ness τ of asynchronous settings on CIFAR100.

Parameter Sensitivity Analysis. Figure 3 illustrates that C2-AFCL remains robust across different
client participation ratios. While other methods exhibit clear fluctuations when fewer clients are se-
lected, our framework maintains stable accuracy. This robustness arises from the calibration design
where intra-client calibration suppresses noise from sparse participation, and inter-task calibration
ensures that limited updates still align with the preserved knowledge subspace. Thus, even under re-
duced client availability, the model preserves a stable learning trajectory without severe performance
collapse. Figure 4 shows that C2-AFCL adapts well to varying degrees of Non-IID distributions and
asynchronous delays. Unlike baselines that accumulate bias as heterogeneity or staleness increases,
our dual calibration effectively decomposes updates into informative and interfering components,
filtering out the harmful directions. This prevents divergence caused by inconsistent task arrivals or
skewed data partitions, leading to a smoother performance across challenging federated conditions.

7 CONCLUSION

In this work, we introduced C2-AFCL, a cross-task calibration framework designed to address the
fundamental challenge of asynchronous federated continual learning. Unlike prior works that as-
sume synchronized task arrivals, our method explicitly handles both client drift and task drift through
a dual orthogonal calibration strategy. We further provided a theoretical convergence analysis and
demonstrated through extensive experiments that our approach consistently outperforms state-of-
the-art baselines across diverse settings. We believe this work establishes AFCL as a practical and
scalable paradigm for real-world federated continual learning and opens promising directions for
future research in dynamic distributed environments.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this work, we have used Large Language Models (LLMs) exclusively for the purposes
of translation and language polishing. The content, arguments, and conclusions presented herein
are entirely my own, and the use of LLMs did not contribute to the generation of original ideas or
substantive content.
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REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of our work. The theoretical assumptions are
explicitly stated in Section 5, with complete proofs provided in the Appendix. The experimental
setup, including datasets, preprocessing steps, and hyperparameters, is detailed in Section 4 and the
Appendix. Source code and instructions for reproducing our results are available if needed.

A EXPERIMENTAL SETTINGS

A.1 DATASETS

Class-Incremental Datasets

CIFAR-100 Krizhevsky et al. (2009) is a widely used benchmark for image classification, consisting
of 60,000 images across 100 object categories with balanced class distributions. In our setting, we
split the dataset into multiple class-incremental tasks, where each task contains 10 disjoint classes.

Tiny-ImageNet Le & Yang (2015) is a scaled-down version of ImageNet containing 200 classes
with 500 training and 50 validation images per class at a resolution of 64 × 64. Following existing
works, we partition the dataset into class-incremental tasks with 20 classes per task.
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Domain-Incremental Datasets

Office-31 Saenko et al. (2010) is a domain adaptation benchmark containing 4,652 images from
31 categories collected across three distinct domains: Amazon, Webcam, and DSLR. We adopt the
domain-incremental setting by treating each domain as a separate task, enabling evaluation under
distributional shifts.

Office-Caltech-10 Zhang & Davison (2020) is a variant of the Office dataset that overlaps 10 com-
mon categories with the Caltech-256 dataset across four domains: Amazon, Webcam, DSLR, and
Caltech. Each domain is regarded as a separate task in our experiments, providing a compact yet
diverse benchmark for domain-incremental learning.

A.2 BASELINES

Representative Asynchronous Federated Learning

FedAsync Xie et al. (2019) is an asynchronous variant of federated learning where the server imme-
diately integrates each client update upon arrival. It mitigates the idle time caused by synchroniza-
tion but suffers from update staleness when clients operate at different speeds. This method serves
as a fundamental baseline for evaluating asynchronous aggregation schemes.

FedBuff Nguyen et al. (2022b) introduces a buffering mechanism that collects a fixed number of
client updates before aggregation. By controlling the buffer size, it strikes a balance between stal-
eness and synchronization efficiency. It is widely used as a strong asynchronous FL baseline in
heterogeneous environments.

CA2FL Wang et al. (2024b) enhances asynchronous FL by caching the latest client updates and cal-
ibrating incoming updates against them. This calibration reduces the impact of client and data het-
erogeneity on the aggregated global model. It provides a more stable alternative to purely staleness-
based methods like FedAsync.

Federated Continual Learning

GLFC Dong et al. (2022) addresses federated class-incremental learning by maintaining a gener-
ative model to replay samples from previous tasks. This alleviates catastrophic forgetting without
requiring raw data sharing among clients. It is one of the earliest works extending continual learning
principles to the federated setting.

FedCIL Qi et al. (2023) improves federated class-incremental learning by integrating generative
replay with class-balanced loss. This design tackles both catastrophic forgetting and class imbalance
across clients. It is a representative baseline for continual learning with replay-based strategies.

Re-Fed Li et al. (2024a) leverages efficient replay mechanisms by selectively storing informative
samples across clients. The method reduces memory usage while maintaining strong performance
under federated continual learning. It highlights the trade-off between communication efficiency
and forgetting mitigation.

FOT Bakman et al. (2023) prevents knowledge interference by projecting task updates onto orthogo-
nal subspaces. This strategy preserves previously learned knowledge while integrating new tasks. It
represents a regularization-based approach tailored for continual learning in federated environments.

FedSSI Li et al. (2025c) introduces a rehearsal-free continual learning method by extending synap-
tic intelligence to federated settings. It eliminates the need for data replay while retaining plas-
ticity across sequential tasks. This makes it particularly suitable for privacy-sensitive or resource-
constrained scenarios.

Asynchronous Federated Continual Learning

FedSpace Shenaj et al. (2023) is the first dedicated method for asynchronous federated continual
learning. It employs fractal pre-training and prototype-based contrastive learning to alleviate task
drift. This baseline directly targets the AFCL problem and provides a critical reference point for
comparison with our method.
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B THEORETICAL ANALYSIS FOR C2-AFCL

Proof of Lemma 5.5. Denote by 0 ≤ θ1 ≤ · · · ≤ θd ≤ π/2 the principal angles between the
subspaces Col(bd) and Col(b⊤d ), and let sinΘ = diag(sin θ1, . . . , sin θd). A standard formulation
of the Davis–Kahan sinΘ theorem gives ∥ sinΘ∥2 ≤ ∥E∥2/δ.

The nonzero singular values of P(s+1) − P(s) are exactly {sin(2θi)}di=1. Hence

∥P(s+1) − P(s)∥2 = max
1≤i≤d

| sin(2θi)| = sin(2θmax),

where θmax = maxi θi. Using sin(2x) = 2 sinx cosx ≤ 2 sinx for x ∈ [0, π
2 ] we obtain

∥P(s+1) − P(s)∥2 ≤ 2 sin θmax = 2∥ sinΘ∥2 ≤
2∥E(s)∥2

δ
.

This proves the operator-norm bound.

Since P(s+1)−P(s) is the difference of two rank-d projectors, its rank is at most 2d. For any matrix
M of rank r we have ∥M∥F ≤

√
r ∥M∥2. Applying this with M = P(s+1) − P(s) and r ≤ 2d

yields

∥P(s+1) − P(s)∥F ≤
√
2d ∥P(s+1) − P(s)∥2 ≤

√
2d · 2∥E

(s)∥2
δ

=
2
√
2d ∥E(s)∥2

δ
.

Squaring both sides gives

∥P(s+1) − P(s)∥2F ≤
8d ∥E(s)∥22

δ2
,

which completes the proof.

Proof of Theorem 5.6. For the active task t at round r, by L-smoothness,

F t(wr+1) ≤ F t(wr) + ⟨∇F t(wr), wr+1 − wr⟩+
L

2
∥wr+1 − wr∥2.

With wr+1 − wr = ηgr and gr = 1
K

∑K
k=1 δ

t
pre,k this gives:

F t(wr+1) ≤ F t(wr) + η⟨∇F t(wr), gr⟩+
Lη2

2
∥gr∥2. (9)

Take full expectation and denote ar = (I − Pt)∇F t(wr) and ḡr = E[gr | wr]. Because gr lies in
the range of (I− Pt) we have ⟨∇F t(wr), gr⟩ = ⟨ar, gr⟩. Hence,

E[F t(wr+1)] ≤ E[F t(wr)] + η E[⟨ar, gr⟩] +
Lη2

2
E∥gr∥2. (10)

Use ⟨u, v⟩ = ∥u∥2 + ⟨u, v − u⟩ and the inequality ⟨u, v − u⟩ ≥ − 1
2∥u∥

2 − 1
2∥v − u∥2. Taking

expectation and using E[⟨ar, gr⟩] = E[⟨ar, ḡr⟩] we can get:

E[⟨ar, gr⟩] ≥ 1
2E∥ar∥

2 − 1
2E∥ḡr − ar∥2. (11)

Substitute equation 11 into equation 10 and rearrange:

η
(

1
2E∥ar∥

2 − 1
2E∥ḡr − ar∥2

)
≤ E[F t(wr)]− E[F t(wr+1)] +

Lη2

2
E∥gr∥2.

Multiply by 2/η to obtain the central one-step inequality:

E∥ar∥2 ≤
2

η

(
E[F t(wr)]− E[F t(wr+1)]

)
+ E∥ḡr − ar∥2 + Lη E∥gr∥2. (12)

Let g̃r = gr − ḡr. Then,

∥gr∥2 = ∥ḡr + g̃r∥2 = ∥ḡr∥2 + 2⟨ḡr, g̃r⟩+ ∥g̃r∥2.
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Taking the conditional expectation given wr,

E
[
∥gr∥2 | wr

]
= ∥ḡr∥2 + 2E[⟨ḡr, g̃r⟩ | wr] + E

[
∥g̃r∥2 | wr

]
.

Since ḡr is wr-measurable and E[g̃r | wr] = 0, the cross term vanishes:

E[⟨ḡr, g̃r⟩ | wr] =
〈
ḡr, E[g̃r | wr]

〉
= ⟨ḡr, 0⟩ = 0.

Taking expectation over wr gives:

E∥gr∥2 = E∥ḡr∥2 + E∥gr − ḡr∥2.

The average variance of client increments bounds the variance term. Since Var(δtpre,k) ≤ Var(δtk) ≤
σ2 and clients are averaged:

E∥gr − ḡr∥2 ≤
1

K2

K∑
k=1

σ2 =
σ2

K
.

For ∥ḡr∥2 use ḡr = ar + (ḡr − ar) and (x+ y)2 ≤ 2x2 + 2y2:

∥ḡr∥2 ≤ 2∥ar∥2 + 2∥ḡr − ar∥2.

Thus,

E∥gr∥2 ≤
σ2

K
+ 2E∥ar∥2 + 2E∥ḡr − ar∥2. (13)

Insert equation 13 into equation 12:

E∥ar∥2 ≤
2

η
∆r + E∥ḡr − ar∥2 + Lη

(σ2

K
+ 2E∥ar∥2 + 2E∥ḡr − ar∥2

)
.

where ∆r = E[F t(wr)]− E[F t(wr+1)]. Rearrange left-hand side terms:

(1− 2Lη)E∥ar∥2 ≤
2

η
∆r + (1 + 2Lη)E∥ḡr − ar∥2 +

Lη

K
σ2.

With the step-size condition η ≤ 1/(4L) we have 2Lη ≤ 1/2 and the crude bounds:

1

1− 2Lη
≤ 2,

1 + 2Lη

1− 2Lη
≤ 3.

Dividing both sides by 1− 2Lη gives

E∥ar∥2 ≤
4

η
∆r + 3E∥ḡr − ar∥2 +

2Lη

K
σ2. (14)

Denote mr
k = E[δtk | wr], using the operator-norm inequality and the fact that (I − Pt) is an

orthogonal projector, we can get:

∥ḡr − ar∥ = ∥(I− Pt)
( 1

K

K∑
k=1

mr
k −∇F t(wr)

)
∥ ≤

∥∥∥ 1

K

K∑
k=1

mr
k −∇F t(wr)

∥∥∥.
Decompose

1

K

K∑
k=1

mr
k −∇F t(wr) =

( 1

K

∑
k

(mr
k −∇F t

k(wr))
)
+

( 1

K

∑
k

∇F t
k(wr)−∇F t(wr)

)
.

Apply (u+ v)2 ≤ 2u2 + 2v2 and take expectation to get:

E∥ḡr − ar∥2 ≤ 2E
∥∥∥ 1

K

K∑
k=1

(mr
k −∇F t

k(wr))
∥∥∥2 + 2E

∥∥∥ 1

K

K∑
k=1

∇F t
k(wr)−∇F t(wr)

∥∥∥2.
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By Assumption 5.2, the second term is at most 2σ2
g :

E
∥∥∥ 1

K

K∑
k=1

∇F t
k(wr)−∇F t(wr)

∥∥∥2 ≤ σ2
g =⇒ 2σ2

g in the bound.

For the first term note each mr
k is computed at some delayed model wr−τk with τk ≤ τmax. We now

introduce the modeling error: εrk = mr
k −∇F t

k(w r−τk) and then we can get:

mr
k −∇F t

k(wr) =
(
mr

k −∇F t
k(wr−τk)

)
+
(
∇F t

k(wr−τk)−∇F t
k(wr)

)
= εrk +

(
∇F t

k(wr−τk)−∇F t
k(wr)

)
.

By Assumption 5.1, the gradient difference is bounded as:

∥mr
k −∇F t

k(wr)∥ ≤ L∥wr−τk − wr∥+ ∥εrk∥.

We assume the client’s expected increment equals the stale-point gradient, and wr − wr−τk =∑r−1
j=r−τk

ηgj , so ∥mr
k −∇F t

k(wr)∥ ≤ Lη
∑r−1

j=r−τk
∥gj∥. Using τk ≤ τmax and Cauchy–Schwarz

we get the squared bound:

∥mr
k −∇F t

k(wr)∥2 ≤ L2η2τmax

r−1∑
j=r−τk

∥gj∥2.

Taking expectations and averaging over k iterations and the standard conservative bound:

E
∥∥∥ 1

K

K∑
k=1

(mr
k −∇F t

k(wr))
∥∥∥2 ≤ L2η2τ2max(G

2 +
σ2

K
).

Thus, the bias bound becomes:

E∥ḡr − ar∥2 ≤ 2L2η2τ2max(G
2 +

σ2

K
) + 2σ2

g . (15)

Put equation 15 into equation 14. Substitute to get:

E∥ar∥2 ≤ 4

η
∆r + 6L2η2τ2maxG

2 + 6σ2
g +

2Lησ2(3Lητ2max + 1)

K
. (16)

Summing equation 16 over r = 0, . . . , R− 1 and dividing by R iterations:

1

R

R−1∑
r=0

E∥ar∥2 ≤
4

ηR

R−1∑
r=0

∆r + 6L2η2τ2maxG
2 + 6σ2

g +
2Lησ2(3Lητ2max + 1)

K
.

Using
∑R−1

r=0 ∆r = E[F t(w0)]− E[F t(wR)] ≤ F t(w0)− F t(w⋆), we can obtain:

1

R

R−1∑
r=0

E∥ar∥2 ≤
4
(
F t(w0)− F t(w⋆)

)
ηR

+ 6L2η2τ2maxG
2 + 6σ2

g +
2Lησ2(3Lητ2max + 1)

K
.

The above derivation assumed the projector Pt used in definitions of ar and in (I − Pt)δ
t
k is fixed.

When Pt is updated periodically, there is a mismatch between the projector used to produce some
historical δtk and the projector used in the inner product; this mismatch yields an additional additive
term which can be shown (see Lemma 5.5 below) to be upper-bounded by 3G2∆proj in the average.
Adding this term to the right-hand side yields the claimed bound:

1

R

R−1∑
r=0

E
∥∥(I− Pt)∇F t(wr)

∥∥2 ≤ 4
(
F t(w0)− F t(w⋆)

)
ηR

+ 6L2η2τ2maxG
2 + 6σ2

g

+
2Lησ2(3Lητ2max + 1)

K
+ 3G2∆t

proj.

This completes the proof.
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