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Abstract

We focus on a class of reinforcement learning algorithms, Monte-Carlo Tree Search1

(MCTS), in stochastic settings. While recent advancements combining MCTS with2

deep learning have excelled in deterministic environments, they face challenges3

in highly stochastic settings, leading to suboptimal action choices and decreased4

performance. Distributional Reinforcement Learning (RL) addresses these chal-5

lenges by extending the traditional Bellman equation to consider value distributions6

instead of a single mean value, showing promising results in Deep Q Learning.7

In this paper, we bring the concept of Distributional RL to MCTS, focusing on8

modeling value functions as categorical and particle distributions. Consequently,9

we propose two novel algorithms: Categorical Thompson Sampling for MCTS10

(CATS), which uses categorical distributions for Q values, and Particle Thompson11

Sampling for MCTS (PATS), which models Q values with particle-based distri-12

butions. Both algorithms employ Thompson Sampling to handle action selection13

randomness. Our contributions are threefold: We introduce a distributional frame-14

work for Monte-Carlo Planning to model uncertainty in return estimation. We15

prove the effectiveness of our algorithms by achieving a non-asymptotic problem-16

dependent upper bound on simple regret of order O(n−1), where n is the number17

of trajectories. We provide empirical evidence demonstrating the efficacy of our18

approach compared to baselines in both stochastic and deterministic environments.19

1 Introduction20

Online planning in Markov decision processes (MDPs) involves making real-time decisions based on21

the current state of the environment. It requires balancing exploration and exploitation while handling22

uncertainty and partial observability. Monte Carlo Tree Search (MCTS) is a highly effective online23

planning method for tackling complex MDPs. MCTS has shown impressive performance in various24

tasks, including traditional board games like Chess and Go, video games, and real-world challenges.25

Notable successes include advancements in Chess (35) and Go (34; 36; 30), video game strategy (28),26

robot assembly (16), robot path planning (15; 13), and autonomous driving (24).27

Despite these achievements, current MCTS methods are primarily effective in deterministic environ-28

ments, often overlooking the significant impact of randomness in real-world scenarios. In highly29

stochastic and partially observable environments, conventional MCTS approaches face substantial30

challenges due to widespread randomness and limited observability. This leads to compromised value31

estimates, suboptimal decisions, and diminished overall performance. Therefore, there is a clear need32

for improved methods capable of navigating the complexities of randomness and partial observability33

in value estimation.34

We now review related works to understand the advancements and limitations in these areas.35

Related work In MCTS, value estimation methods and action selection rules are critical factors for36

algorithm performance. Traditional value estimation methods, such as using empirical average mean37
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for value backup as in the Upper Confidence bounds applied to Trees method (UCT) (21), suffer from38

underestimation of optimal values while maximum backup suffers from overestimation of optimal39

values (9). The power mean estimator (12) offers a balanced solution by computing a mean between40

the average and maximum values. In our approach, we also use power mean for value operator as41

each V node stores the power mean of empirical means of succeeding Q-value nodes, eliminating the42

need for V to be modeled as a distribution.43

For action selection in MCTS, strategies from Multi-Armed Bandits (MAB) are commonly employed.44

For instance, UCT extends the UCB1 strategy from bandits to the tree by computing confidence45

intervals at each step. However, original UCT’s performance is hindered by the incorrect choice of46

logarithmic bonus constant (32). Shah et al. (32) propose an adapted version of UCT incorporating a47

polynomial bonus term instead of the "logarithmic" bonus term in UCT and show the non-asymtotic48

convergence of rate O(n−1/2), with n is the number of rollout trajectories. On the other hand, our49

method improves over this rate with theoretical guarantee of O(n−1). Although Thompson sampling50

has been less explored in MCTS, some approaches like those by Bai et al. (1) and Bai et al. (2)51

incorporate it for exploration. However, these methods lack convergence rate analysis. Furthermore,52

in the article Bai et al. (1), authors model value functions as a mixture of Normal distributions, which53

may lack the generality of complex real-world scenarios. Our approach adopts Thompson sampling54

for action selection but introduces a novelty by modeling the uncertainty of action value estimates55

over the tree as arbitrary categorical and particle-based distributions. This modification enhances our56

ability to handle more generality in highly stochastic environments effectively.57

Entropy regularization techniques in RL modify value and action selection functions to balance58

exploration and exploitation, leading to improved value estimation (25; 17; 31; 18). Several works59

have applied these techniques in MCTS. Maximum Entropy Tree Search (MENTS) (40) emphasizes60

exploration by integrating MCTS with maximum entropy policy optimization. MENTS aims to61

maximize cumulative rewards and policy entropy concurrently, regulated by a temperature parameter.62

Dam et al. (14) extend MENTS by incorporating Relative and Tsallis entropy, leading to the RENTS63

and TENTS algorithms. However, the effectiveness of MENTS/RENTS/TENTS hinges on the64

temperature parameter, which may impede convergence. Furthermore, the value estimation converges65

exponentially to the regularized value not the optimal one. In contrast, Painter et al. (27) utilize66

a similar action selection approach but employ a maximum backup operator for value estimation.67

Although their method exhibits exponential decay of simple regret, it heavily relies on the sensitivity68

of the temperature parameter for Boltzmann Exploration, limiting its practicality.69

Distributional Reinforcement Learning (RL) (6; 11; 22) addresses the randomness of the value70

estimation by introducing a distributional perspective to the traditional Bellman equation. This71

approach views the value function as a distribution rather than a single mean, providing a compre-72

hensive understanding of uncertainties in rewards and the stochasticity from environments. Through73

discretization (26), parameterization (6), and quantization (10), it allows for efficient and effective74

approximation of value distributions, leading to improved performance in various RL tasks. However,75

these results are only for learning not for planning.76

Outline and contribution In this work, we integrate the distributional approach from reinforcement77

learning (RL) into the planning framework to tackle the challenges of planning in stochastic environ-78

ments. We focus on modeling value functions as categorical and particle distributions. Consequently,79

we propose two novel algorithms: Categorical Thompson Sampling for MCTS (CATS) and Particle80

Thompson Sampling for MCTS (PATS). CATS represents each Q value function as a categorical81

distribution and uses Thompson Sampling for action selection to manage uncertainty. PATS models82

each Q value function with a particle-based distribution, using a nuanced Thompson Sampling83

approach to handle action selection randomness.84

Our contributions are threefold:85

(i) In section 3, we introduce a distributional framework for planning to model uncertainty in86

return estimation, enhancing the robustness of value estimation in stochastic environments.87

(ii) In section 4 Theorem 5 and Theorem 6, we prove the effectiveness of our algorithms by88

achieving a non-asymptotic problem-dependent upper bound on simple regret of O(n−1),89

which significantly improves upon the current state-of-the-art theoretical analysis of regret,90

previously established at O(n−1/2) by Shah et al. (33).91
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(iii) In section 5, we provide comprehensive empirical evidence demonstrating the efficacy of92

our approach compared to baselines, showcasing competitive performance in stochastic93

settings and the Atari benchmark.94

In the next section, we describe the problem setting addressed in this paper.95

2 Setting96

In our study, We address the dynamics of an agent navigating an infinite-horizon discounted Markov97

decision process (MDP), defined formally as M = ⟨S,A,R,P, γ⟩. Here, S represents the state98

space, A denotes the set of actions, and R quantifies the Reward function of the MDP (R : S ×99

A× S → R). Transition dynamics are governed by P(S ×A → S), with γ ∈ (0, 1] as the discount100

factor. The agent interacts with the environment via a policy π ∈ Π : S → A, guiding action101

selection based on observed states. This yields an action-value function Qπ , indicating the expected102

cumulative discounted reward from a state-action pair under π. The agent seeks the optimal policy103

maximizing the action-value function, adhering to the Bellman equation (7), given by Q(s, a) ≜104 ∫
S P(s′|s, a)[R(s, a, s′) + γmaxa′ Q(s′, a′)]ds for all states s and actions a. Upon acquiring the105

optimal action-value function, we derive the optimal value function V (s) ≜ maxa∈A Q(s, a) for all106

states s in S.107

Monte-Carlo tree search (MCTS) (20; 8) is a planning approach for complex Markov decision108

processes (MDPs). It employs an iterative approach:109

Selection: It begins by selecting an action using a specified strategy, followed by executing this action110

through Monte Carlo simulation.111

Expansion: Subsequently, it assesses the resulting state, either by recursively evaluating if it already112

exists in the search tree or by inserting it into the tree.113

Simulation: Or employing a rollout policy via simulations. This iterative process continues until114

certain termination criteria are met, allowing traversal through the search tree.115

Backpropagation: Finally, the outcomes of the simulations are propagated backward through the116

chosen nodes to update their statistical metrics.117

Simple Regret An MCTS algorithm dynamically gathers trajectories within an MDP starting from118

an initial state s0. After processing t trajectories, it provides two outputs:119

• ât, a guess for the best action to take at state s0120

• V̂t(s0) an estimator of the optimal value in s0,121

where s0 is the state at the root node. The algorithm’s performance can be assessed by its convergence122

rate r(t) of the simple regret, formulated as:123

E [R(s0, t)] = E
[
V ⋆(s0)− V̂t (s0)

]
≤ r(t),

Here, R(s0, t) = V ⋆(s0)− V̂t(s0) is the simple regret of the algorithm at the root node with V ⋆(s0)124

representing the optimal value at state s0.125

In this article, we analyze an MCTS algorithm employing a maximal planning horizon H and126

a playout policy π0 with value V0. We define Ṽ (sH) = V0(sH) recursively as follows: for all127

h ≤ H − 1,128

Q̃(sh, a) = r(sh, a) + γ
∑

sh+1∈Ash
P(sh+1|sh, a)Ṽ (sh+1), Ṽ (sh) = maxa Q̃(sh, a), (1)

where r(sh, a) defined formally as the mean intermediate reward at state sh after taking action a.129

The primary objective of an MCTS algorithm is to estimate a tied rate r(t) by constructing estimates130

of Q̃(sh, a) and Ṽ (sh) to ultimately estimate Q̃(s0, a) and consequently Q⋆(s0, a). In practical im-131

plementations of the MCTS algorithm, the maximal depth H can sometimes be set to +∞. However,132

for theoretical analysis, the maximal depth H is crucial as we will analyze the algorithm that always133

collects trajectories of length H.134

Distributional Reinforcement Learning The mathematical framework used in reinforcement learn-135

ing is based on the Bellman equation (37), which aims to find an agent to maximize the expected136

utility Q value. However, the single expected value function cannot encapsulate the stochasticity in137

the reward function and the dynamic of the environments. Recently, in the article (5), authors shed138

light on the distributional perspective of the Bellman equation by modeling each Q value function as139

a distribution instead of a single expected value. The main objective is to study the random return Q140

at the state s, action a, and is defined recursively as141

Q(s, a)
D
= X (s, a) + γQ(s

′
, a

′
),V(s

′
)

D
= EπQ(s

′
, π(·|s

′
)), (2)
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where X (s, a) is the reward distribution at the state s, action a, Q(s, a) is the Q value distribution142

at state s, action a, and Q(s
′
, a

′
) is the Q value distribution at state s

′
, action a

′
. s

′
distributed143

according to P(·|s, a), a′
distributed according to a policy π(·|s′

). A D
= B denotes that two random144

variables A and B have equal probability laws.145

This distributional approach offers a deeper understanding of uncertainty and variability, especially146

in complex, stochastic systems where traditional expected value representations may fail to capture147

the true dynamics of the problem. which has been successfully used in Deep Q Learning (5).148

Categorical Value Distribution Based on the distributional Bellman equation, In the article (5), au-149

thors approximate the Q value distribution Q(s, a) as a discrete categorical distribution parametrized150

by N ∈ N, which denotes the number of atoms (N+1) at fixed-sized locations. This method effectively151

divides the Q value function into a set of equally spaced atoms zi(s, a) = Qmin + i△z : 0 ≤ i ≤ N,152

where Qmin and Qmax are respectively the minimum and maximum values at state s, action a. The153

size of each atom is set as △z := Qmax−Qmin

N .154

This discrete distribution approach is highly expressive and computationally efficient, making it ideal155

for practical applications. For instance, in the article (5), authors successfully used this representation156

in Deep Q Learning (C51), showing promising results in several Atari games. In the next section, we157

demonstrate how to apply this idea to MCTS.158

3 Distributional Thompson Sampling in Tree Search159

In this section, we introduce two novel distributional approaches for MCTS based on Thompson160

sampling. The first method represents each Q-value node as a categorical distribution, while the161

second uses particle-based distributions for greater flexibility. Both methods integrate Thompson162

sampling for improved exploration and performance.163

3.1 Distributional Monte-Carlo Tree Search164

We leverage the success of distributional reinforcement learning (4; 3; 6) and apply this concept to165

MCTS. In MCTS, there are two types of nodes: V-nodes and Q-value nodes. Instead of treating each166

V value and Q value as a single expected value, we model these functions as distributions.167

Based on equation (2), we can derive168

Q(s, a)
D
= X (s, a) + γV(s′

),V(s′
)

D
=
∑

a′∼π̄(.|s′ ) Q(s
′
, a

′
), (3)

with s
′ ∼ P(·|s, a), where π̄(.|s′

) is formally defined as the tree policy at state s′. We can model169

any Q distribution with equal law distributed as the sum of the distributions of the next reward and170

the Q distributions of the next states actions. We further model each V distribution, having equal171

probability law to the expectation of the chosen policy of the next Q-value distributions (3).172

Our method follows the same four basic steps of MCTS but is different in Value Backup and Action173

selection steps. We introduce two distinct methodologies: categorical-based and particle-based. In174

the categorical based approach, we parameterize each V value and Q value function in the tree as a175

categorical distribution. In contrast, in the particle-based approach, we model each value distribution176

as a set of sampling particles, representing the values observed during the tree planning. We provide177

a detailed explanation for the value backup and action selection of each method in the next section.178

3.2 Value Backup179

In this work, we employ two approaches to represent the Q value distribution.180

Categorical distribution: we represent each node in the tree as a categorical distribution. In each181

Q-value node, we: (1) store the empirical mean value of that Q-value node (same as in UCT), and182

(2) maintain a categorical distribution of the Q value function. To define a categorical distribution Q183

function, we require three essential pieces of information:184

• The number of atoms (N+1): We choose a consistent number of atoms (N+1) that remains185

the same for all Q distributions along the tree.186

• Minimum and maximum values (min and max): Each node in the tree may have different187

ranges for its minimum (Qmin)1 and maximum (Qmax) values, depending on its state/action188

in the environment. When a new Q-value node is added to the tree, we initially set Qmin189

to 0 (assuming we have scaled the reward range to [0, R]) and initialize Qmax to a small190

1Since reward is scaled in [0, R], Qmin is not updated in our setup.
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Algorithm 1 CATS
SelectAction (sh) (Sec 3.2)

for a ∈ [A] do
L(sh, a) ∼ Dir(α0(sh, a), . . . , α

N (sh, a))
ϕ(sh, a) = [z0(sh, a), . . . , zN (sh, a)]

⊤L(sh, a)

a = argmax
a

{
ϕ(sh, a)

}
return a

SimulateV (sh, t) (Sec 3.2)
a =SelectAction (sh)
SimulateQ (sh, a, t)
Tsh(t) = Tsh(t) + 1

Q̂(sh, a) =
∑
i

zi(sh, a)pi(sh, a)

V̂ (sh) =

(∑
a

Tsh,a(t)

Tsh
(t) Q̂p(sh, a)

) 1
p

SimulateQ (sh, a, t) (Sec 3.2)
sh+1 ∼ P(·|sh, a), rt(sh, a) ∼ R(sh, a, sh+1)
if Node sh+1 not expanded then

Rollout(sh+1)

else
SimulateV (sh+1, t)

Tsh,a(t) = Tsh,a(t) + 1

Qt(sh, a) = rt(sh, a) + γV̂ (sh+1)
if Qt(sh, a) ̸∈ [Qmin(sh, a), Qmax(sh, a)] then

Qmax(sh, a) = max{Qt(sh, a), Qmax(sh, a)}
Qmin(sh, a) = min{Qt(sh, a), Qmin(sh, a)}
△z = Qmax−Qmin

N
zi(sh, a) = Qmin + i△z : 0 ≤ i ≤ N

Update p(sh, a) = [p0(sh, a), . . . , pN(sh, a)]

Algorithm 2 PATS
SelectAction (sh) (Sec 3.2)

for a ∈ [A] do
L(sh, a) ∼ Dir(α(sh, a))
ϕ(sh, a) = S(sh, a)⊤L(sh, a)

a = argmax
a

{
ϕ(sh, a)

}
return a

SimulateV (sh, t) (Sec 3.2)
a =SelectAction (sh)
SimulateQ (sh, a, t)
Ts(t) = Ts(t) + 1

Q̂(sh, a) =
∑

αt(sh, a)Qt(sh, a)

V̂ (sh) =

(∑
a

Tsh,a(t)

Tsh
(t) Q̂p(s, a)

) 1
p

SimulateQ (sh, a, t) (Sec 3.2)
sh+1 ∼ P(·|sh, a), rt(sh, a) ∼ R(sh, a, sh+1)
if Node sh+1 not expanded then

Rollout(sh+1)

else
SimulateV (sh+1, t)

Tsh,a(t) = Tsh,a(t) + 1

Qt(sh, a) = rt(sh, a) + γV̂ (sh+1)
if Qt(s, a) ∈ {S(sh, a)} then

αt(sh, a) += 1 //αt(sh, a) : weight of Qt(sh, a)
else

S(sh, a) := (S(sh, a), Qt(sh, a))
α(sh, a) := (α(sh, a), 1)

Figure 1: Comparing CATS (left) and PATS (right) The main distinction is in the Q value function
backup(SimulateQ) and action selection function (SelectAction); the two methods are identical in
other procedures. In CATS, we init (α0(s, a), . . . , αN (s, a)) = (1, . . . , 1) and in PATS, S(s, a) =
(1), α(s, a) = (∅) for each s, a.

number, e.g., Qmax = 0.001. Since the min and max values are unknown, we start with a191

small range, that will get updated accordingly to the scale of the observed values.192

• Probabilistic parameterization: The probability of each atom (pi(s, a)) is determined based193

on the visitation count ratio. In detail, each atom stores statistical information about the194

visitation count, and the probability of that atom will be calculated as the visitation count195

divide with the total visitation count of that Q-value node. When we backpropagate the196

rt(s, a) + γV̂t(s
′) value to a specific node, we identify the atom whose value range includes197

the rt(s, a) + γV̂t(s
′) value. At this point, we increase its visitation count.198

Additionally, as we backpropagate Monte-Carlo Q values over time, we empirically adjust the Qmin199

and Qmax values to account for the dynamic range of Q values observed in the tree. This dynamic200

scaling ensures that the atom locations are effectively rescaled to adapt to the changing conditions.201

This representation method allows us to encapsulate the knowledge gained through exploration in the202

form of categorical distributions, which helps in making informed decisions during the tree search.203

Paricle based distribution: We represent each Q value distribution as a collection of sampling204

particles, which encapsulate the observed values during tree planning. Initially, we maintain an empty205

set of particles for the Q value distribution, denoted as S(s, a). At time step t, upon receiving an206

intermediate reward Qt(s, a) = rt(s, a) + γV̂t(s
′), with s′ ∼ P(·|s, a), we add Qt(s, a) to the set207

S(s, a) if the particle does not already exist within it. If the particle Qt(s, a) already exists in S(s, a),208

we increase the visitation count ratio associated with that particle.209

Value function: The Q-value node is crucial in the tree because its representation influences action210

selection, as detailed in the next section. We now discuss modeling each V-value node. The V-value211

distribution is based on the expected outcomes of the chosen policy and the subsequent Q-distributions.212

Thus, the mean of the V-function corresponds to the tree policy’s expectation of the means of all213
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succeeding Q-value nodes. The common approach is to use empirical average mean for the value214

backup, as in UCT (21). However, this approach underestimates the optimal value, while using the215

maximum value overestimates it (9). The power mean estimator (12) provides a balanced solution,216

falling between the average and maximum values. In our methods, each V node stores the power217

mean of the empirical means of all succeeding Q-value nodes, eliminating the need to model V as a218

distribution.219

V̂ (s) =

(∑
a

Ts,a(n)
Ts(n)

Q̂p(s, a)

) 1
p

, p ≥ 1,

where Ts(n), Ts,a(n) are the number of visitations at s and s, a at timestep n respectively. Next, we220

show how to select actions in the tree based on the categorical distribution of Q-value nodes.221

3.3 Action Selection222

Thompson sampling has shown promising results in real bandit scenarios due to the randomness of223

action selection. Taking advantage of the established categorical based distribution and particle based224

distribution, we use the Thompson sampling method for action selection. We maintain a Dirichlet dis-225

tribution of parameter of the Q value distribution. We denote the Dirichlet distribution of parameters226

(α0, α1, . . . , αN ) by Dir(α0, α1, . . . , αN ), whose density function is given by Γ(
∑N

i=0 αi)

ΠN
i=0Γ(α

i)
ΠN

i=0x
αi−1
i227

for (x0, . . . , xN ) ∈ [0, 1]N+1 such that
∑N

i=0 xi = 1.228

Categorical distribution: The probability mass function of the discrete categorical distribution at229

each Q-value node at state s, action a: p(s, a) = [p0(s, a), p1(s, a), . . . , pN (s, a)], where pi(s, a)230

represents the probability of selecting the i-th atom zi(s, a), N +1 is the number of atoms. We main-231

tain a Dirichlet distribution Dir(α0(s, a), α1(s, a), . . . , αN (s, a)) as the prior for the Q-value node232

at state s, action a. At each time step t we sample Lt(s, a) ∼ Dir(α0(s, a), α1(s, a), . . . , αN (s, a))233

and compute ϕt(s, a) = [z0(s, a), z1(s, a), . . . , zN (s, a)]⊤Lt(s, a). Then, the action at is selected234

as follows:235

at = argmax
a

{
ϕt(s, a)

}
After taking action at and get an intermediate reward Qt(s, at) = rt(s, at) + γV̂t(s

′). The posterior236

is also a Dirichlet: Dir(α0(s, a), . . . , αt(s, a) + 1, . . . , αN (s, a)) with the intermediate reward at237

time step t: Qt(s, at) is in the range of the atom zt(s, a). We denote this mechanism as Categorical238

Thompson sampling for Tree Search (CATS) method.239

Paricle based distribution: In the particle-based approach, the prior Dirichlet distribution of the240

Q-value node at state s, action a is Dir(α(s, a)), with α(s, a) is initiated as [1]. Considering each Q241

value distribution at state s, action a has a set of particle {Qt(s, a)} with the corresponding weighted242

α(s, a) = {αt(s, a)} At each time step t we also sample Lt(s, a) ∼ Dir(α(s, a)) and compute243

ϕt(s, a) = [1, Q0(s, a), Q1(s, a), . . . , QN (s, a)]⊤Lt(s, a). Then the action at is chosen as244

at = argmax
a

{
ϕt(s, a)

}
.

After taking action at and get an intermediate reward Qt(s, at) = rt(s, at) + γV̂t(s
′). We update245

αt(s, a) = αt(s, a) + 1 if Qt(s, at) is in the set {Qt(s, a)}. If not, we add Qt(s, at) to the set246

{Qt(s, a)} and add 1 to the set {αt(s, a)} = {αt(s, a), 1}.247

We call this method as Paricle Thompson sampling for Tree Search (PATS) method. Detailed248

pseudocode and a comparison of CATS and PATS can be seen in Fig 1. The two methods are identical249

in all procedures except for the Q value function backup (SimulateQ) and the action selection250

function (SelectAction).251

Remark 1. CATS and PATS both use similar action selection strategies within a bandit setting,252

specifically referring to Multinomial Thompson Sampling and Non-Parametric Thompson Sampling,253

respectively (29). While CATS action selection heavily depends strictly on Thompson Sampling254

by maintaining parameters of posterior Q-value distribution, PATS is not based on the posterior255

sampling in the strict sense. At each step, it computes an average of the observed rewards with256

random weight and is a Non-Parametric approach. Furthermore, CATS maintains a fixed set of atoms,257

whereas in PATS, the number of particles increases depending on the observed Q values.258

In the next section, we provide a theoretical analysis of the convergence of simple regret for CATS259

and PATS.260
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Algorithm 3 CATS in Non-stationary bandits
Require: K arms; n: number of plays;
N + 1 support size of categorical distributions
Init (α0

a, . . . , α
N
a ) = (1, . . . , 1) for each a ∈ [K]

Main ()
for t = 0,1,2,. . . , n do

for a ∈ [A] do
La,t ∼ Dir(α0

a, . . . , α
N
a )

ϕa,t = [0, R(t)
N , 2R(t)

N , · · · , R(t)]⊤Lt

a = argmax
a

{
ϕa,t

}
Pull arm a and observe reward
Ra,t =

mR(t)
N where m ∈ {0, 1, . . . N}

Update αm
a = αm

a + 1

Algorithm 4 PATS in Non-stationary bandits
Require: K arms; n: number of plays;
Init αa = (1); Sa = (1) for each a ∈ [K]
Main ()

for t = 0,1,2,. . . , n do
for a ∈ [A] do

La,t ∼ Dir(αa)

ϕa,t = S⊤
a La,t

a = argmax
a

{
ϕa,t

}
Pull arm a and observe reward Ra,t

if Ra,t ∈ {Sa} then
αt
a += 1 //αt

a : weight of Ra,t

else
Sa := (Sa, Ra,t)
αa := (αa, 1)

Figure 2: Comparing CATS (left) and PATS (right) in Non-stationary bandits.
4 Theoretical analysis261

Planning in MCTS involves making a sequence of decisions along the tree, where each internal node262

functions as a non-stationary bandit, with the empirical mean drifting due to the action selection263

strategy. Therefore, we first study the non-stationary multi-armed bandit settings using the action264

selections of CATS and PATS, examining the concentration properties of the power mean backup for265

each arm relative to the optimal arm. We then apply these results to MCTS.266

4.1 Non-stationary multi-armed bandit267

We consider a class of non-stationary multi-armed bandit (MAB) problems with K ≥ 1 arms. Let268

Ra,t denote the random reward obtained by playing arm a ∈ [K] at the time step t bounded in [0, R].269

We consider µ̂a,n = 1
n

∑n
t=1 Ra,t as the average rewards collected at arm a after n plays. We first270

define:271

Definition 1. A sequence of estimators (V̂n)n≥1 is concentrated and convergent towards some limit272

V if the following two properties hold:273

(A) Concentration: For all n ≥ 1, for all ε > 0, ∃c > 0 that P
(
|V̂n − V | > ε

)
≤ cn−1ε−1.274

(B) Convergence: lim
n→∞

E[V̂n] = V .275

In that case, we write plim
n→∞

V̂n = V .276

We assume that the reward sequence {Ra,t} , t ≥ 1 is a non-stationary process satisfying the277

convergence and concentration properties from Definition 1, by making the following assumption:278

Assumption 1. Consider K arms that for a ∈ [K], let (µ̂a,n)n≥1 be a sequence of estimator satisfying279

plim
n→∞

µ̂a,n = µa.

The action selection of CATS and PATS follows closely as in Section 3.3 and pseudocode are shown280

in Fig. 2. Let us define µ̂n(p) =
(∑K

a=1
Ta(n)

n µ̂p
a,Ta(n)

) 1
p

as the power mean value backup operator281

after n rounds. Here 1 ≤ p < ∞ is a constant. We denote Ta(n) is the number of visitations of the282

arm a.283

We define µ⋆ = maxa∈[K]{µa} and assume that µ⋆ is unique. Then, we establish the concentration284

and convergence properties of the power mean backup operator µ̂n(p) towards the optimal value µ⋆,285

as shown in Theorem 1 and Theorem 2, respectively for CATS and PATS.286

Theorem 1. For a ∈ [K], let (µ̂a,n)n≥1 be a sequence of estimator satisfying plim
n→∞

µ̂a,n = µa and let287

µ⋆ = max
a

{µa}. Assume that all the estimators are bounded in [0, R]. We consider a bandit algorithm288

that selects each arm according to CATS once in each round n ≥ K. Then, plim
n→∞

µ̂n(p) = µ⋆.289

Theorem 2. For a ∈ [K], let (µ̂a,n)n≥1 be a sequence of estimator satisfying plim
n→∞

µ̂a,n = µa and let290

µ⋆ = max
a

{µa}. Assume that all the estimators are bounded in [0, R]. We consider a bandit algorithm291

that selects each arm according to PATS once in each round n ≥ K. Then, plim
n→∞

µ̂n(p) = µ⋆.292
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Detailed proofs of the two Theorems can be found in the appendix. Based upon these results we293

analyse the concentration properties for any internal node and convergence of the simple regret in the294

MCTS in the next section.295

4.2 Monte-Carlo Tree Search296

Before presenting the main results (Theorem 3 Theorem 4), we first show an important Lemma297

Lemma 1. Let (V̂m,n)n≥1, m ∈ [M ], be a sequence of estimator satisfying plim
n→∞

V̂m,n = Vm.298

Assume that there exists a constant L > 0 such that L = supremum{V̂m,n}n≥1. Let Ri be an iid299

sequence with mean µ and Si be an iid sequence from a distribution p = (p1, . . . , pM ) supported300

on {1, . . . ,M}. Introducing the random variables Nn
m = #|{i ≤ n : Si = sm}|, we define the301

sequence of estimator302

Q̂n = 1
n

∑n
i=1 Ri + γ

∑M
m=1

Nn
m

n V̂m,Nn
m
.

Then plim
n→∞

Q̂n = µ+
∑M

m=1 pmVm.303

The significance of Lemma 1 lies in demonstrating the concentration and convergence of an estimated304

Q value, conditioned on the concentration and convergence of a child V-value node. Here, V̂·,n305

represents the value estimation at time step n, and Ri denotes an intermediate reward received by306

taking a specific action at a particular state.307

Next, we first start with Theorem 3 to show the convergence and concentration of any V-Node and308

Q-node in the tree for CATS.309

Theorem 3. When we apply the CATS algorithm, we have310

(i) For any node sh at the depth hth in the tree, plim
n→∞

Q̂n(sh, ak) = Q̃(sh, ak).311

(ii) For any node sh at the depth hth in the tree, plim
n→∞

V̂n(sh) = Ṽ (sh).312

We can derive a similar result for PATS as shown in Theorem 4.313

Theorem 4. When we apply the PATS algorithm, we have314

(i) For any node sh at the depth hth in the tree, plim
n→∞

Q̂n(sh, ak) = Q̃(sh, ak).315

(ii) For any node sh at the depth hth in the tree, plim
n→∞

V̂n(sh) = Ṽ (sh).316

The results of Theorems 4 and 4 demonstrate that, at any node in the tree, both the V-value and317

Q-value nodes are convergent and concentrated. These results are applicable to any power mean318

backup operator of V-value nodes with p ∈ [1,+∞). Finally, we show important results in Theorem 5,319

and Theorem 6, since they show the convergence of simple regret of CATS and PATS, respectively.320

Theorem 5. (Convergence of Simple Regret of CATS) We have at the root node s0,321 ∣∣∣E [V ⋆(s0)− V̂n (s0)
]∣∣∣ ≤ O(n−1).

Theorem 6. (Convergence of Simple Regret of PATS) We have at the root node s0,322 ∣∣∣E [V ⋆(s0)− V̂n (s0)
]∣∣∣ ≤ O(n−1).

Remark 2. These results demonstrate that both CATS and PATS share the same convergence rate323

for value estimation at the root node of O(n−1), which improves over the rate O(n−1/2) of Fixed-324

Depth-MCTS (33). Furthermore, Our finding more broadly applies to the power mean estimator with325

p ∈ [1,+∞).326

5 Experiments327

We compare our methods with UCT (21), Fixed-Depth-MCTS (33), MENTS (40), RENTS,328

TENTS (14), BTS (27) and DNG (1) in a stochastic setting (SyntheticTree) to highlight the benefits of329

CATS and PATS in stochastic environments. Additionally, we test on 17 Atari games, comparing our330

algorithms with DQN (base network without planning) and other non-distributional planning methods331

(Power-UCT (12), MENTS (40), TENTS (14)) to demonstrate CATS and PATS’ competitiveness and332

put results in Appendix. In all settings, we use 100 atoms for CATS, and set the discount factor γ to333

0.99 for Atari, and γ to 1 for SyntheticTree.334
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SyntheticTree: We evaluate CATS and PATS using the synthetic tree toy problem (14). This problem335

involves a tree with depth d and branching factor k. Each tree edge has a random value between 0336

and 1. Returns at the leaf nodes are simulated using Gaussian distributions with means equal to the337

sum of edge values from the root to the leaf, and a standard deviation of 0.5. Means are normalized338

between 0 and 1. An agent traverses the tree from the root, aiming to find the leaf node with the339

highest mean value. Internal nodes give zero reward, while leaf nodes provide a reward sampled340

from their Gaussian distribution. We introduce stochasticity into the environment by altering the341

transition probabilities: there is a 50% chance of moving to the intended node and a 50% chance of342

moving to a different node with equal probability. We conduct 25 experiments on five trees with five343

runs each, covering all combinations of branching factors k = {2, 4, 6, 8, 10, 12, 14, 16, 100, 200}344

and depths d = {1, 2, 3, 4}. We compute the value estimation error at the root node. Fig. 3 shows345

the convergence of the value estimations of CATS and PATS at the root node in the Synthetic Tree346

environment which shows they archives faster convergence compared to other methods.
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Figure 3: Performance of CATS and PATS in SyntheticTree.

347
348

6 Conclusion349

To conclude, our work introduces Categorical Thompson Sampling for MCTS (CATS) and Particle350

Thompson Sampling for MCTS (PATS), distributional planning approaches specifically designed to351

tackle complexities arising from stochasticity. CATS uses a categorical distribution, while PATS uses352

a particle-based distribution to represent and model the uncertainty inherent in return outcomes. We353

also propose exploration strategies based on Thompson Sampling that leverage this distributional354

modeling. Our methods come with a rigorous theoretical convergence guarantee, achieving a simple355

regret polynomial decay of the order O(n−1), which improves over the O(n−1/2) rate of the fixed356

version of UCT (32). Empirical findings conclusively demonstrate the effectiveness of our approach357

in stochastic environments.358
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A Outline463

• Notations will be described in Section B.464

• Supporting Lemmas are presented in Section C.465

• The Convergence of CATS and PATS in Non-stationary multi-armed bandits is shown in466

Section D.467

• Section E presents the concentration and convergence guarantee of CATS and PATS in468

MCTS.469

• Section F discusses about Limitations and possible improvements.470

• Experimental setup is provided in Section G.471

• Additional Experimental results are shown in Section H.472

B Notations473

Table 1: List of all notations for Non-stationary Multi-arms bandit.

Notation Type Description

K N Number of arms

Ta(t) N Number of visitations at arm a after t timesteps

µa R mean value of arm a

a⋆ A optimal action

µ⋆ R mean value of an optimal arm. We assume it is unique.

µ̂n(p) R power mean estimator, with a constant p ∈ [1,+∞)

µ̂a,n R mean estimator of arm a after n visitations

C Supporting Lemmas474

We start with a result of the following lemma which plays an important role in the analysis of our475

MCTS algorithm.476

Lemma 1. For m ∈ [M ], let (V̂m,n)n≥1 be a sequence of estimator satisfying plim
n→∞

V̂m,n = Vm.477

Assume that there exists a constant L > 0 such that L = supremum{V̂m,n}n≥1. Let Ri be an iid478

sequence with mean µ and Si be an iid sequence from a distribution p = (p1, . . . , pM ) supported479

on {1, . . . ,M}. Introducing the random variables Nn
m = #|{i ≤ n : Si = sm}|, we define the480

sequence of estimator481

Q̂n =
1

n

n∑
i=1

Ri + γ

M∑
m=1

Nn
m

n
V̂m,Nn

m
.

Then there exists some constant c′ (which depends on pi (i=1,2,...,M), γ, µ) such that482

plim
n→∞

Q̂n = µ+

M∑
m=1

pmVm.

Proof. Let p = (p1, p2, ...pM ), p ∈ △M where △M = {x ∈ RM :
∑M

i=1 Ri = 1, Ri ≥ 0} is the483

(M − 1)-dimensional simplex. Let us study a random vector p̂n = (
Nn

1

n ,
Nn

2

n , ...,
Nn

M

n ). Let us define484

12



Table 2: List of all notations for Monte-Carlo Tree Search.

Notation Type Description

γ R Discount factor

N N Number of atoms

sh S state at depth h

V̂t(s) R Estimated Value function at state s after t visitations

Ts(t) N Number of visitations at state s after t timesteps

Ts,a(t) N Number of visitations at (s, a) after t timesteps

T s′

s,a(t) N Number of visitations at (s, a) that goes to s′ after t timesteps

Q̂t(s, a) R Estimated Q Value function at state s action a after t visitations

Qmin(s, a) R Minimum value for the Q value distribution at state s, action a

Qmax(s, a) R Maximum value for the Q value distribution at state s, action a

R(s, a) Reward distribution at state s action a

V(s) Value distribution at state s

Q(s, a) Q Value distribution at state s action a

pi(s, a) R Probability of the ith atom at the Q Value distribution at state s action a

△z R Size of each atom

zi(s, a) R value of the atom ith at state s, action a.

Qt(s, a) R intermediate Q value at time t at (s, a)

V = (V1, V2, ...VM ). Let R̂n = 1
n

∑n
i=1 Ri, V̂n = (V̂1,Nn

1
, V̂2,Nn

2
, ..., V̂M,Nn

M
),
∑M

i=1 N
n
i = n, Nn

i485

is the number of times that population i was observed. We have Q̂n = R̂n + γ
〈
p̂n, V̂n

〉
. Therefore,486

P
(
Q̂n −

(
µ+ γ ⟨p, V ⟩

)
≥ ϵ

)
≤ P

(
R̂n − µ ≥ 1

2
ϵ

)
+ P

(
γ
〈
p̂n, V̂n

〉
− γ ⟨p, Y ⟩ ≥ 1

2
ϵ

)
≤ exp{−2n

ϵ2

4
}+ P

(〈
p̂n, V̂n

〉
− ⟨p, Y ⟩ ≥ 1

2γ
ϵ

)
︸ ︷︷ ︸

A

.

To upper bound A, let us consider
〈
p̂n, V̂

〉
− ⟨p, V ⟩ =

〈
(p̂n − p), V̂n

〉
+
〈
p, (V̂ − V )

〉
. Then,487

A ≤ P
(〈

(p̂n − p), V̂n

〉
≥ 1

4γ
ϵ

)
︸ ︷︷ ︸

A1

+P
(〈

p, (V̂n − V )
〉
≥ 1

4γ
ϵ

)
︸ ︷︷ ︸

A2

.
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By applying a Hölder inequality to p̂n − p and V̂ , we obtain488 〈
(p̂n − p), V̂n

〉
≤∥ p̂n − p ∥1∥ V̂n ∥∞=∥ p̂n − p ∥1 L,

with L is the supremum of V̂ . Then we can derive489

A1 = P
(〈

(p̂n − p), V̂n

〉
≥ 1

4γ
ϵ

)
≤ P

(
∥ p̂n − p ∥1 L ≥ 1

4γ
ϵ

)
= P

(
∥ p̂n − p ∥1≥

1

4γL
ϵ

)
.

According to (39), we have for any M ≥ 2 and δ ∈ [0, 1]490

P
(

∥ p̂n − p ∥1≥
√

2M ln(2/δ)

n

)
≤ δ.

Define ϵ =
√

2M ln(2/δ)
n , therefore δ = 2 exp{−nϵ2

2M }, we have491

P
(

∥ p̂n − p ∥1≥ ϵ

)
≤ 2 exp{−nϵ2

2M
}.

Therefore,492

A1 ≤ P
(

∥ p̂n − p ∥1≥ ϵ

)
≤ 2 exp{ −nϵ2

32Mγ2L2
}.

We also have493

A2 = P
( M∑

m=1

pm(V̂m,Nn
m
− Vm) ≥ 1

4γ
ϵ

)

≤
M∑

m=1

E
[
P
(

1

Nn
m

Nn
m∑

t=1

Vm,t − Vm ≥ 1

4γpm
ϵ
∣∣Nn

m

)]

≤
M∑

m=1

E
[
c(Nn

m)−1(
ϵ

4γpm
)−1

]
.

Let us define an event E =

{
Nn

m ≥ npm

2

}
. Therefore,494

A2 ≤
M∑

m=1

E
[
c(
npm
2

)−1(
ϵ

4γpm
)−1

]

+

M∑
m=1

E
[
P(Nn

m <
npm
2

)

]
=

M∑
m=1

(c21+2γ1p−1+1
m )n−1ϵ−1

+

M∑
m=1

E
[
P(Nn

m − pmn ≤ −pmn

2
)

]

≤
M∑

m=1

(c23γ)n−1ϵ−1 +

M∑
m=1

exp

{
− 2n(

pmn

2
)2
}

We consider pm > 0 only since if pm = 0, pm(V̂m,Nn
m

− Vm) = 0, and has been eliminated.495

Therefore,496

A ≤ A1 +A2 ≤ 2 exp{ −nϵ2

32Mγ2L2
}+

M∑
m=1

(c23γ)n−1ϵ−1 +

M∑
m=1

exp

{
− 2n(

pmn

2
)2
}
.
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That leads to497

P
(
Q̂n −

(
µ+ γ ⟨p, V ⟩

)
≥ ϵ

)
≤ exp{−2n

ϵ2

4
}

+ 2 exp{ −nϵ2

32Mγ2L2
}+

M∑
m=1

(c23γ)n−1ϵ−1 +

M∑
m=1

exp

{
− 2n(

pmn

2
)2
}

≤ c
′
n−1ϵ−1,

with c
′
> 0 depends on c,M, pi. So that498

P
(
Q̂n −

(
µ+ γ ⟨p, V ⟩

)
≥ ϵ

)
≤ c

′
n−1ϵ−1,

By following the same steps, we can derive499

P
(
Q̂n −

(
µ+ γ ⟨p, V ⟩

)
≤ −ϵ

)
≤ c

′
n−1ϵ−1.

Therefore, with n ≥ 1, ϵ > 0,500

P
( ∣∣∣Q̂n −

(
µ+ γ ⟨p, V ⟩

)∣∣∣ ≥ ϵ

)
≤ c

′
n−1ϵ−1.

Furthermore,501

Q̂n −
(
µ+ γ ⟨p, V ⟩

)
= (R̂n − µ) +

(
γ
〈
p̂n, V̂n

〉
− γ ⟨p, Y ⟩

)
= (R̂n − µ) + γ

(〈
(p̂n − p), V̂n

〉
+
〈
p, (V̂ − V )

〉)
Therefore,502

⇒
∣∣∣E[Q̂n]−

(
µ+ γ ⟨p, V ⟩

)∣∣∣ ≤ ∣∣∣E[(R̂n − µ)]
∣∣∣+ γ

(
|E[p̂n − p]|

∣∣∣V̂n

∣∣∣+ p
∣∣∣E[V̂ − V ]

∣∣∣ )
⇒
∣∣∣E[Q̂n]−

(
µ+ γ ⟨p, V ⟩

)∣∣∣ ≤ ∣∣∣E[(R̂n − µ)]
∣∣∣+ γ

(
L |E[p̂n − p]|+ p

∣∣∣E[V̂ − V ]
∣∣∣ )

Also because lim
n→∞

E[V̂m,n] = Vm, lim
n→∞

N̂n
m

n = pm, and E[(R̂n − µ)] = 0 so that,503

lim
n→∞

E[Q̂n] = µ+ γ

M∑
m=1

pmVm.

That mean504

plim
n→∞

Q̂n = µ+ γ

M∑
m=1

pmVm,

which concludes the proof.505

Results from Lemma 1 is important as it shows the concentration for the Q value estimation given the506

concentration of V value of the children nodes.507

Lemma 2. Let consider non-negative variables x, y ∈ R+, and a constant m that 0 ≤ m ≤ 1. Then508

(x+ y)m ≤ xm + ym.

Proof. With y = 0, or x = 0, the inequality (2) becomes correct. Let consider the case where509

x > 0, y > 0, the inequality (2) can be written as510

(
x

y
+ 1)m ≤

(
x

y

)m

+ 1.

Let us define a function511

f(t) = (t+ 1)m − tm − 1, (t > 0).
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We can see that512

f
′
(t) = m(t+ 1)m−1 −mtm−1 = m

(
(t+ 1)m−1 − tm−1

)
≤ 0 with m ∈ [0, 1], t > 0,

because g(x) = xm−1 is a decreasing function with m ∈ [0, 1], x > 0. Therefore,513

f(t) ≤ f(0) = 0 with t > 0.

So that,514

(t+ 1)m − tm − 1 ≤ 0, (t > 0).

with t = x
y ≥ 0, we can derive the inequality (2).515

We use Minkowski’s inequality as shown below516

Lemma 3. (Minkowski’s inequality) Given p ≥ 1, {xi, yi} ∈ R, i = 1, 2, ..., n, then we have the517

following inequality518 (∑
i

(|xi + yi|)p
) 1

p

≤

(∑
i

(|xi|)p
) 1

p

+

(∑
i

(|yi|)p
) 1

p

.

Proof. This is a basic result.519

Lemma 4. (Markov’s inequality) If X is a nonnegative random variable and a > 0, then the520

probability that X is at least a is at most the expectation of X divided by a:521

Pr(X > a) ≤ E[X]

a
.

Proof. This is a well-known result.522

D Convergence of CATS and PATS in Non-stationary multi-armed bandits523

We note that in an MCTS tree, each node is considered a non-stationary multi-armed bandit where524

the average mean drifts due to the given action selection strategy. Therefore, we first study the525

convergence of CATS and PATS in non-stationary multi-armed bandits where the action selection is526

Thompson sampling, with the power mean backup operator at the root node. Detailed descriptions of527

the CATS and PATS in Non-stationary multi-armed bandits settings can be found in the main article528

in the Theoretical Analysis section.529

We first establish the convergence and concentration properties for the power mean backup operator530

in non-stationary bandits, detailed in Theorem 1 for CATS and Theorem 2 for PATS.531

To achieve these results, we demonstrate that the expected payoff of the power mean backup operator532

decays polynomially at a rate of O( logn
n ). This is supported by Lemma 7 for CATS and Lemma 8 for533

PATS. Critical to this analysis are Lemma 5 and Lemma 6, which establish an upper bound of log(n)534

for the expected number of suboptimal arm pulls.535

We introduce some important definitions. Fn
a represents the empirical cumulative distribution function536

of arm a after n visitations, and Fa represents the cumulative distribution function of arm a. We537

employ the following distance measure: If P and Q are two distributions characterized by parameters538

p = (p0, p1, · · · , pN ) and q = (q0, q1, · · · , qN ) respectively, then the distance is defined as539

d(P,Q) :=∥ p− q ∥∞= sup
i∈[0,N ]

|pi − qi|

This represents the L∞ distance between p and q in R
N+1. We also denotes540

KL(P ∥ Q) as the Kullback–Leibler divergence between P and Q, and denote541

Kinf(Fa, µ⋆) = infG:E[G]>µ⋆
KL(Fa ∥ G). In addition, we denote K(N)

inf (Fa, µ⋆) =542

inf
{

KL(Fa ∥ G)

∣∣∣∣ the support of G ∈
{
0, R

N , 2R
N , · · · , R

}
,E[G] > µ⋆

}
.543

We see that the definition of Kinf(Fa, µ⋆) and K(N)
inf (Fa, µ⋆) is only difference in the support set.544
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We denote the true parameter of arm a by pa = (p0a, p
1
a, . . . , p

N
a ) with pia = PrX∼Fa [X = i

N ]. We545

denote the parameter of the posterior distribution of arm a as αa = (α0
a, α

1
a, . . . , α

N
a ). Since546

each arm a is non-stationary, we also denote the parameter of arm a after n visitations by547

pa(n) = (p0a(n), p
1
a(n), . . . , p

N
a (n)) with pia(n) = PrX∼Fn

a
[X = i

N ]. The parameter of the548

posterior distribution of arm a denoted as αa(n) = (α0
a(n), α

1
a(n), . . . , α

N
a (n)) We first show the549

results of an important Lemma 5. The proof follows closely to the Proof of Proposition 7 (29). The550

only difference is that in our settings, we study non-stationary bandits.551

Lemma 5. Consider Categorical Thompson Sampling(CATS) strategy applied to a non-stationary552

problem where the pay-off sequence satisfies Assumption 1. Let Ta(n) denote the number of plays of553

arm a up to timestep n.554

If a is the index of a suboptimal arm, Then for any ϵ0, ϵ1 ≥ 0, each sub-optimal arm a is played in555

expectation at most556

E[Ta(n)] ≤
(1 + ϵ0) log n

K(N)
inf (Fa, µ⋆)− ϵ1

+ o(log n) +O(1),

Proof. We have ϕa,t = [0, R
N , 2R

N , · · · , R]⊤La,t, with La,t ∼ Dir(α0
a(t), . . . , α

N
a (t)).557

To analyze the expectation associated with selecting a suboptimal arm a, we decompose it into two558

components:559

E

[
n∑

t=1

1(I(t) = a)

]
=E

[
n∑

t=1

1(I(t) = a), ϕa,t ≥ µ∗ − ϵ1, d(F̂I(t), FI(t)) ≤ ϵ2)

]
︸ ︷︷ ︸

A1

+ E

[
n∑

t=1

1(I(t) = a), ϕa,t < µ∗ − ϵ1, d(F̂I(t), FI(t)) > ϵ2)

]
︸ ︷︷ ︸

A2

We first find an upper bound for A1:560

A1 =

n∑
t=1

n∑
m=1

1

(
I(t) = a, θk(t) ≥ µ⋆ − ϵ1; ∥

αa(t)

Tk(t) +N + 1
− pa(t) ∥∞≤ ϵ2, Tk(t) = m

)
We see that if the event561 {

I(t) = a, θk(t) ≥ µ⋆ − ϵ1; ∥
αa(t)

Tk(t) +N + 1
− pa(t) ∥∞≤ ϵ2, Tk(t) = m

}
occurs at step t for a certain m ∈ [1, n] , then Tk(t

′) > Tk(t) = m for any t′ > t. Therefore, for any562

m ∈ [n]563

n∑
t=1

1

(
I(t) = a, θk(t) ≥ µ⋆ − ϵ1; ∥

αa(t)

Tk(t) +N + 1
− pa(t) ∥∞≤ ϵ2, Tk(t) = m

)
≤ 1

We can bound for any m0 ∈ [n]564

A1 ≤ m0 +

n∑
t=1

n∑
m=m0

E
[
1

(
I(t) = a, θk(t) ≥ µ⋆ − ϵ1; ∥

αa(t)

Tk(t) +N + 1
− pa(t) ∥∞≤ ϵ2, Tk(t) = m

)]

≤ m0 +

n∑
t=1

n∑
m=m0

Pr

(
θk(t) ≥ µ⋆ − ϵ1; ∥

αa(t)

Tk(t) +N + 1
− pa(t) ∥∞≤ ϵ2, Tk(t) = m

)

≤ m0 +

n∑
t=1

n∑
m=m0

Pr

(
θk(t) ≥ µ⋆ − ϵ1

∣∣∣∣ ∥ αa(t)

Tk(t) +N + 1
− pa(t) ∥∞≤ ϵ2, Tk(t) = m

)
×Pr

(
∥ αa(t)

Tk(t) +N + 1
− pa(t) ∥∞≤ ϵ2, Tk(t) = m

)
(4)
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By applying results of Lemma 13 Appendix F (29), we have565

Pr

(
θk(t) ≥ µ⋆ − ϵ1

∣∣∣∣αa, Tk(t) = m

)
≤ C(m+N + 1)N/2 exp{−(m+N + 1)KL(Pαa(t) ∥ P ∗

µ⋆−ϵ1)}

where P ∗
µ⋆−ϵ1 = argminx:u⊤x≥µ⋆−ϵ1 KL(Pαa

∥ x) and Pαa(t) =
1

n+N+1αa(t). And by definition566

KL(Pαa(t) ∥ P ∗
µ⋆−ϵ1) = Kinf(Pαa(t), µ⋆ − ϵ1), therefore567

Pr

(
θk(t) ≥ µ⋆ − ϵ1

∣∣∣∣αa(t), Tk(t) = m

)
≤ C(m+N + 1)N/2 exp{−(m+N + 1)Kinf(Pαa(t), µ⋆ − ϵ1)},

where C = exp{1/12}
Γ(N+1)

(
1√
2π

)N
. On the other hand, Kinf(x, µ⋆ − ϵ1) is continuous in x ∈ [0, 1]N+1568

on the probability simplex with respect to the L∞ distance from ((19), Theorem 7) and Lemma 18 in569

Appendix H (29). Therefore, for any ϵ3 > 0, there exists ϵ2 > 0 and constant C ′ > 0 such that570

Pr

(
θk(t) ≥ µ⋆ − ϵ1

∣∣∣∣ ∥ αa(t)

Tk(t) +N + 1
− pa(t) ∥∞≤ ϵ2, Tk(t) = m

)
≤ C ′ exp{−(m+N + 1)(Kinf(pa, µ⋆ − ϵ1)− ϵ3)}

And because Pr
(
∥ αa(t)

Tk(t)+N+1 − pa(t) ∥∞≤ ϵ2, Tk(t) = m
)
≤ 1. Therefore,571

A1 ≤ m0 + C ′
1

n∑
t=1

exp{−(m+N + 1)(Kinf(pa, µ⋆ − ϵ1)− ϵ3)}

≤ m0 + C ′
1T exp{−(m+N + 1)(Kinf(pa, µ⋆ − ϵ1)− ϵ3)} (5)

Choosing m0 = logn
Kinf(pa,µ⋆−ϵ1)−ϵ3

−N − 1, we have572

A1 ≤ log n

Kinf(pa, µ⋆ − ϵ1)− ϵ3
−N − 1 + C ′

1

Furthermore, as from ((19), Theorem 7), it is proven that µ → Kinf(F, µ) is continuous for µ < 1,573

when we scale reward from [0,1] to [0, R] therefore µ from [0,1] to [0, R]. We have µ → Kinf(F, µ)574

is continuous for µ < R. Therefore, ∀ϵ4 > 0,∃ϵ1 > 0, such that575

|Kinf(pa, µ
∗ − ϵ1)−Kinf(pa, µ

∗)| ≤ ϵ4
⇒ Kinf(pa, µ

∗ − ϵ1)− ϵ3 ≥ Kinf(pa, µ
∗)− ϵ3 − ϵ4

Therefore, ∀ϵ0 > 0576

A1 ≤ (ϵ0 + 1) log n

Kinf(pa, µ⋆)
−N − 1 + C ′

1

Also According to Proposition 8 (29), for any ϵ0 > 0 we have577

A2 ≤ O(1) (6)

Combining inequality (5) and inequality (6) leads us to578

E[Ta(n)] ≤
(1 + ϵ0) log n

K(N)
inf (Fa, µ⋆)

+ o(log n) +O(1).

Therefore which concludes the proof.579

Lemma 6. Consider Particle Thompson Sampling(PATS) strategy applied to a non-stationary580

problem where the pay-off sequence satisfies Assumption 1. Then for any ϵ0 ≥ 0. Let Ta(n) denote581

the number of plays of arm a up to timestep n. Then if a is the index of a suboptimal arm, then each582

sub-optimal arm a is played in expectation at most583

E[Ta(n)] ≤
log n

Kinf(Fa, µ⋆)− ϵ0
+ o(log n) +O(1).

18



Proof. In this Theorem, we use the Levy distance. Recall that the Levy distance between two584

cumulative distribution functions F and G on [0, 1] is defined as585

DL(F,G) = inf{ϵ > 0 : ∀x ∈ [0, 1], F (x− ϵ)− ϵ ≤ G(x) ≤ F (x+ ϵ) + ϵ}.

The proof follows the same steps as in Lemma 5. We also can derive586

E

[
n∑

t=1

1(I(t) = a)

]
=E

[
n∑

t=1

1(I(t) = a), ϕa,t ≥ µ∗ − ϵ1, DL(F̂I(t), FI(t)) ≤ ϵ2)

]
︸ ︷︷ ︸

B1

+ E

[
n∑

t=1

1(I(t) = a), ϕa,t < µ∗ − ϵ1, DL(F̂I(t), FI(t)) > ϵ2)

]
︸ ︷︷ ︸

B2

We can use the same ways of derivations as in Lemma 5, equation (4) to have the same bound587

B1 ≤ m0 +

n∑
t=1

n∑
m=m0

Pr

(
θk(t) ≥ µ⋆ − ϵ1

∣∣∣∣DL

(
F̂a(t), Fa(t)

)
≤ ϵ2, Tk(t) = m

)
×Pr

(
DL

(
F̂a(t), Fa(t)

)
≤ ϵ2, Tk(t) = m

)
(7)

According to Lemma 15 in Appendix G.1 (29) on conditional probabilities, for any ν ∈ (0, 1) we588

have589

Pr

(
θk(t) ≥ µ⋆ − ϵ1

∣∣∣∣DL

(
F̂a(t), Fa(t)

)
≤ ϵ2, Tk(t) = m

)
≤ 1

ν
exp

{
−n

(
Kinf(F̂a(t), µ⋆ − ϵ1)− ν

µ⋆ − ϵ1
1− (µ⋆ − ϵ1)

)}
Because Kinf(F, µ) is continuous in F with respect to the Levy distance from (19), Theorem 7, for590

any ϵ3 > 0 there exists ϵ2 > 0 such that591

DL(F̂a(t), Fa) ≤ ϵ2 ⇒
∣∣∣Kinf(F̂a(t), µ⋆ − ϵ1)−Kinf(Fa, µ⋆ − ϵ1)

∣∣∣ ≤ ϵ3

Therefore, ∀ν ∈ (0, 1) and for any ϵ5 > 0, there exists ϵ1, ϵ2 > 0 such that592

Pr

(
θk(t) ≥ µ⋆ − ϵ1

∣∣∣∣DL

(
F̂a(t), Fa(t)

)
≤ ϵ2, Tk(t) = m

)
≤ 1

ν

(
−m

(
Kinf(Fa, µ⋆ − ϵ1)− ϵ3 − ν

µ⋆ − ϵ1
1− (µ⋆ − ϵ1)

))
(Theorem 6 (19) )

≤ 1

ν

(
−m

(
Kinf(Fa, µ⋆)

ϵ1
1− µ⋆

− ϵ3 − ν
µ⋆ − ϵ1

1− (µ⋆ − ϵ1)

))
This implies that ∀ϵ0 > 0, there exists ν ∈ (0, 1), ϵ1 > 0 and ϵ2 > 0 such that593

Pr

(
θk(t) ≥ µ⋆ − ϵ1

∣∣∣∣DL

(
F̂a(t), Fa(t)

)
≤ ϵ2, Tk(t) = m

)
≤ 1

ν
exp {−m(Kinf(Fa, µ⋆)− ϵ0)}

Therefore, according to inequality (7) and the fact that594

Pr
(
DL

(
F̂a(t), Fa(t)

)
≤ ϵ2, Tk(t) = m

)
≤ 1

we have595

B1 ≤ m0 +

n∑
t=1

1

ν
exp {−m(Kinf(Fa, µ⋆)− ϵ0)}

≤ m0 +
1

ν
T exp {−m0(Kinf(Fa, µ⋆)− ϵ0)}
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Choose m0 = logn
Kinf(Fa,µ⋆)−ϵ0

we have596

B1 ≤ log n

Kinf(Fa, µ⋆)− ϵ0
+

1

ν

Also According to Proposition 10 (29), for any ϵ0 > 0 we have597

B2 ≤ O(1)

That leads us to598

E[Ta(n)] ≤
log n

Kinf(Fa, µ⋆)− ϵ0
+ o(log n) +O(1),

which concludes the proof.599

Lemma 7. Consider Categorical Thompson Sampling(CATS) strategy applied to a non-stationary600

problem where the pay-off sequence satisfies Assumption 1. Let us define the power mean estimator601

µ̂n(p) as µ̂n(p) =
(∑K

a=1
Ta(n)

n µ̂p
a,Ta(n)

) 1
p

, and δ⋆,n = µ⋆ − µ⋆,n For any p ≥ 1, ϵ0 > 0, we have602

|E[µ̂n(p)]− µ⋆| ≤ |δ⋆,n|+
R

n

K∑
a=1,a̸=a∗

{
(1 + ϵ0) log n

K(N)(Fa, µ⋆)
+ o(log n) +O(1)

}

Proof. We observe that603

|µ̂n(p)− µ⋆| ≤ |µ̂n(p)− µ⋆,n|+ |µ⋆ − µ⋆,n| = |µ̂n(p)− µ⋆,n|+ |δ⋆,n|
Furthermore,604

µ̂a,Ta(n) ≤ µa,n +
∣∣µ̂a,Ta(n) − µa,n

∣∣ . (8)

Since µ⋆,n = maxa∈[K]{µa,n}, we have605

µ̂n(p)− µ⋆,n = µ̂n(p)−
K∑

a=1

Ta(n)µ⋆,n ≤

(
K∑

a=1

Ta(n)

n

(
µ̂a,Ta(n)

)p) 1
p

−

(
K∑

a=1

Ta(n)

n
(µa,n)

p

) 1
p

=

(∑K
a=1 Ta(n)

(
µ̂a,Ta(n)

)p) 1
p −

(∑K
a=1 Ta(n) (µa,n)

p
) 1

p

n
1
p

Applying Minkowski’s inequality from Lemma 3, and the result of (8), we have606

µ̂n(p)− µ⋆,n ≤

(∑K
a=1 Ta(n)

(
µa +

∣∣µ̂a,Ta(n) − µa,n

∣∣)p) 1
p −

(∑K
a=1 Ta(n) (µa,n)

p
) 1

p

n
1
p

≤

(∑K
a=1 Ta(n)

(∣∣µ̂a,Ta(n) − µa,n

∣∣)p) 1
p

n
1
p

On the other hand,607

µ⋆,n − µ̂n(p) =
nµ⋆,n − nµ̂n(p)

n
=

nµ⋆,n − (
∑K

a=1 Ta(n)µa,n) +
∑K

a=1 Ta(n)µa,n − nµ̂n(p)

n

=

∑K
a=1,a̸=a∗

Ta(n) |µ⋆,n − µa,n|+
∑K

a=1 Ta(n)µa,n − nµ̂n(p)

n

≤ R

K∑
a=1,a ̸=a∗

Ta(n)

n
+

K∑
a=1

Ta(n)

n
µa,n − µ̂n(p) (9)
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Because power mean is an increasing function of p, so that608

K∑
a=1

Ta(n)

n
µa,n ≤

(
K∑

a=1

Ta(n)

n
(µa,n)

p

)1/p

.

Furthermore, we observe that609

µa,n ≤ µ̂a,Ta(n) +
∣∣µ̂a,Ta(n) − µa,n

∣∣ .
So that, from equation (9) we have610

µ⋆,n − µ̂n(p) ≤ R

K∑
a=1,a̸=a∗

Ta(n)

n
+

(
K∑

a=1

Ta(n)

n
(µa,n)

p

)1/p

− µ̂n(p)

≤ R

K∑
a=1,a̸=a∗

Ta(n)

n

+

(∑K
a=1 Ta(n)

(
µ̂a,Ta(n) +

∣∣µ̂a,Ta(n) − µa,n

∣∣)p) 1
p −

(∑K
a=1 Ta(n)

(
µ̂a,Ta(n)

)p) 1
p

n
1
p

(Minkovski’s inequality)
≤ R

K∑
a=1,a̸=a∗

Ta(n)

n
+

(∑K
a=1 Ta(n)

(∣∣µ̂a,Ta(n) − µa,n

∣∣)p) 1
p

n
1
p

(Properties of Lp norm)

≤ R

K∑
a=1,a̸=a∗

Ta(n)

n
+

(∑K
a=1 Ta(n)

(∣∣µ̂a,Ta(n) − µa,n

∣∣))
n

1
p

= R

K∑
a=1,a̸=a∗

Ta(n)

n
+

∑K
a=1

(∣∣∣∑Ta(n)
t Ra,t − Ta(n)µa,n

∣∣∣)
n

1
p

Therefore611

|E[µ̂n(p)− µ⋆,n]| ≤ R

K∑
a=1,a̸=a∗

E[Ta(n)]

n
+

E
[(∣∣∣∑K

a=1

∑Ta(n)
t Ra,t − Ta(n)µa,n

∣∣∣)]
n

1
p

= R

K∑
a=1,a̸=a∗

E[Ta(n)]

n

Please note that because we study non-stationary bandits, E[
∑n

t Ra,t] = nµa,n, therefore,612

E
[(∣∣∣∑K

a=1

∑Ta(n)
t Ra,t − Ta(n)µa,n

∣∣∣)]
n

1
p

= 0

According to Lemma 5, we have613

|E[µ̂n(p)− µ⋆,n]| ≤ R

K∑
a=1,a ̸=a∗

E[Ta(n)]

n
≤ R

n

K∑
a=1,a ̸=a∗

{
(1 + ϵ0) log n

K(N)(Fa, µ⋆)
+ o(log n) +O(1)

}
,

which concludes the proof.614

Lemma 8. Consider Particle Thompson Sampling(PATS) strategy applied to a non-stationary615

problem where the pay-off sequence satisfies Assumption 1. Let us define the power mean estimator616

µ̂n(p) as µ̂n(p) =
(∑K

a=1
Ta(n)

n µ̂p
a,Ta(n)

) 1
p

, and δ⋆,n = µ⋆ − µ⋆,n For any p ≥ 1, ϵ0 > 0, we have617

|E[µ̂n(p)]− µ⋆| ≤ |δ⋆,n|+
R

n

K∑
a=1,a̸=a∗

{
log n

Kinf(Fa, µ⋆)− ϵ0
+ o(log n) +O(1)

}
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Proof. Similar to Lemma 7, we can derive618

|E[µ̂n(p)− µ⋆,n]| ≤ |δ⋆,n|+R

K∑
a=1,a̸=a∗

E[Ta(n)]

n
.

And according to Lemma 6, we have619

|E[µ̂n(p)− µ⋆,n]| ≤ R

K∑
a=1,a ̸=a∗

E[Ta(n)]

n
≤ R

n

K∑
a=1,a ̸=a∗

{
log n

Kinf(Fa, µ⋆)− ϵ0
+ o(log n) +O(1)

}
,

which concludes the proof.620

Theorem 1. For a ∈ [K], let (µ̂a,n)n≥1 be a sequence of estimator satisfying plim
n→∞

µ̂a,n = µa and621

let µ⋆ = max
a

{µa}. Assume that all the estimators are bounded in [0, R]. We consider a bandit622

algorithm that selects each arm according to CATS once in each round n ≥ K.623

Then, for all p ∈ [1,∞), the sequence of estimators624

µ̂n(p) =

(
K∑

a=1

Ta(n)

n
µ̂p
a,Ta(n)

) 1
p

,

where Ta(n) =
∑n−1

t=1 1(at = a) is the number of selections of a prior to round n satisfies625

plim
n→∞

µ̂n(p) = µ⋆.

Proof. We first prove that lim
n→∞

E[µ̂n(p)] = µ∗. According to the result of Lemma 7, we have626

|E[µ̂n(p)]− µ⋆| ≤ |δ⋆,n|+R

K∑
a=1,a̸=a∗

E[Ta(n)]

n

≤ |δ⋆,n|+
R

n

K∑
a=1,a̸=a∗

{
(1 + ϵ0) log n

K(N)(Fa, µ⋆)
+ o(log n) +O(1)

}
with δ⋆,n = µ⋆ − µ⋆,n, and because lim

n→∞
µ∗,n = µ⋆, we can concludes that627

lim
n→∞

E[µ̂n(p)] = µ∗.

Second, we prove that628

∀n ≥ 1,∀ε > 0,∃c > 0 that P (|µ̂n(p)− µ⋆| > ε) ≤ cn−1ε−1.

We observe that629

|µ̂n(p)− µ⋆| ≤ |µ̂n(p)− µ⋆,n|+ |µ⋆ − µ⋆,n| = |µ̂n(p)− µ⋆,n|+ |δ⋆,n|
=⇒P(|µ̂n(p)− µ⋆| ≥ ϵ) ≤ P(|µ̂n(p)− µ⋆,n| ≥ ϵ/2) + P(|δ⋆,n| ≥ ϵ/2).

Because lim
n→n

|δ⋆,n| = 0, therefore, ∃N0 > 0 such that ∀n ≥ N0, we have |δ⋆,n| < ϵ/2 that means630

∀n > N0,P(|δ⋆,n| ≥ ϵ/2) = 0.

Next, according to Lemma 7,631

|E[µ̂n(p)]− µ⋆,n| ≤
R

n

K∑
a=1,a ̸=a∗

{
(1 + ϵ0) log n

K(N)(Fa, µ⋆)
+ o(log n) +O(1)

}
= O(n−1),

that leads to632

P(|µ̂n(p)− µ⋆,n| ≥ ϵ/2) ≤ |E[µ̂n(p)]− µ⋆,n|
ϵ/2

=
O(n−1)

ϵ/2
.
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Therefore, ∃c > 0 such that633

P(|µ̂n(p)− µ⋆,n| ≥ ϵ/2) ≤ cn−1ϵ−1,

which means634

∀n ≥ N0,∀ε > 0,∃c > 0 that P (|µ̂n(p)− µ⋆| > ε) ≤ cn−1ε−1.

Now we see that |µ̂n(p)− µ⋆| ≤ R. With ϵ ≥ R, we have |µ̂n(p)− µ⋆| > ϵ ⇔ |µ̂n(p)− µ⋆| > R,635

therefore the inequality holds as636

P (|µ̂n(p)− µ⋆| > ε) = 0 ≤ cn−1ε−1.

with 0 < ϵ < R, 1 ≤ n < N0 ⇒ nϵ < RN0 ⇒ n−1ε−1 > 1/RN0. Therefore637

∀C > 1/RN0 ⇒ P (|µ̂n(p)− µ⋆| > ε) ≤ 1 < Cn−1ε−1,

which means638

∀n ≥ 1,∀ε > 0,∃C > 0 that P (|µ̂n(p)− µ⋆| > ε) ≤ Cn−1ε−1.

That concludes the proof.639

Theorem 2. For a ∈ [K], let (µ̂a,n)n≥1 be a sequence of estimator satisfying plim
n→∞

µ̂a,n = µa and640

let µ⋆ = max
a

{µa}. Assume that all the estimators are bounded in [0, R]. We consider a bandit641

algorithm that selects each arm according to PATS once in each round n ≥ K.642

Then, for all p ∈ [1,∞), the sequence of estimators643

µ̂n(p) =

(
K∑

a=1

Ta(n)

n
µ̂p
a,Ta(n)

) 1
p

,

where Ta(n) =
∑n−1

t=1 1(at = a) is the number of selections of a prior to round n satisfies644

plim
n→∞

µ̂n(p) = µ⋆.

Proof. The proof follows the same steps as Theorem 1. We first prove that lim
n→∞

E[µ̂n(p)] = µ∗.645

According to the result of Lemma 8, we have646

|E[µ̂n(p)]− µ⋆| ≤ |δ⋆,n|+R

K∑
a=1,a̸=a∗

E[Ta(n)]

n

≤ |δ⋆,n|+
R

n

K∑
a=1,a̸=a∗

{
log n

Kinf(Fa, µ⋆)− ϵ0
+ o(log n) +O(1)

}
with δ⋆,n = µ⋆ − µ⋆,n, and because lim

n→∞
µ∗,n = µ⋆, we can concludes that647

lim
n→∞

E[µ̂n(p)] = µ∗.

Second, we prove that648

∀n ≥ 1,∀ε > 0,∃c > 0 that P (|µ̂n(p)− µ⋆| > ε) ≤ cn−1ε−1.

We observe that649

|µ̂n(p)− µ⋆| ≤ |µ̂n(p)− µ⋆,n|+ |µ⋆ − µ⋆,n| = |µ̂n(p)− µ⋆,n|+ |δ⋆,n|
=⇒P(|µ̂n(p)− µ⋆| ≥ ϵ) ≤ P(|µ̂n(p)− µ⋆,n| ≥ ϵ/2) + P(|δ⋆,n| ≥ ϵ/2).

Because lim
n→n

|δ⋆,n| = 0, therefore, ∃N0 > 0 such that ∀n ≥ N0, we have |δ⋆,n| < ϵ/2 that means650

∀n > N0,P(|δ⋆,n| ≥ ϵ/2) = 0.
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Next, according to Lemma 8,651

|E[µ̂n(p)]− µ⋆,n| ≤
R

n

K∑
a=1,a̸=a∗

{
log n

Kinf(Fa, µ⋆)− ϵ0
+ o(log n) +O(1)

}
= O(n−1),

that leads to652

P(|µ̂n(p)− µ⋆,n| ≥ ϵ/2) ≤ |E[µ̂n(p)]− µ⋆,n|
ϵ/2

=
O(n−1)

ϵ/2
.

Therefore, ∃c > 0 such that653

P(|µ̂n(p)− µ⋆,n| ≥ ϵ/2) ≤ cn−1ϵ−1,

which means654

∀n ≥ N0,∀ε > 0,∃c > 0 that P (|µ̂n(p)− µ⋆| > ε) ≤ cn−1ε−1.

Now we see that |µ̂n(p)− µ⋆| ≤ R. With ϵ ≥ R, we have |µ̂n(p)− µ⋆| > ϵ ⇔ |µ̂n(p)− µ⋆| > R,655

therefore the inequality holds as656

P (|µ̂n(p)− µ⋆| > ε) = 0 ≤ cn−1ε−1.

with 0 < ϵ < R, 1 ≤ n < N0 ⇒ nϵ < RN0 ⇒ n−1ε−1 > 1/RN0. Therefore657

∀C > 1/RN0 ⇒ P (|µ̂n(p)− µ⋆| > ε) ≤ 1 < Cn−1ε−1,

which means658

∀n ≥ 1,∀ε > 0,∃C > 0 that P (|µ̂n(p)− µ⋆| > ε) ≤ Cn−1ε−1.

That concludes the proof.659

E Convergence of CATS and PATS in Monte-Carlo Tree Search660

Based upon the results of CATS and PATS using power mean as the value backup operator on the661

described non-stationary multi-armed bandit problem, we derive theoretical results for CATS in an662

MCTS tree.663

We derive Theorem 3 for CATS and Theorem 4 for PATS, which show concentration and convergence664

for any internal node in the tree. These proofs utilize induction, leveraging the results of Lemma 7665

for CATS and Lemma 8 for PATS, and Lemma 5 for CATS and Lemma 6 for PATS. Additionally, we666

use Lemma 1, which demonstrates the concentration and convergence of an estimated Q-value based667

on the child V-value node, applying it recursively throughout the tree.668

Our main results, Theorem 5 for CATS and Theorem 5 for PATS, show that the simple regret669

converges non-asymptotically at a rate of O(n−1).670

Theorem 3. When we apply the CATS algorithm, we have671

(i) For any node sh at the depth hth in the tree,672

plim
n→∞

Q̂n(sh, ak) = Q̃(sh, ak).

673 (ii) For any node sh at the depth hth in the tree,674

plim
n→∞

V̂n(sh) = Ṽ (sh).

Proof. We will prove this by induction on the depth D of the tree. If the tree only has depth (1).675

The state at the root node is s0, let us assume that at time step t, after taking action ak, the MCTS tree676

gets an intermediate reward rt(s0, ak) and traverses to the next state s1. Let us assume that R(s0, ak)677

is the mean of the intermediate reward at state s0, after taking action ak. We recall the definition of678

Q̃(s0, ak), with π0 is the rollout policy to estimate the newly added node at the leaf,679

Q̃(s0, ak) = R(s0, ak) + γ
∑

s1∈As0

P(s1|s0, ak)Ṽ (s1)
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where Ṽ (s1) is the value of the policy π0 at state s1, As0 is the set of feasible actions at state s0,680

|As0 | = M , P(s1|s0, ak) is the probability transition of taking action ak at state s0 to state s1. From681

((1)), we have682

Q̂n(s0, ak) =
1

n

n∑
t=1

rt(s0, ak) + γ
∑

s1∼τ(s0,ak)

T s1
s0,ak

(n)

n
V̂T

s1
s0,ak

(n)(s1)

(i) is a direct result of Lemma 1 with Xt is the intermediate reward rt(s0, ak) at time t, p =683

(p1, p2, ...pM ) ∼ P(·|s0, ak), where P(·|s0, ak) is the probability transition dynamic of taking action684

ak at state s0. For m ∈ [M ], each (V̂m,t)t≥1 at time step t is the deterministic initial Value function685

Ṽ (s1). We have686

plim
n→∞

V̂m,n(s1) = Ṽ (s1), with s1 ∈ {sm},m = 1, 2, 3...M, where sm ∼ τ(·|s0, ak)

(ii) Direct results from Theorem 1. In detail, we have from (i),687

plim
n→∞

Q̂n(s0, ak) = Q̃(s0, ak), with ak ∈ As0

Because by definition:688

Ṽ (s0) = max
ak∈As0

Q̃(s0, ak)

V̂n(s0) =

 ∑
a∈As0

Ts0,a(n)

n

(
Q̂Ts0,a(n)(s0, a)

)p 1
p

for some p ∈ [1,+∞)

Then we have689

plim
n→∞

V̂n(s0) = Ṽ (s0)

that concludes for (ii)690

Let us assume that with the tree of depth D, the theorem holds for all its children.691

Now let’s consider the tree with depth (D + 1). When we take one action at the root node at the state692

s0, it comes to a subtree with depth (D). According to the induction assumption, the results hold for693

any internal node in the tree after we take the first action. We have s1 ∼ τ(s0, ak). By the definition,694

Ṽ (sH) = V0(sH) and, for all h ≤ H − 1,695

Q̃(sh, a) = R(sh, a) + γ
∑

sh+1∈As

P(sh+1|sh, a)Ṽ (sh+1)

Ṽ (sh) = max
a

Q̃(sh, a)

By the assumption of the induction the root node of a subtree with depth (D) at state s1 we have696

plim
n→∞

V̂n(s1) = Ṽ (s1)

(i) Let’s apply Lemma 1 with {Xt} is the intermediate reward {rt(s0, ak)}, p = (p1, p2, ...pM ) ∼697

P(·|s0, ak). For m ∈ [M ], each (V̂m,t)t≥1 at time step t is the empirical Value function V̂t(s1). We698

will have699

plim
n→∞

Q̂n(s0, ak) = Q̃(s0, ak), with ak ∈ As0

(ii) follows the results of Theorem 1 as at the root node s0 of depth D + 1, with700

Ṽ (s0) = max
ak∈As0

Q̃(s0, ak)

V̂n(s0) =

(∑
a∈As

Ts0,a(n)

n

(
Q̂Ts0,a(n)(s0, a)

)p) 1
p

for some p ∈ [1,+∞)
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And because701

plim
n→∞

Q̂n(s0, ak) = Q̃(s0, ak), with ak ∈ As0

Then, we have702

plim
n→∞

V̂n(s0) = Ṽ (s0).

that concludes for (ii)703

The results of Theorem 3 hold for any node in the tree with the tree of depth (D + 1). By induction,704

we can conclude the proof.705

Similarly we can derive the following Theorem706

Theorem 4. When we apply the PATS algorithm, we have707

(i) For any node sh at the depth hth in the tree,708

plim
n→∞

Q̂n(sh, ak) = Q̃(sh, ak).

709 (ii) For any node sh at the depth hth in the tree,710

plim
n→∞

V̂n(sh) = Ṽ (sh).

Proof. The proof follows the same steps as Theorem 3 by applying the results of Lemma 1 and711

Theorem 2.712

Theorem 5. (Convergence of Expected Payoff of CATS) We have at the root node s0,713

E
[∣∣∣V̂n (s0)− V ⋆(s0)

∣∣∣] ≤ O(n−1).

Proof. We prove the result by induction and use the results of Theorem 3 to prove this Theorem. Let714

us assume that the depth of the tree is D = 1, as the results of Lemma 7, we have715 ∣∣∣E[V̂n(s0)]− V ⋆(s0)
∣∣∣ ≤ |δ⋆,n|+O(

log n

n
) = |δ⋆,n|+O(n−1).

And because the tree only have the depth D = 1, we have |δ⋆,n| = 0, so that the result holds at716

the depth D = 1. Let us assume that we have the result of the tree at the depth D. Now when the717

depth of the tree is D + 1, at the root node s0, the conditions of Assumption 1 hold as the results of718

Theorem 3 then we have719 ∣∣∣E[V̂n(s0)]− V ⋆(s0)
∣∣∣ (Lemma 7)

≤ |δ⋆,n|+O(
log n

n
) = |δ⋆,n|+O(n−1),

where the bias720

|δ⋆,n| =
∣∣∣E[Q̂n(s0, a⋆)]−Q⋆(s0, a⋆)

∣∣∣ (contraction)
≤ γ ∥ E[V̂ (1)

n ]− V ⋆ ∥∞
(by induction)

≤ γO(n−1).

Therefore,721 ∣∣∣E[V̂n(s0)]− V ⋆(s0)
∣∣∣ ≤ O(n−1),

that concludes the proof.722

Next, we present the results of Theorem 6. The proof follows the same steps as Theorem 5.723

Theorem 6. (Convergence of Expected Payoff of PATS) We have at the root node s0,724

E
[∣∣∣V̂n (s0)− V ⋆(s0)

∣∣∣] ≤ O(n−1).
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F Limitations725

Computational Demands: The CATS distributional Monte Carlo Tree Search (MCTS) faces chal-726

lenges in managing computational demands while maintaining and updating probability distributions,727

leading to a slightly increased complexity.728

Fixed precision: The PATS set of particles can increase in size if the observed value are different.729

We prevent this in the implementation by fixing the float precision.730

Number of atoms: Our approach’s performance is slightly influenced by hyperparameters, with the731

number of atoms being a critical factor. Suboptimal choices may affect performance.732

G Experimental setup733

All the experiments were done on 8 Intel Xeon Gold 6130 (Skylake), x86_64, 2.10GHz, 2 CPUs/node,734

16 cores/CPU. Whenever feasible, we opted for open-source implementations of algorithms and735

environments.736

737

Parameters selection We search the number of atoms from {10,20,...,100} and choose the738

results with best performances. We set the discount factor γ = .99 for MDPs, and γ = .95 for739

POMDPs. For UCT, we use the exploration constant C =
√
2× (Rmax −Rmin).740

Atari hyperparameters We run CATS in Atari with 10 random seeds, where each seed with 512741

samples and collect the average score. We found that only 512 simulations were necessary due to the742

utilization of a pretrained neural network. We run CATS with 100 atoms. The temperature parameter743

τ of MENTS and TENTS is tuned from {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2,744

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The selected parameter τ are shown in Table 4. The exploration745

constant ϵ for MENTS and TENTS are set to 0.01. For Power-UCT, we select the power mean p = 2.746

Atari747

Table 3: Average scores in Atari with 512 samples (10 seeds) ± 2 times std.
CATS PATS UCT DQN Power-UCT TENTS MENTS

Phoenix 3290.00± 1599.52 3619.00± 891.72 2450.00± 786.22 340.0± 0.00 560.00± 0.00 4423.00 ± 642.38 3098.30± 919.65
MsPacman 2058.00 ± 243.93 2232.00 ± 896.29 1792.00± 62.85 1930.00± 224.83 1982.00± 473.45 1922.00± 416.91 2018.30± 316.98
Alien 1765.0 ± 801.03 1724.00± 649.63 1900.00 ± 00.00 1094.00± 122.83 1748.00± 120.21 1613.00± 296.96 1508.60± 322.58
SpaceInvaders 826.0 ± 194.76 791.0 ± 332.52 525.00± 00.00 525.00± 0.00 672.00± 148.42 742.50± 193.53 832.55± 211.95
BeamRider 1952.00± 500.04 1848.0± 320.29 1889.60± 171.09 1952.00± 0.00 1577.60± 112.47 3013.00 ± 778.89 2822.18± 697.31
Asterix 6040.00 ± 1560.89 5495.00 ± 3106.64 5380.00± 1464.05 6220.00± 156.80 5540.00± 863.39 5180.00± 528.19 5576.00± 1397.91
Robotank 11.50 ± 2.11 11.9 ± 1.51 12.2± 1.04 10.20± 0.39 11.00± 1.55 12.10± 1.47 11.59± 1.36
Seaquest 3170.00± 787.61 3288.0± 889.41 3564.00 ± 86.83 2304.00± 531.31 2704.00± 318.93 2928.00± 801.11 3312.40± 390.77
Solaris 1062.0 ± 519.21 1196.00 ± 524.45 392.00± 198.61 1112.00± 521.53 452.00± 153.19 1168.00± 516.33 1118.20± 513.00
Asteroids 930.00 ± 100.12 953.00 ± 107.05 5380.00± 1464.05 860.00± 48.89 930.00± 54.66 1518.00± 121.48 1414.70± 261.59
Enduro 142.40 ± 31.21 131.10 ± 17.16 127.00± 10.07 133.60± 8.73 134.00± 6.69 115.40± 18.82 128.79± 16.26
Atlantis 35890.00 ± 1914.28 36180.0 ± 2592.70 34300.00± 00.00 34480.00± 119.76 35420.00± 1494.63 36280.00± 1476.24 36277.00± 1811.53
Hero 3006.50± 9.16 3020.50 ± 27.24 3011.50± 17.04 3005.00± 9.53 2998.00± 35.16 3008.00± 0.00 3044.55 ± 181.04
Frostbite 1582.00± 1041.37 1580.00± 1127.23 1900.00± 00.00 2407.00 ± 116.76 1754.00± 651.38 2357.00± 398.45 2388.20± 320.37
WizardOfWor 670.0± 192.09 590.00± 359.02 200.00± 00.00 530.00± 92.63 640.00± 134.53 1210.00± 183.52 1211.00 ± 314.30
Breakout 315.00± 85.80 302.10± 70.47 271.8± 54.63 288.10± 53.01 289.00± 44.46 337.00 ± 15.91 309.03± 35.13

Atari environments (4) provide diverse video game-inspired scenarios commonly used in reinforce-748

ment learning research. These environments offer challenges based on classic Atari 2600 games749

(23; 38; 6). To explore enhanced exploration in deep reinforcement learning, we employ a Deep750

Q-Network pre-trained following the experimental setup outlined in (23). This pre-trained network751

initializes action-values for each node, combined with a Monte-Carlo Tree Search method similar to752

the AlphaGo one. Here, Pprior represents the Boltzmann distribution derived from the action-values753

Q(s, .) computed by the network. The results in Table 3 show that CATS and PATS outperform UCT,754

DQN, Power-UCT, TENTS and MENTS in most of the games. For example, CATS is significant755

better than other methods in Breakout, Enduro, while PATS is significant better than other methods756

in MsPacman, Solaris. Our intention in this experiment is not to assert exceptional superiority, but757

rather to emphasize that CATS and PATS actually work in complicated Atari benchmark.758
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Table 4: The hyperparameter τ (temperature) for MENTS and TENTS in Atari.

MENTS TENTS
Phoenix 0.07 0.6
MsPacman 0.09 0.03
Alien 0.1 0.03
SpaceInvaders 0.02 0.06
BeamRider 0.02 0.03
Asterix 0.02 0.1
Robotank 0.01 0.05
Seaquest 0.02 0.03
Solaris 0.03 0.06
Asteroids 0.08 0.2
Qbert 0.02 0.4
Enduro 0.02 0.1
Atlantis 0.08 0.03
Hero 0.4 0.03
Frostbite 0.01 0.02
WizardOfWor 0.1 0.01
Breakout 0.02 0.04

NeurIPS Paper Checklist759

The checklist is designed to encourage best practices for responsible machine learning research,760

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove761

the checklist: The papers not including the checklist will be desk rejected. The checklist should762

follow the references and precede the (optional) supplemental material. The checklist does NOT763

count towards the page limit.764

Please read the checklist guidelines carefully for information on how to answer these questions. For765

each question in the checklist:766

• You should answer [Yes] , [No] , or [NA] .767

• [NA] means either that the question is Not Applicable for that particular paper or the768

relevant information is Not Available.769

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).770

The checklist answers are an integral part of your paper submission. They are visible to the771

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it772

(after eventual revisions) with the final version of your paper, and its final version will be published773

with the paper.774

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.775

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a776

proper justification is given (e.g., "error bars are not reported because it would be too computationally777

expensive" or "we were unable to find the license for the dataset we used"). In general, answering778

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we779

acknowledge that the true answer is often more nuanced, so please just use your best judgment and780

write a justification to elaborate. All supporting evidence can appear either in the main paper or the781

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification782

please point to the section(s) where related material for the question can be found.783

IMPORTANT, please:784

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",785

• Keep the checklist subsection headings, questions/answers and guidelines below.786

• Do not modify the questions and only use the provided macros for your answers.787

(i) Claims788

Question: Do the main claims made in the abstract and introduction accurately reflect the789

paper’s contributions and scope?790

Answer: [Yes] ,791

Justification: We discuss the problem of planning in stochastic environments and we present792

a method to tackle problem with clear contributions.793
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Guidelines:794

• The answer NA means that the abstract and introduction do not include the claims795

made in the paper.796

• The abstract and/or introduction should clearly state the claims made, including the797

contributions made in the paper and important assumptions and limitations. A No or798

NA answer to this question will not be perceived well by the reviewers.799

• The claims made should match theoretical and experimental results, and reflect how800

much the results can be expected to generalize to other settings.801

• It is fine to include aspirational goals as motivation as long as it is clear that these goals802

are not attained by the paper.803

(ii) Limitations804

Question: Does the paper discuss the limitations of the work performed by the authors?805

Answer: [Yes]806

Justification: We discuss the limitation in Section 6807

Guidelines:808

• The answer NA means that the paper has no limitation while the answer No means that809

the paper has limitations, but those are not discussed in the paper.810

• The authors are encouraged to create a separate "Limitations" section in their paper.811

• The paper should point out any strong assumptions and how robust the results are to812

violations of these assumptions (e.g., independence assumptions, noiseless settings,813

model well-specification, asymptotic approximations only holding locally). The authors814

should reflect on how these assumptions might be violated in practice and what the815

implications would be.816

• The authors should reflect on the scope of the claims made, e.g., if the approach was817

only tested on a few datasets or with a few runs. In general, empirical results often818

depend on implicit assumptions, which should be articulated.819

• The authors should reflect on the factors that influence the performance of the approach.820

For example, a facial recognition algorithm may perform poorly when image resolution821

is low or images are taken in low lighting. Or a speech-to-text system might not be822

used reliably to provide closed captions for online lectures because it fails to handle823

technical jargon.824

• The authors should discuss the computational efficiency of the proposed algorithms825

and how they scale with dataset size.826

• If applicable, the authors should discuss possible limitations of their approach to827

address problems of privacy and fairness.828

• While the authors might fear that complete honesty about limitations might be used by829

reviewers as grounds for rejection, a worse outcome might be that reviewers discover830

limitations that aren’t acknowledged in the paper. The authors should use their best831

judgment and recognize that individual actions in favor of transparency play an impor-832

tant role in developing norms that preserve the integrity of the community. Reviewers833

will be specifically instructed to not penalize honesty concerning limitations.834

(iii) Theory Assumptions and Proofs835

Question: For each theoretical result, does the paper provide the full set of assumptions and836

a complete (and correct) proof?837

Answer: [Yes]838

Justification: We provide the main theorems in the main paper and proofs in the appendix.839

Guidelines:840

• The answer NA means that the paper does not include theoretical results.841

• All the theorems, formulas, and proofs in the paper should be numbered and cross-842

referenced.843

• All assumptions should be clearly stated or referenced in the statement of any theorems.844
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• The proofs can either appear in the main paper or the supplemental material, but if845

they appear in the supplemental material, the authors are encouraged to provide a short846

proof sketch to provide intuition.847

• Inversely, any informal proof provided in the core of the paper should be complemented848

by formal proofs provided in appendix or supplemental material.849

• Theorems and Lemmas that the proof relies upon should be properly referenced.850

(iv) Experimental Result Reproducibility851

Question: Does the paper fully disclose all the information needed to reproduce the main ex-852

perimental results of the paper to the extent that it affects the main claims and/or conclusions853

of the paper (regardless of whether the code and data are provided or not)?854

Answer: [Yes]855

Justification: Code and reproducibility steps are provided in supplementary material.856

Guidelines:857

• The answer NA means that the paper does not include experiments.858

• If the paper includes experiments, a No answer to this question will not be perceived859

well by the reviewers: Making the paper reproducible is important, regardless of860

whether the code and data are provided or not.861

• If the contribution is a dataset and/or model, the authors should describe the steps taken862

to make their results reproducible or verifiable.863

• Depending on the contribution, reproducibility can be accomplished in various ways.864

For example, if the contribution is a novel architecture, describing the architecture fully865

might suffice, or if the contribution is a specific model and empirical evaluation, it may866

be necessary to either make it possible for others to replicate the model with the same867

dataset, or provide access to the model. In general. releasing code and data is often868

one good way to accomplish this, but reproducibility can also be provided via detailed869

instructions for how to replicate the results, access to a hosted model (e.g., in the case870

of a large language model), releasing of a model checkpoint, or other means that are871

appropriate to the research performed.872

• While NeurIPS does not require releasing code, the conference does require all submis-873

sions to provide some reasonable avenue for reproducibility, which may depend on the874

nature of the contribution. For example875

(a) If the contribution is primarily a new algorithm, the paper should make it clear how876

to reproduce that algorithm.877

(b) If the contribution is primarily a new model architecture, the paper should describe878

the architecture clearly and fully.879

(c) If the contribution is a new model (e.g., a large language model), then there should880

either be a way to access this model for reproducing the results or a way to reproduce881

the model (e.g., with an open-source dataset or instructions for how to construct882

the dataset).883

(d) We recognize that reproducibility may be tricky in some cases, in which case884

authors are welcome to describe the particular way they provide for reproducibility.885

In the case of closed-source models, it may be that access to the model is limited in886

some way (e.g., to registered users), but it should be possible for other researchers887

to have some path to reproducing or verifying the results.888

(v) Open access to data and code889

Question: Does the paper provide open access to the data and code, with sufficient instruc-890

tions to faithfully reproduce the main experimental results, as described in supplemental891

material?892

Answer: [Yes]893

Justification: Full code is available in supplementary material.894

Guidelines:895

• The answer NA means that paper does not include experiments requiring code.896

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/897

public/guides/CodeSubmissionPolicy) for more details.898
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• While we encourage the release of code and data, we understand that this might not be899

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not900

including code, unless this is central to the contribution (e.g., for a new open-source901

benchmark).902

• The instructions should contain the exact command and environment needed to run to903

reproduce the results. See the NeurIPS code and data submission guidelines (https:904

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.905

• The authors should provide instructions on data access and preparation, including how906

to access the raw data, preprocessed data, intermediate data, and generated data, etc.907

• The authors should provide scripts to reproduce all experimental results for the new908

proposed method and baselines. If only a subset of experiments are reproducible, they909

should state which ones are omitted from the script and why.910

• At submission time, to preserve anonymity, the authors should release anonymized911

versions (if applicable).912

• Providing as much information as possible in supplemental material (appended to the913

paper) is recommended, but including URLs to data and code is permitted.914

(vi) Experimental Setting/Details915

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-916

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the917

results?918

Answer: [Yes]919

Justification: The experimental setting is detailed in the appendix.920

Guidelines:921

• The answer NA means that the paper does not include experiments.922

• The experimental setting should be presented in the core of the paper to a level of detail923

that is necessary to appreciate the results and make sense of them.924

• The full details can be provided either with the code, in appendix, or as supplemental925

material.926

(vii) Experiment Statistical Significance927

Question: Does the paper report error bars suitably and correctly defined or other appropriate928

information about the statistical significance of the experiments?929

Answer: [Yes]930

Justification: We provide error bars for the plots. For Atari, we report the standard deviation.931

Guidelines:932

• The answer NA means that the paper does not include experiments.933

• The authors should answer "Yes" if the results are accompanied by error bars, confi-934

dence intervals, or statistical significance tests, at least for the experiments that support935

the main claims of the paper.936

• The factors of variability that the error bars are capturing should be clearly stated (for937

example, train/test split, initialization, random drawing of some parameter, or overall938

run with given experimental conditions).939

• The method for calculating the error bars should be explained (closed form formula,940

call to a library function, bootstrap, etc.)941

• The assumptions made should be given (e.g., Normally distributed errors).942

• It should be clear whether the error bar is the standard deviation or the standard error943

of the mean.944

• It is OK to report 1-sigma error bars, but one should state it. The authors should945

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis946

of Normality of errors is not verified.947

• For asymmetric distributions, the authors should be careful not to show in tables or948

figures symmetric error bars that would yield results that are out of range (e.g. negative949

error rates).950
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• If error bars are reported in tables or plots, The authors should explain in the text how951

they were calculated and reference the corresponding figures or tables in the text.952

(viii) Experiments Compute Resources953

Question: For each experiment, does the paper provide sufficient information on the com-954

puter resources (type of compute workers, memory, time of execution) needed to reproduce955

the experiments?956

Answer: [Yes]957

Justification: We provide the details about the computer resources used (CPU and number958

of cores).959

Guidelines:960

• The answer NA means that the paper does not include experiments.961

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,962

or cloud provider, including relevant memory and storage.963

• The paper should provide the amount of compute required for each of the individual964

experimental runs as well as estimate the total compute.965

• The paper should disclose whether the full research project required more compute966

than the experiments reported in the paper (e.g., preliminary or failed experiments that967

didn’t make it into the paper).968

(ix) Code Of Ethics969

Question: Does the research conducted in the paper conform, in every respect, with the970

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?971

Answer: [Yes]972

Justification: The research conducted in the paper conforms the Code of Ethics.973

Guidelines:974

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.975

• If the authors answer No, they should explain the special circumstances that require a976

deviation from the Code of Ethics.977

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-978

eration due to laws or regulations in their jurisdiction).979

(x) Broader Impacts980

Question: Does the paper discuss both potential positive societal impacts and negative981

societal impacts of the work performed?982

Answer: [NA]983

Justification: The research conducted in the paper has no societal impact.984

Guidelines:985

• The answer NA means that there is no societal impact of the work performed.986

• If the authors answer NA or No, they should explain why their work has no societal987

impact or why the paper does not address societal impact.988

• Examples of negative societal impacts include potential malicious or unintended uses989

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations990

(e.g., deployment of technologies that could make decisions that unfairly impact specific991

groups), privacy considerations, and security considerations.992

• The conference expects that many papers will be foundational research and not tied993

to particular applications, let alone deployments. However, if there is a direct path to994

any negative applications, the authors should point it out. For example, it is legitimate995

to point out that an improvement in the quality of generative models could be used to996

generate deepfakes for disinformation. On the other hand, it is not needed to point out997

that a generic algorithm for optimizing neural networks could enable people to train998

models that generate Deepfakes faster.999
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• The authors should consider possible harms that could arise when the technology is1000

being used as intended and functioning correctly, harms that could arise when the1001

technology is being used as intended but gives incorrect results, and harms following1002

from (intentional or unintentional) misuse of the technology.1003

• If there are negative societal impacts, the authors could also discuss possible mitigation1004

strategies (e.g., gated release of models, providing defenses in addition to attacks,1005

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1006

feedback over time, improving the efficiency and accessibility of ML).1007

(xi) Safeguards1008

Question: Does the paper describe safeguards that have been put in place for responsible1009

release of data or models that have a high risk for misuse (e.g., pretrained language models,1010

image generators, or scraped datasets)?1011

Answer: [NA]1012

Justification: The research proposed in this paper poses no such risks.1013

Guidelines:1014

• The answer NA means that the paper poses no such risks.1015

• Released models that have a high risk for misuse or dual-use should be released with1016

necessary safeguards to allow for controlled use of the model, for example by requiring1017

that users adhere to usage guidelines or restrictions to access the model or implementing1018

safety filters.1019

• Datasets that have been scraped from the Internet could pose safety risks. The authors1020

should describe how they avoided releasing unsafe images.1021

• We recognize that providing effective safeguards is challenging, and many papers do1022

not require this, but we encourage authors to take this into account and make a best1023

faith effort.1024

(xii) Licenses for existing assets1025

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1026

the paper, properly credited and are the license and terms of use explicitly mentioned and1027

properly respected?1028

Answer: [NA]1029

Justification: We do not use existing assets.1030

Guidelines:1031

• The answer NA means that the paper does not use existing assets.1032

• The authors should cite the original paper that produced the code package or dataset.1033

• The authors should state which version of the asset is used and, if possible, include a1034

URL.1035

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1036

• For scraped data from a particular source (e.g., website), the copyright and terms of1037

service of that source should be provided.1038

• If assets are released, the license, copyright information, and terms of use in the1039

package should be provided. For popular datasets, paperswithcode.com/datasets1040

has curated licenses for some datasets. Their licensing guide can help determine the1041

license of a dataset.1042

• For existing datasets that are re-packaged, both the original license and the license of1043

the derived asset (if it has changed) should be provided.1044

• If this information is not available online, the authors are encouraged to reach out to1045

the asset’s creators.1046

(xiii) New Assets1047

Question: Are new assets introduced in the paper well documented and is the documentation1048

provided alongside the assets?1049

Answer: [Yes]1050

Justification: The provided code is well documented.1051
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Guidelines:1052

• The answer NA means that the paper does not release new assets.1053

• Researchers should communicate the details of the dataset/code/model as part of their1054

submissions via structured templates. This includes details about training, license,1055

limitations, etc.1056

• The paper should discuss whether and how consent was obtained from people whose1057

asset is used.1058

• At submission time, remember to anonymize your assets (if applicable). You can either1059

create an anonymized URL or include an anonymized zip file.1060

(xiv) Crowdsourcing and Research with Human Subjects1061

Question: For crowdsourcing experiments and research with human subjects, does the paper1062

include the full text of instructions given to participants and screenshots, if applicable, as1063

well as details about compensation (if any)?1064

Answer: [NA]1065

Justification: The paper does not involve crowdsourcing.1066

Guidelines:1067

• The answer NA means that the paper does not involve crowdsourcing nor research with1068

human subjects.1069

• Including this information in the supplemental material is fine, but if the main contribu-1070

tion of the paper involves human subjects, then as much detail as possible should be1071

included in the main paper.1072

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1073

or other labor should be paid at least the minimum wage in the country of the data1074

collector.1075

(xv) Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1076

Subjects1077

Question: Does the paper describe potential risks incurred by study participants, whether1078

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1079

approvals (or an equivalent approval/review based on the requirements of your country or1080

institution) were obtained?1081

Answer: [NA]1082

Justification: The paper does not involve crowdsourcing nor research with human subjects.1083

Guidelines:1084

• The answer NA means that the paper does not involve crowdsourcing nor research with1085

human subjects.1086

• Depending on the country in which research is conducted, IRB approval (or equivalent)1087

may be required for any human subjects research. If you obtained IRB approval, you1088

should clearly state this in the paper.1089

• We recognize that the procedures for this may vary significantly between institutions1090

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1091

guidelines for their institution.1092

• For initial submissions, do not include any information that would break anonymity (if1093

applicable), such as the institution conducting the review.1094
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