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Abstract

In this paper, we evaluate the ability of
transformer-based language models in reason-
ing over uncertain text that includes uncertain
rules of reasoning. We cover pre-trained lan-
guage models (PLMs) and the newer large
language models (LLMs). Our evaluation re-
sults show that both generations of language
models struggle with reasoning over uncertain
text. We focus on PLMs and propose a novel
Neuro-Symbolic fine-tuning approach, Proba-
bilistic Constraint Training (PCT), incorporat-
ing probabilistic logical rules as constraints
during fine-tuning. To assess the effective-
ness of PCT, we utilize the related corpora
and, additionally, create a new and more chal-
lenging benchmark that, unlike the previous
ones, uses instance-specific rules. Our study
demonstrates the potential of PCT, the pioneer
method that improves the transformer-based
language model’s accuracy and explainabil-
ity of the probabilistic logical reasoning pro-
cess. Furthermore, PCT equips these models
to effectively handle novel situations, includ-
ing higher reasoning depth, new domains, and
complex probabilistic structures.

1 Introduction

PLMs have become popular since they demon-
strated high accuracy across a wide range of Nat-
ural Language Processing (NLP) tasks (Liu et al.,
2019). LLMs are becoming even more popu-
lar as they can solve many NLP problems zero-
shot (Chen, 2023); however, they are expensive to
utilize. Our study focuses on a less explored area of
reasoning over uncertain text involving uncertain
rules. We will discuss the importance of this area
and PLMs’ and LLMSs’ weaknesses in handling this
problem. We then propose our solution to improve
PLMs, enabling them to surpass the more costly
LLMs and transfer their learned reasoning.
Understanding logical and uncertain rules in nat-
ural language form has been investigated in re-
cent works (Clark et al., 2020; Saeed et al., 2021).

While incorporating hard logical rules is still a re-
search question, in the real world, most of the ex-
ternal knowledge and rules are uncertain. Only a
small fraction of the logical rules in DBpedia can
be deemed certain (Saeed et al., 2021). Science
communication frequently utilizes certainty and
uncertainty mainly with the help of hedges (Pei
and Jurgens, 2021). Outlining and understanding
certainties and uncertainties is required in scientific
communications (National Academies of Sciences
et al., 2017). This indicates the need for models
capable of reasoning over uncertain knowledge.

PLMs and LLMs struggle to reason with num-
bers and simple mathematical questions expressed
in natural language (Mishra et al., 2022), a re-
quirement for inference on probabilistic and un-
certain text. PLMs’ evaluation of various question-
answering (QA) benchmarks show they produce
contradictory results (Asai and Hajishirzi, 2020).
Such limitations reveal the issues of implicitly us-
ing external knowledge by PLMs, making the rea-
soning process an unexplainable blackbox (Clark
et al.,, 2019). These challenges encountered in
PLMs are our motivation to train them to adhere to
a simplified probabilistic reasoning process for an
explicit integration of logical probabilistic rules.

We utilize two QA datasets: RuleBERT (Saeed
et al., 2021) and our newly developed RuleTaker-
pro, a probabilistic extension of the RuleTaker
dataset (Clark et al., 2020) created to address
some of the shortcomings of the RuleBERT dataset.
Mainly, we want a dataset with context-specific
rules to make the required reasoning more realistic.
For example, the probability of two married peo-
ple being cousins in the context of one culture is
high, while it is close to zero in another or, in the
medical domain, the prevalence or mortality of a
disease can vary depending on the gender or the
location (Zirra et al., 2023; Menotti et al., 2023).

The problem involves calculating the probability
of a given hypothesis (Query) based on a provided



RuleBERT

RuleTaker-pro

(Fact 1) David is a cousin of Ann.

(Fact 2) Mike is a child of Ann.

(Rule 1, 0.90) If A is a spouse of B and C is a child of B,
then C is a child of A.

(Rule 2, 0.15) If A is a cousin of B, then A is a spouse of B.

(Fact 1) Dave is big.

(Fact 2) Erin is sad.

(Rule 1) Usually, If someone is big then they are green.
(Rule 2) Normally, If someone is green then they are round.
(Rule 3) Seldom, If someone is sad then they are round.

(Query) Mike is a child of David.

(Query) Dave is round.

Required Steps of Reasoning to Answer

Fact 1 (1.00) & Rule 2 (0.15) =

Fact 3: David is a spouse of Ann. (0.15) (Inferred)
Fact 3 (0.15) & Fact 2 (1.00) & Rule 1 (0.90) —-
Fact 4: Mike is a child of David. (0.135) (Inferred)
Answer: 0.135

Fact 1 (1.00) & Rule 1 (0.90) —-
Fact 3: Dave is green. (0.90) (Inferred)
Fact 3 (0.90) & Rule 2 (0.80) =
Fact 4: Dave is round. (0.72) (Inferred)
Answer: 0.72

Approach: Converting Probabilistic Reasoning Steps to Equality Constraints

Constraint 1: P(Fact 1) * 0.15 = P(Fact 3)
Constraint 2: P( Fact 3 ) * P(Fact2) * 0.90 = P( Fact 4 )

Constraint 1: P( Fact 1) * 0.90 = P( Fact 3)
Constraint 2: P( Fact 3 ) * 0.80 = P( Fact4 )

Table 1: An example from RuleBERT with two facts and two rules is shown in the left column, and an example
from RuleTaker-pro with two facts and three rules is shown in the right column. The steps of reasoning required
to infer the Query and the constraints defined on these steps are shown in the bottom rows.

context that includes textual description of proba-
bilistic logical rules and facts. Table 1 shows ex-
amples of our datasets and their required reasoning
steps to answer the Query. We convert the rea-
soning steps to equality constraints (shown in the
Approach section of Table 1) and impose these con-
straints to ensure consistency of the outputs with
the rules during the training of PLMs. In summary,
our contributions are as follows:

1) We evaluate both PLMs and LLLMs and demon-
strate that fine-tuned PLMs outperform more costly
LLMs in probabilistic reasoning over text. 2) We
propose a new neuro-symbolic approach, Proba-
bilistic Constraint Training (PCT), that explicitly
imposes the rules of probabilistic reasoning dur-
ing PLM fine-tuning. This approach provides a
more effective level of abstraction to the models
to generalize and transfer reasoning under uncer-
tainty to new domains and the more complex depths
of reasoning. 3) We develop a novel evaluation
benchmark for probabilistic reasoning over text
with context-specific uncertain rules that can not
be captured from the training data.!

2 Related work

Previous works mostly looked into the integration
of certain logic (Saha et al., 2020; Tafjord et al.,
2021). The pioneering work on QA with probabilis-
tic rules in text is RuleBERT (Saeed et al., 2021),
which serves as the baseline for our comparative

!The code and dataset will be available after anonymity.

study. While RuleBERT pioneers this field and
introduces Weighted binary cross-entropy loss to
incorporate probabilistic learning in transformers,
it lacks a mechanism to follow the probabilistic
reasoning steps explicitly. Additionally, our exper-
iments revealed that the rules in textual form in
this dataset are not properly utilized by the models
(see Section 4.1), which prompted us to introduce
RuleTaker-pro with instance-specific rules.

Reasoning Steps. Explicit elucidation of reason-
ing steps in QA models has been central in recent
literature. (Saha et al., 2020) improves PLMs’ rea-
soning by mapping their output to an inference
graph, necessitating the model to learn its nodes
and edges. While (Tafjord et al., 2021) utilized T5
to create an inference path, this and similar stud-
ies have focused on using non-probabilistic logical
rules, unlike our approach. (Weber et al., 2019;
Rocktéschel and Riedel, 2017) defines an end-to-
end differentiable neural network architecture for
probabilistic reasoning over entities in text. (Wang
and Deng, 2020; Polu and Sutskever, 2020; Tafjord
et al., 2021) approach the reasoning for QA by
generating an output that follows a predefined for-
mal language for theorem proving given the logical
rules, which is a very different approach from ours.
(Wu et al., 2023) introduces reasoning in LLMs
by generating intermediate reasoning steps as extra
output. However, we enable PLMs to incorporate
this reasoning in training with no additional output.
Reasoning QA Datasets. Numerous QA datasets
require reasoning including (Weston et al., 2016;



Tafjord et al., 2019; Tandon et al., 2019), (Yang
et al., 2018), ROPES (Lin et al., 2019) and, FO-
LIO (Han et al., 2022). However, they lack an
explicit definition of the logical rules or are not
probabilistic. (Frieder et al., 2023) is created to
assess the mathematical reasoning of LLMs. How-
ever, it has no tasks with probabilistic logical rules.
Constraints. Our approach’s primary contribution
is incorporating probabilistic constraints in the loss
function. While various studies incorporate log-
ical constraints into the loss function (Nandwani
et al., 2019; Li et al., 2019; Asai and Hajishirzi,
2020; Ribeiro et al., 2019; Faghihi et al., 2023;
Guo et al., 2020), no work has explored the appli-
cation of probabilistic constraints in this context to
date. Our methodology, PCT, builds on (Nandwani
et al., 2019), where logical rules are translated into
a soft logic form before inclusion in the loss func-
tion. PCT leverages this approach by utilizing the
rules of probabilistic reasoning as constraints.

3 Approach

3.1 Problem definition

We focus on the challenge of performing proba-
bilistic logical reasoning within a QA task where
a set of facts F, a set of rules R, and a hypothesis
h are provided in a textual context. While these
rules, facts, and hypothesis are provided only in
their textual form as a part of the input to the task,
we have their formal information as a part of the
data. For example, fact Big(Dave) and the rule
Spouse(A, B) & Child(C,B) — Child(C, A)
would be conveyed to the PLMs as: “Dave is big.”,
and “If A is a spouse of B and C is a child of B,
then C is a child of A.”, respectively. The facts and
hypothesis consist of factoids that define properties
for an entity “Has_Property(Entity)” or relations
between two entities “Relation(Entity1, Entity2)”.
The rules have the form (p1, p2, ..., pn) — ¢, Pr,
where p; represents a premise fact, ¢ is a new in-
ferred fact, and Pr is the rule’s probability. ¢’s
probability is computed as the rule probability mul-
tiplied by the premise facts probabilities. If the
premise facts are mentioned in the context, they
would be certain and have 1.00 probability; other-
wise, if they are inferred facts, their probability is
derived. The objective is to utilize /" and R to infer
a probability between 0 and 1 as our task output,
which indicates the probability of a given hypothe-
sis h (e.g., h="Sara and John are cousins” obtains
a probability of 0.20 by the model).

3.2 Base Model

The backbone of our model is ROBERTa Large,
supplemented by two linear layers and a sigmoid
activation function applied to its classifier token
(CLS). The model takes the context and hypothesis
as input, subsequently assigning a probability to
the given hypothesis. More precisely, the input se-
quence is formatted as [CLS] text(R)+text(F) [SEP]
text(h) [SEP], where the context comprises the tex-
tual representations of rules and facts, denoted by
text(R) and text(F) respectively, and text(h) repre-
sents the textual form of the hypothesis.

Our LLMs are GPT3.5 and GPT4 (Brown et al.,
2020). Due to the high cost of fine-tuning LL.Ms,
we limit our experiments to zero-shot and few-shot.
Input comprises a task explanation, text(R)+text(F),
and text(h). The explanation instructs the model
about the objective and output format, which is ei-
ther “True”,“False” (corresponding to a probability
greater or less than 0.5), or a number between 0.0
and 1.0 (hypothesis probability).

3.3 Probabilistic Constraints Training

We aim to develop a model capable of following
probabilistic reasoning steps to infer a hypothesis
probability. These reasoning steps for the examples
in Table 1 are outlined in the Required Steps of Rea-
soning to Answer row. In each step, a combination
of facts and a rule results in a new intermediate
inferred fact until the final hypothesis is inferred.
These steps are formulated as constraints, and our
proposed model is trained to adhere to them by
incorporating them into the loss function. The “Ap-
proach” row of Table 1 shows examples of the rea-
soning steps’ conversion into constraints in which
the probabilities assigned to facts must follow the
rule definition. For instance, if Fact 1 and Rule 1
result in a new fact, Fact 1’s probability (P(Fact 1)
multiplied by Rule 1’s probability must be equal
to the inferred fact’s probability (P(inferred Fact)).
In the upcoming subsections, we will explain the
process of formulating constraints, the approach of
utilizing them, and the inference procedure.

3.3.1 Constraint Conversion

Among the research focused on constraint integra-
tion within neural models, we opt for the class of
methods that incorporate constraint violation in
the loss function during training without altering
the model’s architecture (Faghihi et al., 2023). In
general, to employ the logical and symbolic con-
straints in deep models, they must be converted into



soft logic for the sake of differentiability. Usually,
three main approaches are used for this conversion:
Product, Godel, and Lukasiewicz (Li et al., 2019).
For instance, the logical rule, (p1, p2, ..., Pn) — ¢,
using the Product surrogate, is written as follows,

min(1, P(q)/[P(p1) * P(p2) % ... * P(pn)]), (1)

where P(p;) is the probability of the fact p;. We
can express the enforcement of this implication’s
truth as follows,

|1 —=min(1, P(q)/[P(p1) * P(p2) *...x P(pn)])] = 0, (2)

where |.| denotes the absolute value. Adopting this
approach, we formulate the probabilistic reasoning
as obeying a set of constraints. Our constraints
originate from the required computations of proba-
bilistic inference, assuming a particular underlying
probabilistic network. We distinguish between Sim-
ple and Complex probabilistic reasoning patterns
based on their underlying inference network.

A probabilistic reasoning pattern is Simple if
any deducible fact can be drawn from it via only a
single reasoning path. The examples provided in
Table 1 are Simple because “Dave is round.” can
be inferred only from Rule 2 and Fact 3 and Fact
3 can only be inferred from Fact 1 and Rule 1. On
the other hand, a Complex reasoning encompasses
at least one fact that can be deduced from two or
more different rules (reasoning paths). By alter-
ing the second fact from “Erin is sad” to “Dave is
sad”, we create a Complex example because it en-
ables inference of “Dave is round” from Fact 2 and
Rule 3 as well. Only 20% of the examples of our
datasets are of the Complex type. Hence, our focus
lies primarily on formulating the simple version
of probabilistic reasoning for defining constraints.
The Complex examples are still incorporated in our
datasets and used during training and testing.

Given a Simple network, our model ex-
ecutes probabilistic inference for the rule
(p1,p2,--sPn) — q,Pr by multiplying the
premise facts’ probability with the rule’s prob-
ability to obtain the inferred fact’s probability.
Formally, the model should fulfill the constraint,

|P(q) — P(p1) * P(p2) * ...« P(pn) * Pr| =0. (3)

Our unique definition of constraint constitutes the
key novelty of our approach (see Table 1 for Exam-
ples of constraints). To satisfy this constraint, the
equation’s left side should approach zero. Note that
while this constraint guarantees adherence to the

rules of probabilistic reasoning, it might not ensure
the best results on the end task accuracy, and this
remains subject to experimentation.

3.3.2 Training

Inspired by (Nandwani et al., 2019), we employ
constraints during training without adding architec-
tural overhead. To generate the constraints for each
dataset instance, we use the chains of probabilis-
tic reasoning that include the paths of inference
for every inferable fact (these are available in the
dataset; see section 3.4). The constraints follow
the format of Equation 3 and will be used during
training in the loss function. Examples of these
constraints can be found at the bottom of Table 1.
Our training objective centers on minimizing the
violation of these constraints. We denote the vi-
olation from each constraint as C;, a scalar value
that ranges from O to 1, derived from the left-hand
side of Equation 3. We initiate the process with
warm-up iterations on the original QA task to train
the model. Following this, we continue the train-
ing while adding the constraint violation losses to
the primary loss. As per the methodology outlined
in (Nandwani et al., 2019), we apply the dual for-
mulation of the objective as follows,

Loss = TaskLoss + Z A+ Cy, €]

i=1

where “Taskloss” denotes the primary task loss
aiming to minimize the predicted probability error
for the hypothesis. The new additional term is the
constraint violation loss used in its dual form with
Lagrangian multipliers, \;, where j is the index
of rule j used in constraint violation ¢ (C;). m is
the number of selected constraints. \; is adjusted
during training and ultimately indicates a rule’s
propensity to violation. Consequently, as training
progresses, the loss function predominantly im-
pacts the rules with the highest accumulated A;.
See Appendix A.6 the detailed training algorithm.

3.3.3 Inference

During the inference, the model receives the con-
text that includes textual rules and facts, while the
formal rules and constraints that were employed
during training are not available to the model. We
expect the model to learn to obey the rules that were
utilized in the loss function during training. This
critical aspect ensures the model’s generalizability
and transferability across various domains.



3.4 Datasets

RuleBERT. RuleBERT (Saeed et al., 2021) is built
using about 100 rules with fixed probabilities that
are applied to many examples in the dataset. The
fixed probabilities of these rules are extracted from
an external source. The number of rules used in a
chain to derive the answer determines the depth of
reasoning, ranging from 0 to 5. The probability of
all possible inferred facts and the depth for each
instance is given in the dataset as metadata.

RuleTaker-pro. We developed RuleTaker-pro
as a probabilistic variant of RuleTaker (Clark
et al., 2020), modifying its crisp logical rules
(p1,p2, .-y Pn) — q (With Pr equal to 1.0) to in-
clude probabilities while the rest of the context
remains unchanged (examples shown in the right
side of Table 1). We leverage a Gaussian random
generator to produce probabilities. After assigning
probabilities to the rules, we use Problog (De Raedt
et al., 2007), a probabilistic logical inference tool
that facilitates the encoding of probabilistic facts
and rules, to compute the probability of the hypoth-
esis. The resulting rules are similar to RuleBERT
rules (p1,p2, ..., Pn) — ¢, Pr. In the textual form,
we include the rule’s probability as an adverb of un-
certainty like Usually, Normally, and Seldom with
associated probabilities of 0.90, 0.80, and 0.15,
respectively. As mentioned, a key difference be-
tween RuleTaker-pro and RuleBERT is including
instance-specific rules. For example, the rule “If
A is a cousin of B, then A is a spouse of B.” from
RuleBERT will always have the probability of 0.15
in all the examples. However, in Ruletaker-pro,
the same rule may hold different probabilities de-
pending on the adverb assigned to it in different
instances. A rule such as “Usually, if someone is
big, then they are green.” carries a probability of
0.90 in one context, while “Seldom, if someone is
big then they are green.” carries a probability of
0.15 in some other context. Given this difference,
the model has to extract the rules from each con-
text and can not use the information learned about
the rules from the training data. It is notable that
ambiguity and cycles are already removed from
the RuleTaker dataset for the logical rules and are
not an issue in our dataset, as confirmed by our
Problog solver. Metadata about the inference of all
facts and their depths are in the dataset and will be
used to create constraints but not during training or
inference. See Appendix A.1 and A.5 for details of
data creation and distribution and the adverbs.

4 Experiments

In this section, we address three questions using
RuleTaker-pro and RuleBERT datasets: Q1. How
do textual rules affect probabilistic reasoning (4.1)?
Q2. To what extent does the baseline language
model improve with PCT concerning probabilistic
reasoning and intermediate inferred facts (4.2)? Q3.
Can we transfer the probabilistic reasoning capabil-
ities of the language model when pre-trained with
PCT(4.3)? We also present an ablation study to in-
vestigate the impact of various losses and datasets
on our approach using multiple metrics.
Evaluation Metrics. We use several performance
measures following (Saeed et al., 2021). Binary
Accuracy (BA) deems predictions correct if ground
truth and predicted probability both fall under or
over 0.5. The CA25, CA10, and CA1 require the
predicted probability to be in a window of +0.25,
40.10, and 4-0.01 of the ground truth, respectively.
(Saeed et al., 2021) applies CA10 and CA1 metrics
to dataset splits with isolated rules, while BA is
used for all reasoning depths for datasets involving
all the rules. For comparison, we use BA for Rule-
BERT, but we thoroughly evaluate RuleTaker-pro
using all relevant criteria. We use an extra met-
ric, CS, to measure soft Constraint Satisfaction
that deems the constraint (defined in Equation 3)
satisfied if the following inequality holds:

|P(q)—P(p1)*P(p2)*...«P(pn)*Pr| < Threshold. (5)

This means that the difference between the pre-
dicted and calculated probability of an inferred fact,
based on premise facts, must be less than a thresh-
old: 0.01 (CS1), 0.10 (CS10), or 0.25 (CS25).

4.1 Effect of Rules in Textual Format

Firstly, we investigate whether RoBERTa utilizes
the rule’s text of the RuleBERT dataset by keeping
and removing them from the context. For example,
if we remove the rule’s text in Table 1, only Facts
1 and 2 will form the input. We report the results
of these two settings in Table 2, where columns in-
dicate the maximum depth of reasoning in training
(M1-M5), and rows correspond to the reasoning
depth of testing (D1-D5). We omit MO as depth O
does not use any rules, making it irrelevant to our
investigation of PCT. We observe that the accuracy
improves across most models and depths when the
rules’ text is excluded, suggesting that RoOBERTa
is not using it, and including it may even add un-



necessary complexity. Thus, we conjecture that
RoBERTa can implicitly learn the probabilities of
these rules from the facts and hypothesis in training
data alone without using rules’ text.

D/M M1 M2 M3 M4 M5
D1 76.95 | 79.82 | 79.92 | 70.74 | 64.99
D* 76.84 | 82.02 | 82.27 | 83.60 | 82.19
D2 77.59 | 77.88 | 76.69 | 70.44 | 65.41
D* 75.40 | 78.86 | 78.22 | 80.02 | 78.53
D3 78.47 | 76.93 76.2 78.80 | 71.64
D* 77.93 | 80.65 | 80.69 | 82.85 | 80.63
D4 76.22 | 73.42 | 72.40 | 78.20 | 73.86
D* 75.06 | 76.20 | 77.21 | 79.62 | 77.02
D5 77.15 | 73.06 | 69.68 | 77.52 | 78.16
D* 78.42 | 75.22 | 78.76 | 79.69 | 76.79

Table 2: BA results of RoBERTa fine-tuned on Rule-
BERT. * indicates exclusion of rule’s texts.

CE (CAl) MSE (CAI)

DM | Ml M2 | M3 | Mmax | MI M2 | M3 | Mmax

Total | 38.21 | 38.34 | 2045 | 33.89 | 30.39 | 32.26 | 26.17 | 26.04

DI | 56.03 | 52.71 | 29.63 | 43.77 | 50.46 | 49.48 | 38.15 | 37.26
D2 | 3640 | 38.28 | 2031 | 32.87 | 2649 | 31.13 | 25.52 | 2843
D3 | 29.30 | 31.30 | 1498 | 28.39 | 18.81 | 22.06 | 18.98 | 19.90
D4 | 2749 | 2853 | 14.03 | 27.11 | 18.54 | 21.37 | 17.79 | 17.32
D5 | 2497 | 26.78 | 1470 | 2829 | 19.83 | 21.14 | 19.33 | 15.50

CS1 | 47.88 | 3579 | 16.22 | 20.78 | 25.24 | 14.88 | 14.47 | 12.97

CE (CA10) MSE (CA10)

DM | Ml M2 | M4 | Mmax | MI M2 | M3 | Mmax

Total | 46.45 | 49.69 | 49.95 | 5325 | 58.15 | 62.75 | 66.67 | 74.80

DI | 61.56 | 59.55 | 5341 | 56.17 | 91.76 | 84.45 | 80.94 | 82.81
D2 | 4576 | 52.08 | 5242 | 51.59 | 53.60 | 69.97 | 7725 | 71.32
D3 | 38.88 | 44.87 | 48.37 | 51.45 | 42.88 | 51.20 | 61.44 | 71.60
D4 | 3775 | 4245 | 47.36 | 51.97 | 38.04 | 46.51 | 51.50 | 69.39
D5 | 33.63 | 38.67 | 43.80 | 53.07 | 32.62 | 37.05 | 4330 | 63.64

CS10 | 52.24 | 4497 | 35.67 | 3825 | 45.13 | 3449 | 32.86 | 33.34

Table 3: The accuracy of the baseline models trained
and tested on the RuleTaker-pro dataset. The rows
show different test depths (depths 1 to 5). Total indi-
cates the weighted average accuracy of all depths, and
CS* shows the constraint satisfaction at the indicated
thresholds. The best results for each depth are in bold.

Our baseline differs from (Saeed et al., 2021).
This discrepancy arises from our approach of freez-
ing 22 transformer layers for faster training and
more fine-tuned hyper-parameters, which yield
superior accuracy at higher depths (We use the
same loss function, Weighted binary cross-entropy).
Moreover, we also train our models with (Saeed
et al., 2021) original setting, and again, the text of
the rules did not yield any positive impact on the
performance (see Appendix A.3 for details).

The baseline results for the RuleTaker-pro
dataset are shown in Table 3. The models (in the
columns) are trained with maximum depths 1, 2,
3, and 5 (max), as these are the depths provided in
the original RuleTaker training data. However, the

testing is done on all depths 1 to 5. C'S averages
over all depths. The table also includes the models
trained with different loss functions: Cross-Entropy
(CE) and Mean Square Error (MSE). Weighted bi-
nary cross-entropy was abandoned due to underper-
formance on RuleTaker-pro. We use CA1, CA10,
and BA metrics as in (Saeed et al., 2021)2.
Though MSE excels in CA10, CE outperforms
MSE in CAl and BA. The MSE CA10 accuracy
drops sharply at higher depths, especially for the
models trained at lower depths. Considering MSE’s
low CS1, we conjecture this sharp decline results
from the minor MSE approximation errors at lower
depths, magnified at higher depths when multiplied
along the chain of probabilities. Given our goal
of achieving exact inference probabilities follow-
ing the path of reasoning, CA1 is a more relevant
measure for PCT evaluation. These results indicate
transformers can capture probabilistic reasoning
patterns to some extent, especially when examples
with the same test depth are observed in training.
Unlike RuleBERT, RuleTaker-pro uses example-
specific rules, requiring the rule’s text to determine
the answer. Without rules, our model’s predictions
are not better than random guesses. In RuleTaker-
pro, we initially generated probabilistic rules by
including the probability in the text, such as "With
the probability of 15%, if someone is green, then
they are sad". However, we also considered us-
ing adverbs of uncertainty (Farkas et al., 2010)
instead of numbers, changing the rule to "Seldom,
if someone is green, then they are sad". Adverbs
of uncertainty improved the models in Dev BA
by 0.5%-2%, thus we followed this approach in
RuleTaker-pro creation (see Appendix A.13).
LLM Results To evaluate LLMs, we add instruc-
tions and examples (for few-shot settings) to their
prompts. The LLM results for RuleTaker-pro are
shown in Table 4. We observe that even GPT3.5
with few-shot examples and GPT4 fall short of
RoBERTa’s accuracy. The gap in accuracy be-
comes even wider in CA10, where the accuracies
remain almost the same as in CA1l. This indicates
that if the LLM cannot predict the exact probability,
its prediction will not be even close to the correct
answer. LLMs will be undermined even more after
we add PCT and improve RoBERTa’s results. The
results of LLMs on RuleBERT dataset are as bad as
a random baseline (see AppendixA.9 for details of
2BA, MSE, and L1 results are in the Appendix A.7 due to

the lack of space as we focus mainly on CA1 and CA10.
*Dev BA results are shown in Table 10.



prompt instructions and RuleBERT results). While
LLMs are capable of probabilistic logical reason-
ing on RuleTaker-pro, ROBERTa still outperforms
them. Given the high cost of utilizing these models,
it is still best to fine-tune smaller transformers.

CAl CAI0

RoBERTa | GPT3.5 | GPT3.5% | GPT4 | RoBERTa | GPT3.5 | GPT3.5* | GPT4

DI 44 28 41 4 56 33 45 43

D2 3 20 26 2 32 28 36 37

D3 28 23 25 26 51 25 34 34
D4 27 18 20 17 52 21 33 29
D5 28 18 20 21 3 2 31 29

Table 4: LLM results on RuleTaker-pro for CA1 and
CA10 metrics. * indicates using few-shot examples.
The chosen RoBERTa model is M5 trained with CE
since it performs the best regarding CA1.

4.2 Effectiveness of PCT

Table 6 displays PCT’s effect on improving Rule-
BERT’s accuracy over the baseline results in both
settings (with and without rules’ text), especially at
deeper depths. Using PCT, the CS25 accuracy of
intermediate inferred facts increases from an aver-
age of 50% to over 90%. Increasing the constraint
satisfaction of intermediate inferred facts works
synergistically with the model’s accuracy by com-
pelling the model to reason, thus, enhancing the
model, especially at deeper depths. Appendix A.4
includes more details of inferred intermediate facts.

By deploying PCT in RuleTaker-pro, we observe
a similar trend to RuleBERT. As illustrated in Ta-
ble 5, by incorporating exact probabilities into the
constraints, PCT improves the accuracy of CA1 for
both MSE and CE in most models. MSE without
PCT did not learn the exact probabilities (it learned
their approximation). Another place where PCT
shows improved generalization is when it is used to
train the models at lower depths, i.e., 2 and 3, and
tested at higher depths. This shows that the reason-
ing learned with PCT is transferred to higher depths.
However, at depth 1, due to the limited number of
applicable constraints, the change in accuracy is
minor. Overall, the combination of CE and PCT
achieves the highest accuracy at CA1 (further anal-
ysis in Section 4.3 about this). In CA10, MSE still
achieves the best results, and PCT only improves
CE for M2 and M3 tested on higher depths. Similar
to RuleBERT, we observe a sharp increase of about
50% in the CS in all the models trained with PCT.
Error Analysis. Our findings indicate that im-
provements in constraint consistency are not al-

ways proportionate to improvements in accuracy.
This discrepancy is prevalent in nearly all tasks
involving constraints, as evidenced by related stud-
ies (Ribeiro et al., 2019). Notably, to maintain
the consistency of outputs, the model might yield
incorrect results. Incorporating PCT encouraged
the model to output lower probabilities than the
baseline model, thus reducing the magnitude of the
constraint loss. For instance, in the model trained at
depth 3 with PCT, the average output probabilities
for all the test dataset questions declined from a
baseline of 52% to 45%. When the model is trained
with depth 1 with PCT, the constraint satisfaction
decreases, likely due to its reduced ability to accu-
rately process questions with a higher reasoning
depth. In short, while the best results are achieved
when both CS and CA increase, a high CS does not
invariably guarantee a corresponding increase in
CA. See Appendix A.8 for detailed examples.

4.3 Transferability Analysis

Experiments in Section 4.2 highlighted the effec-
tiveness of PCT in transferring reasoning from a
model trained at lower depths to answer questions
at higher depths. Here, we evaluate the transferabil-
ity of PCT from different perspectives.
Transferring Reasoning From Simple to Com-
plex Examples. As highlighted in Section 3.3.1,
20% of the inference questions in RuleTaker-pro
are of the complex type that are both included in
our dataset during training and testing. Tables 7
and 8 present our models’ performance on simple
and complex questions separately, with the mod-
els predictably faring better on the former. Em-
ploying CE+PCT increases accuracy for both ques-
tion types, making the difference between them
negligible. This suggests that the models can do
probabilistic reasoning even in complex instances.
However, for MSE and MSE+PCT models, the
performance difference between question types re-
mains substantial. The CE+PCT model’s enhanced
ability to learn probabilistic reasoning results from
PCT teaching exact probabilities. MSE model does
not see the same benefit due to cascading errors
in the approximated probabilities, as discussed in
Section 4.2. However, in the case of MSE, adding
PCT still improves accuracy.

Domain Transfer. We evaluated the transferability
of the probabilistic reasoning and constraint satis-
faction capabilities to another domain by training
our model on RuleTaker-pro with CE+PCT and



CE+PCT (CAl) MSE+PCT (CAl)
D/M M1 M2 M3 Mmax M1 M2 M3 Mmax
Total .0(-0.21) 39.5(+1.2) 41.1(+20.7) 37.6(+3.7) 37.4(+6.9) 34.7(+2.5) 36.4(+10.3) 34.3(+8.3)
D1 53.37(-2.66) 50.8(-1.9) 50.5(+20.9) 46.9(+3.1) 56.50(+6.04) 49.8(+0.3) 52.6(+14.5) 37.6(+0.3)
D2 37.44(+1.04) 40.4(+2.1) 42.2(+21.8) 37.0(+4.2) 35.99+(9.05) 34.2(+3.1) 38.1(+12.6) 33.8(+5.4)
D3 26.47(-2.83) 32.9(+1.6) 36.0(+21.1) 32.4(+4.0) 25.97(+7.16) 25.8(+3.8) 26.5(+7.5) 32.6(+12.7)
D4 26.55(-0.94) 31.9(+3.4) 33.9(+19.9) 31.8(+4.7) 24.10(+5.56) 25.5(+4.1) 24.9(+7.1) 31.6(+14.3)
D5 23.37(-1.6) 30.4(+3.6) 33.4(+18.7) 31.4(+3.1) 22.05(+2.22) 24.0(+2.8) 24.0(+4.6) 33.1(+17.6)
CS1 44.94(-2.94) 42.69(+6.9) | 34.55(+18.33) | 35.25(+14.47) | 20.59(-4.65) | 19.34(+4.46) | 15.42(+0.95) | 13.06(+0.09)
CE+PCT (CA10) MSE+PCT (CA10)
D/M Ml M2 M3 Mmax Ml M2 M3 Mmax
Total | 38 46.6(+0.15) 50.8(+1.1) 52.5(+2.5) 52.9(-0.4) 58.9(+0.75) 63.3(+0.6) 67.2(+0.6) 68.7(-6.1)
D1 59.73(-1.83) 57.8(-1.8) 50.5(-2.9) 57.9(+1.7) 92.41(+0.65) 82.7(-1.8) 83.5(+2.5) 70.9(-11.9)
D2 47.78(-2.02) 51.4(-0.7) 42.2(-10.3) 51.8(+0.2) 57.76(+4.16) 73.2(+3.3) 76.1(-1.1) 68.2(-9.2)
D3 39.21(+0.33) 47.4(+2.5) 50.5(+2.2) 50.0(-1.4) 41.54(-1.34) 52.2(+1.0) 60.4(-1.0) 68.6(-3.0)
D4 36.25(-1.5) 47.0(+4.5) 50.1(+2.7) 50.4(-1.6) 36.15(-1.89) 47.3(+0.8) 51.4(-0.1) 70.0(+0.6)
D5 35.14(-1.51) 47.0(+8.3) 48.6(+4.8) 49.8(-3.2) 34.03(+1.41) 38.1(+1.0) 44.6(+1.3) 63.8(+0.2)
CS10 | 49.79(-2.45) 47.30(+2.33) | 45.64(+9.97) 46.89(+8.64) 49.63(+4.5) | 36.05(+1.56) | 34.90(+2.04) | 33.79(+0.40)

Table 5: RuleTaker-pro results trained with PCT. In parenthesis, the change caused by PCT is compared to Table 3.

DM M1 M2 M3 M4 M5 CAl MSE MSE+PCT
D1 783(+1.3) | 83.1(+3.2) | 77.5(-2.4) | 77.9(+7.2) | 67.7(+2.8) Model M2 M3 | Mmax | M2 M3 | Mmax
D* | 79.1(+2.3) | 81.7(-0.3) | 82.4(+0.1) | 84.1(+0.5) | 81.1(-1.1) Simple | 33.77 | 2745 | 27.17 | 36.14 | 37.99 | 3501
D2 | 78.93(+1.4) | 79.7(+1.8) | 76.6(-0.1) | 78.0(+7.5) | 68.9(+3.5)
D* | 785(3.1) | 79.7(+0.8) | 77.3(0.9) | 809(+0.9) | 77.7(-0.8) Complex | 24.50 | 19460 | 2023 | 2749 | 2840 | 3076
D3 | 79.1(+0.7) | 80.8(+3.9) | 81.3(+5.1) | 81.3(+2.5) | 78.9(+7.3)
D* | 798(+1.9) | 834(+2.8) | 81.9(+1.2) | 86.2(+3.3) | 82.2(+L6) Table 8: RuleTaker-pro results on Simple and Complex
D4 | 77.7(+0.5) | 77.0(+3.6) | 79.0(+6.6) | 80.8(+2.6) | 82.6(+8.7) : : :
Dt | 774024) | 8146852 | 8023.0) | 85.10654) | 81343 |  Cx¥amples trained with Regression.
D5 71.8(-0.7) | 74.1(+1.6) | 84.1(+14) | 82.7(+5.2) | 88.6(+10)
D* | 80.1(+1.6) | 84.3(+9.1) | 84.3(+5.5) | 86.1(+6.5) | 83.6(+6.8) Mode CE+PCT CE
M2 M3 M5 M2 | M3 M5
D2 +7 +8 +7 -1 +4 +18
Table 6: PCT accuracy of RuleBERT with the change D3 +8 | +6 | +1 -1 | +7 | +10
caused by PCT shown inside the parenthesis. * indi- gg +:; +35 03 g +‘3‘ “;11
cates exclusion of rule’s texts. S35 :3 17 17 0 :2 —

CAl CE CE+PCT

Model | M2 | M3 | Mmax | M2 | M3 | Mmax
Simple | 39.16 | 20.87 | 34.21 | 41.17 | 40.13 | 37.86
Complex | 34.11 | 18.33 | 3230 | 36.66 | 38.02 | 3647

Table 7: RuleTaker-pro results on Simple and Complex
examples trained with Cross Entropy.

fine-tuning it on RuleBERT. This transfer direction
is selected due to the RuleTaker-pro model’s supe-
rior constraint satisfaction. Results are presented
in Table 9, with the left side detailing the improve-
ments in both BA and CS25, confirming the useful-
ness of RuleTaker-pro as a base model. The right
side of the table shows the effects of excluding PCT
to ensure the improvements are not the result of
increased data alone. In this scenario, only lower-
depth results showed improvement, while higher
depths and CS remained unaffected.

5 Conclusion and Future Work

Addressing the problem of reasoning over uncer-
tain rules in textual format, we create a new dataset,

Table 9: Improvements in the binary accuracy (BA)
and constraints satisfaction of RuleBERT models in Ta-
ble 2 after transfer learning from RuleTaker-pro. Trans-
fer learning results are shown for a model trained on
RuleTaker-pro with CE+PCT on the left and CE on the
right of the table.

RuleTaker-pro, extending the limited resources for
studying this issue. We investigate how uncertain
rules can be represented in the text and used by
the models. We propose a novel approach that ex-
plicitly uses the rules of probabilistic reasoning as
constraints in the loss. This approach improves
the performance and reasoning of the backbone
language models. Our experiments on LLMs have
revealed that they struggle to perform probabilis-
tic reasoning in zero-shot and few-shot scenarios,
despite their impressive capabilities. Our future ob-
jective is to develop models that utilize the text of
the rules more effectively and transfer their reason-
ing abilities to more realistic QA domains featuring
uncertainty and more advanced structures of proba-
bilistic reasoning.



6 Limitations

One limitation of our work is the fixed structure of
the rules in our datasets, which limits the model’s
transferability to other domains with more open
forms of explaining probabilistic rules. Another
limitation is that we take a small step to formal-
ize probabilistic reasoning over text. However,
this does not mean the outcome language models
are fully capable of language understanding and
reasoning. Finally, running our models, based on
RoBERTa large while possible, is computationally
expensive, limiting their usage with all our different
settings. This is exacerbated when it comes to uti-
lizing Large Language Models that, in their current
state, are very expensive to use even in zero-shot
and few-shot settings.
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A Appendix

A.1 RuleTaker-pro

In creation of RuleTaker-pro, we utilize 8 different
adverbs of frequency shown in the Table 11. Using
adverbs of frequency improved the Dev binary ac-
curacy consistently in all depths. The results are
shown in Table 10.

CE ML | M2 | M3 | Mmax
With adverbs 96.24 | 9497 | 93.12 | 89.71
With explicit probabilities | 95.78 | 93.71 | 92.52 | 88.01

Table 10: Dev BA for models M1 to Mmax trained with
CE loss.

In order to make a balanced dataset with an equal
number of labels, we generate a random probability
for each rule based on a Gaussian random gener-
ator. Then the adverb with the closest probability
to the generated probability is chosen. The rule
probability generations are generated so that half
of the answers are above and half are below 0.50.

The algorithm to change a logical context to
a probabilistic one is shown in Algorithm 1.
“FIND_ADVERB” function gets a random prob-
ability from O to 100 as input and returns an
adverb to it based on the closest probability
of an adverb in Table 11. In the procedure
“ADD_PROBABLITIES”, a logical context and
question are given as input. Then, in line 6, it
is randomly decided whether or not the final an-
swer to this instance should be above or below 0.50
to ensure balance in the final results of the dataset.
In the rest of the algorithm, until the pre-selected
above or below 0.50 probability for the answer is
achieved, random probabilities would be assigned
to the rules in the context. The random function
that assigns these probabilities is a Gaussian func-
tion with a mean of 40 and std of 60. the random
probabilities are added with the value h, initially
set to depth = 10, and it increases or decreases
slightly to help achieve the desired answer after
reaching failure. h is created based on the depth of
the dataset group to create a balanced average of
answer probabilities. See section A.5 for the final
statistics about the created dataset and their mean fi-
nal answer. Also, a realistic example of the created
dataset is shown and analyzed in section A.8.
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Algorithm 1 Assigning Gaussian-based probabili-
ties to logical rules to crate a probabilistic dataset
while ensuring that the resulting dataset is balanced
with heuristics.

1: function FIND_ADVERB(x)

2: Determine adverb and its associated proba-
bility based on the range of x in Table 11

return adverb

end function

: procedure ADD_PROBABLITIES(c, q,d) >c
is context, g is question and d is the depth of
the dataset group (not the instance)

6: Above0.50 < RANDOM(False, T'rue)
7: h < 10 * depth

8: while not Answer is Above0.50 do

9: new_c = c
10: for each rule in context do
11: p; = RANDOMGAUSS(40,60)+h
12: adverb = FIND_ADVERB(p;)
13: add adverb to new_c

14: Answer < PROBLOG(new_c, q)
15: if Above0.50 then

16: h=h+5

17: else

18: h=h-5

19: end procedure




Adverbs | always | usually | normally | often

sometimes | occasionally | seldom | never

Probability | 1.00 | 090 | 080 | 0.65

0.50 0.30 0.15 | 00

Table 11: The adverb of uncertainty and their respective probabilities that we link to them.

A.2 ProbLog

ProbLog is a tool that allows us to encode prob-
abilistic facts and rules. Then it will calculate
any queries in the context of the defined facts and
rules, which is exactly what we need for RuleTaker-
pro. For example, Table 1’s right column would be
shown in Problog pseudo code in the Figure 1a.

Input: Input:
Dave_is_big . Dave_is_big .
Erin_is_sad. Dave_is_sad .
0.90:: Green :- Big . 0.90:: Green :- Big .
0.80:: Round :- Green . 0.80:: Round :- Green .
0.15:: Round :- Sad . 0.15:: Round :- Sad .
query(Dave_is_round). query(Dave_is_round).
query(Erin_is_round).

Output:
Output:

[(Dave_is_round, 0.762)]
[(Dave_is_round, 0.72),
(Erin_is_round, 0.15)]

(b) Encoding of the Ta-

ble 1’s right column ex-
ample in ProbLog pseudo
code if the second fact is
replaced with “David is
sad.”

(a) Encoding of the Ta-
ble 1’s right column ex-
ample in ProbLog pseudo
code.

A more complicated example would occur when
there is more than one way to reach an inferred
intermediate fact. Imagine that the second fact in
the example of Table 1°s right column is “David is
sad.”. In that case, the probability that “David is
round” would be 0.762 as shown in Figure 1b.

A.3 Training RoOBERTa with RuleBERT’s
Original Setting

The original RuleBERT baseline from (Saeed et al.,
2021) is shown in Table 12. We also train our
models with their settings, both with and without
including the text of the rules. These new results
are shown in Table 13. The text of the rules is still
not useful for the models.

A4 CA25 Accuracy of Intermediate Inferred
Facts

CA25 Intermediate Inferred Facts for M5 is de-
picted in Figure 2. The model is trained for 6
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M1 M2 | M3 M4 | M5
D1 | 86.0 | 88.4 | 88.7 | 88.9 | 88.9
D2 | 655 | 73.0 | 75.1 | 75.0 | 72.0
D3 | 58.1 | 63.6 | 684 | 69.0 | 65.6
D4 | 46.8 | 54.7 | 62.6 | 66.6 | 62.7
D5 | 356 | 496 | 703 | 785 | 744

Table 12: RuleBERT baseline results trained and tested
on different depths (Saeed et al., 2021).

| D/M | M1 | M2 | M3 | M4 | M5 |

D1 76 91 87 91 93
D1* 88 920 88 92 89
D2 76 87 79 83 83
D2* 87 88 77 78 74
D3 67 85 76 76 73
D3* 84 85 73 72 67
D4 66 82 69 63 51
D4* 82 80 65 60 51
D5 53 75 54 34 28
D5* 80 68 44 29 21

Table 13: M shows the maximum depth of the training
data, and D shows the depth of the test data. Rows with
* indicate the exclusion of the text of the rules.

epochs to show the accuracy over time. PCT ac-
curacy remains consistently over 0.90 while the
baseline models accuracy fluctuates and remains
below 0.60.

A.5 RuleTaker-pro depth and data
distribution

Statistics about the splits, their unique context and
questions, and their balanced average answer pro-
duced by our algorithm are shown in Table 14.

RuleTaker-pro depth distribution for all depths
and the number of True and False labels are shown
in Table 15.

A.6 Training Parameres

The PCT algorithm pseudo-code is shown in Algo-
rithm 2. Lines 2-4 apply the taskloss, and lines 5-13
apply constraints loss and update the A;. The rate
at which ); is updated depends on PCT variable
(cv) decayed at each iteration’s end.

To train RuleTaker-pro, we use ROBERTa Large
for four epochs with a learning rate of 1e—5. When
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Figure 2: The CS25 of intermediate inferred facts over
6 Epochs of training for MS5.

Split | Depth | Total Row | Unique Query | mean Answer
Train 1 13549 807 0.49
Train 2 16145 810 048
Train 3 19960 812 048
Train 5 23805 812 0.50
Dev 1 1946 551 0.50
Dev 2 2290 586 0.48
Dev 3 2837 629 048
Dev 5 3412 694 0.50
Test 1 3930 690 0.49
Test 2 4592 718 0.48
Test 3 5687 765 048
Test 5 6829 789 0.50

Table 14: RuleTaker-pro Dataset Statistics

we use PCT, the alpha (PCT variable) varies from
1.0 to 0.001 depending on the depth of the training
dataset with higher depths training with smaller
alphas.

To train RuleBERT, we also use ROBERTa Large
for four epochs, but we freeze the first 22 layers of
the transformer. The learning rate varies between
numbers 1e — 6 for higher depth datasets with more
examples and 2e—6 for lower depth datasets. When
using PCT, the alpha is 0.01 for lower depths (1-3)
and 0.001 for higher depths (4-5). In Table 16, the
effect of alpha on the PCT Dev BA is shown. As
shown, a higher alpha will help the model reach
higher accuracy earlier. However, the best result is
achieved with an alpha of 0.01.

A.7 Additional RuleTaker-pro Results

In Table 17, The binary results for RuleTaker-pro
trained with MSE and CE is shown.

A.8 Error Analysis Examples

We analyze an example shown in Figure 3 that ben-
efited from PCT. Initially, the base model predicted
0.50 for the final answer, which was incorrect, as
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Algorithm 2 PCT algorithm

1: for each batch in data do

2 Apply model on batch to get the logits

3 Calculate Taskloss (CE/MSE/L1loss)

4 Backward propagate the loss

5 if Not warm-up iteration then

6: Get the next constraints batch

7 Apply model on constraints batch

8 c+0 > initialize constraints loss
9: for each constraint do
10: l < abs(q—p1 X pa... X pp X Pr)
11: cl < cl+1x A
12: )‘j —axl
13: Backward propagate the cl
14: Take optimizer step,and Reset gradients
15: decay

the answer should have been 0.85. After training
the model using PCT, the model correctly predicted
0.85. This demonstrates the potential of the PCT
model for incorporating additional constraints in
the inference process. However, it should be noted
that this is an ideal case that may not always be
reproduced in practice. The PCT model can be
adapted to alter the probability of the depth?2 fact to
satisfy the constraint if needed. In other scenarios,
the model may keep the 0.50 prediction for depth
3 and change the prediction for depth 2. In this
case, the model satisfies the constraint, yet the final
prediction is incorrect. In the worst case, the model
may predict 0.0 for all elements and still satisfy the
constraint.

It has been observed that the predicted probabili-
ties of the PCT models are lower on average than
those of the baseline models. This is due to the fact
that lower predicted probabilities make it easier
to satisfy the constraints, and thus, even models
that improve overall accuracy tend to have lower
average predicted probabilities.

A.9 LLM prompt instructions and additional
results

To effectively evaluate LLMs like, we adjust our
approach with our datasets to make them suitable
for zero-shot and in-context settings for generative
models. These adaptations involved adding a text
explaining the task before the context. For Rule-
BERT, we use the following explanation, “Answer
the following logical probabilistic question with
only one word, True or False.” and add the proba-



D0 True | DO False | DI True | DI False | D2 True | D2 False | D3 True | D3 False | D4 True | D4 False | D5 True | DS False
MI Training Dataset | 10626 | 10719 | 6422 0452 0 0 0 0 0 0 0 0
M2 Training Dataset | 9590 | 9485 | 4613 | 4465 | 3441 | 3469 0 0 0 0 0 0
M3 Training Dataset | 7441 7650 | 4438 am 2930 2949 2597 2642 0 0 0 0

Mmax Training Dataset | 2616 27120 3802 3692 2442 2520 2118 2026 1852 1858 1761 1734

Table 15: RuleTaker-pro depth distribution for all depths and the number of True and False labels.

Depth3 Epochl | Epoch2 | Epoch3 | Epoch4 | Epoch5 | Epoch6
Baseline 49 70 77.95 75.85 70.925 72.62
PCT with o = 0.1 49 79.15 78.42 76.9 77 64.51
PCT with o = 0.01 49 79.32 80.87 79.32 78.17 78.57
PCT with o = 0.001 49 70.90 78.55 80.85 78.55 78.75

Table 16: Accuracy obtained using PCT during training with different hyper-parameter (o) for depth 3 of reasoning
for 6 epochs on RuleBERT dataset. Normally we train our models for 4 epochs, but here we use 6 epochs to observe
the learning process better.

\ \ CE Loss \ MSE Loss |

BA | ML | M2 | M3 |Mmax | ML | M2 | M3 | Mmax
Total | 7693 | 82.65 | 88.74 | 9L05 | 7619 | 8484 | 87.73 | 9139
DI | 97.19 | 9485 | 9218 | 9339 | 9728 | 9592 | 92.64 | 94.33
D2 | 7558 | 89.11 | 9126 | 9126 | 7441 | 9091 | 9188 | 9174
D3 | 6819 | 77.35 | 8942 | 91.00 | 4288 | 81.93 | 8859 | 90.34
D4 | 65.16 | 7135 | 8493 | 8870 | 38.04 | 7438 | 81.82 | 89.17
D5 | 5861 | 65.05 | 80.96 | 8831 | 5770 | 6696 | 7643 | 8821

MSE | MI M2 | M3 | Mmax | MI | M2 | M3 | Mmax
Total | 0.1574 | 0.1278 | 0.0965 | 0.0716 | 0.4693 | 0.6585 | 0.6298 | 0.0716
DI | 0.0866 | 0.0996 | 0.1076 | 0.0983 | 0.1992 | 0.0173 | 0.0190 | 0.0983
D2 | 0.1939 | 0.1261 | 0.1065 | 0.0876 | 0.1902 | 0.0257 | 0.0247 | 0.0876
D3 | 0.2352 | 0.1826 | 0.1149 | 0.0818 | 0.1915 | 0.0698 | 0.0313 | 0.0818
D4 | 0.2511 | 0.2003 | 0.1281 | 0.0710 | 0.1910 | 0.0982 | 0.0423 | 0.0797
D5 | 03082 | 0.2436 | 0.1428 | 0.710. | 0.1963 | 0.1237 | 0.0618 | 0.0710
LI | ML | M2 | M3 |Mmax | ML | M2 | M3 | Mmax
Total | 02505 | 0.2216 | 0.1903 | 0.1664 | 0.3628 | 0.1055 | 0.0798 | 0.1664
DI | 0.2004 | 0.2138 | 02236 | 02175 | 0.3693 | 0.0525 | 0.0581 | 0.2175
D2 | 03118 | 0.2434 | 02243 | 02076 | 0.3638 | 0.0770 | 0.0786 | 0.2076
D3 | 03528 | 0.3010 | 0.2316 | 0.1972 | 03642 | 0.1570 | 0.1032 | 0.1972

Model | GPT3.5 | GPT3.5*% | GPT4

D4 | 03672 | 03182 | 02443 | 0.1960 | 03659 | 02090 | 0.1326 | 0.1960 Depthl | 19% 43% 29%

D5 | 04136 | 03519 | 02495 | 0.1761 | 03737 | 0.2480 | 0.1627 | 0.1761 Depth2 58% 53% 46%
Depth3 58% 58% 60%

) . Depth4 51% 56% 46%

Table 17: The Binary accuracy, MSE and L1 of the Depths 56% 3% 337

baseline model trained and tested on the RuleTaker-pro

dataset at different depths.
Table 18: RuleBERT BA results are show for GPT3.5

and GPT4. * indicates few-shot setting.
bility of the rules to their text. For RuleTaker-pro,
we use “Answer the following logical probabilistic
question in the format .##, which is the probability
of the question asked rounded to 2 decimals, for
example, .13%”. After this text, we provide the
context and pose the hypothesis as a question.

To test RuleBERT in LLMs, we included the
probability of the rules in the text; Otherwise, the
model has no way of extracting them. The results
are shown in Table 18.
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Context:

The cow is round. Always, If something is nice and round then it
does not visit the lion. The mouse visits the cow. The rabbit does
not see the cow. The lion is round. The rabbit is big. The cow likes
the rabbit. The lion likes the rabbit. Always, If something is big and
it does not see the rabbit then it visits the mouse. The mouse is
green. Usually, If something visits the lion then it visits the
mouse. Always, if something is green, then it visits the lion.
Always, if the rabbit is big, then the rabbit is green.

Hypothesis:
The rabbit visits the mouse. (Depth 3), P3 = 85%

Required Intermediate Facts:

The rabbit visits the lion. (Depth 2), P2 = 100%
The rabbit is green. (Depth 1), P1 = 100%

The rabbit is big. (Depth 0), PO = 100%

Base model:

The rabbit visits the mouse. (Depth 3), P3 = 50%

The rabbit visits the lion. (Depth 2), P2 = 100%
Constraint:

P2*85% # P3 (violated Constraint and Incorrect Answer)

PCT Model The Ideal Case:

The rabbit visits the mouse. (Depth 3 ), P3 = 85%

The rabbit visits the lion. (Depth 2 ), P2 = 100%
Constraint:

P2*85% = P3 (Satisfied Constraint and Correct Answer)

PCT Model The Problem Case:

The rabbit visits the mouse. (Depth 3), P =50 %

The rabbit visits the lion. (Depth 2 ), P =59 %
Constraint:

P2*85% = P3 (Satisfied Constraint and Incorrect Answer)

PCT Model The Worst Case:

The rabbit visits the mouse. (Depth3),P=0%

The rabbit visits the lion. (Depth 2),P=0%

Constraint:

P2*85% = P3 = 0 (Satisfied Constraint and Incorrect Answer)

Figure 3: In the given example, the fact “The rabbit
visits the lion.” can be inferred from the context with
a probability of 1.00 at depth 2. Both the base model
and the PCT model accurately predicted the probability
of this fact. However, only the PCT model took into
account the additional bold rule in the text, which led
to an 0.85 probability for the hypothesis.
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