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Abstract. Transformer-based image restoration methods in adverse wea-
ther have achieved significant progress. Most of them use self-attention
along the channel dimension or within spatially fixed-range blocks to
reduce computational load. However, such a compromise results in lim-
itations in capturing long-range spatial features. Inspired by the ob-
servation that the weather-induced degradation factors mainly cause
similar occlusion and brightness, in this work, we propose an efficient
Histogram Transformer (Histoformer) for restoring images affected by
adverse weather. It is powered by a mechanism dubbed histogram self-
attention, which sorts and segments spatial features into intensity-based
bins. Self-attention is then applied across bins or within each bin to
selectively focus on spatial features of dynamic range and process simi-
lar degraded pixels of the long range together. To boost histogram self-
attention, we present a dynamic-range convolution enabling conventional
convolution to conduct operation over similar pixels rather than neighbor
pixels. We also observe that the common pixel-wise losses neglect linear
association and correlation between output and ground-truth. Thus, we
propose to leverage the Pearson correlation coefficient as a loss function
to enforce the recovered pixels following the identical order as ground-
truth. Extensive experiments demonstrate the efficacy and superiority of
our proposed method. We have released the codes in |Githubl
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Fig. 1: Given weather-degraded images in (a), traditional transformers perform self-
attention either along the channel dimension or within a fixed-range block as shown
in (b). In contrast, we observe that weather-induced degradation patterns tend to be
similar but distinct from the background. So we categorize pixels affected by adverse
weather and background pixels into distinct bins based on descending intensities (as
depicted in (c)) and then conducts self-attention within and between bins.

1 Introduction

The field of computer vision witnessed growing interest in restoring images af-
fected by adverse weather conditions like rain, fog, and snow. These weather
conditions significantly degrade visual quality, impacting the performance of
downstream tasks such as object detection , and depth estimation .
The restoration of images under adverse weather is thereby a vital problem for
the sake of vision aesthetics and safety.

Early works leverage weather-related priors to model statistical character-
istic of degradation and remove adverse weathers |1 .l.,.,..,...
Subsequently, convolutional neural networks (CNNs) have emerged as powerful
tools for addressing deraining l.l..l.l.. dehazing [27]29]
l.. 92| and desnowing l..,. However, the need of separately

training networks for each task and the complexity of switching among multiple
models present challenges for real-world applications. Li et al. thus intro-
duced the challenge of adverse weather removal, which entails the restoration of
images affected by various weather conditions using a single unified model.

Recently, Transformer-based approaches have also been investigated for the
adverse weather removal task, surpassing the efficacy of CNNs .
Nonetheless, these Transformer-based methods usually make concessions regard-
ing efficient memory utilization by confining self-attention operations to a fixed
spatial range or solely within the channel dimension, as depicted in Figure
This compromise impedes the inherent potential of Transformers, which was
originally designed for superior global feature modeling, and consequently, it
leads to a deterioration in the performance of restoration.

To address these problems, based on the observation that weather-induced
degradation often exhibits common patterns shown in Figure we develop an
efficient Histogram Transformer for unified adverse weather removal, named
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Histoformer. Specifically, we introduce a Dynamic-range Histogram Self-Attention
(DHSA) module, which endows self-attention with a dynamic-range spatial re-
ceptive field. We categorize pixel values proximate in intensity yet varied in spa-
tial location into histogram bins. Self-attention is executed across the dimension
of bin or frequency, whose process is illustrated in Figure To facilitate com-
prehensive feature extraction on both local and global scales, we devise two ways
of reshaping for histogram self-attention: bin-wise histogram reshaping (BHR)
and frequency-wise histogram reshaping (FHR). In BHR, the number of bins is
configured to incorporate pixels spanning a more comprehensive intensity range,
thereby facilitating global feature integration. In FHR, the number of frequencies
is assigned such that each bin focuses on limited number of pixels, enhancing
the utility of finer features. Consequently, the histogram self-attention attains
the capability of modeling spatially dynamic ranges effectively.

To enable the convolution to extract dynamically-located weather-related
dependencies, we develop a dynamic-range convolution layer, which involves se-
quential horizontal and vertical pixel sorting prior to the application of separable
convolution. In order to capture multi-scale and multi-range information em-
bedded within feature matrices, we introduce a Dual-scale Gated Feed-Forward
(DGFF) module, enhancing its ability to model the visual characteristics effec-
tively. Additionally, we note that conventional loss functions primarily focus on
pixel-level closeness, overlooking the correlation at overall patch level. Conse-
quently, we propose to leverage the Pearson correlation coefficient |[12] to ensure
the reconstruction of the linear relationship between restored and clean images.

Our contribution can be summarized in three folds:

— We propose a novel transformer targeted for unified adverse weather re-
moval, equipped with a new histogram self-attention. It possesses dynamic-
range spatial attention to weather-induced obstructions and thus can achieve
degradation removal globally and efficiently.

— To capture multi-range information, we present a dual-scale feed-forward
module. To enhance the comprehensive linear association between the re-
covered and ground-truth images, we develop a correlation loss.

— Our method attains state-of-the-art performance across various datasets.
Additionally, we substantiate the efficacy of the proposed approach to restore
real-world images and bolster the downstream application of detection.

2 Related Work

Extensive research has been dedicated to addressing adverse weather removal
challenges in computer vision, including tasks like deraining [5},/17}/34./40,/66(73]
79,/80,,/88,/89], dehazing [27,29,/62-641(67.|77.[88L[90L|92], desnowing [30,/44,61,94],
raindrop removal [57,[591(83L|93] and All-in-One weather removal [28,|33,/53.[70].

Rain Streak Remowval. The evolution of approaches is notable in rain streak re-
moval techniques in computer vision. Kang et al. [23] pioneered a single image
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deraining method using bilateral filters to decompose images into low and high-
frequency components. However, recent advancements have seen a dominance of
deep neural networks. An early deep CNN was introduced by Fu et al. [17] for ex-
tracting features from the high-frequency rain component, while Yang et al. [79)
utilized recurrent networks to decompose rain layers and remove various streak
types. Li et al. [32] proposed a method that addresses rain streaks and veiling
effects in heavy rain scenes by integrating physics-based rain models and adver-
sarial learning. A conditional generative adversarial network was also employed
to solve rain streak removal |89]. Yasarla et al. [81] explored Gaussian processes
for transfer learning from synthetic to real-world rain data. Quan et al. [58|
used a cascaded network to remove both rain streaks and raindrops. Recently
an image deraining Transformer [78] featuring a dual Transformer architecture
was intricately formulated, incorporating both window-based and spatial-based
mechanisms, thereby attaining exemplary outcomes. A sparse deraining Trans-
former is also proposed to enhance feature aggregation [11].

Raindrop Removal. Raindrop removal from single images has been addressed
through various methods, with some relying on traditional hand-crafted fea-
tures. An early work incorporated temporal information to address video-based
raindrop removal [83]. Eigen et al. [15] employed a shallow CNN trained with
image pairs containing raindrop-degraded and raindrop-free versions, though
the results often exhibited blurriness. Qian et al. [57] introduced an attention
GAN and a new dataset. Their method was later improved by Quan et al. [59]
via generating attention maps based on mathematical raindrop descriptions and
combining them with detected raindrop edges.

Snow Removal. Desnow-Net [44] was among the pioneering CNN-based ap-
proaches for snow removal, followed by Li et al’s stacked dense network [31]
and Chen et al’s JSTASR [8|, which introduced a size and transparency aware
method. More recently, DDMSNet [94] introduced a dense multi-scale network
that leverages semantic and geometric priors to enhance snow removal. A hier-
archical decomposition paradigm involving the dual-tree wavelet transform for
snow removal is also proposed [9]. Chen et al. [7] designed SnowFormer, a frame-
work that used cross-attentions to establish local-global context interaction.

Fog Removal. Li et al. |26] presented a CNN that takes into account both atmo-
spheric luminosity and transmission maps to conduct dehazing. Ren et al. [63|
advocated a pre-processing approach for hazy image manipulation, thereby en-
gendering multiple input modalities and, in the process, inducting chromatic
aberrations as part of their dehazing procedure. A hierarchical density-aware
network is also introduced, specializing in the domain of image dehazing [92].
Zheng et al. |97] formulated a curriculum-based contrastive regularization de-
hazing method aimed at fostering agreement within a contrastive space.

All-in-One Weather Removal. Some recent works attempted to address various
weather-induced degradations by a singular network. Li et al. [33] proposed an
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All-in-One network, containing a generator comprising multiple task-specific en-
coders and a shared decoder. Valanarasu et al. [70] presented TransWeather, a
transformer-based model featuring a solitary encoder-decoder structure, capable
of rejuvenating images afflicted by various atmospheric conditions. A pipeline for
the automatic selection of weather-degraded data was also proposed to enhance
existing models [91]. Zhu et al. developed WGWS-Net [100] capable of learning
weather-general and weather-specific in two separate stages. Some other recent
works also trial addressing adverse weather removal by adopting probabilistic de-
noising diffusion model [53|, knowledge distillation [10], large-scale Pre-trained
model [68], mixture of experts [49], few-shot learning [24], codebooks [41]71}[82],
adaptive filters [54], knowledge assignment [74] and domain translation [56].

Transformer-based Image Restoration. Since the inception of the Vision Trans-
former (ViT) [14] for visual recognition, transformers have gained substantial
traction across a spectrum of computer vision tasks [25}|37}|45, 46,50} 51} 86].
Particularly within the realm of low-level vision, the Image Processing Trans-
former [4] exemplifies how pre-training a transformer on extensive datasets can
significantly enhance performance for low-level applications. U-former |75, on
the other hand, introduced a transformer architecture based on the U-Net de-
sign for restoration tasks. Swin-IR [38] employed the Swin Transformer [45] for
image restoration. Some latest Transformer-based methods were proposed for
deraining [11},39], desnowing |[7], dehazing [19}43,/65] and All-in-One weather
removal [70}72].

Unlike the existing Transfomer-based approaches whose self-attention is ap-
plied within either fixed spatial ranges or merely channel dimension, our method
enables dynamic-range spatial attention to adaptively focus on weather-induced
degradation with similar patterns.

3 Method

3.1 Overall Architecture

The overall architectural framework of our Histoformer is illustrated in Figure 2]
Suppose the input is a low-quality image I'? € R3*H>*W we pass the input
through a 3 x 3 convolution to conduct the overlapping image patch-embedding.
Within both the encoder and decoder of the network backbone, we arrange His-
togram Transformer Blocks (HTBs) to extract intricate features and capture
dynamically distributed degradation factors. Within the same stage, encoders
and decoders are interlinked through skip-connections, thereby establishing con-
nections between consecutive intermediate features to enhance the stability of
the training process. Between each stage, we apply pixel-unshuffle and pixel-
shuffle operations for the purpose of feature down-sampling and up-sampling.
Within each HTB, we introduce Dynamic-range Histogram Self-Attention
(DHSA) to extract spatially dynamic weather degradation and enhance both lo-
cal and global feature aggregation. Moreover, a Dual-scale Gated Feed-Forward
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Fig. 2: The overall architecture of our Histoformer for weather removal. The main
component is the Histogram Transformer block, and it comprises the Dynamic-range
Histogram Self-Attention (DHSA) module and the Dual-scale Gated Feed-Forward
(DGFF) module. Within DHSA, we present two types of reshaping mechanism, i.e.,
Bin-wise Histogram Reshaping and Frequency-wise Histogram Reshaping.

(DGFF) module is integrated into the HTB to enrich the representation of multi-
range features, contributing to the process of image restoration. During each
stage of encoding phases, our model is equipped with a crude skip-connection
for supplementing original features from input, comprised of a sequence of op-
erations, including average pooling, pixel-wise convolution, and depth-wise con-
volution. We start the crude skip-connection after the first stage, and this setup
enables the encoders to focus more effectively on learning the weather-induced
residuals. Through this hybrid formulation, Histoformer is empowered to exploit
both the adaptive contents of weather-irrelevant background and the inherent
characteristics of weather-degraded patterns, facilitating the separation of unde-
sired degradation from the latent clear background.

3.2 Histogram Transformer Block

As the key component of our Histoformer, HTB contains two pivotal modules,

e., DHSA and DGFF. These two components are arranged to interact with
layer normalization and can be formulated as follows:

Fy = F,_, + DHSA (LN (F_1)), (1)

F, = F; + DGFF (LN (F)), (2)

where LN denotes layer normalization and F; represents the feature at [-th stage.
The details of DHSA and DGFF are presented in Section [3.2]and [3.2]respectively.

Dynamic-range Histogram Self-Attention To better capture dynamically
distributed weather-induced degradation, we develop a Dynamic-range Histogram
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Self-Attention (DHSA) module. This module consists of a process involving
dynamic-range convolution, which reorders the spatial distribution of fractional
features, and a dual-path histogram self-attention mechanism that combines
global and local dynamic feature aggregation. Prior to the final output projec-
tion of a 1 x 1 point-wise convolution, the reordered features are sorted back into
their original locations to maintain spatial consistency.

Dynamic-range Convolution. Traditional convolution operations employ fixed
kernel sizes, resulting in a limited receptive field range and consequently per-
form local and small-range computations. This restricted scope of convolution,
which primarily focuses on local information, does not naturally align with the
self-attention mechanism’s capacity to model long-range dependencies. To ad-
dress this limitation, we devise a dynamic-range convolution technique by metic-
ulously reordering the input features prior to the traditional convolution opera-
tion. Given an input feature F' € RE*H*W we divide it into two branches along
the channel dimension, namely F} and F5. For the first branch of features, we
perform sorting operations both horizontally and vertically, subsequently con-
catenating the sorted features with the second branch of feature. The resulting
recombined features are then passed through the subsequent separable convolu-
tion. The entire process is articulated as follows:

Fy, Fy, = Split(F), Fy = Sort,(Sorty(F1)),

3
F = Convy, 3(Convyx; (Concat(Fy, Fy))), )

where Convy; is 1 x 1 point-wise convolution, Convd, 5 represents 3 x 3 depth-
wise convolution, Concat is the concatenation operation along channel, Split de-
notes the operation of splitting features along channel dimension, and Sort;e v}
represents the horizontal or vertical sorting operation. This approach organizes
pixels of high and low intensities into regular patterns at the diagonal corners of
the matrices, thereby allowing convolution to perform computations across dy-
namic ranges. Given that weather-induced degradation typically exhibits closely
related patterns, degraded pixels tend to concentrate in neighboring locations,
separated with those clean pixels. As a result, this arrangement enables convo-
lution kernels to partially focus on preserving clean information and separately
recovering degraded features.

Histogram Self-Attention. Existing vision Transformers |11}[75}/78l/78./86,96] typ-
ically leverage fixed range of attention or merely the attention along channel
dimension due to the compromise of computation and memory efficiency. How-
ever, the fixed setting restricts the self-attention to span adaptively long range
to associate desired features. We notice that weather-induced degradation causes
similar patterns and that those pixels containing either background feature or
weather degradation of different intensities had better be assigned with various
extents of attention. We thus propose a histogram self-attention mechanism to
categorize spatial elements into bins and allocate varying attention within and
across bins. For the sake of parallel computing, we set each bin contains identical
number of pixels during implement.
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Given the output of dynamic-range convolution, we can separate them into
Value feature V € RE*H*W and two pairs of Query-key Fox 1, Fgr,2 € R2CHXW
subsequently passing to two branches. We firstly sort the sequence of V' and based
on its index arrange the Query-Key pairs accordingly, expressed as follows:

V.d = Sort (RG 1w (V)
@1, K1 = Split (Gather (RS vw (For,1).d)) (4)
Q2, Ko = Split (Gather (REX o (Fox.2),d))

where Rgi%\’zw represents the operation of reshaping features from RE>#xW

to REXHW 4 is the index of sorted Value, and Gather denotes the operation of
retrieving elements of tensor based on a given index.

Then given the number of bins B, we reshape the sorted features from C x
HW into C x B x HW/B. To extract both global and local information, we
define two types of reshaping, i.e., bin-wise histogram reshaping (BHR) and
frequency-wise histogram reshaping (FHR). The first is to assign the number of
bins equal to B and each bin contains HW/B elements, while the second is to
set the frequency of each bin equal to B and the number of bins is HW/B. By
this way, we can extract large-scale information by BHR where each bin contains
large number of dynamically located pixels and fine-grained information by FHR
where each bins contains modicum pixels neighboring in terms of intensity. The
two pairs of Query-Key features are passed through two types of reshaping and
subsequent self-attention process respectively, and their outputs are element-
wisely multiplied to yield the final output. The process can be formulated as the
following expressions:

Rp(Q1)Ra(K1)"
Vk
Rp(Q2)Re(K2) '
VEk

Ap = softmax < ) Rg(V),

(5)

Ay = softmax ( > Rr(V),

A=A O®Ap,

where k is the number of heads, Rc(p ) denotes the reshaping operation of
either BHR or FHR, and A;c(p ry represents the obtained attention map.

Dual-scale Gated Feed-Forward Previous studies [11,75|78][86] typically
leverage single-range or single-scale convolution in the standard feed-forward
network to bolster local context. Nonetheless, these methods often disregard
the correlations among dynamically distributed weather-induced degradation.
In practice, multi-scale information can be extracted by not only enlarging the
kernel size but also leveraging the dilation mechanism [36}/84,85]. As a result,
we conceive a Dual-scale Gated Feed-Forward (DGFF) module, which integrates
two distinct multi-range and multi-scale depth-wise convolution pathways within
the transmission process.
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Table 1: Quantitative comparisons on three weather removal tasks in terms of PSNR
and SSIM, where higher values indicate better performance. The top halves of tables
display the results of task-specific methods, while the bottom halves present evaluations
of the unified multi-weather models. The best and the second best results are in bold
and underlined. Those with * indicate the methods whose source codes are unavailable.

(a) Image Desnowing (b) Deraining & Dehazing (¢) Raindrop Removal
Snow100K-S [44]Snow100K-L [44] Outdoor-Rain [32] RainDrop [57]

PSNR SSIM PSNR SSIM PSNR  SSIM PSNR SSIM
SPANet [73] 20.92  0.8260 23.70 0.7930 CycleGAN [08] 17.62  0.6560  pix2pix_[20] 28.02 0.8547
JSTASR [§] 31.40 0.9012 25.32 0.8076 pix2pix [20] 19.09  0.7100 DuRN [43] 31.24 0.9259
RESCAN [34] 31.51 0.9032 26.08 0.8108 HRGAN [32] 21.56  0.8550  RaindropAttn [59] 31.44 0.9263
DesnowNet 44] 32.33  0.9500 27.17 0.8983 PCNet [21] 26.19  0.9015  AttentiveGAN [57] 31.59 0.9170
DDMSNet_[94] 34.34 0.9445 28.85 0.8772 MPRNet [87] 28.03 0.9192 IDT [78] 31.87 0.9313
NAFNet [6] 34.79 0.9497 30.06 0.9017 NAFNet [6] 20.59  0.9027 MAXIM [69] 31.87 0.9352
Restormer [86] 36.01 0.9579 30.36 0.9068 Restormer |86] 30.03  0.9215  Restormer [S6] 32.18 0.9408
All-in-One [33]* - - 28.33  0.8820 All-in-One [33]* _ 2471 0.8980  All-in-One [33]* 31.12 0.9268
TransWeather [70] 32.51 0.9341 29.31 0.8879 TransWeather [70] 28.83 0.9000 TransWeather [70] 30.17 0.9157
Chen et al. [10] 34.42  0.9469 30.22 0.9071 Chen et al. [10] 20.27  0.9147  Chen et al. [10] 31.81 0.9309
WGWSNet [T00]__ 34.31 0.9460 30.16 0.9007 WGWSNet |[100] _ 29.32  0.9207 WGWSNet [100] 32.38 0.9378

WeatherDiffg; (53] 35.83 0.9566 30.09 0.9041 WeatherDiffgy [53]_29.64 0.9312  WeatherDiffg 53] 30.71 0.9312
WeatherDiff1og [53] 35.02 0.9516 29.58 0.8941 WeatherDiff1og [53]29.72  0.9216  WeatherDiff19g [53] 29.66 0.9225
AWRCP [82]* 36.92 0.9652 31.92 0.9341 AWRCP [82]* 31.30  0.9320 AWRCP [82]* 31.93 0.9314
Histoformer (Ours) 37.41 0.9656 32.16 0.9261 Histoformer (Ours) 32.08 0.9389 Histoformer (Ours) 33.06 0.9441

Given an input tensor Fj € REXH*W e initially employ a point-wise con-

volution operation to augment the channel dimension by a factor of r. Following
this augmentation, the expanded tensor is directed into two parallel branches.
Throughout the feature transformation process, 5 X 5 and dilated 3 x 3 depth-
wise convolutions are employed to enhance the extraction of multi-range and
multi-scale information. Following the gating mechanism [13], the output of the
second branch after passing through an activation act as a gating map for the
other branch. Thus, the complete feature fusion process within the DGFF mod-
ule is formulated as follows:

F, 1, F2 = Split (Shuffle(Convy <1 (F1))) ,
Fiy = Convi, 5(Fi1), Fiz2 = Convyy ™ !(F) ), (6)
Fy41 = Convy x1 (Unshuffle Mish(F; 2) © Fi 1)),

where Conv{, - represents 5 x 5 depth-wise convolution, Convgfélated is 3 x 3 di-
lated depth-wise convolution, Shuffle and Unshuffle represent respectively the op-
erations of pixel-shuffling and unshuffling, Mish denotes the Mish activation [52],

and Fjy; is the output of current stage passing to [ + 1-th stage.

3.3 Reconstruction Loss and Correlation Loss

We use the L1 norm of the pixel-wise difference between the restored high-quality
image 1" and ground-truth I9¢ as the reconstruction loss, i.e.,

Lree = 10— 19 )

Furthermore, we notice that the L,.. only regulates the pixel-level similarity
between the restored image and the ground-truth, while neglecting the patch-
level linear correlations. The innate relationships of intensity within the image
are disrupted by the consistent patterns of weather-induced degradation. By
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Fig. 3: Visual comparison for desnowing on Snow100K [44 . The samples from (b) to

(e) are Restormer , TransWeather , WGWSNet , WeatherDiff .
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(a) Input (b) (c) (d) - (e) . (f) Ours (g) Clean
Fig. 4: Visual comparison for deraining and dehazing on Outdoor-Rain . The sam-
ples from (b) to (e) are Restormer , TransWeather , WGWSNet [100], Weath-

erDiff .

emulating the intensity relationships within the ground-truth, we compel the
degraded pixels to occupy their original positions according to the original in-
tensity ranking. Consequently, we introduce the Pearson correlation between
images as a means to regulate the linear relationship, expressed as follows:

S (10 -7 (12 - 7"
3ISW0(I’“1))U((IW) ) ®)

plrt, 1) =

where Ii{’} represents the i-th pixel of image, T{'} and o (I {'}) denotes respec-
tively the mean and the standard deviation of image sequence. Its value falls
within the [—1, 1] range. When two images exhibit perfect correlation, the value
of function p attains a value of 1, while in the case of negative correlation, its
value reaches —1. Hence, we formulate the correlation loss as follows:

Lcor = % (1 - P (Ihq,lgt)) s (9)

such that L., = 0 when the recovered image perfectly aligns with the ground-
truth. The overall loss function is thus defined as:

L= ﬁrec + a['cora (10)

where « is the weight of correlation loss.

4 Experiments

4.1 Experimental settings

Datasets. We train our model on the same datasets as the previous works
to ensure a fair comparison. The training set encompasses 9,000 images drawn
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Fig. 5: Visual comparison for raindrop removal on RainDrop [5 . The samples from
(b) to (e) are Chen et al. , TransWeather , WGWSNet [100], WeatherDiff .

(a) Input (b) (c) (d) (e) () (g) Ours
Fig.6: A qualitative comparison for real-world adverse weather removal on
Snow100K [44]. The samples from (b) to (e) are Chen et al. [10], Restormer [86],
TransWeather , WGWSNet , WeatherDiff .

from Snow100K , 1,069 images sourced from Raindrop , and 9,000 images
from Outdoor-Rain [32]. Snowl00K contains synthetic images deteriorated by
snow, while Raindrop comprises real raindrop-affected images. Outdoor-Rain
features synthetic images afflicted by both fog and rain streaks. For evaluation,
we employ the Testl dataset , the RainDrop test dataset , and the
Snow100K-L and -S test sets . Snow100K also provides a real-world test set
containing 1,329 images affected by adverse weather.

Comparison Baselines. We assess the performance of our method against state-
of-the-art approaches designed specifically for distinct weather removal tasks:
raindrop removal, snow removal, and rain&fog removal. Specifically, for snow re-
moval, we benchmark against SPANet , JSTASR , RESCAN , Desnow-
Net , and DDMSNet . In the case of rain&fog removal, we compare with
CycleGAN [98], pix2pix |20], HRGAN [32], MPRNet and Restormer [86].
For raindrop removal, we evaluate against the methods such as pix2pix ,
DuRN , RaindropAttn , AttentiveGAN . Additionally, we include
some recent transformer or multi-degradation restoration networks, IDT ,
NAFNet [6], MAXIM [69], and Restormer [86], in our comparative analysis. It
is worth noting that all these methods are single-task networks fine-tuned for
specific datasets.

Furthermore, we conduct a performance comparison with the All-in-One
network , Chen et al. , TransWeather , WGWS-Net , Weath-
erDiff and AWRCP 7 which are trained to handle all the aforementioned
tasks using a unified model. Note that our approach is also trained to tackle all
these tasks using a single model.

Training details. Our implementation is realized by PyTorch [55] and on NVIDIA
Tesla V100 GPU. The network is trained for a total of 300,000 iterations, with
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an initial batch size of 8 and an initial patch size of 128 akin to the progres-
sive learning pipeline [86]. We employ the AdamW optimizer [48] with an initial
learning rate of 3e~* for the first 92,000 iterations, which is gradually reduced
to 1le~% using cosine annealing schedule [47| during the remaining 208, 000 itera-
tions. The number of blocks at each stage L;c(1,23,4} is set to {4,4,6,8} and the
channel size C' is 36. The channel expansion factor » in DGFF is set to 2.667.
The numbers of heads in self-attention at different stages are set to {1,2,4, 8}
respectively. We randomly apply horizontal and vertical flips as the technique of
data augmentation.

4.2 Comparisons with the state-of-the-arts

Quantitative Evaluation. In our study, we provide a comprehensive comparative
analysis of metrics applied to both synthetic and real datasets, as summarized in
Table[I] For a fair and well-founded comparison, we utilize recent multiple degra-
dation removal methods such as MPRNet [87], MAXIM [69], and Restormer [86],
treating them as weather-specific approaches for each benchmark. Additionally,
we retrain the all-in-one adverse weather removal methods including Chen et
al. |10] and WGWS-Net [100] using the all-weather training dataset [33L[53,/70].
This exhaustive comparison reveals that our proposed method exhibits a sig-
nificant performance advantage over existing approaches across three different
types of degradation.

Qualitative FEvaluation. Furthermore, we conduct a visual comparison on three
tasks, and the outcomes are showcased in Figure 3] ] and [f] respectively. Fig-
ure [6] shows a case of real-world weather removal. These results highlight that
our method excels in comprehensively eliminating snow degradation, including
fine and large snow spots. In contrast, the recent WeatherDiff [53] method still
exhibits some residual snow degradation, and its capability to restore details is
not optimal. When it comes to the restoration of challenging weather conditions,
our method excels in removing complex haze and rain marks, yielding visually
appealing results in comparison to prior approaches.

4.3 Ablation studies

To substantiate the effectiveness of each component within Histoformer, we con-
duct a sequence of ablation studies on Outdoor-Rain [32|. In particular, we
examine the impact of the dynamic-range convolution, the DHSA module, the
number of bins in DHSA, the DGFF module, and the correlation loss.

Dynamic-range Convolution. We experiment on two settings of dynamic-range
convolution, namely, sorting horizontally first and then vertically before con-
volution, and the reverse order. Additionally, we compared them with vanilla
convolution, and the results are displayed in Table [2] The operations of regular
sorting led to a performance improvement of 0.14 dB, and the order of sorting
operations does not significantly affect the outcome.
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Table 2: Ablation studies on the dynamic-range convolution.

Vanilla Conv  Verti.+Horiz. Horiz. Verti.

PSNR 31.94 32.03 32.08
SSIM 0.9377 0.9385 0.9389

Table 3: Ablation studies on the design Table 4: Ablation studies on the number

of self-attention of C x B
SA type PSNR SSIM C x B PSNR SSIM
MDTA [86] 30.94 0.9278 12 30.43 0.9283
TKSA |11| 31.12 0.9295 20 31.56 0.9312
w/o BHR 31.05 0.9301 28 31.94 0.9379
w/o FHR 31.79 0.9364 36 32.08 0.9389
DHSA 32.08 0.9389 44 Out of memory

Table 5: Ablation studies on the choice Table 6: Ablation studies on the setting
of feed-forward module of correlation loss

Feed-Forward PSNR SSIM PSNR SSIM

Q

FFN [38] 31.32  0.9313 w/o Leor 0 31.77  0.9358
GDFN (6] 31.42  0.9347 01 3201 09369
DANB |96| 31.56 0.9351 1 32.08 0.9389
MSFN |TT] 31.78  0.9367 w/ Leor 5 32.03  0.9392
DGFF 32.08 0.9389 10 31.96  0.9375

DHSA. To evaluate the effectiveness of the proposed DHSA module, we conduct
a comparison with two baselines, i.e., a multi-Dconv head transposed attention
(MDTA) [86] and a top-k sparse attention (TKSA) [11]. Additionally, we explore
two additional settings of DHSA by excluding either the BHR branch or the FHR
branch. The quantitative analysis results are presented in Table [3]

Both MDTA and TKSA integrate rich information across channels, which
may result in a loss of the exploitation of long-range information across spatial
dimensions. While our histogram self-attention can capture spatially long-range
information, the use of either a single BHR or a single FHR branch neglects the
inter-bin or inner-bin relationships, leading to inferior results. By incorporating
dynamic-range convolution and dual-branch histogram self-attention, capable of
extracting long-range spatial features, our DHSA enhances performance, result-
ing in a PSNR improvement of 0.96 dB compared to TKSA.

Bins and Channels. To assess the influence of C' x B, we conduct experiments
with five different values on the first stage, i.e., 12, 20, 28, 36, and 44. The results
are presented in Table [4] It is observed that increasing the number of bins and
channels consistently improves performance. However, when the number of C'x B
exceeds 44, it results in an out-of-memory error.

DGFF. To assess the effectiveness of the proposed DGFF module, we conduct
a comparison with four baselines: (i) the vanilla feed-forward network (FN) |3§],
(ii) a gated-Dconv feed-forward network (GDFN) [86], (iii) a dual adaptive neu-
ral block (DANB) [96], and (iv) a mixed-scale feed-forward network (MSFN) |11].
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Person 87% Person 84%

Building 86%
Building 89%
Building 83%
Building 81%
Building 81%
Building 79%
Building 7%
Building 72%
Building 77%
Building 72%
Building 55%

(a) Input (b) Deweathered by ours

Fig. 7: Real-world deweathering on two snowy images and their downstream de-
tection results on Google API.

The quantitative analysis results are presented in Table [5} While MSFN inte-
grates mixed-scale information, it may still miss out on the exploitation of multi-
range spatial knowledge. Through the inclusion of pixel-shuffling and feature

aggregation across different ranges, our DGFF further enhances performance,
resulting in a PSNR gain of 0.3 dB over MSFN.

Correlation Loss. Table [6] shows the effectiveness of the correlation loss Lo
and the influence of its weight. It is evident that L., consistently improves the
performance, while the specific loss weight does not have a substantial impact
on the final results. We therefore keep the loss weight as 1 by default.

4.4 Real-world Application

To further demonstrate the practical applicability of our method for real-world
adverse weather removal and its potential to improve downstream detection task,
we provide two samples in Figure[7] As depicted, our Histoformer effectively elim-
inates snowflakes from the scene and assists the detector in recognizing omitted
door and building.

5 Conclusion

In this research, we introduce a novel mechanism called histogram self-attention
and devise a new histogram transformer named Histoformer to tackle the chal-
lenge of all-in-one weather removal. Our histogram self-attention involves seg-
menting spatial features into multiple bins, and allocating varying attention
along the bin or frequency dimension, allowing it to selectively focus on weather-
related features with a dynamic range. To facilitate learning both multi-range
and multi-scale information, we present DGFF module and a correlation loss.
Through extensive experimentation, we demonstrate the effectiveness and supe-
riority of our approach.


https://cloud.google.com/vision/docs/drag-and-drop

Restoring Images in Adverse Weather Conditions via Histogram Transformer 15
Acknowledgement

This work has been supported in part by National Natural Science Foundation
of China (No. 62322216, 62172409, 62025604, 62306308, 62311530686), in part by
Shenzhen Science and Technology Program (Grant No. JCYJ20220818102012025,
KQTD20221101093559018), and in part by Guangdong Provincial Key Labora-
tory of Information Security Technology (No. 2023B1212060026).

References

1. Ancuti, C.O., Ancuti, C.: Single image dehazing by multi-scale fusion. IEEE TIP
(2013)

2. Berman, D., Avidan, S., et al.: Non-local image dehazing. In: CVPR (2016)

3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.:
End-to-end object detection with transformers. In: ECCV (2020)

4. Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., Ma, S., Xu, C., Xu, C,,
Gao, W.: Pre-trained image processing transformer. In: CVPR (2021)

5. Chen, J., Tan, C.H., Hou, J., Chau, L.P., Li, H.: Robust video content alignment
and compensation for rain removal in a cnn framework. In: CVPR (2018)

6. Chen, L., Chu, X., Zhang, X., Sun, J.: Simple baselines for image restoration. In:
ECCV (2022)

7. Chen, S., Ye, T., Liu, Y., Chen, E.; Shi, J., Zhou, J.: Snowformer: Scale-aware
transformer via context interaction for single image desnowing. arXiv preprint
arXiv:2208.09703 (2022)

8. Chen, W.T\., Fang, H.Y., Ding, J.J., Tsai, C.C., Kuo, S.Y.: Jstasr: Joint size and
transparency-aware snow removal algorithm based on modified partial convolution
and veiling effect removal. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M.
(eds.) ECCV (2020)

9. Chen, W.T., Fang, H.Y., Hsieh, C.L., Tsai, C.C., Chen, 1., Ding, J.J., Kuo, S.Y.,
et al.: All snow removed: Single image desnowing algorithm using hierarchical
dual-tree complex wavelet representation and contradict channel loss. In: ICCV
(2021)

10. Chen, W.T., Huang, Z.K., Tsai, C.C., Yang, H.H., Ding, J.J., Kuo, S.Y.: Learning
multiple adverse weather removal via two-stage knowledge learning and multi-
contrastive regularization: Toward a unified model. In: CVPR (2022)

11. Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for
effective image deraining. In: CVPR (2023)

12. Cohen, 1., Huang, Y., Chen, J., Benesty, J., Benesty, J., Chen, J., Huang, Y.,
Cohen, I.: Pearson correlation coefficient. Noise reduction in speech processing
(2009)

13. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated
convolutional networks. In: ICML (2017)

14. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D.; Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

15. Eigen, D., Krishnan, D., Fergus, R.: Restoring an image taken through a window
covered with dirt or rain. In: ICCV (2013)



16

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

S. Sun et al.

Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression
network for monocular depth estimation. In: CVPR (2018)

Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from
single images via a deep detail network. In: CVPR, (2017)

Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth esti-
mation with left-right consistency. In: CVPR (2017)

Guo, C., Yan, Q., Anwar, S., Cong, R., Ren, W., Li, C.: Image dehazing trans-
former with transmission-aware 3d position embedding. In: CVPR (2022)

Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with con-
ditional adversarial networks. In: CVPR (2017)

Jiang, K., Wang, Z., Yi, P., Chen, C., Wang, Z., Wang, X., Jiang, J., Lin, C.W.:
Rain-free and residue hand-in-hand: A progressive coupled network for real-time
image deraining. IEEE TIP (2021)

Jiang, T.X., Huang, T.Z., Zhao, X.L., Deng, L.J., Wang, Y.: A novel tensor-based
video rain streaks removal approach via utilizing discriminatively intrinsic priors.
In: CVPR (2017)

Kang, L.W., Lin, C.W., Fu, Y.H.: Automatic single-image-based rain streaks re-
moval via image decomposition. IEEE TIP (2011)

Kim, Y., Cho, Y., Nguyen, T.T., Lee, D.: Metaweather: Few-shot weather-
degraded image restoration via degradation pattern matching. arXiv preprint
arXiv:2308.14334 (2023)

Lai, Z., Wu, J., Chen, S., Zhou, Y., Hovakimyan, N.: Residual-based language
models are free boosters for biomedical imaging tasks. In: CVPRW (2024)

Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: All-in-one dehazing network.
In: ICCV (2017)

Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z.: Benchmarking
single-image dehazing and beyond. IEEE TIP (2018)

Li, B., Liu, X., Hu, P., Wu, Z., Lv, J., Peng, X.: All-in-one image restoration for
unknown corruption. In: CVPR (2022)

Li, L., Dong, Y., Ren, W., Pan, J., Gao, C., Sang, N., Yang, M.H.: Semi-supervised
image dehazing. IEEE TIP (2019)

Li, M., Cao, X., Zhao, Q., Zhang, L., Meng, D.: Online rain/snow removal from
surveillance videos. IEEE TIP (2021)

Li, P., Yun, M., Tian, J., Tang, Y., Wang, G., Wu, C.: Stacked dense networks
for single-image snow removal. Neurocomputing (2019)

Li, R., Cheong, L.F., Tan, R.T.: Heavy rain image restoration: Integrating physics
model and conditional adversarial learning. In: CVPR (2019)

Li, R., Tan, R.T., Cheong, L.F.: All in one bad weather removal using architectural
search. In: CVPR (2020)

Li, X., Wu, J., Lin, Z., Liu, H., Zha, H.: Recurrent squeeze-and-excitation context
aggregation net for single image deraining. In: ECCV (2018)

Li, Y., Tan, R.T., Guo, X., Lu, J., Brown, M.S.: Rain streak removal using layer
priors. In: CVPR (2016)

Li, Y., Lu, J., Chen, H., Wu, X., Chen, X.: Dilated convolutional transformer for
high-quality image deraining. In: CVPRW (June 2023)

Li, Z., Guan, B., Wei, Y., Zhou, Y., Zhang, J., Xu, J.: Mapping new realities:
Ground truth image creation with pix2pix image-to-image translation. arXiv
preprint arXiv:2404.19265 (2024)

Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: Image
restoration using swin transformer. In: ICCV (2021)



Restoring Images in Adverse Weather Conditions via Histogram Transformer 17

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Liang, Y., Anwar, S., Liu, Y.: Drt: A lightweight single image deraining recursive
transformer. In: CVPR (2022)

Liu, J., Yang, W., Yang, S., Guo, Z.: Erase or fill? deep joint recurrent rain removal
and reconstruction in videos. In: CVPR (2018)

Liu, K., Jiang, Y., Choi, 1., Gu, J.: Learning image-adaptive codebooks for class-
agnostic image restoration. arXiv preprint arXiv:2306.06513 (2023)

Liu, X., Suganuma, M., Sun, Z., Okatani, T.: Dual residual networks leveraging
the potential of paired operations for image restoration. In: CVPR (2019)

Liu, Y., Liu, H., Li, L., Wu, Z., Chen, J.: A data-centric solution to nonhomoge-
neous dehazing via vision transformer. In: CVPR (2023)

Liu, Y.F., Jaw, D.W., Huang, S.C., Hwang, J.N.: Desnownet: Context-aware deep
network for snow removal. IEEE TIP (2018)

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: ICCV (2021)
Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., Hu, H.: Video swin trans-
former. In: CVPR (2022)

Loshchilov, 1., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. arXiv
preprint arXiv:1711.05101 (2017)

Luo, Y., Zhao, R., Wei, X., Chen, J., Lu, Y., Xie, S., Wang, T., Xiong, R., Lu,
M., Zhang, S.: Mowe: Mixture of weather experts for multiple adverse weather
removal. arXiv preprint arXiv:2303.13739 (2023)

Lyu, W., Zheng, S., Ling, H., Chen, C.: Backdoor attacks against transformers
with attention enhancement. In: ICLR Workshop (2023)

Ma, H., Zeng, D., Liu, Y.: Learning individualized treatment rules with many
treatments: A supervised clustering approach using adaptive fusion. NeurIPS
(2022)

Misra, D.: Mish: A self regularized non-monotonic activation function. arXiv
preprint arXiv:1908.08681 (2019)

Ozdenizci, O., Legenstein, R.: Restoring vision in adverse weather conditions with
patch-based denoising diffusion models. IEEE TPAMI (2023)

Park, D., Lee, B.H., Chun, S.Y.: All-in-one image restoration for unknown degra-
dations using adaptive discriminative filters for specific degradations. In: CVPR
(2023)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. NeurIPS (2019)

Patil, P.W., Gupta, S., Rana, S., Venkatesh, S., Murala, S.: Multi-weather image
restoration via domain translation. In: ICCV (2023)

Qian, R., Tan, R.T., Yang, W., Su, J., Liu, J.: Attentive generative adversarial
network for raindrop removal from a single image. In: CVPR (2018)

Quan, R., Yu, X., Liang, Y., Yang, Y.: Removing raindrops and rain streaks in
one go. In: CVPR (2021)

Quan, Y., Deng, S., Chen, Y., Ji, H.: Deep learning for seeing through window
with raindrops. In: ICCV (2019)

Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object
detection with region proposal networks. NeurIPS (2015)

Ren, W., Tian, J., Han, Z., Chan, A., Tang, Y.: Video desnowing and deraining
based on matrix decomposition. In: CVPR (2017)



18

62

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

S. Sun et al.

Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.H.: Single image dehazing
via multi-scale convolutional neural networks. In: ECCV (2016)

Ren, W., Ma, L., Zhang, J., Pan, J., Cao, X., Liu, W., Yang, M.H.: Gated fusion
network for single image dehazing. In: CVPR (2018)

Shao, Y., Li, L., Ren, W., Gao, C., Sang, N.: Domain adaptation for image de-
hazing. In: CVPR (2020)

Song, Y., He, Z., Qian, H., Du, X.: Vision transformers for single image dehazing.
IEEE TIP (2023)

Sun, S., Ren, W., Li, J., Zhang, K., Liang, M., Cao, X.: Event-aware video de-
raining via multi-patch progressive learning. IEEE TIP (2023)

Sun, S., Ren, W., Wang, T., Cao, X.: Rethinking image restoration for object
detection. NeurIPS (2022)

Tan, Z., Wu, Y., Liu, Q., Chu, Q., Lu, L., Ye, J., Yu, N.: Exploring the applica-
tion of large-scale pre-trained models on adverse weather removal. arXiv preprint
arXiv:2306.09008 (2023)

Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik, A., Li, Y.: Maxim:
Multi-axis mlp for image processing. In: CVPR (2022)

Valanarasu, J.M.J., Yasarla, R., Patel, V.M.: Transweather: Transformer-based
restoration of images degraded by adverse weather conditions. In: CVPR (2022)
Wan, Y.C., Shao, M.W., Cheng, Y.S., Liu, Y.X., Bao, Z.Y., Meng, D.Y.: Restoring
images captured in arbitrary hybrid adverse weather conditions in one go. arXiv
preprint arXiv:2305.09996 (2023)

Wang, T., Zhang, K., Shao, Z., Luo, W., Stenger, B., Lu, T., Kim, T.K., Liu,
W., Li, H.: Gridformer: Residual dense transformer with grid structure for image
restoration in adverse weather conditions. arXiv preprint arXiv:2305.17863 (2023)
Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive
single-image deraining with a high quality real rain dataset. In: CVPR (2019)
Wang, Y., Ma, C., Liu, J.: Smartassign: Learning a smart knowledge assignment
strategy for deraining and desnowing. In: CVPR (2023)

Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: A general u-shaped
transformer for image restoration. In: CVPR (2022)

Wei, W., Yi, L., Xie, Q., Zhao, Q., Meng, D., Xu, Z.: Should we encode rain
streaks in video as deterministic or stochastic? In: ICCV (2017)

Wu, H., Qu, Y., Lin, S., Zhou, J., Qiao, R., Zhang, Z., Xie, Y., Ma, L.: Contrastive
learning for compact single image dehazing. In: CVPR (2021)

Xiao, J., Fu, X., Liu, A., Wu, F., Zha, Z.J.: Image de-raining transformer. IEEE
TPAMI (2022)

Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection
and removal from a single image. In: CVPR (2017)

Yasarla, R., Patel, V.M.: Uncertainty guided multi-scale residual learning-using
a cycle spinning cnn for single image de-raining. In: CVPR (2019)

Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image de-
raining using gaussian processes. In: CVPR (2020)

Ye, T., Chen, S., Bai, J., Shi, J., Xue, C., Jiang, J., Yin, J., Chen, E., Liu, Y.:
Adverse weather removal with codebook priors. In: ICCV (2023)

You, S., Tan, R.T., Kawakami, R., Mukaigawa, Y., Ikeuchi, K.: Adherent raindrop
modeling, detection and removal in video. IEEE TPAMI (2015)

Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122 (2016)

Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: CVPR, (2017)



Restoring Images in Adverse Weather Conditions via Histogram Transformer 19

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer:
Efficient transformer for high-resolution image restoration. In: CVPR (2022)
Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H., Shao, L.:
Multi-stage progressive image restoration. In: CVPR (2021)

Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-
stream dense network. In: CVPR (2018)

Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional gener-
ative adversarial network. IEEE TCSVT (2019)

Zhang, H., Sindagi, V., Patel, V.M.: Joint transmission map estimation and de-
hazing using deep networks. IEEE TCSVT (2019)

Zhang, H., Ba, Y., Yang, E., Mehra, V., Gella, B., Suzuki, A., Pfahnl, A., Chan-
drappa, C.C., Wong, A., Kadambi, A.: Weatherstream: Light transport automa-
tion of single image deweathering. In: CVPR (2023)

Zhang, J., Ren, W., Zhang, S., Zhang, H., Nie, Y., Xue, Z., Cao, X.: Hierarchical
density-aware dehazing network. IEEE Transactions on Cybernetics (2021)
Zhang, K., Li, D., Luo, W., Ren, W.: Dual attention-in-attention model for joint
rain streak and raindrop removal. In: IEEE TIP (2021)

Zhang, K., Li, R., Yu, Y., Luo, W., Li, C.: Deep dense multi-scale network for
snow removal using semantic and depth priors. IEEE TIP (2021)

Zhang, X., Li, H., Qi, Y., Leow, W.K., Ng, T.K.: Rain removal in video by com-
bining temporal and chromatic properties. In: ICME (2006)

Zhao, H., Gou, Y., Li, B., Peng, D., Lv, J., Peng, X.: Comprehensive and delicate:
An efficient transformer for image restoration. In: CVPR (2023)

Zheng, Y., Zhan, J., He, S., Dong, J., Du, Y.: Curricular contrastive regularization
for physics-aware single image dehazing. In: CVPR, (2023)

Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: ICCV (2017)

Zhu, L., Fu, C.W., Lischinski, D., Heng, P.A.: Joint bi-layer optimization for
single-image rain streak removal. In: ICCV (2017)

Zhu, Y., Wang, T., Fu, X., Yang, X., Guo, X., Dai, J., Qiao, Y., Hu, X.: Learning
weather-general and weather-specific features for image restoration under multiple
adverse weather conditions. In: CVPR (2023)



	Restoring Images in Adverse Weather Conditions via Histogram Transformer

