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Abstract
In this paper, we evaluate the ability of001
transformer-based language models in reason-002
ing over uncertain text that includes uncertain003
rules of reasoning. We cover pre-trained lan-004
guage models (PLMs) and the newer large005
language models (LLMs). Our evaluation re-006
sults show that both generations of language007
models struggle with reasoning over uncertain008
text. We focus on PLMs and propose a novel009
Neuro-Symbolic fine-tuning approach, Proba-010
bilistic Constraint Training (PCT), incorporat-011
ing probabilistic logical rules as constraints012
during fine-tuning. To assess the effective-013
ness of PCT, we utilize the related corpora014
and, additionally, create a new and more chal-015
lenging benchmark that, unlike the previous016
ones, uses instance-specific rules. Our study017
demonstrates the potential of PCT, the pioneer018
method that improves the transformer-based019
language model’s accuracy and explainabil-020
ity of the probabilistic logical reasoning pro-021
cess. Furthermore, PCT equips these models022
to effectively handle novel situations, includ-023
ing higher reasoning depth, new domains, and024
complex probabilistic structures.025

1 Introduction026

PLMs have become popular since they demon-027

strated high accuracy across a wide range of Nat-028

ural Language Processing (NLP) tasks (Liu et al.,029

2019). LLMs are becoming even more popu-030

lar as they can solve many NLP problems zero-031

shot (Chen, 2023); however, they are expensive to032

utilize. Our study focuses on a less explored area of033

reasoning over uncertain text involving uncertain034

rules. We will discuss the importance of this area035

and PLMs’ and LLMs’ weaknesses in handling this036

problem. We then propose our solution to improve037

PLMs, enabling them to surpass the more costly038

LLMs and transfer their learned reasoning.039

Understanding logical and uncertain rules in nat-040

ural language form has been investigated in re-041

cent works (Clark et al., 2020; Saeed et al., 2021).042

While incorporating hard logical rules is still a re- 043

search question, in the real world, most of the ex- 044

ternal knowledge and rules are uncertain. Only a 045

small fraction of the logical rules in DBpedia can 046

be deemed certain (Saeed et al., 2021). Science 047

communication frequently utilizes certainty and 048

uncertainty mainly with the help of hedges (Pei 049

and Jurgens, 2021). Outlining and understanding 050

certainties and uncertainties is required in scientific 051

communications (National Academies of Sciences 052

et al., 2017). This indicates the need for models 053

capable of reasoning over uncertain knowledge. 054

PLMs and LLMs struggle to reason with num- 055

bers and simple mathematical questions expressed 056

in natural language (Mishra et al., 2022), a re- 057

quirement for inference on probabilistic and un- 058

certain text. PLMs’ evaluation of various question- 059

answering (QA) benchmarks show they produce 060

contradictory results (Asai and Hajishirzi, 2020). 061

Such limitations reveal the issues of implicitly us- 062

ing external knowledge by PLMs, making the rea- 063

soning process an unexplainable blackbox (Clark 064

et al., 2019). These challenges encountered in 065

PLMs are our motivation to train them to adhere to 066

a simplified probabilistic reasoning process for an 067

explicit integration of logical probabilistic rules. 068

We utilize two QA datasets: RuleBERT (Saeed 069

et al., 2021) and our newly developed RuleTaker- 070

pro, a probabilistic extension of the RuleTaker 071

dataset (Clark et al., 2020) created to address 072

some of the shortcomings of the RuleBERT dataset. 073

Mainly, we want a dataset with context-specific 074

rules to make the required reasoning more realistic. 075

For example, the probability of two married peo- 076

ple being cousins in the context of one culture is 077

high, while it is close to zero in another or, in the 078

medical domain, the prevalence or mortality of a 079

disease can vary depending on the gender or the 080

location (Zirra et al., 2023; Menotti et al., 2023). 081

The problem involves calculating the probability 082

of a given hypothesis (Query) based on a provided 083
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RuleBERT RuleTaker-pro

(Fact 1) David is a cousin of Ann.
(Fact 2) Mike is a child of Ann.
(Rule 1, 0.90) If A is a spouse of B and C is a child of B,
then C is a child of A.
(Rule 2, 0.15) If A is a cousin of B, then A is a spouse of B.

(Fact 1) Dave is big.
(Fact 2) Erin is sad.
(Rule 1) Usually, If someone is big then they are green.
(Rule 2) Normally, If someone is green then they are round.
(Rule 3) Seldom, If someone is sad then they are round.

(Query) Mike is a child of David. (Query) Dave is round.

Required Steps of Reasoning to Answer

Fact 1 (1.00) & Rule 2 (0.15) =⇒
Fact 3: David is a spouse of Ann. (0.15) (Inferred)
Fact 3 (0.15) & Fact 2 (1.00) & Rule 1 (0.90) =⇒
Fact 4: Mike is a child of David. (0.135) (Inferred)
Answer: 0.135

Fact 1 (1.00) & Rule 1 (0.90) =⇒
Fact 3: Dave is green. (0.90) (Inferred)
Fact 3 (0.90) & Rule 2 (0.80) =⇒
Fact 4: Dave is round. (0.72) (Inferred)
Answer: 0.72

Approach: Converting Probabilistic Reasoning Steps to Equality Constraints

Constraint 1: P( Fact 1 ) * 0.15 = P( Fact 3 )
Constraint 2: P( Fact 3 ) * P( Fact 2 ) * 0.90 = P( Fact 4 )

Constraint 1: P( Fact 1 ) * 0.90 = P( Fact 3 )
Constraint 2: P( Fact 3 ) * 0.80 = P( Fact 4 )

Table 1: An example from RuleBERT with two facts and two rules is shown in the left column, and an example
from RuleTaker-pro with two facts and three rules is shown in the right column. The steps of reasoning required
to infer the Query and the constraints defined on these steps are shown in the bottom rows.

context that includes textual description of proba-084

bilistic logical rules and facts. Table 1 shows ex-085

amples of our datasets and their required reasoning086

steps to answer the Query. We convert the rea-087

soning steps to equality constraints (shown in the088

Approach section of Table 1) and impose these con-089

straints to ensure consistency of the outputs with090

the rules during the training of PLMs. In summary,091

our contributions are as follows:092

1) We evaluate both PLMs and LLMs and demon-093

strate that fine-tuned PLMs outperform more costly094

LLMs in probabilistic reasoning over text. 2) We095

propose a new neuro-symbolic approach, Proba-096

bilistic Constraint Training (PCT), that explicitly097

imposes the rules of probabilistic reasoning dur-098

ing PLM fine-tuning. This approach provides a099

more effective level of abstraction to the models100

to generalize and transfer reasoning under uncer-101

tainty to new domains and the more complex depths102

of reasoning. 3) We develop a novel evaluation103

benchmark for probabilistic reasoning over text104

with context-specific uncertain rules that can not105

be captured from the training data.1106

2 Related work107

Previous works mostly looked into the integration108

of certain logic (Saha et al., 2020; Tafjord et al.,109

2021). The pioneering work on QA with probabilis-110

tic rules in text is RuleBERT (Saeed et al., 2021),111

which serves as the baseline for our comparative112

1The code and dataset will be available after anonymity.

study. While RuleBERT pioneers this field and 113

introduces Weighted binary cross-entropy loss to 114

incorporate probabilistic learning in transformers, 115

it lacks a mechanism to follow the probabilistic 116

reasoning steps explicitly. Additionally, our exper- 117

iments revealed that the rules in textual form in 118

this dataset are not properly utilized by the models 119

(see Section 4.1), which prompted us to introduce 120

RuleTaker-pro with instance-specific rules. 121

Reasoning Steps. Explicit elucidation of reason- 122

ing steps in QA models has been central in recent 123

literature. (Saha et al., 2020) improves PLMs’ rea- 124

soning by mapping their output to an inference 125

graph, necessitating the model to learn its nodes 126

and edges. While (Tafjord et al., 2021) utilized T5 127

to create an inference path, this and similar stud- 128

ies have focused on using non-probabilistic logical 129

rules, unlike our approach. (Weber et al., 2019; 130

Rocktäschel and Riedel, 2017) defines an end-to- 131

end differentiable neural network architecture for 132

probabilistic reasoning over entities in text. (Wang 133

and Deng, 2020; Polu and Sutskever, 2020; Tafjord 134

et al., 2021) approach the reasoning for QA by 135

generating an output that follows a predefined for- 136

mal language for theorem proving given the logical 137

rules, which is a very different approach from ours. 138

(Wu et al., 2023) introduces reasoning in LLMs 139

by generating intermediate reasoning steps as extra 140

output. However, we enable PLMs to incorporate 141

this reasoning in training with no additional output. 142

Reasoning QA Datasets. Numerous QA datasets 143

require reasoning including (Weston et al., 2016; 144
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Tafjord et al., 2019; Tandon et al., 2019), (Yang145

et al., 2018), ROPES (Lin et al., 2019) and, FO-146

LIO (Han et al., 2022). However, they lack an147

explicit definition of the logical rules or are not148

probabilistic. (Frieder et al., 2023) is created to149

assess the mathematical reasoning of LLMs. How-150

ever, it has no tasks with probabilistic logical rules.151

Constraints. Our approach’s primary contribution152

is incorporating probabilistic constraints in the loss153

function. While various studies incorporate log-154

ical constraints into the loss function (Nandwani155

et al., 2019; Li et al., 2019; Asai and Hajishirzi,156

2020; Ribeiro et al., 2019; Faghihi et al., 2023;157

Guo et al., 2020), no work has explored the appli-158

cation of probabilistic constraints in this context to159

date. Our methodology, PCT, builds on (Nandwani160

et al., 2019), where logical rules are translated into161

a soft logic form before inclusion in the loss func-162

tion. PCT leverages this approach by utilizing the163

rules of probabilistic reasoning as constraints.164

3 Approach165

3.1 Problem definition166

We focus on the challenge of performing proba-167

bilistic logical reasoning within a QA task where168

a set of facts F , a set of rules R, and a hypothesis169

h are provided in a textual context. While these170

rules, facts, and hypothesis are provided only in171

their textual form as a part of the input to the task,172

we have their formal information as a part of the173

data. For example, fact Big(Dave) and the rule174

Spouse(A,B) & Child(C,B) → Child(C,A)175

would be conveyed to the PLMs as: “Dave is big.”,176

and “If A is a spouse of B and C is a child of B,177

then C is a child of A.”, respectively. The facts and178

hypothesis consist of factoids that define properties179

for an entity “Has_Property(Entity)” or relations180

between two entities “Relation(Entity1, Entity2)”.181

The rules have the form (p1, p2, ..., pn) → q, Pr,182

where pi represents a premise fact, q is a new in-183

ferred fact, and Pr is the rule’s probability. q’s184

probability is computed as the rule probability mul-185

tiplied by the premise facts probabilities. If the186

premise facts are mentioned in the context, they187

would be certain and have 1.00 probability; other-188

wise, if they are inferred facts, their probability is189

derived. The objective is to utilize F and R to infer190

a probability between 0 and 1 as our task output,191

which indicates the probability of a given hypothe-192

sis h (e.g., h=“Sara and John are cousins” obtains193

a probability of 0.20 by the model).194

3.2 Base Model 195

The backbone of our model is RoBERTa Large, 196

supplemented by two linear layers and a sigmoid 197

activation function applied to its classifier token 198

(CLS). The model takes the context and hypothesis 199

as input, subsequently assigning a probability to 200

the given hypothesis. More precisely, the input se- 201

quence is formatted as [CLS] text(R)+text(F) [SEP] 202

text(h) [SEP], where the context comprises the tex- 203

tual representations of rules and facts, denoted by 204

text(R) and text(F) respectively, and text(h) repre- 205

sents the textual form of the hypothesis. 206

Our LLMs are GPT3.5 and GPT4 (Brown et al., 207

2020). Due to the high cost of fine-tuning LLMs, 208

we limit our experiments to zero-shot and few-shot. 209

Input comprises a task explanation, text(R)+text(F), 210

and text(h). The explanation instructs the model 211

about the objective and output format, which is ei- 212

ther “True”,“False” (corresponding to a probability 213

greater or less than 0.5), or a number between 0.0 214

and 1.0 (hypothesis probability). 215

3.3 Probabilistic Constraints Training 216

We aim to develop a model capable of following 217

probabilistic reasoning steps to infer a hypothesis 218

probability. These reasoning steps for the examples 219

in Table 1 are outlined in the Required Steps of Rea- 220

soning to Answer row. In each step, a combination 221

of facts and a rule results in a new intermediate 222

inferred fact until the final hypothesis is inferred. 223

These steps are formulated as constraints, and our 224

proposed model is trained to adhere to them by 225

incorporating them into the loss function. The “Ap- 226

proach” row of Table 1 shows examples of the rea- 227

soning steps’ conversion into constraints in which 228

the probabilities assigned to facts must follow the 229

rule definition. For instance, if Fact 1 and Rule 1 230

result in a new fact, Fact 1’s probability (P(Fact 1) 231

multiplied by Rule 1’s probability must be equal 232

to the inferred fact’s probability (P(inferred Fact)). 233

In the upcoming subsections, we will explain the 234

process of formulating constraints, the approach of 235

utilizing them, and the inference procedure. 236

3.3.1 Constraint Conversion 237

Among the research focused on constraint integra- 238

tion within neural models, we opt for the class of 239

methods that incorporate constraint violation in 240

the loss function during training without altering 241

the model’s architecture (Faghihi et al., 2023). In 242

general, to employ the logical and symbolic con- 243

straints in deep models, they must be converted into 244
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soft logic for the sake of differentiability. Usually,245

three main approaches are used for this conversion:246

Product, Gödel, and Łukasiewicz (Li et al., 2019).247

For instance, the logical rule, (p1, p2, ..., pn)→ q,248

using the Product surrogate, is written as follows,249

min(1, P (q)/[P (p1) ∗ P (p2) ∗ ... ∗ P (pn)]), (1)250

where P (pi) is the probability of the fact pi. We251

can express the enforcement of this implication’s252

truth as follows,253

|1−min(1, P (q)/[P (p1)∗P (p2)∗ ...∗P (pn)])| = 0, (2)254

255

where |.| denotes the absolute value. Adopting this256

approach, we formulate the probabilistic reasoning257

as obeying a set of constraints. Our constraints258

originate from the required computations of proba-259

bilistic inference, assuming a particular underlying260

probabilistic network. We distinguish between Sim-261

ple and Complex probabilistic reasoning patterns262

based on their underlying inference network.263

A probabilistic reasoning pattern is Simple if264

any deducible fact can be drawn from it via only a265

single reasoning path. The examples provided in266

Table 1 are Simple because “Dave is round.” can267

be inferred only from Rule 2 and Fact 3 and Fact268

3 can only be inferred from Fact 1 and Rule 1. On269

the other hand, a Complex reasoning encompasses270

at least one fact that can be deduced from two or271

more different rules (reasoning paths). By alter-272

ing the second fact from “Erin is sad” to “Dave is273

sad”, we create a Complex example because it en-274

ables inference of “Dave is round” from Fact 2 and275

Rule 3 as well. Only 20% of the examples of our276

datasets are of the Complex type. Hence, our focus277

lies primarily on formulating the simple version278

of probabilistic reasoning for defining constraints.279

The Complex examples are still incorporated in our280

datasets and used during training and testing.281

Given a Simple network, our model ex-282

ecutes probabilistic inference for the rule283

(p1, p2, ..., pn) → q, Pr by multiplying the284

premise facts’ probability with the rule’s prob-285

ability to obtain the inferred fact’s probability.286

Formally, the model should fulfill the constraint,287

|P (q)− P (p1) ∗ P (p2) ∗ ... ∗ P (pn) ∗ Pr| = 0. (3)288

Our unique definition of constraint constitutes the289

key novelty of our approach (see Table 1 for Exam-290

ples of constraints). To satisfy this constraint, the291

equation’s left side should approach zero. Note that292

while this constraint guarantees adherence to the293

rules of probabilistic reasoning, it might not ensure 294

the best results on the end task accuracy, and this 295

remains subject to experimentation. 296

3.3.2 Training 297

Inspired by (Nandwani et al., 2019), we employ 298

constraints during training without adding architec- 299

tural overhead. To generate the constraints for each 300

dataset instance, we use the chains of probabilis- 301

tic reasoning that include the paths of inference 302

for every inferable fact (these are available in the 303

dataset; see section 3.4). The constraints follow 304

the format of Equation 3 and will be used during 305

training in the loss function. Examples of these 306

constraints can be found at the bottom of Table 1. 307

Our training objective centers on minimizing the 308

violation of these constraints. We denote the vi- 309

olation from each constraint as Ci, a scalar value 310

that ranges from 0 to 1, derived from the left-hand 311

side of Equation 3. We initiate the process with 312

warm-up iterations on the original QA task to train 313

the model. Following this, we continue the train- 314

ing while adding the constraint violation losses to 315

the primary loss. As per the methodology outlined 316

in (Nandwani et al., 2019), we apply the dual for- 317

mulation of the objective as follows, 318

Loss = TaskLoss+

m∑
i=1

λj ∗ Ci, (4) 319

320

where “TaskLoss” denotes the primary task loss 321

aiming to minimize the predicted probability error 322

for the hypothesis. The new additional term is the 323

constraint violation loss used in its dual form with 324

Lagrangian multipliers, λj , where j is the index 325

of rule j used in constraint violation i (Ci). m is 326

the number of selected constraints. λj is adjusted 327

during training and ultimately indicates a rule’s 328

propensity to violation. Consequently, as training 329

progresses, the loss function predominantly im- 330

pacts the rules with the highest accumulated λj . 331

See Appendix A.6 the detailed training algorithm. 332

3.3.3 Inference 333

During the inference, the model receives the con- 334

text that includes textual rules and facts, while the 335

formal rules and constraints that were employed 336

during training are not available to the model. We 337

expect the model to learn to obey the rules that were 338

utilized in the loss function during training. This 339

critical aspect ensures the model’s generalizability 340

and transferability across various domains. 341
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3.4 Datasets342

RuleBERT. RuleBERT (Saeed et al., 2021) is built343

using about 100 rules with fixed probabilities that344

are applied to many examples in the dataset. The345

fixed probabilities of these rules are extracted from346

an external source. The number of rules used in a347

chain to derive the answer determines the depth of348

reasoning, ranging from 0 to 5. The probability of349

all possible inferred facts and the depth for each350

instance is given in the dataset as metadata.351

RuleTaker-pro. We developed RuleTaker-pro352

as a probabilistic variant of RuleTaker (Clark353

et al., 2020), modifying its crisp logical rules354

(p1, p2, ..., pn) → q (with Pr equal to 1.0) to in-355

clude probabilities while the rest of the context356

remains unchanged (examples shown in the right357

side of Table 1). We leverage a Gaussian random358

generator to produce probabilities. After assigning359

probabilities to the rules, we use Problog (De Raedt360

et al., 2007), a probabilistic logical inference tool361

that facilitates the encoding of probabilistic facts362

and rules, to compute the probability of the hypoth-363

esis. The resulting rules are similar to RuleBERT364

rules (p1, p2, ..., pn)→ q, Pr. In the textual form,365

we include the rule’s probability as an adverb of un-366

certainty like Usually, Normally, and Seldom with367

associated probabilities of 0.90, 0.80, and 0.15,368

respectively. As mentioned, a key difference be-369

tween RuleTaker-pro and RuleBERT is including370

instance-specific rules. For example, the rule “If371

A is a cousin of B, then A is a spouse of B.” from372

RuleBERT will always have the probability of 0.15373

in all the examples. However, in Ruletaker-pro,374

the same rule may hold different probabilities de-375

pending on the adverb assigned to it in different376

instances. A rule such as “Usually, if someone is377

big, then they are green.” carries a probability of378

0.90 in one context, while “Seldom, if someone is379

big then they are green.” carries a probability of380

0.15 in some other context. Given this difference,381

the model has to extract the rules from each con-382

text and can not use the information learned about383

the rules from the training data. It is notable that384

ambiguity and cycles are already removed from385

the RuleTaker dataset for the logical rules and are386

not an issue in our dataset, as confirmed by our387

Problog solver. Metadata about the inference of all388

facts and their depths are in the dataset and will be389

used to create constraints but not during training or390

inference. See Appendix A.1 and A.5 for details of391

data creation and distribution and the adverbs.392

4 Experiments 393

In this section, we address three questions using 394

RuleTaker-pro and RuleBERT datasets: Q1. How 395

do textual rules affect probabilistic reasoning (4.1)? 396

Q2. To what extent does the baseline language 397

model improve with PCT concerning probabilistic 398

reasoning and intermediate inferred facts (4.2)? Q3. 399

Can we transfer the probabilistic reasoning capabil- 400

ities of the language model when pre-trained with 401

PCT(4.3)? We also present an ablation study to in- 402

vestigate the impact of various losses and datasets 403

on our approach using multiple metrics. 404

Evaluation Metrics. We use several performance 405

measures following (Saeed et al., 2021). Binary 406

Accuracy (BA) deems predictions correct if ground 407

truth and predicted probability both fall under or 408

over 0.5. The CA25, CA10, and CA1 require the 409

predicted probability to be in a window of ±0.25, 410

±0.10, and ±0.01 of the ground truth, respectively. 411

(Saeed et al., 2021) applies CA10 and CA1 metrics 412

to dataset splits with isolated rules, while BA is 413

used for all reasoning depths for datasets involving 414

all the rules. For comparison, we use BA for Rule- 415

BERT, but we thoroughly evaluate RuleTaker-pro 416

using all relevant criteria. We use an extra met- 417

ric, CS, to measure soft Constraint Satisfaction 418

that deems the constraint (defined in Equation 3) 419

satisfied if the following inequality holds: 420

|P (q)−P (p1)∗P (p2)∗...∗P (pn)∗Pr| < Threshold. (5) 421

422

This means that the difference between the pre- 423

dicted and calculated probability of an inferred fact, 424

based on premise facts, must be less than a thresh- 425

old: 0.01 (CS1), 0.10 (CS10), or 0.25 (CS25). 426

4.1 Effect of Rules in Textual Format 427

Firstly, we investigate whether RoBERTa utilizes 428

the rule’s text of the RuleBERT dataset by keeping 429

and removing them from the context. For example, 430

if we remove the rule’s text in Table 1, only Facts 431

1 and 2 will form the input. We report the results 432

of these two settings in Table 2, where columns in- 433

dicate the maximum depth of reasoning in training 434

(M1-M5), and rows correspond to the reasoning 435

depth of testing (D1-D5). We omit M0 as depth 0 436

does not use any rules, making it irrelevant to our 437

investigation of PCT. We observe that the accuracy 438

improves across most models and depths when the 439

rules’ text is excluded, suggesting that RoBERTa 440

is not using it, and including it may even add un- 441
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necessary complexity. Thus, we conjecture that442

RoBERTa can implicitly learn the probabilities of443

these rules from the facts and hypothesis in training444

data alone without using rules’ text.445

D/M M1 M2 M3 M4 M5
D1 76.95 79.82 79.92 70.74 64.99
D* 76.84 82.02 82.27 83.60 82.19
D2 77.59 77.88 76.69 70.44 65.41
D* 75.40 78.86 78.22 80.02 78.53
D3 78.47 76.93 76.2 78.80 71.64
D* 77.93 80.65 80.69 82.85 80.63
D4 76.22 73.42 72.40 78.20 73.86
D* 75.06 76.20 77.21 79.62 77.02
D5 77.15 73.06 69.68 77.52 78.16
D* 78.42 75.22 78.76 79.69 76.79

Table 2: BA results of RoBERTa fine-tuned on Rule-
BERT. * indicates exclusion of rule’s texts.

CE (CA1) MSE (CA1)
D/M M1 M2 M3 Mmax M1 M2 M3 Mmax
Total 38.21 38.34 20.45 33.89 30.39 32.26 26.17 26.04
D1 56.03 52.71 29.63 43.77 50.46 49.48 38.15 37.26
D2 36.40 38.28 20.31 32.87 26.49 31.13 25.52 28.43
D3 29.30 31.30 14.98 28.39 18.81 22.06 18.98 19.90
D4 27.49 28.53 14.03 27.11 18.54 21.37 17.79 17.32
D5 24.97 26.78 14.70 28.29 19.83 21.14 19.33 15.50

CS1 47.88 35.79 16.22 20.78 25.24 14.88 14.47 12.97
CE (CA10) MSE (CA10)

D/M M1 M2 M4 Mmax M1 M2 M3 Mmax
Total 46.45 49.69 49.95 53.25 58.15 62.75 66.67 74.80
D1 61.56 59.55 53.41 56.17 91.76 84.45 80.94 82.81
D2 45.76 52.08 52.42 51.59 53.60 69.97 77.25 77.32
D3 38.88 44.87 48.37 51.45 42.88 51.20 61.44 71.60
D4 37.75 42.45 47.36 51.97 38.04 46.51 51.50 69.39
D5 33.63 38.67 43.80 53.07 32.62 37.05 43.30 63.64

CS10 52.24 44.97 35.67 38.25 45.13 34.49 32.86 33.34

Table 3: The accuracy of the baseline models trained
and tested on the RuleTaker-pro dataset. The rows
show different test depths (depths 1 to 5). Total indi-
cates the weighted average accuracy of all depths, and
CS* shows the constraint satisfaction at the indicated
thresholds. The best results for each depth are in bold.

Our baseline differs from (Saeed et al., 2021).446

This discrepancy arises from our approach of freez-447

ing 22 transformer layers for faster training and448

more fine-tuned hyper-parameters, which yield449

superior accuracy at higher depths (We use the450

same loss function, Weighted binary cross-entropy).451

Moreover, we also train our models with (Saeed452

et al., 2021) original setting, and again, the text of453

the rules did not yield any positive impact on the454

performance (see Appendix A.3 for details).455

The baseline results for the RuleTaker-pro456

dataset are shown in Table 3. The models (in the457

columns) are trained with maximum depths 1, 2,458

3, and 5 (max), as these are the depths provided in459

the original RuleTaker training data. However, the460

testing is done on all depths 1 to 5. CS averages 461

over all depths. The table also includes the models 462

trained with different loss functions: Cross-Entropy 463

(CE) and Mean Square Error (MSE). Weighted bi- 464

nary cross-entropy was abandoned due to underper- 465

formance on RuleTaker-pro. We use CA1, CA10, 466

and BA metrics as in (Saeed et al., 2021)2. 467

Though MSE excels in CA10, CE outperforms 468

MSE in CA1 and BA. The MSE CA10 accuracy 469

drops sharply at higher depths, especially for the 470

models trained at lower depths. Considering MSE’s 471

low CS1, we conjecture this sharp decline results 472

from the minor MSE approximation errors at lower 473

depths, magnified at higher depths when multiplied 474

along the chain of probabilities. Given our goal 475

of achieving exact inference probabilities follow- 476

ing the path of reasoning, CA1 is a more relevant 477

measure for PCT evaluation. These results indicate 478

transformers can capture probabilistic reasoning 479

patterns to some extent, especially when examples 480

with the same test depth are observed in training. 481

Unlike RuleBERT, RuleTaker-pro uses example- 482

specific rules, requiring the rule’s text to determine 483

the answer. Without rules, our model’s predictions 484

are not better than random guesses. In RuleTaker- 485

pro, we initially generated probabilistic rules by 486

including the probability in the text, such as "With 487

the probability of 15%, if someone is green, then 488

they are sad". However, we also considered us- 489

ing adverbs of uncertainty (Farkas et al., 2010) 490

instead of numbers, changing the rule to "Seldom, 491

if someone is green, then they are sad". Adverbs 492

of uncertainty improved the models in Dev BA 493

by 0.5%-2%, thus we followed this approach in 494

RuleTaker-pro creation (see Appendix A.13). 495

LLM Results To evaluate LLMs, we add instruc- 496

tions and examples (for few-shot settings) to their 497

prompts. The LLM results for RuleTaker-pro are 498

shown in Table 4. We observe that even GPT3.5 499

with few-shot examples and GPT4 fall short of 500

RoBERTa’s accuracy. The gap in accuracy be- 501

comes even wider in CA10, where the accuracies 502

remain almost the same as in CA1. This indicates 503

that if the LLM cannot predict the exact probability, 504

its prediction will not be even close to the correct 505

answer. LLMs will be undermined even more after 506

we add PCT and improve RoBERTa’s results. The 507

results of LLMs on RuleBERT dataset are as bad as 508

a random baseline (see AppendixA.9 for details of 509

2BA, MSE, and L1 results are in the Appendix A.7 due to
the lack of space as we focus mainly on CA1 and CA10.

3Dev BA results are shown in Table 10.
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prompt instructions and RuleBERT results). While510

LLMs are capable of probabilistic logical reason-511

ing on RuleTaker-pro, RoBERTa still outperforms512

them. Given the high cost of utilizing these models,513

it is still best to fine-tune smaller transformers.514

CA1 CA10
RoBERTa GPT3.5 GPT3.5* GPT4 RoBERTa GPT3.5 GPT3.5* GPT4

D1 44 28 41 41 56 33 45 43
D2 33 20 26 27 52 28 36 37
D3 28 23 25 26 51 25 34 34
D4 27 18 20 17 52 21 33 29
D5 28 18 20 21 53 22 31 29

Table 4: LLM results on RuleTaker-pro for CA1 and
CA10 metrics. * indicates using few-shot examples.
The chosen RoBERTa model is M5 trained with CE
since it performs the best regarding CA1.

4.2 Effectiveness of PCT515

Table 6 displays PCT’s effect on improving Rule-516

BERT’s accuracy over the baseline results in both517

settings (with and without rules’ text), especially at518

deeper depths. Using PCT, the CS25 accuracy of519

intermediate inferred facts increases from an aver-520

age of 50% to over 90%. Increasing the constraint521

satisfaction of intermediate inferred facts works522

synergistically with the model’s accuracy by com-523

pelling the model to reason, thus, enhancing the524

model, especially at deeper depths. Appendix A.4525

includes more details of inferred intermediate facts.526

By deploying PCT in RuleTaker-pro, we observe527

a similar trend to RuleBERT. As illustrated in Ta-528

ble 5, by incorporating exact probabilities into the529

constraints, PCT improves the accuracy of CA1 for530

both MSE and CE in most models. MSE without531

PCT did not learn the exact probabilities (it learned532

their approximation). Another place where PCT533

shows improved generalization is when it is used to534

train the models at lower depths, i.e., 2 and 3, and535

tested at higher depths. This shows that the reason-536

ing learned with PCT is transferred to higher depths.537

However, at depth 1, due to the limited number of538

applicable constraints, the change in accuracy is539

minor. Overall, the combination of CE and PCT540

achieves the highest accuracy at CA1 (further anal-541

ysis in Section 4.3 about this). In CA10, MSE still542

achieves the best results, and PCT only improves543

CE for M2 and M3 tested on higher depths. Similar544

to RuleBERT, we observe a sharp increase of about545

50% in the CS in all the models trained with PCT.546

Error Analysis. Our findings indicate that im-547

provements in constraint consistency are not al-548

ways proportionate to improvements in accuracy. 549

This discrepancy is prevalent in nearly all tasks 550

involving constraints, as evidenced by related stud- 551

ies (Ribeiro et al., 2019). Notably, to maintain 552

the consistency of outputs, the model might yield 553

incorrect results. Incorporating PCT encouraged 554

the model to output lower probabilities than the 555

baseline model, thus reducing the magnitude of the 556

constraint loss. For instance, in the model trained at 557

depth 3 with PCT, the average output probabilities 558

for all the test dataset questions declined from a 559

baseline of 52% to 45%. When the model is trained 560

with depth 1 with PCT, the constraint satisfaction 561

decreases, likely due to its reduced ability to accu- 562

rately process questions with a higher reasoning 563

depth. In short, while the best results are achieved 564

when both CS and CA increase, a high CS does not 565

invariably guarantee a corresponding increase in 566

CA. See Appendix A.8 for detailed examples. 567

4.3 Transferability Analysis 568

Experiments in Section 4.2 highlighted the effec- 569

tiveness of PCT in transferring reasoning from a 570

model trained at lower depths to answer questions 571

at higher depths. Here, we evaluate the transferabil- 572

ity of PCT from different perspectives. 573

Transferring Reasoning From Simple to Com- 574

plex Examples. As highlighted in Section 3.3.1, 575

20% of the inference questions in RuleTaker-pro 576

are of the complex type that are both included in 577

our dataset during training and testing. Tables 7 578

and 8 present our models’ performance on simple 579

and complex questions separately, with the mod- 580

els predictably faring better on the former. Em- 581

ploying CE+PCT increases accuracy for both ques- 582

tion types, making the difference between them 583

negligible. This suggests that the models can do 584

probabilistic reasoning even in complex instances. 585

However, for MSE and MSE+PCT models, the 586

performance difference between question types re- 587

mains substantial. The CE+PCT model’s enhanced 588

ability to learn probabilistic reasoning results from 589

PCT teaching exact probabilities. MSE model does 590

not see the same benefit due to cascading errors 591

in the approximated probabilities, as discussed in 592

Section 4.2. However, in the case of MSE, adding 593

PCT still improves accuracy. 594

Domain Transfer. We evaluated the transferability 595

of the probabilistic reasoning and constraint satis- 596

faction capabilities to another domain by training 597

our model on RuleTaker-pro with CE+PCT and 598
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CE+PCT (CA1) MSE+PCT (CA1)
D/M M1 M2 M3 Mmax M1 M2 M3 Mmax
Total .0(-0.21) 39.5(+1.2) 41.1(+20.7) 37.6(+3.7) 37.4(+6.9) 34.7(+2.5) 36.4(+10.3) 34.3(+8.3)
D1 53.37(-2.66) 50.8(-1.9) 50.5(+20.9) 46.9(+3.1) 56.50(+6.04) 49.8(+0.3) 52.6(+14.5) 37.6(+0.3)
D2 37.44(+1.04) 40.4(+2.1) 42.2(+21.8) 37.0(+4.2) 35.99+(9.05) 34.2(+3.1) 38.1(+12.6) 33.8(+5.4)
D3 26.47(-2.83) 32.9(+1.6) 36.0(+21.1) 32.4(+4.0) 25.97(+7.16) 25.8(+3.8) 26.5(+7.5) 32.6(+12.7)
D4 26.55(-0.94) 31.9(+3.4) 33.9(+19.9) 31.8(+4.7) 24.10(+5.56) 25.5(+4.1) 24.9(+7.1) 31.6(+14.3)
D5 23.37(-1.6) 30.4(+3.6) 33.4(+18.7) 31.4(+3.1) 22.05(+2.22) 24.0(+2.8) 24.0(+4.6) 33.1(+17.6)

CS1 44.94(-2.94) 42.69(+6.9) 34.55(+18.33) 35.25(+14.47) 20.59(-4.65) 19.34(+4.46) 15.42(+0.95) 13.06(+0.09)
CE+PCT (CA10) MSE+PCT (CA10)

D/M M1 M2 M3 Mmax M1 M2 M3 Mmax
Total 38 46.6(+0.15) 50.8(+1.1) 52.5(+2.5) 52.9(-0.4) 58.9(+0.75) 63.3(+0.6) 67.2(+0.6) 68.7(-6.1)
D1 59.73(-1.83) 57.8(-1.8) 50.5(-2.9) 57.9(+1.7) 92.41(+0.65) 82.7(-1.8) 83.5(+2.5) 70.9(-11.9)
D2 47.78(-2.02) 51.4(-0.7) 42.2(-10.3) 51.8(+0.2) 57.76(+4.16) 73.2(+3.3) 76.1(-1.1) 68.2(-9.2)
D3 39.21(+0.33) 47.4(+2.5) 50.5(+2.2) 50.0(-1.4) 41.54(-1.34) 52.2(+1.0) 60.4(-1.0) 68.6(-3.0)
D4 36.25(-1.5) 47.0(+4.5) 50.1(+2.7) 50.4(-1.6) 36.15(-1.89) 47.3(+0.8) 51.4(-0.1) 70.0(+0.6)
D5 35.14(-1.51) 47.0(+8.3) 48.6(+4.8) 49.8(-3.2) 34.03(+1.41) 38.1(+1.0) 44.6(+1.3) 63.8(+0.2)

CS10 49.79(-2.45) 47.30(+2.33) 45.64(+9.97) 46.89(+8.64) 49.63(+4.5) 36.05(+1.56) 34.90(+2.04) 33.79(+0.40)

Table 5: RuleTaker-pro results trained with PCT. In parenthesis, the change caused by PCT is compared to Table 3.

D/M M1 M2 M3 M4 M5
D1 78.3(+1.3) 83.1(+3.2) 77.5(-2.4) 77.9(+7.2) 67.7(+2.8)
D* 79.1(+2.3) 81.7(-0.3) 82.4(+0.1) 84.1(+0.5) 81.1(-1.1)
D2 78.93(+1.4) 79.7(+1.8) 76.6(-0.1) 78.0(+7.5) 68.9(+3.5)
D* 78.5(+3.1) 79.7(+0.8) 77.3(-0.9) 80.9(+0.9) 77.7(-0.8)
D3 79.1(+0.7) 80.8(+3.9) 81.3(+5.1) 81.3(+2.5) 78.9(+7.3)
D* 79.8(+1.9) 83.4(+2.8) 81.9(+1.2) 86.2(+3.3) 82.2(+1.6)
D4 77.7(+0.5) 77.0(+3.6) 79.0(+6.6) 80.8(+2.6) 82.6(+8.7)
D* 77.4(+2.4) 81.4(+5.2) 80.2(+3.0) 85.1(+5.4) 81.3(+4.3)
D5 77.8(-0.7) 74.1(+1.6) 84.1(+14) 82.7(+5.2) 88.6(+10)
D* 80.1(+1.6) 84.3(+9.1) 84.3(+5.5) 86.1(+6.5) 83.6(+6.8)

Table 6: PCT accuracy of RuleBERT with the change
caused by PCT shown inside the parenthesis. * indi-
cates exclusion of rule’s texts.

CA1 CE CE+PCT
Model M2 M3 Mmax M2 M3 Mmax
Simple 39.16 20.87 34.21 41.17 40.13 37.86

Complex 34.11 18.33 32.30 36.66 38.02 36.47

Table 7: RuleTaker-pro results on Simple and Complex
examples trained with Cross Entropy.

fine-tuning it on RuleBERT. This transfer direction599

is selected due to the RuleTaker-pro model’s supe-600

rior constraint satisfaction. Results are presented601

in Table 9, with the left side detailing the improve-602

ments in both BA and CS25, confirming the useful-603

ness of RuleTaker-pro as a base model. The right604

side of the table shows the effects of excluding PCT605

to ensure the improvements are not the result of606

increased data alone. In this scenario, only lower-607

depth results showed improvement, while higher608

depths and CS remained unaffected.609

5 Conclusion and Future Work610

Addressing the problem of reasoning over uncer-611

tain rules in textual format, we create a new dataset,612

CA1 MSE MSE+PCT
Model M2 M3 Mmax M2 M3 Mmax
Simple 33.77 27.45 27.17 36.14 37.99 35.01

Complex 24.50 19.60 20.23 27.49 28.40 30.76

Table 8: RuleTaker-pro results on Simple and Complex
examples trained with Regression.

Mode CE+PCT CE
M2 M3 M5 M2 M3 M5

D2 +7 +8 +7 -1 +4 +18
D3 +8 +6 +1 -1 +7 +10
D4 +11 +5 0 -3 +4 +1
D5 +13 -3 +3 -5 +3 -11

CS25 +3 +14 +7 0 +2 -1

Table 9: Improvements in the binary accuracy (BA)
and constraints satisfaction of RuleBERT models in Ta-
ble 2 after transfer learning from RuleTaker-pro. Trans-
fer learning results are shown for a model trained on
RuleTaker-pro with CE+PCT on the left and CE on the
right of the table.

RuleTaker-pro, extending the limited resources for 613

studying this issue. We investigate how uncertain 614

rules can be represented in the text and used by 615

the models. We propose a novel approach that ex- 616

plicitly uses the rules of probabilistic reasoning as 617

constraints in the loss. This approach improves 618

the performance and reasoning of the backbone 619

language models. Our experiments on LLMs have 620

revealed that they struggle to perform probabilis- 621

tic reasoning in zero-shot and few-shot scenarios, 622

despite their impressive capabilities. Our future ob- 623

jective is to develop models that utilize the text of 624

the rules more effectively and transfer their reason- 625

ing abilities to more realistic QA domains featuring 626

uncertainty and more advanced structures of proba- 627

bilistic reasoning. 628

8



6 Limitations629

One limitation of our work is the fixed structure of630

the rules in our datasets, which limits the model’s631

transferability to other domains with more open632

forms of explaining probabilistic rules. Another633

limitation is that we take a small step to formal-634

ize probabilistic reasoning over text. However,635

this does not mean the outcome language models636

are fully capable of language understanding and637

reasoning. Finally, running our models, based on638

RoBERTa large while possible, is computationally639

expensive, limiting their usage with all our different640

settings. This is exacerbated when it comes to uti-641

lizing Large Language Models that, in their current642

state, are very expensive to use even in zero-shot643

and few-shot settings.644
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A Appendix853

A.1 RuleTaker-pro854

In creation of RuleTaker-pro, we utilize 8 different855

adverbs of frequency shown in the Table 11. Using856

adverbs of frequency improved the Dev binary ac-857

curacy consistently in all depths. The results are858

shown in Table 10.859

CE M1 M2 M3 Mmax
With adverbs 96.24 94.97 93.12 89.71

With explicit probabilities 95.78 93.71 92.52 88.01

Table 10: Dev BA for models M1 to Mmax trained with
CE loss.

In order to make a balanced dataset with an equal860

number of labels, we generate a random probability861

for each rule based on a Gaussian random gener-862

ator. Then the adverb with the closest probability863

to the generated probability is chosen. The rule864

probability generations are generated so that half865

of the answers are above and half are below 0.50.866

The algorithm to change a logical context to867

a probabilistic one is shown in Algorithm 1.868

“FIND_ADVERB” function gets a random prob-869

ability from 0 to 100 as input and returns an870

adverb to it based on the closest probability871

of an adverb in Table 11. In the procedure872

“ADD_PROBABLITIES”, a logical context and873

question are given as input. Then, in line 6, it874

is randomly decided whether or not the final an-875

swer to this instance should be above or below 0.50876

to ensure balance in the final results of the dataset.877

In the rest of the algorithm, until the pre-selected878

above or below 0.50 probability for the answer is879

achieved, random probabilities would be assigned880

to the rules in the context. The random function881

that assigns these probabilities is a Gaussian func-882

tion with a mean of 40 and std of 60. the random883

probabilities are added with the value h, initially884

set to depth ∗ 10, and it increases or decreases885

slightly to help achieve the desired answer after886

reaching failure. h is created based on the depth of887

the dataset group to create a balanced average of888

answer probabilities. See section A.5 for the final889

statistics about the created dataset and their mean fi-890

nal answer. Also, a realistic example of the created891

dataset is shown and analyzed in section A.8.892

Algorithm 1 Assigning Gaussian-based probabili-
ties to logical rules to crate a probabilistic dataset
while ensuring that the resulting dataset is balanced
with heuristics.

1: function FIND_ADVERB(x)
2: Determine adverb and its associated proba-

bility based on the range of x in Table 11
3: return adverb
4: end function

5: procedure ADD_PROBABLITIES(c, q, d) . c
is context, q is question and d is the depth of
the dataset group (not the instance)

6: Above0.50← RANDOM(False, True)
7: h← 10 ∗ depth
8: while not Answer is Above0.50 do
9: new_c = c

10: for each rule in context do
11: pi = RANDOMGAUSS(40,60)+h
12: adverb = FIND_ADVERB(pi)
13: add adverb to new_c
14: Answer ← PROBLOG(new_c, q)
15: if Above0.50 then
16: h = h+ 5
17: else
18: h = h− 5

19: end procedure
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Adverbs always usually normally often sometimes occasionally seldom never
Probability 1.00 0.90 0.80 0.65 0.50 0.30 0.15 0.0

Table 11: The adverb of uncertainty and their respective probabilities that we link to them.

A.2 ProbLog893

ProbLog is a tool that allows us to encode prob-894

abilistic facts and rules. Then it will calculate895

any queries in the context of the defined facts and896

rules, which is exactly what we need for RuleTaker-897

pro. For example, Table 1’s right column would be898

shown in Problog pseudo code in the Figure 1a.899

(a) Encoding of the Ta-
ble 1’s right column ex-
ample in ProbLog pseudo
code.

(b) Encoding of the Ta-
ble 1’s right column ex-
ample in ProbLog pseudo
code if the second fact is
replaced with “David is
sad.”

A more complicated example would occur when900

there is more than one way to reach an inferred901

intermediate fact. Imagine that the second fact in902

the example of Table 1’s right column is “David is903

sad.”. In that case, the probability that “David is904

round” would be 0.762 as shown in Figure 1b.905

A.3 Training RoBERTa with RuleBERT’s906

Original Setting907

The original RuleBERT baseline from (Saeed et al.,908

2021) is shown in Table 12. We also train our909

models with their settings, both with and without910

including the text of the rules. These new results911

are shown in Table 13. The text of the rules is still912

not useful for the models.913

A.4 CA25 Accuracy of Intermediate Inferred914

Facts915

CA25 Intermediate Inferred Facts for M5 is de-916

picted in Figure 2. The model is trained for 6917

M1 M2 M3 M4 M5
D1 86.0 88.4 88.7 88.9 88.9
D2 65.5 73.0 75.1 75.0 72.0
D3 58.1 63.6 68.4 69.0 65.6
D4 46.8 54.7 62.6 66.6 62.7
D5 35.6 49.6 70.3 78.5 74.4

Table 12: RuleBERT baseline results trained and tested
on different depths (Saeed et al., 2021).

D/M M1 M2 M3 M4 M5

D1 76 91 87 91 93
D1* 88 90 88 92 89
D2 76 87 79 83 83
D2* 87 88 77 78 74
D3 67 85 76 76 73
D3* 84 85 73 72 67
D4 66 82 69 63 51
D4* 82 80 65 60 51
D5 53 75 54 34 28
D5* 80 68 44 29 21

Table 13: M shows the maximum depth of the training
data, and D shows the depth of the test data. Rows with
* indicate the exclusion of the text of the rules.

epochs to show the accuracy over time. PCT ac- 918

curacy remains consistently over 0.90 while the 919

baseline models accuracy fluctuates and remains 920

below 0.60. 921

A.5 RuleTaker-pro depth and data 922

distribution 923

Statistics about the splits, their unique context and 924

questions, and their balanced average answer pro- 925

duced by our algorithm are shown in Table 14. 926

RuleTaker-pro depth distribution for all depths 927

and the number of True and False labels are shown 928

in Table 15. 929

A.6 Training Parameres 930

The PCT algorithm pseudo-code is shown in Algo- 931

rithm 2. Lines 2-4 apply the taskloss, and lines 5-13 932

apply constraints loss and update the λj . The rate 933

at which λj is updated depends on PCT variable 934

(α) decayed at each iteration’s end. 935

To train RuleTaker-pro, we use RoBERTa Large 936

for four epochs with a learning rate of 1e−5. When 937
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Figure 2: The CS25 of intermediate inferred facts over
6 Epochs of training for M5.

Split Depth Total Row Unique Query mean Answer
Train 1 13549 807 0.49
Train 2 16145 810 0.48
Train 3 19960 812 0.48
Train 5 23805 812 0.50
Dev 1 1946 551 0.50
Dev 2 2290 586 0.48
Dev 3 2837 629 0.48
Dev 5 3412 694 0.50
Test 1 3930 690 0.49
Test 2 4592 718 0.48
Test 3 5687 765 0.48
Test 5 6829 789 0.50

Table 14: RuleTaker-pro Dataset Statistics

we use PCT, the alpha (PCT variable) varies from938

1.0 to 0.001 depending on the depth of the training939

dataset with higher depths training with smaller940

alphas.941

To train RuleBERT, we also use RoBERTa Large942

for four epochs, but we freeze the first 22 layers of943

the transformer. The learning rate varies between944

numbers 1e−6 for higher depth datasets with more945

examples and 2e−6 for lower depth datasets. When946

using PCT, the alpha is 0.01 for lower depths (1-3)947

and 0.001 for higher depths (4-5). In Table 16, the948

effect of alpha on the PCT Dev BA is shown. As949

shown, a higher alpha will help the model reach950

higher accuracy earlier. However, the best result is951

achieved with an alpha of 0.01.952

A.7 Additional RuleTaker-pro Results953

In Table 17, The binary results for RuleTaker-pro954

trained with MSE and CE is shown.955

A.8 Error Analysis Examples956

We analyze an example shown in Figure 3 that ben-957

efited from PCT. Initially, the base model predicted958

0.50 for the final answer, which was incorrect, as959

Algorithm 2 PCT algorithm

1: for each batch in data do
2: Apply model on batch to get the logits
3: Calculate Taskloss (CE/MSE/L1loss)
4: Backward propagate the loss
5: if Not warm-up iteration then
6: Get the next constraints batch
7: Apply model on constraints batch
8: cl← 0 . initialize constraints loss
9: for each constraint do

10: l← abs(q− p1× p2...× pn×Pr)
11: cl← cl + l × λj
12: λj ← α× l
13: Backward propagate the cl
14: Take optimizer step,and Reset gradients
15: decay α

the answer should have been 0.85. After training 960

the model using PCT, the model correctly predicted 961

0.85. This demonstrates the potential of the PCT 962

model for incorporating additional constraints in 963

the inference process. However, it should be noted 964

that this is an ideal case that may not always be 965

reproduced in practice. The PCT model can be 966

adapted to alter the probability of the depth2 fact to 967

satisfy the constraint if needed. In other scenarios, 968

the model may keep the 0.50 prediction for depth 969

3 and change the prediction for depth 2. In this 970

case, the model satisfies the constraint, yet the final 971

prediction is incorrect. In the worst case, the model 972

may predict 0.0 for all elements and still satisfy the 973

constraint. 974

It has been observed that the predicted probabili- 975

ties of the PCT models are lower on average than 976

those of the baseline models. This is due to the fact 977

that lower predicted probabilities make it easier 978

to satisfy the constraints, and thus, even models 979

that improve overall accuracy tend to have lower 980

average predicted probabilities. 981

A.9 LLM prompt instructions and additional 982

results 983

To effectively evaluate LLMs like, we adjust our 984

approach with our datasets to make them suitable 985

for zero-shot and in-context settings for generative 986

models. These adaptations involved adding a text 987

explaining the task before the context. For Rule- 988

BERT, we use the following explanation, “Answer 989

the following logical probabilistic question with 990

only one word, True or False.” and add the proba- 991
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D0 True D0 False D1 True D1 False D2 True D2 False D3 True D3 False D4 True D4 False D5 True D5 False
M1 Training Dataset 10626 10719 6422 6452 0 0 0 0 0 0 0 0
M2 Training Dataset 9590 9485 4613 4465 3441 3469 0 0 0 0 0 0
M3 Training Dataset 7441 7650 4438 4272 2930 2949 2597 2642 0 0 0 0

Mmax Training Dataset 2616 2720 3802 3692 2442 2520 2118 2026 1852 1858 1761 1734

Table 15: RuleTaker-pro depth distribution for all depths and the number of True and False labels.

Depth3 Epoch1 Epoch2 Epoch3 Epoch4 Epoch5 Epoch6
Baseline 49 70 77.95 75.85 70.925 72.62

PCT with α = 0.1 49 79.15 78.42 76.9 77 64.51
PCT with α = 0.01 49 79.32 80.87 79.32 78.17 78.57

PCT with α = 0.001 49 70.90 78.55 80.85 78.55 78.75

Table 16: Accuracy obtained using PCT during training with different hyper-parameter (α) for depth 3 of reasoning
for 6 epochs on RuleBERT dataset. Normally we train our models for 4 epochs, but here we use 6 epochs to observe
the learning process better.

CE Loss MSE Loss
BA M1 M2 M3 Mmax M1 M2 M3 Mmax

Total 76.93 82.65 88.74 91.05 76.19 84.84 87.73 91.39
D1 97.19 94.85 92.18 93.39 97.28 95.92 92.64 94.33
D2 75.58 89.11 91.26 91.26 74.41 90.91 91.88 91.74
D3 68.19 77.35 89.42 91.00 42.88 81.93 88.59 90.34
D4 65.16 71.35 84.93 88.70 38.04 74.38 81.82 89.17
D5 58.61 65.05 80.96 88.31 57.70 66.96 76.43 88.21

MSE M1 M2 M3 Mmax M1 M2 M3 Mmax
Total 0.1574 0.1278 0.0965 0.0716 0.4693 0.6585 0.6298 0.0716
D1 0.0866 0.0996 0.1076 0.0983 0.1992 0.0173 0.0190 0.0983
D2 0.1939 0.1261 0.1065 0.0876 0.1902 0.0257 0.0247 0.0876
D3 0.2352 0.1826 0.1149 0.0818 0.1915 0.0698 0.0313 0.0818
D4 0.2511 0.2003 0.1281 0.0710 0.1910 0.0982 0.0423 0.0797
D5 0.3082 0.2436 0.1428 0.710. 0.1963 0.1237 0.0618 0.0710
L1 M1 M2 M3 Mmax M1 M2 M3 Mmax

Total 0.2505 0.2216 0.1903 0.1664 0.3628 0.1055 0.0798 0.1664
D1 0.2004 0.2138 0.2236 0.2175 0.3693 0.0525 0.0581 0.2175
D2 0.3118 0.2434 0.2243 0.2076 0.3638 0.0770 0.0786 0.2076
D3 0.3528 0.3010 0.2316 0.1972 0.3642 0.1570 0.1032 0.1972
D4 0.3672 0.3182 0.2443 0.1960 0.3659 0.2090 0.1326 0.1960
D5 0.4136 0.3519 0.2495 0.1761 0.3737 0.2480 0.1627 0.1761

Table 17: The Binary accuracy, MSE and L1 of the
baseline model trained and tested on the RuleTaker-pro
dataset at different depths.

bility of the rules to their text. For RuleTaker-pro,992

we use “Answer the following logical probabilistic993

question in the format .##, which is the probability994

of the question asked rounded to 2 decimals, for995

example, .13%”. After this text, we provide the996

context and pose the hypothesis as a question.997

To test RuleBERT in LLMs, we included the998

probability of the rules in the text; Otherwise, the999

model has no way of extracting them. The results1000

are shown in Table 18.1001

Model GPT3.5 GPT3.5* GPT4
Depth1 19% 43% 29%
Depth2 58% 53% 46%
Depth3 58% 58% 60%
Depth4 51% 56% 46%
Depth5 56% 43% 58%

Table 18: RuleBERT BA results are show for GPT3.5
and GPT4. * indicates few-shot setting.
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Figure 3: In the given example, the fact “The rabbit
visits the lion.” can be inferred from the context with
a probability of 1.00 at depth 2. Both the base model
and the PCT model accurately predicted the probability
of this fact. However, only the PCT model took into
account the additional bold rule in the text, which led
to an 0.85 probability for the hypothesis.
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