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Abstract

Agricultural systems involve biological, physical, social and economic dimensions.
Current farming practices often fail to balance these and contribute to soil degrada-
tion, biodiversity loss and greenhouse gas emissions. Understanding and managing
these complex systems requires data-driven approaches that can monitor and an-
ticipate agricultural outcomes. Machine learning (ML) has been used to predict
outcomes such as crop yields, soil health or water use from observational data.
However, ML often cannot explain how these outcomes are affected by human or
natural interventions, nor can it reliably generalize across regions and management
contexts. Causal machine learning (causal ML) combines causal inference with ML
to address these limitations. It enables estimation of causal effects for agricultural
questions and improves prediction by focusing on stable and generalizable features.
In this perspective, we introduce methods for causal inference from observational
data and approaches that embed causal knowledge into predictive models. We
then outline applications in research, policy and practice and conclude with key
challenges and future directions for sustainable agriculture.

1 Introduction

Agriculture is a complex system where biological, physical, social and economic factors interact.
Farms are not isolated production units but part of broader systems that include climate, land
use, ecosystems and human activities [8]. Current practices often fail to balance these elements,
contributing to environmental pressures such as biodiversity loss, soil degradation and greenhouse gas
emissions [30, [13]]. Building resilient food systems while reducing these impacts requires tools that
can untangle these complex interactions and allow us to intervene effectively. Machine learning (ML)
is excellent at identifying patterns and making predictions in agricultural systems [21]. For example,
ML can forecast crop yields from historical observations and environmental measurements. However,
predictive ML alone cannot explain why outcomes occur and may fail when applied to new regions
or management scenarios [41]. Without causal reasoning, ML can produce statistically accurate but
misleading insights for sustainability-oriented decision-making. Causal machine learning (causal
ML) addresses these limitations (see Sec. [A.I} predictive vs causal ML) in two complementary ways
(see Fig. : (i) by answering causal questions, such as “Does El Nifio Southern Oscillation (ENSO)
cause soil moisture anomalies in Southern and Eastern Africa?” or “How does crop rotation affect
productivity across different local conditions?” and (ii) by improving predictive models’ robustness
and generalizability through stable causal features [15]]. Despite its promise, adoption in agriculture
remains limited compared to ecology [37] and climate sciences [39]. This perspective paper aims to
make causal ML concepts accessible for stakeholders and scientists in agriculture, in an attempt to
promote their wider adoption in the domain.
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Figure 1: Causality in agriculture: (a) Improve predictive models by enhancing robustness and
generalization across interventions and geographies. (b) Answer causal questions: causal discovery
to construct causal graphs and causal effect estimation to guide effective interventions.

2 Causal Machine Learning in Agriculture

2.1 ML For Answering Causal Questions

Randomized experiments remain the gold standard for causal inference in agriculture, providing
unbiased effect estimates by manipulating treatments and controlling variables [29]]. Yet, they have
notable limitations: small sample sizes often fail to capture environmental heterogeneity, results
may not generalize to new regions or scales [34] and many agricultural processes involve complex
interactions that a single intervention cannot isolate [[L6]. Observational causal inference offers a
practical alternative. Large datasets from farm records, surveys or remote sensing allow researchers
to study interventions at broader scales and under realistic conditions. Advances in data and machine
learning for representation learning help extract informative features from high-dimensional inputs
like satellite imagery [19]. However, confounding, where external factors influence both treatment
and outcome, remains a key challenge, and ML-learned features may not correspond to variables with
clear physical or agronomic meaning. Embedding these analyses within rigorous causal frameworks is
therefore essential for producing valid, actionable insights. To exploit ML’s potential while addressing
these issues, we present a causal ML workflow for agriculture:

Defining the causal question. A causal question can be either qualitative or quantitative. For
instance, a qualitative question might explore whether there is a causal relationship between soil
microbiome diversity and crop yield. Such questions are addressed using causal discovery methods.
On the other hand, a quantitative question might seek to determine the extent of the impact, such
as estimating how much the use of a particular pesticide increased the crop yield. These types of
questions are tackled using causal effect estimation methods.

Collecting data. To answer causal questions in agricultural systems, data on relevant variables
must be collected. For causal discovery, this means measuring the variables of interest and potential
confounders, factors that influence multiple variables and may create spurious associations. For
causal effect estimation, information is needed on the treatment (e.g., fertilizer use), the outcome (e.g.,
farm profitability) for specific units (e.g., fields) and confounders such as temperature, soil or crop
characteristics [27]. Confounders can be identified through causal discovery algorithms, statistical
analyses (e.g., correlations suggesting hidden links) and expert agronomic knowledge. Relevant data
sources include remote sensing, reanalysis products, process-based model outputs, farm management
systems, crop calendars, accounting records, field experiments and plant phenotyping platforms.

Making assumptions. To answer causal questions without randomized experiments, certain assump-
tions are required, structural, process or statistical. Structural assumptions concern the existence of
unmeasured confounding or the time lag of cause-effect relationships. Process assumptions address
whether chosen models (e.g., linear) are adequate for capturing causal dynamics. Statistical assump-
tions involve whether the available data are sufficient and representative. For causal discovery, the
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core requirement is causal sufficiency, meaning that all relevant variables are measured. For causal
effect estimation, the key requirement is a valid causal graph, which specifies cause-effect relation-
ships and can be informed by expert knowledge or data-driven methods. Rubin’s potential outcomes
framework [35] complements Pearl’s structural causal models [31] by detailing the assumptions
needed for valid causal inference.

Selecting causal ML methods. The choice of method depends on the causal question, available data
and assumptions. For causal discovery, the goal is to uncover cause-effect relationships. Constraint-
based approaches (e.g., PC, FCI) [43]] and score-based approaches (e.g., GES) [6] require relatively
weak assumptions but may not recover the full graph. Variants exist for both cross-sectional [12]] and
time-series data [3}40]. Asymmetry methods [48] assume specific functional forms of relationships to
improve recovery. For causal effect estimation, the focus is on quantifying the impact of interventions.
The Average Treatment Effect (ATE) captures the overall impact of a treatment (e.g., ‘What is
the average effect of organic farming across Europe?’), typically estimated via matching [36] or
propensity scores [32]]. The Conditional Average Treatment Effect (CATE) refines this for subgroups
(e.g., ‘How does the impact of organic farming vary across countries in Europe?’), enabling tailored
insights, with methods such as the X-learner [18]] and Double Machine Learning (DML) [5]].

Checking robustness. When relying on observational rather than experimental data to answer
causal questions, assumptions must be made about the data and the process that generated them.
Robustness checks help stress-test these assumptions. For causal discovery, this involves comparing
inferred relationships with domain knowledge or testing methods on synthetic datasets generated
by process-based models with known causal graphs. If the method correctly recovers the model’s
structure, it increases confidence in its applicability to the real system. For causal effect estimation,
refutation tests [42] assess whether assumptions yield coherent estimates. A common approach is to
add noise variables as spurious confounders and verify that estimated effects remain stable.

2.2 Using Causality to Improve ML Predictions

Predictive ML models in agriculture often fail to generalize across space, time or under interventions,
as they rely on correlations that may not hold outside the training data. Causality-aware ML improves
predictive performance by emphasizing features with stable, direct causal relationships to the outcome
[28]]. Models trained on these causal features are more robust, interpretable and generalizable.
Invariant Causal Prediction (ICP) [28]] identifies features whose influence remains consistent across
environments, while Anchor Regression [33]] balances predictive accuracy and stability by weighting
non-causal features without discarding them entirely. Other approaches, including Invariant Risk
Minimization (IRM) [2]] and Risk Extrapolation (REx) [[17]], similarly leverage causal principles to
enhance robustness. Traditional domain adaptation, domain generalization and transfer learning
methods [47] focus on improving predictive performance in new domains. Causality-aware ML
complements these by explicitly identifying which relationships are invariant under interventions and
which are susceptible to change, providing a principled framework for reasoning under distribution
shifts and designing models that remain reliable in diverse agricultural contexts.

3 Applications of Causal ML in Agriculture

Causal ML is about answering causal queries, avoiding being right for the wrong reasons. Next, we
present several applications to inspire how causal ML can drive sustainability in agriculture.

Advancing Science (i) Understanding complex and dynamic systems: Systems like food security
and land use change are shaped by complex socio-environmental drivers that evolve across space
and time. For example, in the case of food security, environmental stressors (e.g., droughts) interact
with local socio-economic factors (e.g., poverty, market access) and global market dynamics to
drive outcomes [22, 9] (Fig. 3] app 1). Domain knowledge alone often cannot keep up with these
shifting dynamics. Data-driven causal discovery provides a method for constructing graphs that reveal
hidden drivers and quantify changing relationships over time and space. For example, Mwebaze
et al. [24] applied an ensemble of causal discovery algorithms to identify drivers of famine risk in
Uganda, supporting improved prediction and intervention strategies. (ii) Comparing crop growth
models: Process-based crop models are widely used to simulate crop development and yield under
different environmental and management conditions. These models often differ substantially in their
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sensitivity to factors such as temperature, precipitation, soil characteristics, etc., which introduces
uncertainty in yield projections [25,|14]. Causal discovery can be applied to the outputs of multiple
models to identify the implied causal relationships between inputs (e.g., weather, soil, management)
and outputs (e.g., yield, biomass). By comparing these causal structures against each other and
against observational data, researchers can evaluate which models best capture the true underlying
mechanisms. This evaluation goes beyond traditional sensitivity analysis, allowing identification of
systematic biases or missing interactions and providing a principled way to improve model design
and parameterization [26]. Such an approach can increase confidence in model predictions and guide
both scientific understanding and practical decision-making in agricultural planning (Fig. [3| app 2).

Assisting Policymakers and Farmers (i) Estimating impacts of human and natural interventions:
Causal ML supports evidence-based policy by quantifying the effects of interventions. For example,
cash transfers in drought-affected regions of the Horn of Africa were evaluated using ATE to
measure their impact on food security, providing actionable guidance for humanitarian organizations
[4]. Similarly, understanding how extreme weather events affect crop yields helps design risk
management strategies for farmers and policymakers (Fig. 3] app 3.4). (ii) Personalizing sustainable
practices: Agricultural interventions often have heterogeneous impacts due to local environmental
and management conditions. CATE methods allow geospatial tailoring of practices, prioritizing the
most beneficial strategies for each land unit [10] (Fig. 3] app 5). For instance, [11] demonstrated how
crop rotation effects on productivity vary with temperature and water deficit, informing localized
recommendations. iii) Evaluating digital agriculture recommendations: Causal ML can be used to
assess the effectiveness of specific decision support systems (Fig. [3| app 6). Using ATE estimation,
[45] found that following optimal day-of-sowing recommendations increased yield by 12—17%. Such
evidence builds trust, guides cost-benefit analyses and supports fair pricing of digital services.

Improving Predictive Modeling Causality-aware ML can enhance predictive modeling in agri-
culture by improving model stability [7] (Fig. 3} app 7, 8). For example, national-level crop yield
forecasting is vital for food security, yet training data are often scarce or unevenly distributed, es-
pecially in food-insecure regions. By focusing on stable, causal variables, causality-aware methods
improve geographic generalization [20]. They also increase robustness over time, such as in pest
prediction models that must adapt to new control strategies or unusual environmental events [46].

4 Discussion and Outlook

Causal ML can promote agricultural sustainability through two complementary approaches: enhanc-
ing predictive model stability (causality for ML) and answering causal questions (ML for causality),
providing actionable insights for stakeholders from farmers to policymakers. A causal ML workflow
ensures effective application and includes five key elements, with their challenges and opportunities:

Causal question. Explicit causal framing is essential for addressing management decisions. Expert
knowledge can be encoded in causal graphs to guide variable selection and method choice [27].
Questions must be relevant, precise and feasible. Data. Agroecosystems are complex, nonlinear and
non-stationary [3}39,138]]. Effective analysis requires curated, multi-modal data across environmental,
economic and social variables. Temporal and spatial scales must align with the causal question and
proxies should closely reflect conceptual variables. Assumptions. When randomization is impossible,
structural and statistical assumptions are needed to infer causality [42]]. Assumptions should be
explicit and plausible, with spatial dependencies considered to avoid biases (e.g., pesticides affecting
neighboring fields) [1]. Methods. Method choice depends on data, assumptions and question
type. Open challenges in methods include scalable algorithms for high-dimensional, mixed and
non-stationary data [38]], spatial interactions [1]] and causal representation learning [41]]. Validation.
Expert-derived causal graphs can benchmark discovery methods. Effect estimation can be evaluated
using process-based models or synthetic data, and combined with randomized experiments when
available [[16]. Causality-aware ML models should be assessed for geographic generalization,
transferability and robustness [44, 23]]. Initiatives like AgML/AgMIP [44]] and CauseMe| [23]] support
standardization, collaboration and continuous evaluation.

Integrating causal thinking into agroecosystem sustainability enables transparent assessment of inter-
ventions and supports informed decision-making while navigating trade-offs between productivity,
environmental health and social outcomes.


https://www.agml.org/
https://causeme.uv.es
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A Appendix

A.1 Predictive vs Causal ML

Predictive ML focuses on finding statistical associations to make predictions.

Causal ML is the synergistic use of causal inference and machine learning to improve causality
with ML (ML for causality) or improve ML with causality (causality for ML). It seeks to distinguish
between types of relationships that result in statistical associations: direct causal, indirect or mediated
causal, and non-causal associations. Pearl’s Structural Causal Model (SCM) framework [27] provides
the language to do this.

Causal tasks: Causal questions like what happens if... can be expressed using the SCM framework.
ML for causality involves two main sub-tasks: causal discovery and causal effect estimation.

» Task. What is the effect of a crop rotation on the field’s soil health?

* Predictive ML can detect correlations but may mistakenly attribute changes to crop rotation
due to confounding variables like climate.
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* Causal ML allows us to quantify the extent to which soil health changes can be attributed to
crop rotations by separating out confounding effects.

Predictive tasks: Use patterns in a training dataset to model associative relationships.

* Task. Predict crop yield in Africa with a model trained in Europe.

* Predictive ML relies on training and test data being very similar and cannot generalize well
to different data distributions. The differences between Africa and Europe can make the
model obsolete.

* Causal ML focuses on causal features that have a higher potential for generalization and
robustness. By filtering out non-causal relationships, the model relies on more stable and
fundamental patterns.

A.2 Supplementary Figures

what if, why ML for causality

what

Machine
learning

Causality for ML :

Figure 2: Visual representation of the relationship between predictive ML, causal inference, and
causal ML. Causal ML builds upon the strengths of both.
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Figure 3: Applications of causal ML for agriculture. Panel a) Causal discovery applications: Data-
driven causal discovery (1) unveils causal mechanisms and (2) evaluates process-based (PBs) models.
Panel b) Causal effect estimation applications: Support evidence-based decisions by evaluating
the impact of (3) human actions and (4) climate/weather events. (5) Sustainable practices can be
spatially tailored by estimating each land unit’s individualized impact. Panel c) Causality-aware
ML applications: To achieve geographic generalization (7) and robustness to interventions (8) in
predictive models, it is key to balance errors across various environments, which helps identify causal
features that maintain a stable relationship with the outcome.
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