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ABSTRACT

While Graph Neural Networks (GNNs) and Large Language Models (LLMs) are
powerful approaches for learning on Text-Attributed Graphs (TAGs), a compre-
hensive understanding of their robustness remains elusive. Current evaluations
are fragmented, failing to systematically investigate the distinct effects of textual
and structural perturbations across diverse models and attack scenarios. To ad-
dress these limitations, we introduce a unified and comprehensive framework to
evaluate robustness in TAG learning. Our framework evaluates classical GNNs,
robust GNNs (RGNNs), and GraphLLMs across ten datasets from four domains,
under diverse text-based, structure-based, and hybrid perturbations in both poison-
ing and evasion scenarios. Our extensive analysis reveals multiple findings, among
which three are particularly noteworthy: 1) models have inherent robustness trade-
offs between text and structure, 2) the performance of GNNs and RGNNs depends
heavily on the text encoder and attack type, and 3) GraphLLMs are particularly
vulnerable to training data corruption. To overcome the identified trade-offs, we
introduce SFT-auto, a novel framework that delivers superior and balanced robust-
ness against both textual and structural attacks within a single model. Our work
establishes a foundation for future research on TAG security and offers practical
solutions for robust TAG learning in adversarial environments. Our code is avail-
able at: https://github.com/Leirunlin/TGRB.

1 INTRODUCTION

Text-attributed graphs (TAGs), which integrate structural links with rich text features, are founda-
tional to applications from social networks to citation graphs (Wu et al., 2023; Wang et al., 2025a).
While Graph Neural Networks (GNNs) have long been the prevailing approach for learning on
TAGs, Graph Large Language Models (GraphLLMs) are emerging as a compelling paradigm, lever-
aging their advanced reasoning capabilities directly on graph-structured text. However, the robust-
ness of these models remains a critical challenge. For instance, in high-stakes domains such as social
and financial networks, adversaries can manipulate both graph structures and textual content, sig-
nificantly degrading model performance. For example, adversaries can deploy deceptive social bots
with engineered biographies and network patterns to influence public opinion (Wang et al., 2023).
Similarly, in recommendation systems, attackers may craft fake user profiles with misleading textual
attributes to promote targeted items (Nguyen et al., 2024). This dual vulnerability makes it uniquely
difficult to secure TAG learning.

Despite its importance, existing robustness analyses remain fragmented. Early analyses of GNNs
and Robust GNNs (RGNNs) relied on naive embeddings, largely overlooking the rich semantic
information in natural language (Zheng et al., 2021). Conversely, recent attempts start explorations
of the robustness of GraphLLMs, yet lack comprehensive comparisons among model families and
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Figure 1: The overall framework for evaluating the robustness of TAG learning.

focus exclusively on limited attack settings (Guo et al., 2024a; Zhang et al., 2025a). This fragmented
landscape has left the field without a comprehensive analysis of robust TAG learning.

To address this critical void, we perform a large-scale, systematic robustness analysis on TAGs. The
overall framework is provided in Figure 1. Our evaluation spans ten datasets across four domains
and a wide spectrum of models, including classical GNNs, RGNNs, and GraphLLMs. By subjecting
these models to a unified threat model, we provide a unified evaluation methodology that serves as a
foundation for understanding model vulnerabilities across diverse architectures and attack settings.

The extensive evaluation yields a series of empirical insights: 1) We uncover a crucial text-structure
robustness trade-off, where models excel at defending against either textual or structural attacks but
not both simultaneously. 2) We find that previously underrated methods, such as GNNGuard (Zhang
& Zitnik, 2020), achieve surprising performance when re-evaluated in TAG settings with advanced
text encoders. 3) GraphLLMs demonstrate higher vulnerability to poisoning attacks compared to
GNNs. Specifically, when the training data is compromised, GraphLLMs experience a more signif-
icant decline in performance than GNNs. 4) Directly integrating existing robust GNN designs into
LLM architectures fails to resolve the fundamental robustness trade-off.

Motivated by the proven effectiveness of noise-injection (Ennadir et al., 2024) and similarity-
filtering strategies (Zhang & Zitnik, 2020; Hou et al., 2024) in RGNNs, we explore their adapta-
tion to GraphLLMs to address the text-structure trade-off. While these variants show effectiveness
against either textual or structural perturbations individually, they still struggle to achieve balanced
robustness against both types of attacks. To achieve balanced robustness against both attacks, we
propose a novel SFT (supervised fine-tuning) framework, SFT-auto, which employs multi-task train-
ing with a detection-prediction pipeline. This approach leverages the superior reasoning capabilities
of LLMs to detect anomalies and make predictions within a single model. Our experiment results
show that SFT-auto exhibits superior robustness in both modalities compared to the baselines.

To summarize, our main contributions are as follows:

• A Comprehensive Evaluation Framework. We propose a systematic robustness evaluation for
learning in TAGs that benchmarks a wide spectrum of models, from classical GNNs, RGNNs, to
GraphLLMs, against a diverse set of textual and structural attacks.

• Abundant Empirical Insights. Our large-scale analysis reveals critical vulnerabilities and trade-
offs in robust TAG learning. We uncover a text-structure robustness trade-off, find that simple
RGNNs with advanced text encoders can be surprisingly effective, and demonstrate the vulnera-
bility of GraphLLMs to poisoning attacks.
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• An Effective Defense Framework. To overcome the identified trade-off, we propose the SFT-
auto model. It leverages the reasoning capabilities of LLMs to achieve superior and balanced
robustness against both textual and structural attacks.

2 PRELIMINARIES: BACKGROUND AND EVALUATION PROTOCOL

2.1 BACKGROUND

We define a TAG as G = (V, E , {si}Ni=1), where V is the set of nodes, E is the set of edges, and N is
the number of nodes. The adjacency matrix is A ∈ {0, 1}N×N , with each node vi ∈ V associated
with a sequential text si. Following prior work on graph adversarial learning (Jin et al., 2021; Zheng
et al., 2021), we focus on the task of node classification, where the goal is to assign each node one
of C possible class labels. Denote the label vector as y ∈ {0, . . . , C−1}N , the learning objective is
to predict labels of target nodes ytarget, given G and ground-truth labels ytrain. In the transductive
setting, all nodes are observed during training, while in the inductive setting, the model is required
to generalize to previously unseen test nodes. Existing methods for TAG node classification include
GNNs and GraphLLMs, denoted as a model f({si}Ni=1,A). For GNNs, the model f first employs
a text encoder to transform each si into a node-level feature matrix X, and then processed jointly
with the adjacency matrix A. In contrast, some of the GraphLLMs directly input the raw node texts
{si}Ni=1 into the model f and perform classification via prompt instructions.

Graph Adversarial Attacks and Defenses. In adversarial settings, an attacker seeks to degrade the
performance of the defender’s model on a target set of nodes Vtarget. A typical graph attack is the
Graph Modification Attack (GMA) (Zügner & Günnemann, 2019; Xu et al., 2019), which perturbs
either the graph structure or the node texts. The objective of GMA is:

min
A′, {s′i}N

i=1

Acc
(
fθ({s′i}Ni=1,A

′), ytarget
)
, s.t.∥A′ −A∥0 ≤ 2∆struct and

N∑
i=1

1{s′i ̸= si} ≤ ∆text,

where A′ denotes the perturbed adjacency matrix, {s′i}Ni=1 represents the perturbed node texts,
Acc(·) is the evaluation metric (e.g., accuracy) on the target nodes Vtarget, and ∆struct and ∆text are
the budget on the total number of perturbations. Specifically, ∥A′ −A∥0 measures the number of
edge modifications (additions or deletions), and

∑N
i=1 1{s′i ̸= si} counts the number of nodes with

modified texts. Besides GMA, other paradigms targeting TAGs include Text-level Graph Injection
Attacks (Text-GIAs), where new adversarial textual nodes are introduced into the graph, forming
harmful connections to existing nodes (Lei et al., 2024).

Attacks can be categorized by their timing: poisoning attacks modify the training data to compro-
mise the learned model, while evasion attacks alter test inputs to fool a fixed model at inference
time. For the defender, the key objective is to maintain high performance even when the data may
be under attack. Efforts have been made via RGNN design (Jin et al., 2021) and LLM as graph data
purifiers (Zhang et al., 2025b).

Table 1: Comparisons between evaluations of robustness in TAG learning.
Benchmark Data Baselines Evaluation Settings

Num.
Datasets

Num.
Domains GNNs RGNNs GraphLLMs Attack

Types Settings Encoder
Analysis

Adaptive
Attack

GRB (Zheng et al., 2021) 5 2 ✓ ✓ × GIA Evasion & Inductive × ×
Gosch et al. (Gosch et al., 2023) 8 4 ✓ ✓ × GMA Evasion & Both × ✓
Guo et al. (Guo et al., 2024a) 6 3 ✓ × ✓ GMA+Text Evasion & Transductive ✓ ×
TrustGLM (Zhang et al., 2025a) 6 2 × × ✓ GMA+Text+Prompt Evasion & Transductive × ×
Olatunji et al. (2025) 4 1 × × ✓ GMA+Text Both & Transductive × ×
Ours 10 4 ✓ ✓ ✓ GMA+Text+Text-GIA All ✓ ✓

2.2 EVALUATION PROTOCOL

Extensive evaluations of robustness in TAG learning have been developed. However, their analy-
ses are limited, particularly with respect to data, baselines, and evaluation settings. As shown in
Table 1, in terms of data, previous works suffer from limited dataset diversity and narrow domain
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coverage, with some focusing exclusively on specific graph types or application domains. Regarding
baselines, no previous work has achieved comprehensive integration of all three major graph learn-
ing paradigms (GNNs, RGNNs, and GraphLLMs), resulting in fragmented evaluation landscapes.
Finally, evaluation settings in existing evaluations are often constrained by limited attack diversity.

To address these limitations, we include: (1) an extensive dataset diversity spanning multiple do-
mains and graph types; (2) a unified comparison supporting major baseline categories (GNNs,
RGNNs, GraphLLMs); and (3) extensive evaluation settings with comprehensive metrics. The de-
tailed design of the evaluation follows the principles below:

• Deploy sufficiently strong attacks. We found that some attacks, such as Mettack (Zügner &
Günnemann, 2019) and word-level textual attacks, don’t generate sufficiently strong attacks or
have poor transferability. Yet, weak perturbations fail to differentiate defense models, as per-
formance rankings become dominated by clean accuracy rather than adversarial resilience (see
Appendix D.4). Therefore, we employ more effective attacks with a sufficiently high perturbation
ratio in the main paper to ensure a higher degree of differentiation. Results with smaller ratios are
deferred to Appendix J.4.

• Ensure fair baseline comparison. We restrict evaluation to models with comparable clean per-
formance to prevent stronger backbones from appearing artificially robust. Methods like Instruct-
GLM, GPT zero-shot, and GraphPrompt in (Guo et al., 2024a; Zhang et al., 2025a; Olatunji et al.,
2025) significantly underperform supervised baselines, invalidating robustness comparisons. Fol-
lowing established practices (Hou et al., 2024; Wu et al., 2025; Wang et al., 2025b), we select
competitive GNNs, RGNNs, and GraphLLMs as baselines. The baselines are summarized in
Table 2. The details of each baseline are provided in Appendix E. 1

• Adopt realistic evaluation protocols. Prior benchmarks employ misaligned settings that compro-
mise validity. As stated in (Gosch et al., 2023), poisoning attacks naturally pair with transductive
learning, while evasion attacks suit inductive evaluation. Protocol misalignments enable trivial
memorization-based defenses, undermining meaningful assessment. We strictly align attack types
with appropriate learning paradigms across all experimental phases.

Data. We evaluate on ten datasets spanning four distinct domains following the LLMNodeBed
benchmark (Wu et al., 2025): academic networks (Cora (Sen et al., 2008), CiteSeer (Giles et al.,
1998), PubMed (Yang et al., 2016), ArXiv (Hu et al., 2020)), web links (WikiCS (Mernyei &
Cangea, 2020)), social networks (Instagram, Reddit (Huang et al., 2024)), and e-commerce (His-
tory, Photo, Computer (Yan et al., 2023)). We adopt a supervised 60/20/20 split across training/-
validation/testing for the inductive setting and a semi-supervised 10/10/80 split for the transductive
setting. All datasets are undirected graphs. Details of datasets are provided in Appendix C.

Threat Model. Our evaluation assesses perturbations to the graph structure, node texts, and also
includes results against Text-GIAs (in Appendix F). We evaluate both poisoning attacks and evasion
attacks. Our primary focus is on transfer attacks where the attacker has access to the victim’s data
but not their model directly. The perturbed graph is then transferred to test the defender’s model,
simulating a practical scenario where defenders can deploy their custom defense model. The spe-
cific attack configurations are detailed in the subsequent experimental sections, with comprehensive
details provided in Appendix D. We also explore adaptive attacks in Appendix H.

Other Setups. We employ accuracy as the evaluation metric. Hyperparameters for all GNNs
and RGNNs are optimized based on validation set performance. Following LLMNodeBed (Wu
et al., 2025), we adopt RoBERTa (Liu et al., 2019) as the text encoder for GNN-based methods and
Mistral-7B (Jiang et al., 2023) as the backbone for GraphLLMs, as these configurations yield opti-
mal performance. All experiments are conducted across three independent runs with random data
splits, except for ArXiv, which uses a single official split.

3 EVALUATION RESULTS

In this section, we present evaluation results against structural and textual attacks. Due to space lim-
itations, we report the average rank, which is derived for each method by averaging its ranks across

1We move the evaluation of specific variants like GOOD-AT, GPR-GAE, and GPRGNN-AT to Appendix K.
These supplementary results serve as an extended verification of our core findings.
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Table 2: Categorization of selected defense models.
Taxonomy Subcategory Selected Defenses / Models

Basic models Spatial / Message passing GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018)
Spectral APPNP (Klicpera et al., 2019), GPRGNN (Chien et al., 2021)

Improving training Robust training GRAND (Feng et al., 2020), NoisyGCN (Ennadir et al., 2024),
Adversarial Training Gosch et al. (2023)

Improving architecture

Probabilistic RobustGCN (Zhu et al., 2019)
Similarity-based GNNGuard (Zhang & Zitnik, 2020)
Robust aggregation ElasticGNN (Liu et al., 2021), SoftmedianGDC (Geisler et al.,

2021), RUNG (Hou et al., 2024)
Others EvenNet (Lei et al., 2022) (Spectral), GCORN (Abbahaddou

et al., 2024) (Weight Regularization),

Improving structure Unsupervised Jaccard-GCN (Wu et al., 2019), Cosine-GCN (Mujkanovic et al.,
2022)

Supervised ProGNN (Jin et al., 2020), Stable (Li et al., 2022b), GOOD-AT Li
et al. (2024), GPR-GAE Lee & Park (2025)

GraphLLMs Instruction Tuning & Align GraphGPT (Tang et al., 2024), SFT (w/ nei.) (Wang et al.,
2025b), LLaGA (Chen et al., 2024)

all datasets where it has valid results, with full numerical results available in Appendix J. We adopt
rank-based evaluation because averaging raw accuracies across datasets can be misleading due to
scale differences, missing results on large-scale graphs, and strong dependence on clean accuracy.
Ranking provides a normalized, dataset-agnostic comparison that offers a clearer comparison. Sim-
ilarly, the results about hybrid and adaptive attacks are deferred to Appendix F and H.

For structural attacks, in the inductive and evasion settings, we employ PGD (Xu et al., 2019) for
small-scale datasets and GRBCD (Geisler et al., 2021) for larger ones with a perturbation ratio
of 0.20. We use GCN (Kipf & Welling, 2017) as the surrogate model with BoW embeddings to
generate victim graphs, and use the generated graphs as the test victim graphs. For transductive
structural attacks, we adopt HeuristicAttack (Li et al., 2023) with a perturbation ratio of 0.30, and
exclude Computer and ArXiv due to scalability issues.

We evaluate performance against textual attacks using a novel LLM-based attack. For evasion at-
tacks, we substitute 40% of the test set nodes with LLM-generated text that differs from the original
content. For poisoning attacks, we replace 80% of the training set nodes. Attack algorithm details
are provided in Section D. Due to scalability concerns, we exclude the Computer and ArXiv datasets
for evasion attacks, and additionally exclude the Photo dataset for poisoning attacks. We do not use
gradient-based or unnoticeable word-level textual attacks, as these methods have been shown to have
poor transferability across different models, as discussed in Appendix D.4.

3.1 AGAINST STRUCTURAL ATTACKS
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Figure 2: Comparison of robustness against structural at-
tacks. Ranks are averaged across datasets (excluding fail-
ures) based on: 1) absolute accuracy under attack (lower
rank is better), and 2) relative accuracy drop from the clean
baseline (lower drop rank is better).

The results against structural attacks
are shown in Figure 2.

GraphLLMs show Inherent Ro-
bustness against Non-adaptive
Inductive/Evasion Attacks. Even
without defense mechanisms,
SFT-neighbor outperforms most
RGNNs. GraphGPT, which also
employs instruction tuning, exhibits
comparable strong performance,
reflecting GraphLLM’s superior
robustness against structural attacks.
Notably, LLaGA shows relatively
weaker robustness despite being
a GraphLLM. Although LLaGA
surpasses GraphGPT in clean perfor-
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mance, it proves more vulnerable to structural attacks. This suggests that alignment-based methods,
which explicitly utilize graph embeddings to align graph and text spaces, are more susceptible
to structural attacks (similar to GCNs), while instruction-tuning models adopt more conservative
neighbor utilization strategies.

Simple Methods Can Shine in TAGs through Advanced Text Encoders. Despite their simplic-
ity, RGNNs from earlier research can deliver surprisingly strong performance when re-evaluated in
TAGs. For instance, GNNGuard, as an early and straightforward RGNN that leverages threshold-
based filtering to defend against adversarial attacks, achieves top-tier performance against the in-
ductive/evasion attacks. This contrast stems from prior works that have overlooked the importance
of text embeddings and have only evaluated RGNNs on shallow embeddings, such as BoW or TF-
IDF (Lei et al., 2022; Hou et al., 2024). In the context of TAGs, methods like GNNGuard can be
revitalized to achieve near-SOTA robustness. A detailed analysis is provided in Appendix G.

In fact, by fully harnessing textual features through dataset- and embedding-specific filtering, we
can do even better. In Appendix G.3, we propose Guardual, a novel extension that eliminates the
reliance of GNNGuard on threshold hyperparameters. The results show that Guardual’s adaptive
filtering mechanism makes it the leading RGNN in the structural evasion setting. These findings
underscore that strategic text processing in TAGs fundamentally drives RGNN performance.

Spectral GNNs Show Superior Robustness against Poisoning Structural Attacks. As shown in
Figure 2 (right), spectral methods, such as EvenNet, APPNP, and GPRGNN, demonstrate superior
performance against poisoning attacks in the transductive setting. This phenomenon complements
the findings of Gosch et al. (2023) in the evasion/transductive setting, where the robust diffusion
process in spectral methods enables flexible use of whole higher-order neighborhoods, thereby en-
hancing robustness. Structure learning methods, such as ProGNN, also exhibit promising results,
though their computational overhead remains a significant practical limitation. In contrast, the per-
formance of GraphLLMs starts to decline. While SFT-neighbor is robust against evasion attacks, the
perturbations introduced during training result in a notable performance drop. Among GraphLLMs,
LLaGA remains the most vulnerable due to its greater reliance on structure.

3.2 AGAINST TEXTUAL ATTACKS
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Figure 3: Comparison of robustness against textual at-
tacks. Ranks are averaged across datasets (excluding fail-
ures) based on: 1) absolute accuracy under attack (lower
rank is better), and 2) relative accuracy drop from the clean
baseline (lower drop rank is better).

The results against textual attacks are
shown in Figure 3.

Simple GNNs Excel Advanced
Baselines. When confronting textual
attacks in the evasion setting, the
relative robustness rankings undergo
a notable shift. While methods like
GNNGuard and RUNG demonstrate
superior performance against struc-
tural attacks, as shown in Figure 2,
they exhibit pronounced vulner-
abilities to textual perturbations.
SFT-neighbor and GraphGPT also
suffer from significant performance
degradation. In contrast, even naive
models, such as GCN and GAT,
exhibit the desired robustness against these textual attacks.

GraphLLMs Struggle Against Textual Poisoning. For poisoning attacks, both GNNs and RGNNs
exhibit remarkable robustness. Even when 80% of the training nodes’ text is replaced, GNNs can
still benefit from the transductive learning paradigm and achieve accurate predictions by aggregating
information from nodes’ neighbors. Under text poisoning attacks, LLM-based methods experience
a significant decline in performance. For example, on the CiteSeer dataset, SFT-neighbor’s ac-
curacy drops by 25%, while most GNNs suffer only a 5%-10% decrease (see Tables 39 and 45
for detailed accuracy). This suggests that GraphLLMs are more vulnerable to perturbations in the
training set, relying heavily on high-quality training text to maintain strong performance.
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4 THE TEXT-STRUCTURE TRADE-OFF

In Section 3, we found that in the inductive/evasion setting, the structurally robust models fail against
textual attacks (e.g., GNNGuard, SFT-neighbor); and vice versa (e.g., NoisyGCN). Building on this,
we now explore how vulnerabilities in one dimension relate to the other.
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Figure 4: The text-structure robustness trade-off. (Left) SFT-auto uniquely balances this trade-off,
while baseline models are polarized towards either text or structure robustness. (Right) On text-
friendly datasets (e.g., PubMed), models are less reliant on structure and thus less vulnerable to its
perturbation. The opposite holds for structure-critical datasets (e.g., Computer, Photo).
Architecture Effect. As shown in Figure 4 (Left), models with different architectures exhibit a
clear text-structure robustness trade-off. Structure-oriented architectures such as LLaGA and vanilla
GNNs are highly vulnerable to structural perturbations yet remain comparatively stable under textual
attacks. By contrast, text-oriented models like SFT-neighbor and GraphGPT, as well as RGNNs
designed to enhance structural robustness, show strong resistance to structural attacks but collapse
under textual ones. These comparisons highlight the inherent bias of different backbones: classifiers
are generally robust to either structure or text perturbations, but rarely to both.

Dataset Effect. Dataset characteristics critically shape the text-structure trade-off. As shown in
Figure 4 (Right), the benefit of neighbor information differs markedly across datasets, directly im-
pacting vulnerability. In the top-right panel, SFT variants gain substantial accuracy from neighbors
on structure-critical datasets such as Computer/Photo, but little on text-friendly datasets like
PubMed. This reliance pattern explains the robustness outcomes in the bottom-right panel: mod-
els relatively resistant to structural perturbations (e.g., GPRGNN, GraphGPT, SFT-neighbor) expe-
rience only minor drops on text-friendly datasets, yet still suffer significantly on structure-critical
ones. Thus, while the trade-off is influenced by model design, its manifestation heavily depends on
the nature of the datasets.

5 ADDRESSING THE TEXT-STRUCTURE ROBUSTNESS TRADE-OFF

The text-structure trade-off remains a key challenge, with no current model effectively balancing
both aspects. In this section, we explore methods to overcome this limitation.

5.1 ATTEMPTS BY BUILDING ROBUST GRAPHLLMS

To address the text-structure trade-off, we explore noise-injection and similarity-filtering strategies
inspired by existing RGNNs, adapting them for GraphLLMs.

Noise-Injection Methods. Drawing inspiration from GRAND (Feng et al., 2020) and
NoisyGCN (Ennadir et al., 2024), we inject targeted perturbations during training to reduce the
distribution gap between training and adversarial test conditions. We implement three variants:
-noise (structural noise injection), -noisetxt (textual noise injection), and -noisefull

7



Published as a conference paper at ICLR 2026

(combined noise types). All methods use a 10% noise ratio. GraphGPT-noisetxt and GraphGPT-
noisefull are neglected due to poor clean performance.

Figure 5 demonstrates that targeted noise injection provides defense against corresponding attack
types. The -noise variant helps improve structure robustness, while -noisetxt helps improve
textual robustness. However, when the attack type is unknown, significant trade-offs emerge. No-
tably, -noisefull fails to achieve simultaneous defense against both attack types. None of the
variants shows better results against both attacks. This limitation restricts noise-injection methods
to specialized defenses for specific types of attacks.
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Figure 5: Performance of robust variants against
base GraphLLMs. Points represent improvements
over base models against structural (x-axis) and
textual (y-axis) evasion attacks.

Similarity-Filtering Methods. Inspired by
the similarity-filtering strategy of GNNGuard,
we propose two variants: -simf, which em-
ploys edge filtering similar to GNNGuard, and
-simp, which modifies the SFT prompt to
guide adaptive reliance—leveraging neighbor-
hood information when text is unreliable and
depending on textual content when structure is
compromised. Figure 5 reveals that -simf ex-
hibits behavior analogous to GNNGuard, pro-
viding effective defense against structural at-
tacks but remaining vulnerable to text-based
perturbations. In contrast, -simp yields mod-
est robustness improvements without signifi-
cant performance gains. This suggests that sim-
ple instruction modifications are insufficient for
LLMs to learn effective defenses that break the
identified trade-off and learn effective defenses.

5.2 AUTO FRAMEWORK FOR ADVERSARIAL ATTACK DETECTION AND RECOVERY

The preliminary attempts highlight the fundamental challenge of achieving balanced robustness
against both types of attacks. As a solution, we propose SFT-auto, a novel model that leverages
the reasoning abilities of LLMs to defend against both textual and structural adversarial attacks.

Training. The training phase employs a principled data augmentation strategy to endow the
model with attack recognition and recovery capabilities. We use an adaptive attack ratio r =
min(1/|C|, 0.15) to ensure balanced detection across datasets with varying class distributions. Train-
ing data comprises three distinct types: Normal samples (Snormal) preserve original node-neighbor
pairs to maintain standard classification ability; Attack samples (Sattack) contain nodes with text de-
liberately replaced by content from different-class nodes, labeled as “text attacked” to teach attack
recognition; and Recovery samples (Srecovery) remove center text entirely, compelling the model to
leverage neighbor information for robust prediction. This training paradigm enables the LLM to
handle (|C|+ 1)-class attack detection and |C|-class recovery tasks through specialized prompts.

Inference. The inference phase implements a three-stage adaptive pipeline that dynamically re-
sponds to detected attack patterns. Stage 1: Attack Detection: The LLM identifies text-attacked
nodes through an extended (|C| + 1)-dimensional classification space, while structure attacks are
detected via embedding-based similarity analysis. Nodes exhibiting low cosine similarity (< 0.5)
to over half their neighbors are flagged as structure-attacked. Text attack detection takes precedence
to prevent redundant dual flagging. Stage 2: Adaptive Recovery: Text-attacked nodes bypass
their corrupted center text entirely, relying solely on original neighbor information for classifica-
tion. Structure-attacked nodes leverage their preserved own text combined with filtered neighbors.
Connections to text-attacked nodes or those with low similarity are removed. Normal nodes employ
standard classification using their original text and neighbors, with only text-attacked neighbors
filtered. The detailed pseudo-code of SFT-auto is given in Algorithm 1.

Complexity Analysis. The computational cost of SFT-auto is comparable to SFT-neighbor, as both
methods are bottlenecked by the per-sample forward pass through the LLM. Training requires at
most 1.3× more samples due to data augmentation (with ratio r ≤ 0.15). For inference, let TLLM
be the time for a single forward pass. The average per-sample inference time for SFT-auto is Tavg ≈
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(1 + pattack) · TLLM, where pattack is the small fraction of detected nodes requiring recovery. The
value of pattack is bounded above by 2, which incurs an acceptable worst-case overhead, and is
typically very small in practice. Given the equivalent per-sample cost, SFT-auto’s overall runtime
is comparable to its baseline, making it an efficient framework for achieving balanced robustness.

Results. SFT-auto demonstrates superior performance, as visualized in Figure 4. Compared to
baselines, SFT-auto has more consistent performance against both structural and textual attacks.

5.3 GNN WITH AUTO DESIGN
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Figure 6: Performance comparison between SFT-auto and AutoGCN. (a) Accuracy under structural
(left bars) and textual (right bars) attacks. (b) Detection efficacy against textual attacks.

Having established SFT-Auto’s effectiveness, a natural question arises: Can similar auto-detection
principles enhance the robustness of GNNs? To explore this, we implement AutoGCN by replacing
the LLM predictor with a GCN, while maintaining the same detection pipeline architecture.

Figure 6 reveals that AutoGCN exhibits substantial degradation across both attack modalities, with
particularly pronounced deficiencies in textual anomaly detection (Figure 6b), where SFT-Auto
achieves 6.2–17.4× improvements over AutoGCN. This performance gap illuminates fundamen-
tal architectural differences: LLMs possess inherent multi-modal reasoning capabilities, enabling
seamless integration of detection and classification within unified frameworks. Conversely, GNNs
lack the linguistic sophistication required for text anomaly detection. This suggests promising re-
search directions toward hybrid architectures that combine GNNs’ structural robustness with LLMs’
semantic understanding through multi-stage prediction pipelines built on verified, clean data.

6 RELATED WORK

Robust GNNs and GraphLLMs. The vulnerability of GNNs to adversarial attacks has been ex-
tensively studied (Jin et al., 2021; Xue et al., 2025), motivating a series of RGNNs. Robust training
methods modify the learning process to enhance resilience, exemplified by GRAND (Feng et al.,
2020) and NoisyGCN (Ennadir et al., 2024). Robust architectural designs introduce inherently sta-
ble mechanisms, such as GNNGuard (Zhang & Zitnik, 2020), which filters edges based on node
similarity, SoftMedian-GDC (Geisler et al., 2021), which applies median-based aggregation, and
RUNG (Hou et al., 2024), which adopts an unbiased aggregator for improved soft filtering. Graph
structure learning methods, including ProGNN (Jin et al., 2020) and Stable (Li et al., 2022b), refine
the graph topology to denoise adversarial input. However, these RGNNs rely solely on shallow
embeddings, neglecting the influence of raw textual information in TAGs on robustness, and focus
primarily on defending against structural perturbations.

Recently, LLMs have been introduced for robust TAG learning. Representative methods include
GraphEdit (Guo et al., 2024b), RLLMGNN (Zhang et al., 2025b), and LangGSL (Su et al., 2024),
which leverage LLMs to adjust or reconstruct graph structure under adversarial settings. However,
these approaches use LLMs solely as structure refiners and remain tightly coupled to GNN back-
bones, limiting their capacity to capture deeper interactions between text and structure.
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Graph Robustness Evaluation. For GNNs and RGNNs, Zheng et al. (2021) propose GRB, which
evaluates model robustness under GIAs. More recently, Guo et al. (2024a) initiate the study of
robustness for LLM-based predictors in TAGs. TrustGLM (Zhang et al., 2025a) extends GraphLLM
as the evaluation target and explores defense strategies such as noise injection. Olatunji et al. (2025)
propose a deep evaluation into GraphLLMs against text and structural attacks. However, existing
evaluation frameworks lack uniformity and fairness across different model categories and attack
settings. This limitation obscures the key findings presented in our study.

7 CONCLUSION

This paper presents a comprehensive evaluation of graph learning methods on TAGs against both tex-
tual and structural attacks, evaluating GNNs, RGNNs, GraphLLMs, and LLMs across ten datasets
from four domains under transductive poisoning and inductive evasion settings. The experiments
reveal key insights: different classifier types exhibit distinct text-structure trade-offs; simple RGNN
can shine again with a proper text encoder; and GNNs and LLMs demonstrate vulnerabilities to dif-
ferent attack types. The paper presents a novel method, SFT-auto, to address the identified trade-off,
introducing a unified LLM-based framework that is robust against both textual and structural per-
turbations. The paper also includes comprehensive ablation studies and evaluations against adaptive
and hybrid attacks in the appendix, establishing a foundation for future research in TAG security.

REPRODUCIBILITY STATEMENT

We provide implementation details, configurations, and model cards in Appendix B. We provide de-
tailed dataset descriptions in Appendix C. We provide complete specifications and hyperparameters
of the attacks in Appendix D, and descriptions of all defense models, hyperparameters, and variants
in Appendix E.

We report the full numerical results underlying the main text, including per-dataset, per-model, and
per-attack breakdowns in Appendix J, enabling exact comparison and re-analysis.
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A USAGE OF LLMS

In this study, Large Language Models (LLMs) were employed exclusively for the purpose of lin-
guistic enhancement, including grammatical corrections and stylistic improvements. The concep-
tion, development, and interpretation of all technical material, experimental designs, analytical pro-
cesses, and findings were conducted without any contribution from LLMs. The authors affirm their
complete accountability for the entire content of this work.

B IMPLEMENTATION AND CONFIGURATIONS

B.1 IMPLEMENTATION

We rely on GreatX Li et al. (2022a) for GNN and RGNN implementations, and on NodeBed Wu
et al. (2025) for GraphLLM and dataset loading.

B.2 CONFIGURATION

Experiments were run on a machine with an NVIDIA A100-SXM4 GPU (80 GB), an Intel Xeon
CPU (2.30 GHz), and 512 GB of RAM.

B.3 MODEL CARDS

We used the following public models (links to their official model cards):

• Mistral-7B (Jiang et al., 2023)

• Llama 3.1–8B (Dubey et al., 2024)

• Ministral-8B (Mistral AI Team, 2024)

• Qwen3–8B (Yang et al., 2025)

• GPT-4o mini (Hurst et al., 2024)

• RoBERTa (Liu et al., 2019)

• MiniLM (Wang et al., 2020)

C DETAILS OF DATASETS

We evaluate our methods on 10 text-attributed graph datasets spanning four domains, selected from
the LLMNodeBed benchmark (Wu et al., 2025) to ensure comprehensive coverage of real-world
scenarios.

Academic Networks

• Cora (Sen et al., 2008): Computer science papers organized into seven research areas.

• CiteSeer (Giles et al., 1998): CS publications spanning six categories including AI and
databases.

• Pubmed (Yang et al., 2016): Biomedical literature focused on diabetes research with three
classification types.

• ArXiv (Hu et al., 2020): Large-scale CS paper collection covering 40 specialized subcate-
gories from the arXiv repository.

Web Link Network

• WikiCS (Mernyei & Cangea, 2020): Computer science Wikipedia articles categorized into
ten technical domains, interconnected through hyperlink references.
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Social Networks

• Instagram (Huang et al., 2024): User profiles differentiated between personal and business
accounts based on profile characteristics.

• Reddit (Huang et al., 2024): Community users classified by engagement levels using post-
ing history and interaction patterns.

E-Commerce Networks

• History (Yan et al., 2023): Historical literature products with detailed categorical organi-
zation.

• Photo (Yan et al., 2023): Photography equipment spanning professional and consumer
categories.

• Computer (Yan et al., 2023): Technology products including hardware components and
accessories.

Table 3: Dataset statistics for the 10 evaluated datasets from LLMNodeBed (Wu et al., 2025).
Domain Dataset Classes Nodes Edges

Academic

Cora 7 2,708 5,429
CiteSeer 6 3,186 4,277
Pubmed 3 19,717 44,338

arXiv 40 169,343 1,166,243

Web Link WikiCS 10 11,701 215,863

Social Instagram 2 11,339 144,010
Reddit 2 33,434 198,448

E-Commerce
History 12 41,551 358,574
Photo 12 48,362 500,928

Computer 10 87,229 721,081

D DETAILS OF ATTACK METHODS

D.1 STRUCTURAL ATTACKS

PGD Attack (Xu et al., 2019). A white box gradient-based discrete GMA that iteratively perturbs
the graph structure via projected gradient ascent over continuous relaxation variables, followed by
stochastic binarization to apply edge additions/removals under a budget constraint.

Hyperparameters:

• Learning rate: η0 = 0.1.
• Optimization: 200 optimization epochs + 20 sampling epochs.
• Budget: Default 20% of total edges.
• Target Embedding: BoW.

PGD-Guard (Threshold-based PGD) (Mujkanovic et al., 2022). An adaptive variant that con-
strains perturbations to pairs of nodes whose cosine similarity exceeds a threshold, emulating
defense-aware strategies intended to bypass similarity filtering (targeting GNNGuard (Zhang & Zit-
nik, 2020)).

Hyperparameters:

• Cosine similarity thresholds: [0.0, 0.3, 0.5, 0.7].
• Base settings: same as standard PGD.
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• Budget: 20% of edges.
• Target Embedding: RoBERTa.

GRBCD Attack (Geisler et al., 2021). A white-box GMA based on greedy randomized block
coordinate descent over the discrete edge space. At each step, random edge blocks are scored by
gradients and greedily flipped within the budget.

Hyperparameters:

• Block size: 1,000,000.
• Sampling: 50 trials per iteration; 20 final samples for selection.
• Early stopping: patience-based with tolerance ϵ = 10−7.
• Target Embedding: BoW.

HeuristicAttack (Li et al., 2023). A scalable DICE-style heuristic (“Disconnect Internally, Con-
nect Externally”) with training-aware constraints that prioritizes edges involving training nodes and
degree-based node selection, approaching gray-box poisoning MetaAttack (Zügner & Günnemann,
2019) performance via distribution shifts maximization.

Hyperparameters:

• Add vs. remove probability: 0.5. We tried from [0.3, 0.5, 0.7, 0.9, 1.0], and found
threshold= 0.5 yields most stable performance.

• Node sampling: inverse-degree probability (lower degree⇒ higher probability).

D.2 TEXT-BASED ATTACKS

LLM Text Attack. We generate neighborhood-aware prompts to induce an LLM to rewrite node
texts so that the predicted label is driven away from (i) the node’s current class and (ii) the dominant
classes in its immediate neighborhood, while preserving length and fluency.

Prompt Template (instantiated per target node).

Graph node classification task
Available classes: {classes str}
Target node {node id}:
Original text: “{text}”
Original label: “{current label}”
{neighbor info} (e.g., “Neighbor labels: [. . . ] (counts: {. . .})” or “No neighbors found”)

Task. Rewrite the text to be as different as possible from the original while keeping a similar length.
Requirements:

• Must not belong to the original class: “{current label}”.

• Should not belong to neighbor classes: {unique neighbor labels} or None.

• {target instruction} (e.g., prefer a class from the allowed set, or the least frequent
neighbor class if all are forbidden).

• Make the content maximally dissimilar from the original semantics.

• Keep the word count roughly similar.

• Produce content that is most unlikely under the node/neighbor context for the target class.

Goal: create text that is jointly inconsistent with the original content and its local graph context.
Return only the modified text, with no explanations or notes.
Modified text:

Algorithm.

• Target selection: sample nodes with degree-weighted probabilities. Lower degrees, higher
probabilities.
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• Context extraction: for each node, gather its original text, current label, neighbors’ labels,
and counts.

• Constraint synthesis: define the forbidden set as {current label} ∪ {neighbor labels};
compute the allowed label set over all classes. If empty, choose the least frequent neighbor
label; else prefer a label maximally different from the forbidden set.

• Prompting: instantiate the above template with {classes str}, {node id}, {text},
{current label}, {neighbor info}, and {target instruction}.

• Generation: query the LLM to generate a response.

• Post-processing: clean text, validate constraints (length and class-avoidance heuristics),
and embed to update node features.

Hyperparameters.

• Backbone LLM: GPT-4o-mini (Hurst et al., 2024).

• Temperature: 0.7.

• Target nodes: Training if under the poison setting, test nodes if under the evasion setting.

• Budget: Poison: 80% of the training nodes; Evasion: 40% of the test nodes.

D.3 HYBRID TEXT-LEVEL GRAPH INJECTION ATTACKS

WTGIA: Word-level Text GIA (Lei et al., 2024). We follow the original WTGIA pipeline with
dataset-specific adaptations during inductive learning.

Configuration.

• Text generator: Llama-3.1-8B (Dubey et al., 2024) with no-topic prompts and vocabulary
masking.

• Edge connectivity: We use ninject edges = num edges×ptb rate, so the number of total inject
edges aligned to GMA rates if the budget is set the same. Specifically, we yield 17 (Cora),
9 (CiteSeer), 22 (PubMed) at ptb rate = 0.2.

• Node injections: 60 (Cora), 90 (CiteSeer), 400 (PubMed) at ptb rate = 0.2; scale propor-
tionally for ptb rate = 0.4.

• BoW sparsity: 0.15 (Best according to the original paper).

• FGSM optimization: step size ϵ = 0.01 for 100 epochs; sequential injection steps of 0.2
with ATDGIA strategy.

• Batching: 50 for PubMed; 1 for other datasets.

D.4 ATTACKS EXCLUDED IN THE MAIN PAPER

In this paper, we focus on untargeted attacks and text-based attacks. Therefore, methods such as
Nettack (Zügner et al., 2018) and feature attacks in GRB (Zheng et al., 2021) are not employed.
Additionally, while some attacks conform to our experimental setting, we choose not to adopt them.
In this subsection, we provide detailed justification for these exclusions.

D.4.1 WHY NOT METTACK?

Mettack (Zügner & Günnemann, 2019). Mettack (Zügner & Günnemann, 2019) is a gray-box
structural poisoning attack that employs a surrogate GCN and bi-level optimization with meta-
gradients to identify vulnerable edges.

Hyperparameters.

• Surrogate learning rate: 0.1; momentum: 0.9.

• Meta learning rate: adaptive.

• Meta epochs: 100.
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• Regularization modes: λ ∈ {0.0 (meta-self), 0.5 (meta-both), 1.0 (meta-train)}. We use
λ ∈ {0.0 (meta-self) as it yields the strongest attacks.

In the main paper, we opted for HeuristicAttack instead of Mettack for the following reasons:

• The attack performance of Mettack is not significant when transferring to validation-based
defenses, as demonstrated in Table 4. This phenomenon is also evidenced by the GreatX
repository (Li et al., 2022a).

• Mettack suffers from scalability limitations, making it applicable only to datasets of a size
comparable to the PubMed level.

Table 4: Attack performance comparison on Cora and CiteSeer datasets using a surrogate GCN with
64 hidden units. Results show mean accuracy ± standard deviation across three runs.

Dataset Attack Method Clean No Validation With Validation

Cora HeuristicAttack 82.91±0.83 61.30±1.00 70.33±2.89
Mettack 82.91±0.83 75.13±1.28 77.86±0.08

CiteSeer HeuristicAttack 71.65±0.61 65.90±1.18 70.64±1.11
Mettack 71.65±0.61 62.00±0.69 68.82±0.15

In contrast, HeuristicAttack, with its superior scalability and more consistent performance across
validation conditions, is a more flexible and reliable choice for evaluation.

D.4.2 WHY NOT TEXTATTACK?

Introduction of Text Adversarial Attack. While our main approach employs LLM-based text
generation for adversarial attacks, one may be concerned about the unnoticeability of such substi-
tutions. To address this limitation, we conduct a comprehensive analysis using established NLP
adversarial attack methods that explicitly optimize for imperceptibility. Specifically, we employ the
TextAttack library and select TextFooler as our primary attack method, including BAE, PWWS, and
HotFlip, in preliminary evaluations.

TextFooler operates by strategically perturbing individual words within input sentences to generate
semantically equivalent yet syntactically modified text. The method prioritizes semantic preserva-
tion while introducing subtle lexical modifications, rendering the perturbations challenging to detect
for both human evaluators and automated systems. This characteristic makes TextFooler particularly
suitable when imperceptibility constitutes a critical requirement.

Experimental Configuration. We configure TextFooler with MiniLM embeddings and utilize default
parameters from the TextAttack library (Morris et al., 2020). The victim model is set as GCN. Our
evaluation employs a perturbation rate of 0.4 across all experiments. The experiment environment
is set as the inductive evasion setting.

Key Findings. Our empirical analysis reveals a critical dependency between attack effectiveness
and the alignment of embedding representations used in both the attack generation and target model
defense mechanisms. As shown in Table 5, when the attack embeddings (MiniLM) match those em-
ployed by the target model (MiniLM), TextFooler demonstrates substantially degraded performance
across all evaluated GNN architectures, with a notable performance drop. However, as shown in
Tables 6 and 7, when embedding misalignment occurs—specifically when target models utilize
different embedding schemes such as BoW or RoBERTa, the attack effectiveness diminishes con-
siderably.

These results provide compelling evidence that the text adversarial attack still overfits the surrogate
model and the embedding type. To ensure an effective attack strength consistently, we use the LLM-
based text attack that generally degrades the performance of all backbones with all encoders.

21



Published as a conference paper at ICLR 2026

Table 5: TextFooler attack results, MiniLM embedding for the defender. Bold indicates best perfor-
mance, underline indicates second best.

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History

GCN 57.32 ± 2.84 50.78 ± 2.14 63.32 ± 1.19 74.26 ± 13.51 52.85 ± 1.89 53.80 ± 0.49 84.47 ± 0.40
GAT 64.88 ± 7.50 41.43 ± 2.29 66.59 ± 5.63 51.86 ± 22.41 52.38 ± 4.75 53.07 ± 1.44 83.82 ± 0.60
APPNP 53.75 ± 1.22 52.40 ± 1.67 61.94 ± 0.88 60.99 ± 15.99 55.67 ± 0.83 46.40 ± 0.44 84.80 ± 0.48
GPRGNN 50.62 ± 0.43 44.98 ± 0.68 65.68 ± 1.10 59.02 ± 16.72 49.54 ± 5.39 45.54 ± 0.79 82.96 ± 0.66
RobustGCN 76.32 ± 3.28 68.34 ± 0.80 72.91 ± 1.10 64.67 ± 0.61 62.13 ± 0.47 57.69 ± 0.83 84.89 ± 0.44
NoisyGCN 59.35 ± 1.61 53.24 ± 1.09 63.78 ± 0.76 64.15 ± 13.95 50.24 ± 1.82 54.03 ± 0.79 84.55 ± 0.34
GRAND 60.02 ± 1.94 66.93 ± 1.12 65.35 ± 0.56 49.55 ± 0.92 63.76 ± 0.35 51.08 ± 0.69 83.03 ± 0.52
EvenNet 63.22 ± 2.30 59.77 ± 0.27 65.91 ± 0.97 62.95 ± 15.51 54.29 ± 2.65 47.83 ± 1.58 84.73 ± 0.56
GNNGuard 49.57 ± 0.98 46.13 ± 1.40 66.45 ± 0.32 59.48 ± 15.24 42.12 ± 1.44 44.98 ± 3.69 82.91 ± 0.35

Table 6: TextFooler attack results, BoW embedding for the defender. Bold indicates best perfor-
mance, underline indicates second best.

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History

GCN 85.30 ± 1.61 72.99 ± 1.93 86.13 ± 0.30 81.52 ± 0.24 63.11 ± 0.70 60.54 ± 0.93 81.79 ± 0.11
GAT 86.04 ± 1.91 73.30 ± 0.94 86.12 ± 0.20 81.33 ± 0.32 64.43 ± 1.05 61.51 ± 1.21 82.13 ± 0.60
APPNP 85.73 ± 2.16 70.85 ± 0.38 85.04 ± 0.11 78.46 ± 1.62 63.30 ± 1.48 56.88 ± 0.95 81.35 ± 0.26
GPRGNN 81.49 ± 1.80 69.80 ± 0.63 84.21 ± 0.43 79.18 ± 1.61 63.96 ± 0.46 59.26 ± 0.97 78.28 ± 0.57
RobustGCN 86.59 ± 1.52 72.73 ± 0.13 86.39 ± 0.57 82.41 ± 0.37 65.86 ± 0.40 59.81 ± 0.39 81.48 ± 0.67
NoisyGCN 85.55 ± 1.28 72.36 ± 1.41 86.01 ± 0.30 81.65 ± 0.35 62.82 ± 1.00 61.63 ± 0.11 82.19 ± 0.14
GRAND 83.83 ± 2.18 73.72 ± 1.61 87.47 ± 0.47 80.44 ± 0.37 64.45 ± 0.25 62.77 ± 1.99 79.42 ± 0.68
EvenNet 83.70 ± 2.03 71.21 ± 1.04 87.43 ± 0.29 82.53 ± 0.35 64.93 ± 1.39 60.06 ± 0.73 81.07 ± 0.51
GNNGuard 80.38 ± 1.22 66.14 ± 1.23 82.94 ± 0.49 69.09 ± 3.86 62.48 ± 0.46 54.75 ± 0.52 78.04 ± 0.32

Table 7: TextFooler attack results, RoBerta embedding for the defender. Bold indicates best perfor-
mance, underline indicates second best.

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History

GCN 87.39 ± 1.00 75.18 ± 0.87 86.35 ± 0.22 84.39 ± 0.46 66.06 ± 0.68 66.41 ± 0.38 85.01 ± 0.30
GAT 86.84 ± 1.28 75.60 ± 0.70 87.15 ± 0.23 83.80 ± 0.82 67.09 ± 0.75 63.92 ± 0.31 84.59 ± 0.54
APPNP 79.40 ± 1.39 73.35 ± 0.92 88.21 ± 0.30 80.56 ± 4.05 64.27 ± 1.16 57.39 ± 0.16 85.74 ± 0.38
GPRGNN 82.41 ± 0.68 70.53 ± 1.63 85.21 ± 0.29 79.51 ± 4.44 62.24 ± 1.49 54.89 ± 1.44 84.65 ± 0.62
RobustGCN 86.96 ± 1.99 74.03 ± 0.32 86.52 ± 0.09 83.28 ± 0.59 67.39 ± 0.17 59.42 ± 0.79 84.57 ± 0.44
NoisyGCN 86.90 ± 0.90 75.39 ± 0.80 86.35 ± 0.28 83.75 ± 1.14 66.48 ± 0.75 66.52 ± 0.42 85.04 ± 0.19
GRAND 86.10 ± 1.21 77.27 ± 0.34 89.78 ± 0.35 83.13 ± 0.85 66.49 ± 0.41 63.53 ± 1.27 85.92 ± 0.41
EvenNet 83.09 ± 1.55 74.19 ± 0.64 89.45 ± 0.57 84.91 ± 1.63 65.42 ± 0.79 59.59 ± 0.36 85.62 ± 0.57
GNNGuard 71.40 ± 1.74 68.65 ± 0.46 82.27 ± 0.82 75.48 ± 5.68 60.58 ± 1.71 54.14 ± 1.26 84.64 ± 0.52
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E DETAILS OF DEFENSE METHODS

E.1 INTRODUCTION OF DEFENSE MODEL

For GNNs and RGNNs, we have the following methods as baselines.

Spatial/Message Passing Models

1. GCN (Kipf & Welling, 2017): Graph Convolutional Network using localized spectral con-
volution with Chebyshev polynomials.

2. GAT (Velickovic et al., 2018): Graph Attention Network employing multi-head attention
mechanisms for adaptive neighborhood aggregation.

Spectral Models

1. APPNP (Klicpera et al., 2019): Approximate Personalized Propagation of Neural Predic-
tions, combining neural predictions with personalized PageRank.

2. GPRGNN (Chien et al., 2021): Generalized PageRank Graph Neural Network with learn-
able graph filter coefficients.

3. EvenNet (Lei et al., 2022): Spectral-based defense using even convolution networks with
teleportation mechanisms.

Robust Training Methods

1. GRAND (Feng et al., 2020): Graph Random Neural Networks with consistency regular-
ization using random propagation and DropNode.

2. NoisyGCN (Ennadir et al., 2024): GCN with feature noise injection during training to
improve robustness.

3. GPRGNN-AT (Gosch et al., 2023): GPRGNN with adversarial training. Results are left
to Appendix K.

Probabilistic Methods

1. RobustGCN (Zhu et al., 2019): Robust Graph Convolutional Network with Gaussian-
based attention and variance-based message passing.

Similarity-based Methods

1. GNNGuard (Zhang & Zitnik, 2020): Attention-based neighborhood filtering using cosine
similarity thresholds to detect and mitigate adversarial edges.

1. ElasticGNN (Liu et al., 2021): Elastic message passing with L1/L2 regularization for han-
dling graph heterophily.

2. SoftMedianGDC (Geisler et al., 2021): Soft median aggregation with Gaussian Diffusion
Convolution and temperature control.

3. RUNG (Hou et al., 2024): Robust Graph Neural Networks with uncertainty quantification
and Laplacian smoothing.

Other Architectural Improvements

1. GCORN (Abbahaddou et al., 2024): Higher-order Graph Convolutional Networks with
polynomial filters and weight regularization.
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Unsupervised Structure Cleaning

1. Jaccard-GCN (Wu et al., 2019): Preprocesses graphs by removing edges with low Jaccard
similarity between node features.

2. Cosine-GCN (Mujkanovic et al., 2022): Edge filtering based on cosine similarity thresh-
olds between node feature vectors.

Supervised Structure Learning

1. ProGNN (Jin et al., 2020): Joint optimization of graph structure and GNN parameters with
sparsity and smoothness constraints.

2. Stable (Li et al., 2022b): An unsupervised pipeline that optimizes graph structure by learn-
ing edge weights using a metric function combining node feature and structure informa-
tion. It employs Cosine and Jaccard similarity with learnable thresholds to filter adversarial
edges.

3. GOOD-AT: It trains an ensemble of OOD detectors using adversarial edges as supervision
signals to learn which edges are anomalous, then removes detected perturbations to recover
a cleaner graph structure. Results are left to Appendix K.

4. GPR-GAE: It learns to reconstruct clean graph structure via a self-supervised graph au-
toencoder with multiple GPR filters, using the original graph’s reconstruction loss as im-
plicit supervision for structure learning. Results are left to Appendix K.

GraphLLM Defenses

1. GraphGPT (Tang et al., 2024): Graph-text alignment model using contrastive learning
between graph embeddings and text representations.

2. LLaGA (Chen et al., 2024): Large Language and Graph Assistant that aligns graph struc-
tural information with language model representations through multi-modal learning.

3. SFT with Neighbors (Wang et al., 2025b): Supervised Fine-Tuning approach that incor-
porates neighborhood information into LLM prompts for enhanced graph understanding.

E.2 CONFIGURATION AND HYPERPARAMETERS

This sub-section details configurations and hyperparameters for both GNN-based defenses and
GraphLLM methods used in our evaluation framework.

E.2.1 GNN AND RGNNS

General Settings All GNN-based defense models share the following general hyperparameters:

• Learning rate: 0.01 (consistent across all methods)
• Weight decay: Grid search over [0.0, 0.0005]
• Dropout: Grid search over [0.5, 0.7] (except model-specific variations)
• Hidden dimensions: 128 for small datasets (Cora, CiteSeer, PubMed, Instagram, WikiCS);

256 for large datasets
• GAT adjustment: Hidden dimension reduced by factor of 8 due to multi-head attention
• Training epochs: Dataset-dependent with early stopping

– Small datasets (Cora, CiteSeer, Instagram, PubMed, WikiCS): 400 epochs
– Medium datasets (Computer, Photo, History, Reddit): 600 epochs
– Large datasets (ArXiv): 1000 epochs

• Patience: Dataset-dependent early stopping
– Small datasets: 100 epochs patience
– Medium datasets: 200 epochs patience
– Large datasets: 400 epochs patience
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Specific Hyperparameters. The following table summarizes the model-specific hyperparameter
ranges for GNN-based defense methods. For the additional baselines in Appendix K, we use the
default hyperparameters following official implementations.

Model Parameter Values
GCN None None

GAT Num Heads 8

APPNP Alpha [0.1, 0.3, 0.7, 0.9]

GPRGNN Alpha [0.1, 0.3, 0.7, 0.9]

RobustGCN None None

ElasticGNN Lambda1 [3, 6]
Lambda2 [3, 6]

GNNGuard Threshold [0.3, 0.4, 0.5, 0.6, 0.7]

NoisyGCN Beta [0.1, 0.3, 0.5]

GCORN None None

ProGNN Alpha [0.0005, 0.3]
Beta [1.5, 2.5]

Stable
Cosine Threshold [0.3, 0.5, 0.7]
Jaccard Threshold [0.02, 0.03]
Alpha [0.1, 0.03, 0.6]

GCN-Jaccard Jaccard Threshold [0.03, 0.05, 0.1]

GCN-Cosine Cosine Threshold [0.3, 0.4, 0.5, 0.6, 0.7]

GRAND

Dropnode [0.5]
Order [2, 4]
MLP Input Dropout [0.5]
N Samples [4]
Reg Consistency [0.7, 1.0]
Sharpening Temperature [0.5]

SoftMedianGDC
Temperature [0.5, 1.0]
Teleport Probability [0.15, 0.25]
Neighbors [64]

RUNG Lambda [0.7, 0.9]
Gamma [1, 3]

EvenNet
K [10]
Alpha [0.1, 0.3, 0.7, 0.9]
DP Rate [0.5]

E.2.2 GRAPHLLMS

General Configurations GraphLLM methods employ distinct training configurations optimized
for large-scale language model integration:

• Base LLM: Mistral-7B (4096-dimensional output) as primary backbone
• Text encoding: RoBERTa for feature extraction and alignment
• Batch processing: Varies by model complexity (8-64 samples per batch)
• Learning rates: Lower rates (1e-4) for stable LLM fine-tuning
• Weight decay: 0.05 for regularization
• Gradient clipping: Applied to prevent exploding gradients
• Mixed precision: Enabled for memory efficiency
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GraphGPT. For GraphGPT, we adhere to the best hyperparameters in clean datasets provided
by (Wu et al., 2025).

LLaGA. For LLaGA, we adhere to the best hyperparameters in clean datasets provided by (Wu
et al., 2025).

• Language model embedding: RoBERTa
• Neighborhood template: HO (Hopfield) encoding

SFT with Neighbors. Supervised Fine-Tuning incorporates neighborhood-aware prompting with
LoRA optimization:

• Maximum neighbors: maximum neighbor=6 for context window management
• Neighbor filtering strategy: Degree-based selection - neighbors are ranked by node degree

in descending order, and top-6 highest-degree neighbors are selected for prompt inclusion
• LoRA configuration: r=8, alpha=16, dropout=0.1, target modules=[q proj, v proj]
• Sequence lengths: max txt length=128, max origin txt length=128, max ans length=16
• Optimization: AdamW optimizer with gradient accumulation
• Prompt engineering: Integrates 1-hop neighbor information with degree-based prioritiza-

tion for enhanced context understanding

Neighbor-aware Prompt Template:

Node Classification Task
Question: You are doing node classification task in a citation graph. Given the content of the center
node: {origin text} and its neighbor information: {neighbor text}, each node represents
a paper and the relationship represents the citation relationship between papers, we need to classify
the center node into 7 classes: {classes}. Please tell me which class the center node belongs to?
Answer only the class name without any other words.
Answer:

E.2.3 GRAPHLLMS WITH NOISY TRAINING

This subsection covers noise injection strategies across different GraphLLM architectures in Section

GraphGPT with Noise. GraphGPT incorporates noise injection through graph-level modifica-
tions using the noise utils framework. Supports only the structural “noise” variant. Noise is applied
globally to the entire graph structure before training. Configurations follow the clean dataset param-
eters from (Wu et al., 2025) with additional noise strategies applied during contrastive learning. The
perturb ratio is set to 10%.

GraphGPT-noisetxt and GraphGPT-noisefull are excluded because the noise injected hurts clean
performance too much, as shown in Table 9.

Table 9: Performance comparison of GraphGPT variants across under the inductive setting on clean
datasets.

Method Cora CiteSeer PubMed WikiCS

GraphGPT 81.06 ± 2.33 74.35 ± 2.51 94.14 ± 0.23 82.31 ± 1.31
GraphGPT-noise 80.63 ± 2.24 74.56 ± 3.07 94.09 ± 0.33 82.32 ± 1.97
GraphGPT-noisetxt 66.79 ± 3.84 57.37 ± 5.20 86.15 ± 1.88 64.56 ± 2.94

LLaGA with Noise. LLaGA applies noise injection through graph-level modifications using the
noise utils framework. The noise strategies modify the global graph structure or replace text content
across the entire graph before multi-modal learning. Noise integration occurs with the RoBERTa
language model embedding and HO (Hopfield) neighborhood template encoding. Base configura-
tions identical to clean LLaGA training. The perturb ratio is set to 10%.
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SFT with Noise Variants. SFT implements three distinct noise injection strategies during training:

Noise (Structure): Injection strategy targets high-degree nodes with 10% probability, adding random
unconnected nodes as fake neighbors.

NoiseTxt (Text): Injection strategy replaces text content of 10% high-degree nodes with text from
different-class nodes.

Noisefull (Both): Injection strategy combines both structural and text noise - applies both neighbor
injection (10% probability) and text replacement (10% of high-degree nodes) simultaneously.

• Injection ratio: 10% probability for structural noise, 10% of high-degree nodes for text
replacement

• Target selection: High-degree nodes (degree > average degree)

• Replacement strategy: Random selection from unconnected nodes (structural) or
different-class nodes (text)

• Training augmentation: Applied only during the training phase, inference uses clean data

• Base configurations: Identical to SFT with Neighbors for all other parameters

SFT Noise Training Strategy (Sample-Level): Unlike GraphGPT/LLaGA which apply graph-level
noise modifications, SFT applies noise injection at the sample level during data preparation. For
structural noise, 10% probability of adding random unconnected nodes as fake neighbors to high-
degree nodes during neighbor selection for each training sample. For text noise, 10% of high-degree
nodes have their text content replaced with text from nodes of different classes during individual
sample creation. NoiseFull combines both strategies with independent application - both structural
neighbor injection and text replacement occur simultaneously for each sample.

E.2.4 SFT WITH SIMILARITY CONSTRAINTS

SFT-simp. The similarity variant teaches the model to selectively use neighbor information based
on similarity constraints through prompt engineering:

• Training: Standard neighbor-based training (identical to SFT with Neighbors)

• Inference strategy: Prompt-based similarity awareness

• Similarity criteria: Text content and label consistency

Similarity-Aware Prompt Template:

Node Classification with Similarity Constraints
Question: You are doing node classification task in a citation graph. Given the content of the center
node: {origin text} and its neighbor information: {neighbor text}, each node represents a
paper and the relationship represents the citation relationship between papers, we need to classify the
center node into {num classes} classes: {classes}. Consider neighbor information for classi-
fication ONLY when: 1) neighbors are similar to the center node, or 2) neighbors are similar to each
other. Similarity can be based on text content or label consistency. Otherwise, ignore neighbor infor-
mation. Please tell me which class the center node belongs to? Answer only the class name without
any other words.
Answer:

E.2.5 SFT-AUTO

Pipeline. The auto variant implements comprehensive attack detection and recovery through
multi-stage inference with specialized prompt templates. The pseudo-code of the algorithm is pro-
vided in Algorithm 1, and the related prompts are listed below.

Attack Detection Prompt Template:
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Node Classification with Attack Detection
Question: You are doing node classification in a citation graph. Given the content of the center node:
{origin text} and its neighbor information: {neighbor text}, classify the center node into
{num classes} classes: {classes} or “text attacked”. The center node may be attacked. If its
class is unclear or differs from most of its neighbors, classify it as “text attacked” instead. Please tell
me which class the center node belongs to? Answer only the class name without any other words.
Answer:

Recovery Prompt Template (Neighbor-Only):

Recovery Using Neighbor Information Only
Question: You are doing node classification task in a citation graph. Based only on the neighbor
information: {neighbor text}, each node represents a paper and the relationship represents the
citation relationship between papers, we need to classify the center node into {num classes} classes:
{classes}. Please predict the class of the center node using only neighbor information. Answer only
the class name without any other words.
Answer:

Algorithm 1: Auto Variant Framework for Adversarial Attack Detection and Recovery
Input: Graph data G = (V,E,X), training nodes Vtrain, test nodes Vtest, similarity threshold τ
Output: Trained modelM, final predictions ypred

1 Training Phase:;
2 r ← min

(
1
|C| , 0.15

)
// Adaptive attack ratio

3 Snormal ← PREPARENORMALSAMPLES(Vtrain);
4 Sattack ← GENERATETEXTATTACKSAMPLES(Vtrain, r);
5 Srecovery ← GENERATERECOVERYSAMPLES(Sattack);
6 Sall ← Snormal ∪ Sattack ∪ Srecovery;
7 M← TRAINMODEL(Sall);

8 Inference Phase:;
9 Itext ← ∅, Istruct ← ∅;
// Stage 1: Attack Detection

10 foreach vi ∈ Vtest do
11 if LOWSIMILARITYNEIGHBORS(vi, τ) ≥ |Ni|/2 then
12 Istruct ← Istruct ∪ {i};
13 ifM(vi) = “text attacked” then
14 Itext ← Itext ∪ {i};

// Stage 2: Recovery and Final Prediction
15 foreach vi ∈ Vtest do
16 if i ∈ Itext then
17 ypred[i]←M(neighbors only(vi));
18 else if i ∈ Istruct then
19 ypred[i]←M(vi, filtered neighbors(vi, τ));
20 else
21 ypred[i]←M(vi,Ni);
22 returnM, ypred

F RESULTS AGAINST WTGIA

In this section, we present results against Text-level GIA and WTGIA attacks.

We introduced the WTGIA methodology and basic settings in Section D.3. Specifically, we evaluate
on three datasets: Cora, CiteSeer, and PubMed, following the original paper. We present results for
two perturbation rates: ptb rate = 0.2 and ptb rate = 0.4.

28



Published as a conference paper at ICLR 2026

At ptb rate = 0.2, WTGIA introduces the same number of edges as structural evasion attacks.
Considering that in GMA, each edge modification affects two nodes in the original graph, we also
conduct experiments at ptb rate = 0.4, where the number of affected edges approximately equals
that of GMA. By aligning the attack budgets between GMA and Text-level GIA, we can study the
attack strength of Text-level GIA compared to GMA.

Following our other experiments, we evaluate both GNN and RGNN models using three embedding
types: BoW, MiniLM, and RoBERTa. Note that WTGIA inherently uses BoW as the victim text
encoder. In this experiment, we investigate how different text encoders affect defense performance
against WTGIA.

Table 10: WTGIA Attacked Test Accuracy (Perturb ratio being 20%)

Method Cora CiteSeer PubMed
BoW MiniLM RoBERTa BoW MiniLM RoBERTa BoW MiniLM RoBERTa

GCN 59.29 83.46 85.36 49.22 71.73 74.03 77.49 84.65 83.95
GAT 57.56 80.87 82.60 45.61 66.30 67.29 74.02 74.99 82.21
APPNP 60.95 84.13 86.41 65.62 76.02 74.66 85.07 89.03 91.22
GCORN 53.38 83.83 81.67 47.49 73.20 72.47 61.15 79.74 80.92
GPRGNN 69.43 83.76 84.93 64.63 73.56 74.56 83.99 89.44 90.78
GRAND 59.78 84.62 86.78 56.22 75.76 76.38 80.03 86.49 89.47
EvenNet 78.78 82.53 82.60 68.86 73.77 73.41 83.64 86.66 89.19
ElasticGNN 60.02 84.50 85.42 54.49 73.88 73.30 78.25 79.68 85.86
RobustGCN 78.91 83.64 85.61 68.34 73.77 73.98 81.63 79.44 82.06
GNNGuard 67.59 82.90 83.15 65.46 75.24 73.72 82.40 88.95 90.29
SoftmedianGDC 80.87 84.87 83.70 71.79 75.24 74.71 86.32 89.54 91.20
NoisyGCN 63.78 83.15 85.06 49.63 72.10 73.30 78.26 85.24 86.03
RUNG 79.52 83.27 83.95 70.27 74.03 73.56 85.68 89.64 90.99

GraphGPT 74.97 72.83 92.84
LLaGA 83.21 72.36 89.76
SFT-neighbor 79.89 73.51 94.74

Table 11: WTGIA Attacked Test Accuracy (Perturb ratio being 40%)

Method Cora CiteSeer PubMed
BoW MiniLM RoBERTa BoW MiniLM RoBERTa BoW MiniLM RoBERTa

GCN 47.91 82.16 84.99 33.28 70.01 72.73 75.77 79.54 79.09
GAT 47.23 76.32 80.44 27.90 60.92 62.38 66.59 63.28 72.74
APPNP 50.55 84.01 85.67 60.29 75.39 74.61 86.07 88.88 91.18
GCORN 32.10 82.23 81.00 26.12 70.32 67.08 53.20 77.50 77.49
GPRGNN 64.45 82.78 83.70 52.87 73.20 72.94 84.04 89.01 90.64
GRAND 48.03 84.44 86.10 44.36 74.97 74.29 76.36 86.16 88.90
EvenNet 73.37 81.06 81.49 66.25 73.51 73.30 77.50 81.52 86.51
ElasticGNN 46.19 83.27 83.64 37.57 72.52 71.89 75.57 70.76 80.49
RobustGCN 75.03 81.80 85.85 62.12 73.35 72.99 75.97 70.62 75.52
GNNGuard 61.32 82.78 83.76 61.86 75.34 73.41 81.11 89.05 90.24
SoftmedianGDC 78.97 84.38 83.95 70.79 74.92 74.61 86.17 89.77 90.99
NoisyGCN 52.46 82.16 83.76 34.12 71.26 71.89 75.22 81.03 81.67
RUNG 79.83 82.66 84.19 68.13 73.46 74.76 85.81 89.77 91.11

GraphGPT 71.16 70.22 92.29
LLaGA 81.86 68.23 89.32
SFT-neighbor 77.80 73.20 94.62

The experimental results are presented in Table 10 and Table 11. We have the following discoveries:
Cross-Modal Attack Transferability: WTGIA exhibits significantly stronger attack performance
against BoW-based models compared to advanced text encoders like MiniLM and RoBERTa, even
under a strong budget (40%). This pronounced performance gap highlights the limited transferability
of text-level GIAs across different embeddings, suggesting that WTGIA overfits to the victim’s
specific encoder (BoW). In contrast, structural attacks display slightly more consistent degradation
across text representations, underscoring the modality-specific nature of text-level perturbations.

Vulnerability of Text-Aware Models: Text-level perturbations disproportionately impact models
reliant on textual features, particularly LLM-based approaches like SFT-neighbor. On the Cora
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Figure 7: GNNGuard performance ranking across different text embeddings under structure attacks.
The bar chart displays ranking positions (lower is better) for each embedding type across eight
benchmark datasets in the inductive setting with a perturbation rate of 0.2.

dataset, SFT-neighbor maintains competitive accuracy (8̃2%) under structural attacks but suffers
greater degradation under WTGIA.

G WHY GNNGUARD EXCELS: UNDERSTANDING AND IMPROVING

In the main text, we observe that GNNGuard achieves remarkable performance improvements. This
raises a fundamental question: what drives GNNGuard’s exceptional effectiveness? In this section,
we provide a comprehensive analysis to dissect the underlying mechanisms.

G.1 RESULTS OF GNNGUARD UNDER DIFFERENT TEXT ENCODERS

In Figure 7, we plot the performance of GNNGuard against structure evasion attacks using different
text encoders. We exclude the results on Instagram and Reddit because the performance differences
among all methods on these datasets are not significant. In the ranking, we remove the GraphLLM
methods because they do not necessarily depend on embeddings. The results reveal substantial vari-
ations in defensive effectiveness depending on the embedding choice. In previous works (Zhang &
Zitnik, 2020; Lei et al., 2022; Mujkanovic et al., 2022; Hou et al., 2024), GNNGuard is evaluated us-
ing embeddings like BoW and TF-IDF, where its ranking is indeed low as shown in the table. How-
ever, when switching to advanced language model embeddings like MiniLM and RoBERTa, its rank-
ing improves significantly. For instance, on Cora, when using embeddings like BoW and Mistral-
7B, its ranking falls within the suboptimal region, but when employing MiniLM and RoBERTa, it
demonstrates improved ranking relative to other RGNNs and GNNs, indicating that text encoders
significantly influence GNNGuard’s ranking.

G.2 DIFFERENCE BETWEEN TEXT-ENCODERS

To understand why the text encoders significantly affect the performance of GNNGuard, we system-
atically evaluate the effectiveness of different text embedding methods for similarity-based edge fil-
tering, which is essential for its defense mechanism. Our analysis compares BoW, TF-IDF, Mistral-
7B, RoBERTa, and MiniLM embeddings across multiple graph datasets to identify which represen-
tations best distinguish intra-class from inter-class edges.
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Embedding Comparison for photo

Figure 8: Comprehensive embedding comparison for the Photo dataset. (a) Preserve-filter trade-off
curves showing the Pareto frontier between intra-class preservation and inter-class filtering rates;
(b) KDE-smoothed similarity distributions revealing the separation between intra-class (solid) and
inter-class (dashed) edges; (c) Quantitative quality metrics including separation score, AUC, dis-
criminability, threshold gap, and non-overlap score; (d) Threshold effectiveness curves illustrating
how preservation and filtering rates vary with similarity thresholds; (e) Summary statistics table pre-
senting mean similarities and standard deviations for each embedding type.

Figure 8 presents our comprehensive analysis framework using the Photo dataset as an example.
The multi-panel visualization reveals critical insights about embedding effectiveness:

• Preserve-Filter Trade-off (Panel a): Each curve represents an embedding’s ability to simultane-
ously preserve intra-class edges while filtering inter-class edges across 101 similarity thresholds.
The curves are generated by computing, for each threshold τ ∈ [0, 1], the fraction of intra-class
edges with similarity ≥ τ (x-axis) and inter-class edges with similarity < τ (y-axis). Embeddings
with curves closer to the upper-left corner exhibit superior discriminative capacity. In the Photo
dataset, RoBERTa’s curve dominates, achieving 80% inter-class filtering while maintaining 40%
intra-class preservation.

• Similarity Distributions (Panel b): Kernel density estimation with Gaussian kernels (σ selected
via Scott’s rule) visualizes the probability density functions of cosine similarities. The aggre-
gation across three random seeds ensures robustness. For Photo, MiniLM, and RoBERTa exhibit
clear bimodal separation with intra-class similarities and inter-class differences, while others show
substantial overlap with both distributions.

• Quality Metrics (Panel c): Five metrics quantify embedding effectiveness:

– Separation Score: Cohen’s d = (µintra − µinter)/
√
(σ2

intra + σ2
inter)/2

– AUC Score: Area under the ROC curve, treating edge classification as a binary prediction task
– Discriminability: maxτ [(P (simintra ≥ τ) + P (siminter < τ))/2]

– Threshold Gap: Q20(simintra)−Q80(siminter) where Qp denotes percentile
– Non-overlap: 1−

∑
i min(hintra(i), hinter(i))∆x using 50-bin histograms
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Figure 9: Comprehensive embedding comparison for the Cora dataset. (a) Preserve-filter trade-off
curves showing the Pareto frontier between intra-class preservation and inter-class filtering rates;
(b) KDE-smoothed similarity distributions revealing the separation between intra-class (solid) and
inter-class (dashed) edges; (c) Quantitative quality metrics including separation score, AUC, dis-
criminability, threshold gap, and non-overlap score; (d) Threshold effectiveness curves illustrating
how preservation and filtering rates vary with similarity thresholds; (e) Summary statistics table pre-
senting mean similarities and standard deviations for each embedding type.

• Threshold Effectiveness (Panel d): This analysis reveals the operational characteristics of each
embedding. The solid lines show P (simintra ≥ τ) while dashed lines show P (siminter < τ) as
functions of threshold τ . The vertical separation between paired curves indicates discriminative
power at each threshold.

• Statistical Summary (Panel e):

This analysis framework demonstrates that contextual embeddings (RoBERTa, MiniLM) provide su-
perior edge discrimination compared to sparse representations. While all GNNs and RGNNs benefit
from better embeddings in the classification task, GNNGuard enjoys more protection against struc-
tural attacks with better representations due to the better distinguishability of a better embedding.
Another example on the Cora dataset is provided in Figure 9.

G.3 GUARDUAL: ROBUSTNESS AGAINST TEST-TIME STRUCTURAL ATTACKS

Despite achieving promising results with advanced embeddings, GNNGuard exhibits several limi-
tations in practice. First, the current threshold selection relies on validation set performance, which
leads to overly conservative thresholds due to the inherent performance-robustness trade-off on clean
validation data. Second, in real-world scenarios where training data integrity can be more readily
ensured, applying aggressive thresholds during training risks excessive edge filtering, thereby de-
grading model performance on benign graphs.

To address these limitations, we introduce Guardual, an adaptive defense mechanism that employs
dual similarity thresholds to balance training stability with robust defense capabilities. This method

32



Published as a conference paper at ICLR 2026

uses the optimal threshold for preserving benign graph structure during training, which differs from
the threshold needed for effective adversarial filtering during inference.

G.3.1 DUAL-THRESHOLD DESIGN

Guardual employs two complementary thresholds optimized for different phases of model deploy-
ment:

• Conservative Threshold (Training): This threshold prioritizes preserving intra-class edges to
maintain graph connectivity and training stability. Computed using a weighted objective function:
scoreconservative = 0.7·Ppreserve+0.3·Pfilter, where Ppreserve represents the fraction of intra-class edges
retained and Pfilter denotes the fraction of inter-class edges removed. The 70-30 weighting ensures
that sufficient graph structure remains intact during the learning phase, preventing performance
degradation from excessive edge pruning.

• Balanced Threshold (Testing): During inference, the model switches to a balanced threshold that
equally weights preservation and filtering: scorebalanced = 0.5 · Ppreserve + 0.5 · Pfilter. This equal
weighting provides stronger defense against adversarial edges while accepting slightly reduced
intra-class preservation, as gradient flow is no longer a concern during evaluation.

Given specific embeddings, we can pre-compute all scores and obtain training/test thresholds. The
thresholds for Guardual using RoBERTa embeddings are listed in Table 12.

Table 12: Dual thresholds employed by Guardual across different datasets. Conservative thresholds
prioritize edge preservation during training, while balanced thresholds enhance adversarial filtering
during testing.

Dataset Training Threshold Testing Threshold
(Conservative) (Balanced)

Cora 0.250 0.503
CiteSeer 0.320 0.580
PubMed 0.360 0.633
WikiCS 0.283 0.433
Instagram 0.000 0.471
Reddit 0.000 0.177
History 0.260 0.457
Photo 0.000 0.476
Computer 0.000 0.457
ArXiv 0.320 0.540

G.3.2 RESULTS OF GUARDUAL

The results are presented in Figure 10. We can see that, although it removes a hyperparameter
compared to GNNGuard, Guardual achieves general improvement. In Computer and Photo datasets
(highlighted in red), Guardual demonstrates the most significant enhancements, with improvements
of +8.23% and +10.74% respectively. As shown in the result performance, it becomse the most
robust RGNN against structural evasion attacks, despite its simple and effective design.

H ADAPTIVE ATTACKS

H.1 ADAPTIVE ATTACKS AGAINST GNNGUARD

Following Mujkanovic et al. (2022), we investigate adaptive attacks targeting GNNGuard, leverag-
ing its robust performance against structural attacks. We employ a modified PGD attack Xu et al.
(2019), termed PGDGuard, which restricts the attack search space to edges with similarity exceed-
ing a threshold ϵ. All edge additions or removals satisfy this similarity constraint. We fix the attack
embedding to RoBERTa and evaluate PGDGuard across ϵ values of 0.0, 0.3, 0.5, and 0.7, assess-
ing the performance of GNN and RGNN models under these conditions. Results are presented in
Figure 11.
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Figure 10: Comprehensive comparison between GuardDual and GNNGuard under RoBERTa em-
bedding for structure attack defense. Left subplot shows absolute accuracy performance with Guard-
Dual consistently outperforming GNNGuard across most datasets. Right subplot displays ranking
improvements, where positive values indicate GuardDual’s superior competitive position.
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Figure 11: Evasion accuracy vs attack threshold for different defense methods with perturbation rate
0.2 and embedding types roberta.

Key observations are summarized as follows:

• U-Shaped Performance Curve for GNNGuard: GNNGuard exhibits a U-shaped trend in
evasion accuracy with respect to PGDGuard’s attack threshold ϵ. When ϵ significantly de-
viates from GNNGuard’s filtering threshold (either lower or higher), the attack’s effective-
ness diminishes. However, when ϵ closely aligns with GNNGuard’s threshold, the attack
achieves optimal evasion, indicating a trade-off: at lower ϵ, PGDGuard’s perturbations lack
sufficient potency, while at higher ϵ, GNNGuard’s filtering mechanism effectively mitigates
the attack.

• Trade-Offs for Other Defense Methods: While increasing the attack threshold ϵ may am-
plify PGDGuard’s impact on GNNGuard, it generally enhances the performance of other
defense methods. On datasets like Cora and WikiCS, attacks tailored to GNNGuard’s
threshold tend to weaken against alternative defenses, posing significant challenges for
attackers aiming to generalize across diverse defense strategies.
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Table 13: Performance (%) for PGD-structure on GNNs (GCN, GRAND, RUNG). Rows = attacker
embeddings; columns = defender embeddings.

Model / Dataset Cora CiteSeer PubMed WikiCS
BoW MiniLM RoBERTa BoW MiniLM RoBERTa BoW MiniLM RoBERTa BoW MiniLM RoBERTa

GCN
Attacker = BoW 66.11 72.39 73.31 54.86 61.34 62.70 80.12 83.87 82.92 20.39 30.44 31.54
Attacker = MiniLM 70.11 62.98 68.39 54.60 47.13 54.18 82.60 81.57 83.55 33.25 25.37 28.25
Attacker = RoBERTa 71.34 70.85 69.43 63.95 63.74 63.58 82.21 82.29 82.73 25.12 21.50 20.86

GRAND
Attacker = BoW 71.89 78.60 79.89 64.00 70.22 70.74 82.45 83.88 86.41 48.57 66.75 71.86
Attacker = MiniLM 75.28 70.91 77.06 64.79 64.99 66.88 84.02 83.43 86.03 64.96 53.57 67.01
Attacker = RoBERTa 75.40 76.45 76.51 68.03 70.43 70.06 84.54 84.25 85.77 57.21 61.13 65.36

RUNG
Attacker = BoW 78.04 83.64 84.56 67.97 73.46 73.30 85.70 89.78 90.72 75.00 79.95 82.73
Attacker = MiniLM 78.04 83.70 83.83 67.92 73.35 73.93 85.87 89.53 90.61 76.18 80.26 82.53
Attacker = RoBERTa 79.09 83.58 84.32 69.04 74.14 73.93 86.06 89.56 90.72 75.94 80.14 82.39

Table 14: Perfomrance (%) for PGD-structure on LLaGA and SFT-Neighbor. Rows = attacker
embeddings; columns = datasets.

Model / Attacker Cora CiteSeer PubMed WikiCS

LLaGA
BoW 75.21 66.35 87.38 66.99
RoBERTa 72.88 67.24 86.70 60.47

SFT-Neighbor
BoW 82.59 74.24 92.29 84.05
RoBERTa 81.24 71.84 94.72 86.19

• Dataset-Specific Exceptions: Despite the general trade-off, notable exceptions arise, par-
ticularly on PubMed at ϵ = 0.5. Here, PGDGuard achieves superior attack performance
across all methods. This is attributed to PubMed’s fine-grained classification, where em-
bedding similarities (metric in subplot b of Figure 8) for both intra-class and inter-class
nodes cluster around 0.6. Selecting ϵ = 0.5 effectively targets potentially harmful edges,
highlighting the efficacy of dataset-specific, embedding-aware attack strategies.

These findings underscore the nuanced interplay between attack thresholds and defense mechanisms,
emphasizing the importance of aligning attack strategies with dataset-specific embedding character-
istics to maximize evasion effectiveness.

H.2 ADAPTIVE ATTACKS ON EMBEDDING TRANSFERABILITY

Setup. In the main experiments, we initially used BoW as the victim’s text embedding for struc-
tural evasion attacks. To model adaptive attackers and embedding-aware defenders, we vary the
text encoder used the victim model in PGD among {BoW, MiniLM, RoBERTa} while the defender
may defend with {BoW, MiniLM, RoBERTa}. We evaluate GCN, GRAND, RUNG, LLaGA, and
SFT-Neighbor on datasets Cora, CiteSeer, PubMed, and WikiCS.

The results are shown in Table 13 and Table 14. We have the following findings:

• Embedding Match Helps the Attacker. Across models, the attack performance is highest
when the attacker and defender use the same embedding. If embedding is mismatched, even
from advanced to BoW, the attack performance significantly degrades. In fact, when the
surrogate text encoder is LM, BoW as the defender’s embedding can be strong.

• Transfer is Stronger within LM-family. MiniLM↔ RoBERTa transfers better than BoW
↔ LM.

• Transferability to GraphLLMs Varies among Datasets. LLaGA, which takes RoBERTa
as the text encoder, also suffers more if the attacker uses RoBERTa as the surrogate. How-
ever, for SFT, the results vary among datasets. This observation means that the effective text
encoder for attackers could depend on the dataset’s characteristics and the victim model.
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I ABLATION STUDY FOR SFT VARIANTS

In this subsection, we conduct an ablation study to analyze the impact of different neighbor selection
strategies and prompt templates in our SFT variants. We examine the effectiveness of degree-based
neighbor selection versus random selection, and investigate the influence of incorporating label in-
formation in the prompting strategy.

I.1 IMPACT OF DIFFERENT PROMPT TEMPLATES

Due to context length limitations, currently, we feed nodes’ neighbors with the top degree as repre-
sentatives in the prompt. In this subsection, we conduct an ablation study to examine the impact of
randomly selecting neighbors.

I.1.1 DEGREE-BASED VS RANDOM NEIGHBOR SELECTION

Table 15: Comparison between degree-based (SFT-neighbor) and random (SFT-rand) neighbor se-
lection strategies across different attack scenarios. Bolded values indicate the better performance
between the two methods for each dataset and scenario.

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History

Clean Results on Inductive Split

SFT-neighbor 88.25 ± 1.29 76.17 ± 1.81 95.08 ± 0.51 87.75 ± 0.46 69.24 ± 0.54 66.74 ± 1.06 86.81 ± 0.77
SFT-rand 87.27 ± 2.30 77.27 ± 0.47 95.05 ± 0.20 87.72 ± 0.58 69.96 ± 0.72 68.46 ± 0.09 86.64 ± 0.45

Structure Attack Results on Inductive Split

SFT-neighbor 82.35 ± 1.94 71.53 ± 1.86 94.73 ± 0.41 86.00 ± 1.40 68.25 ± 0.20 62.29 ± 3.31 85.98 ± 0.51
SFT-rand 79.09 ± 2.82 71.42 ± 0.48 94.79 ± 0.17 85.19 ± 0.68 68.50 ± 0.71 65.23 ± 1.16 84.77 ± 0.83

Text Attack Results on Inductive Split

SFT-neighbor 75.65 ± 1.33 43.84 ± 2.14 72.27 ± 3.53 51.53 ± 1.24 64.33 ± 1.46 65.52 ± 1.24 64.84 ± 0.98
SFT-rand 78.60 ± 1.78 47.08 ± 2.76 73.22 ± 1.74 50.93 ± 0.82 61.71 ± 1.71 66.58 ± 0.54 68.83 ± 6.35

As shown in Table 15, the comparison between degree-based and random neighbor selection reveals
distinct performance patterns across evaluation scenarios. Under clean conditions, SFT-neighbor
demonstrates marginal advantages on most datasets. Interestingly, under text attack scenarios, SFT-
rand exhibits superior robustness on several datasets, including Cora (78.60% vs 75.65%) and Cite-
Seer (47.08% vs 43.84%). However, under structural attacks, SFT-rand is more vulnerable, exhibit-
ing larger performance drops. In conclusion, trade-offs also exist between the two variants.

I.1.2 LABEL INFORMATION IN PROMPTING

In (Wang et al., 2025b), incorporating label information in the prompt can yield better results for
specific scenarios. We test the performance of such a prompt on clean datasets and against adversar-
ial attacks. As shown in Table 16, incorporating explicit label information (SFT-neighbor-label)
often leads to unstable performance, particularly on certain datasets like Instagram and Reddit,
where severe degradation is observed across all scenarios. This lack of robustness and dataset-
specific instability indicates potential overfitting or incompatibility with certain graph structures or
data distributions. Consequently, label-enhanced prompting is not adopted due to its inconsistent
performance.

I.2 IMPACT OF DIFFERENT LLM BACKBONES

In the main paper, we use Mistral-7B as our LLM backbone as it shows the best performance in
paper (Wu et al., 2025). In this subsection, we present the results of SFT with neighbor-aware
prompts using different LLM backbones.

We use LLMs Mistral-7B (Jiang et al., 2023), Ministral-8B (Mistral AI Team, 2024), LLama3.1-
8B (Dubey et al., 2024) and Qwen3-8B (Yang et al., 2025). The results are presented in Ta-
bles 17, 18, and 19.

The results demonstrate that:
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Table 16: Comparison between standard degree-based selection (SFT-neighbor) and label-enhanced
prompting (SFT-neighbor-label) across different attack scenarios. Bolded values indicate the better
performance between the two methods for each dataset and scenario. Red values indicate significant
performance degradation.

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History

Clean Results on Inductive Split

SFT-neighbor 88.25 ± 1.29 76.17 ± 1.81 95.08 ± 0.51 87.75 ± 0.46 69.24 ± 0.54 66.74 ± 1.06 86.81 ± 0.77
SFT-neighbor-label 87.33 ± 2.50 77.07 ± 0.72 94.80 ± 0.44 87.75 ± 0.66 35.54 ± 3.54 14.08 ± 0.59 86.81 ± 0.69

Structure Attack Results on Inductive Split

SFT-neighbor 82.35 ± 1.94 71.53 ± 1.86 94.73 ± 0.41 86.00 ± 1.40 68.25 ± 0.20 62.29 ± 3.31 85.98 ± 0.51
SFT-neighbor-label 82.54 ± 1.67 73.35 ± 1.03 94.41 ± 0.38 86.28 ± 0.15 45.84 ± 2.23 22.42 ± 2.01 86.00 ± 0.78

Text Attack Results on Inductive Split

SFT-neighbor 75.65 ± 1.33 43.84 ± 2.14 72.27 ± 3.53 51.53 ± 1.24 64.33 ± 1.46 65.52 ± 1.24 64.84 ± 0.98
SFT-neighbor-label 64.51 ± 7.10 41.80 ± 0.77 74.97 ± 4.68 50.17 ± 0.58 34.64 ± 2.11 13.91 ± 0.59 64.58 ± 3.41

Table 17: Clean performance of SFT with neighbor-aware prompt in the inductive setting .
LLM cora CiteSeer pubmed wikics history

Mistral-7B 88.25 ± 1.29 76.17 ± 1.81 95.08 ± 0.51 87.75 ± 0.46 86.81 ± 0.77
Ministral-8B 86.29 ± 0.91 76.70 ± 0.55 95.50 ± 0.08 87.28 ± 0.34 86.57 ± 0.85
Llama3-8B 86.10 ± 0.93 77.43 ± 1.18 95.38 ± 0.15 86.33 ± 0.15 86.68 ± 0.78
Qwen3-8B 85.55 ± 0.95 77.07 ± 1.49 95.18 ± 0.37 86.17 ± 0.91 86.08 ± 0.82

Table 18: SFT with neighbor prompt against structure attacks in the inductive setting.
LLM cora CiteSeer pubmed wikics history

Mistral-7B 82.35 ± 1.94 71.53 ± 1.86 94.73 ± 0.41 86.00 ± 1.40 85.98 ± 0.51
Ministral-8B 79.64 ± 1.87 74.30 ± 0.98 95.23 ± 0.07 85.97 ± 0.91 86.06 ± 0.72
Llama3-8B 79.15 ± 1.12 74.34 ± 0.48 95.00 ± 0.14 84.98 ± 1.01 86.08 ± 0.69
Qwen3-8B 77.92 ± 1.68 72.94 ± 0.79 94.77 ± 0.49 84.73 ± 1.34 85.26 ± 0.70

Table 19: SFT with neighbor prompt against text attacks in the inductive setting.
LLM cora CiteSeer pubmed wikics history

Mistral-7B 75.65 ± 1.33 43.84 ± 2.14 72.27 ± 3.53 51.53 ± 1.24 64.84 ± 0.98
Ministral-8B 68.76 ± 1.77 42.11 ± 1.02 71.02 ± 1.32 49.95 ± 0.44 55.15 ± 3.43
Llama3-8B 69.74 ± 3.81 43.37 ± 2.81 72.19 ± 1.67 49.58 ± 0.42 57.82 ± 3.37
Qwen3-8B 74.85 ± 2.33 44.56 ± 2.69 71.85 ± 0.56 49.44 ± 0.41 63.13 ± 3.19

• Mistral-7B consistently achieves the best performance across most datasets and settings,
validating our choice of backbone in the main experiments

• Post-attack performance generally follows the same trends as clean performance, with
models maintaining their relative advantages—for instance, Mistral-7B preserves its su-
periority on Cora across all attack scenarios

• Minor variations exist in specific contexts, such as on Cora and History datasets under
textual attacks, where both Mistral-7B and Qwen3-8B demonstrate stronger robustness,
though overall differences remain modest across backbones.
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J FULL EXPERIMENT RESULTS

J.1 OVERVIEW AND CLARIFICATION OF RANK-BASED EVALUATION

The full results are provided in Section J.2 and Section J.3. In Section J.4, we include results against
a smaller perturb ratio. We can see that compared to the main experiments, the attack effectiveness
degrades.

In the main paper, we rely primarily on rank-based evaluation for the following reasons:

• Per-dataset plots are dense and difficult to read within the limited space of the main paper.
Lines with similar performance tend to mix up.

• Averaging raw accuracies across datasets can be misleading due to scale differences and
missing results on large-scale datasets, whereas rank provides a normalized, dataset-
agnostic comparison.

• Raw accuracies are heavily influenced by clean accuracy, while rank mitigates such biases.
Rank-based evaluation thus offers a clearer and more balanced summary of robustness
across datasets.

To recover the rank-related results in the main paper, the procedure is as follows:

1. For each dataset, all methods with valid performance values are collected. A dash in the
tables (−) indicates a method was not applicable due to OOM or scalability issues.

2. Methods are sorted within each dataset to determine their rank.

3. The final rank is the average of a method’s ranks across all datasets where it has values.

For example, a method with ranks (1, 2, 3) has a final rank of 2, while a method with ranks (1, 2,−)
has a final rank of 1.5. Note that within each figure, only the methods included are considered during
ranking.

J.2 GNN AND RGNN RESULTS

J.2.1 CLEAN, INDUCTIVE

Results are in Tables 20, 22, 21, 23.

Table 20: Clean test accuracy under the inductive setting. (emb=BoW)
Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo Computer ArXiv Avg Rank

GCN 85.98 ± 1.36 73.93 ± 1.94 86.84 ± 0.25 81.92 ± 0.29 63.05 ± 0.49 60.22 ± 0.82 81.97 ± 0.13 84.23 ± 0.17 87.75 ± 0.23 71.35 ± 0.00 5.40
GAT 86.22 ± 1.86 73.88 ± 0.85 86.72 ± 0.21 82.40 ± 0.62 64.67 ± 1.37 61.81 ± 1.15 82.07 ± 0.63 84.75 ± 0.05 88.09 ± 0.22 71.79 ± 0.00 3.80
APPNP 86.22 ± 1.40 71.94 ± 0.97 87.01 ± 0.21 80.52 ± 0.62 63.10 ± 1.59 57.27 ± 1.38 81.19 ± 0.43 82.99 ± 0.28 88.11 ± 0.16 71.27 ± 0.00 7.00
GPRGNN 83.95 ± 1.57 71.32 ± 1.63 87.80 ± 0.02 81.23 ± 0.32 64.34 ± 1.16 60.03 ± 0.72 78.59 ± 0.42 81.65 ± 0.66 85.02 ± 0.05 65.67 ± 0.00 8.60
RobustGCN 86.22 ± 2.01 73.77 ± 0.63 86.86 ± 0.36 82.88 ± 0.04 66.74 ± 0.34 58.06 ± 1.18 81.53 ± 0.57 84.03 ± 0.32 87.67 ± 0.17 68.20 ± 0.00 5.50
GCORN 83.33 ± 1.48 73.35 ± 0.59 86.73 ± 0.35 81.25 ± 0.22 64.98 ± 0.45 65.01 ± 0.58 80.92 ± 0.24 82.04 ± 0.08 84.53 ± 0.09 69.86 ± 0.00 7.10
NoisyGCN 86.35 ± 1.21 73.25 ± 1.36 86.73 ± 0.20 81.85 ± 0.31 63.12 ± 0.43 61.84 ± 0.31 82.20 ± 0.25 84.38 ± 0.16 87.75 ± 0.11 71.25 ± 0.00 5.00
GRAND 85.12 ± 1.76 74.19 ± 1.41 87.75 ± 0.45 81.49 ± 0.19 65.02 ± 0.48 62.50 ± 1.78 79.65 ± 0.62 81.71 ± 0.42 83.78 ± 0.14 68.23 ± 0.00 6.00
SoftmedianGDC 80.57 ± 1.90 73.35 ± 0.38 85.58 ± 0.08 78.48 ± 0.32 62.74 ± 1.15 61.33 ± 0.50 76.78 ± 0.46 – – – 10.57
EvenNet 84.81 ± 1.51 72.52 ± 0.70 87.63 ± 0.40 83.01 ± 0.36 65.24 ± 0.79 60.24 ± 0.11 81.01 ± 0.59 84.07 ± 0.03 87.86 ± 0.18 70.14 ± 0.00 5.40
ElasticGNN 86.59 ± 1.97 73.77 ± 0.07 87.60 ± 0.11 83.11 ± 0.49 65.58 ± 1.04 61.62 ± 0.43 81.71 ± 0.40 84.05 ± 0.08 88.60 ± 0.12 72.24 ± 0.00 2.80
GNNGuard 82.29 ± 1.23 69.85 ± 0.98 86.24 ± 0.32 75.05 ± 0.72 63.95 ± 0.64 54.37 ± 0.35 78.05 ± 0.38 77.81 ± 0.22 75.87 ± 0.35 70.49 ± 0.00 10.80
RUNG 81.73 ± 2.35 71.06 ± 0.27 85.72 ± 0.24 75.00 ± 0.25 64.40 ± 0.16 57.63 ± 0.60 – – – – 11.17

Table 21: Clean test accuracy under the inductive setting. (emb=Mistral-7B)
Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo Computer ArXiv Avg Rank

GCN 86.84 ± 1.99 75.44 ± 0.63 88.24 ± 0.63 83.43 ± 0.36 68.49 ± 0.30 65.39 ± 5.04 84.74 ± 0.44 85.64 ± 0.34 88.33 ± 0.16 74.18 ± 0.00 6.00
GAT 80.14 ± 1.03 71.58 ± 0.77 86.63 ± 0.62 66.28 ± 4.25 64.39 ± 0.27 61.14 ± 0.58 83.36 ± 0.61 82.83 ± 1.88 87.56 ± 0.48 72.91 ± 0.00 10.20
APPNP 84.69 ± 1.20 75.91 ± 0.82 92.02 ± 0.22 85.79 ± 0.46 69.02 ± 0.18 63.02 ± 0.51 84.88 ± 0.56 85.53 ± 0.49 88.51 ± 0.40 76.22 ± 0.00 4.40
GPRGNN 85.85 ± 0.98 77.12 ± 0.38 92.44 ± 0.22 86.50 ± 0.65 67.75 ± 0.95 65.56 ± 0.51 84.82 ± 0.38 84.75 ± 0.62 87.84 ± 0.16 76.11 ± 0.00 4.20
RobustGCN 58.61 ± 8.78 46.03 ± 3.30 45.01 ± 7.14 27.01 ± 5.97 64.26 ± 0.53 52.75 ± 0.27 56.16 ± 0.43 42.14 ± 0.11 25.89 ± 0.18 5.86 ± 0.00 11.60
GCORN 86.16 ± 1.98 76.33 ± 0.78 90.50 ± 0.39 85.69 ± 0.39 66.18 ± 0.35 69.28 ± 0.88 85.26 ± 0.31 86.36 ± 0.27 87.67 ± 0.25 75.52 ± 0.00 4.50
NoisyGCN 87.95 ± 1.30 75.18 ± 0.27 88.23 ± 0.03 84.00 ± 0.29 68.83 ± 0.66 65.38 ± 3.55 84.74 ± 0.43 85.95 ± 0.35 88.44 ± 0.39 74.29 ± 0.00 5.30
GRAND 86.29 ± 1.45 76.49 ± 0.64 90.80 ± 0.33 85.32 ± 1.05 68.25 ± 0.10 63.55 ± 0.88 84.57 ± 0.57 77.99 ± 3.35 79.59 ± 1.60 – 6.56
SoftmedianGDC 82.35 ± 1.60 73.04 ± 0.26 91.70 ± 0.18 81.48 ± 3.09 – 60.79 ± 0.42 84.50 ± 0.61 – – – 9.33
EvenNet 85.79 ± 1.04 75.60 ± 0.70 90.77 ± 0.07 87.13 ± 0.53 69.34 ± 0.24 64.91 ± 0.30 84.90 ± 0.53 85.00 ± 0.29 88.34 ± 0.62 74.12 ± 0.00 4.50
ElasticGNN 88.25 ± 1.30 76.70 ± 0.91 89.33 ± 0.46 86.62 ± 0.34 68.74 ± 0.47 49.95 ± 0.31 84.90 ± 0.49 85.60 ± 0.46 88.96 ± 0.44 76.09 ± 0.00 4.20
GNNGuard 85.49 ± 0.74 74.35 ± 0.52 90.20 ± 0.23 84.25 ± 1.71 69.12 ± 0.21 59.48 ± 7.12 – – – – 7.50
RUNG 82.90 ± 1.81 73.67 ± 0.38 92.34 ± 0.06 83.53 ± 0.65 68.50 ± 0.08 63.60 ± 0.49 – – – – 7.17
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Table 22: Clean test accuracy under the inductive setting. (emb=MiniLM)
Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo Computer ArXiv Avg Rank

GCN 86.35 ± 2.07 75.76 ± 0.98 89.28 ± 0.51 83.81 ± 0.13 65.06 ± 0.68 66.98 ± 0.59 84.57 ± 0.36 86.04 ± 0.25 88.93 ± 0.11 73.86 ± 0.00 5.60
GAT 87.33 ± 1.58 74.87 ± 0.85 87.53 ± 0.08 83.47 ± 0.21 67.11 ± 0.28 65.00 ± 0.85 83.84 ± 0.53 86.14 ± 0.41 89.10 ± 0.17 73.31 ± 0.00 6.20
APPNP 84.93 ± 1.92 75.76 ± 0.87 89.22 ± 0.32 83.44 ± 0.56 66.05 ± 0.06 58.83 ± 0.60 84.73 ± 0.59 85.28 ± 0.16 89.29 ± 0.10 75.71 ± 0.00 5.90
GPRGNN 86.41 ± 1.67 75.60 ± 0.53 89.96 ± 0.26 82.41 ± 0.64 63.10 ± 0.88 59.08 ± 0.08 83.12 ± 0.50 83.77 ± 0.25 87.75 ± 0.15 71.97 ± 0.00 8.60
RobustGCN 87.95 ± 1.03 76.18 ± 1.05 88.07 ± 0.19 84.12 ± 0.05 67.28 ± 0.16 58.65 ± 0.21 84.86 ± 0.38 85.97 ± 0.21 88.83 ± 0.15 74.09 ± 0.00 5.00
GCORN 86.72 ± 2.04 76.07 ± 1.15 88.80 ± 0.03 83.51 ± 0.30 64.62 ± 0.61 67.08 ± 0.51 84.72 ± 0.47 84.37 ± 0.21 85.84 ± 0.06 74.35 ± 0.00 5.90
NoisyGCN 85.92 ± 1.77 76.07 ± 0.48 89.22 ± 0.18 84.07 ± 0.09 65.14 ± 0.54 67.19 ± 0.52 84.54 ± 0.38 86.15 ± 0.32 89.08 ± 0.20 73.57 ± 0.00 5.20
GRAND 86.41 ± 1.28 77.48 ± 1.74 88.15 ± 0.14 83.06 ± 0.04 65.46 ± 0.31 64.60 ± 0.49 83.03 ± 0.52 82.40 ± 0.46 83.49 ± 0.08 72.22 ± 0.00 7.90
SoftmedianGDC 86.47 ± 1.61 76.65 ± 0.34 90.31 ± 0.27 82.22 ± 0.49 61.60 ± 0.57 63.43 ± 0.13 83.64 ± 0.53 – – – 7.00
EvenNet 86.78 ± 1.26 75.76 ± 2.25 88.97 ± 0.07 84.76 ± 0.22 65.95 ± 0.81 61.46 ± 0.20 84.63 ± 0.46 85.56 ± 0.22 89.15 ± 0.14 73.78 ± 0.00 5.10
ElasticGNN 86.53 ± 1.98 77.06 ± 1.26 88.67 ± 0.20 84.54 ± 0.27 66.68 ± 0.34 63.53 ± 0.41 84.98 ± 0.54 85.70 ± 0.25 89.66 ± 0.09 75.82 ± 0.00 3.60
GNNGuard 82.84 ± 1.14 75.08 ± 0.46 88.88 ± 0.06 80.72 ± 0.61 60.95 ± 1.04 56.83 ± 0.60 82.92 ± 0.15 74.70 ± 0.25 79.01 ± 0.08 71.25 ± 0.00 11.60
RUNG 84.75 ± 1.65 73.46 ± 0.87 89.78 ± 0.14 81.48 ± 0.38 63.51 ± 0.38 58.72 ± 0.51 – – – – 10.17

Table 23: Clean test accuracy under the inductive setting. (emb=RoBERTa)
Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo Computer ArXiv Avg Rank

GCN 87.76 ± 1.51 75.60 ± 1.09 88.76 ± 0.25 84.86 ± 0.61 66.75 ± 0.29 67.76 ± 0.74 85.00 ± 0.31 86.46 ± 0.26 89.24 ± 0.15 73.29 ± 0.00 6.20
GAT 87.70 ± 1.30 76.59 ± 0.45 88.14 ± 0.48 84.42 ± 0.12 67.80 ± 0.23 64.64 ± 0.22 84.66 ± 0.67 86.30 ± 0.17 89.70 ± 0.28 74.09 ± 0.00 5.70
APPNP 84.75 ± 1.61 75.76 ± 0.63 91.26 ± 0.22 85.03 ± 0.63 67.21 ± 0.13 59.99 ± 0.45 85.79 ± 0.57 85.70 ± 0.20 88.99 ± 0.14 76.00 ± 0.00 5.80
GPRGNN 86.29 ± 1.61 74.19 ± 0.45 91.05 ± 0.16 84.38 ± 1.00 64.26 ± 0.58 58.35 ± 0.67 84.68 ± 0.45 84.76 ± 0.23 88.23 ± 0.17 71.83 ± 0.00 9.70
RobustGCN 87.70 ± 1.28 74.82 ± 0.59 87.92 ± 0.12 84.37 ± 0.18 67.97 ± 0.08 63.09 ± 0.87 84.43 ± 0.43 84.79 ± 0.39 86.78 ± 0.14 73.73 ± 0.00 8.50
GCORN 87.52 ± 1.15 76.28 ± 0.15 89.83 ± 0.16 85.48 ± 0.27 65.17 ± 0.52 67.85 ± 0.48 85.28 ± 0.49 85.64 ± 0.05 87.51 ± 0.06 73.69 ± 0.00 6.30
NoisyGCN 88.01 ± 0.69 75.86 ± 0.51 88.75 ± 0.32 84.35 ± 0.61 67.12 ± 0.32 67.75 ± 0.78 84.98 ± 0.08 86.37 ± 0.22 89.23 ± 0.25 73.35 ± 0.00 6.50
GRAND 88.75 ± 0.94 77.85 ± 1.29 90.47 ± 0.24 85.90 ± 0.31 67.64 ± 0.26 65.83 ± 0.49 86.00 ± 0.36 85.54 ± 0.22 88.13 ± 0.02 75.85 ± 0.00 3.80
SoftmedianGDC 85.36 ± 2.13 75.71 ± 0.90 90.76 ± 0.22 83.53 ± 0.94 65.53 ± 0.50 62.91 ± 0.19 84.78 ± 0.47 – – – 8.71
EvenNet 86.35 ± 1.18 75.86 ± 0.71 90.74 ± 0.15 85.95 ± 0.63 67.68 ± 0.65 61.65 ± 0.79 85.63 ± 0.40 86.55 ± 0.16 89.51 ± 0.21 74.75 ± 0.00 4.20
ElasticGNN 88.31 ± 1.51 75.76 ± 0.52 89.89 ± 0.20 85.48 ± 0.35 67.64 ± 0.80 64.06 ± 0.87 85.81 ± 0.57 86.19 ± 0.02 90.07 ± 0.08 76.22 ± 0.00 3.80
GNNGuard 83.64 ± 1.94 74.03 ± 0.53 90.21 ± 0.41 83.03 ± 0.53 64.09 ± 1.23 58.58 ± 0.33 84.65 ± 0.49 83.07 ± 0.08 82.38 ± 0.06 71.16 ± 0.00 12.10
RUNG 84.93 ± 1.46 73.30 ± 1.19 90.72 ± 0.25 84.37 ± 0.44 66.43 ± 0.27 58.80 ± 0.97 – – – – 10.17
Guardual 84.26 ± 1.71 74.71 ± 1.22 89.83 ± 0.29 84.54 ± 0.34 65.53 ± 0.32 62.24 ± 0.22 85.01 ± 0.28 79.78 ± 0.17 77.39 ± 0.31 72.17 ± 0.00 9.90

J.2.2 CLEAN, TRANSDUCTIVE

Results are in Tables 24, 25, 26.

Table 24: Clean test accuracy under the transductive setting. (ptb rate=0.3, atk emb=BoW,
def emb=BoW)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Avg Rank

GCN 83.19 ± 0.75 71.32 ± 0.83 85.45 ± 0.24 80.01 ± 0.29 65.97 ± 0.09 61.84 ± 0.49 80.14 ± 0.25 6.86
GAT 82.99 ± 1.03 72.30 ± 0.56 85.38 ± 0.21 79.76 ± 0.35 65.41 ± 0.06 60.73 ± 0.30 80.67 ± 0.12 7.86
APPNP 83.69 ± 0.30 72.25 ± 1.10 87.34 ± 0.08 80.49 ± 0.33 65.78 ± 0.10 60.78 ± 0.66 80.84 ± 0.06 4.14
GPRGNN 83.06 ± 0.73 72.56 ± 0.65 86.48 ± 0.24 79.80 ± 0.14 66.12 ± 0.18 60.37 ± 1.08 80.49 ± 0.05 5.43
RobustGCN 83.77 ± 0.80 71.64 ± 0.66 86.45 ± 0.30 81.15 ± 0.14 65.94 ± 0.31 59.29 ± 0.82 80.95 ± 0.15 5.43
GCORN 77.40 ± 0.60 69.77 ± 0.58 84.71 ± 0.32 78.87 ± 0.33 65.43 ± 0.45 66.34 ± 0.08 78.36 ± 0.02 11.57
NoisyGCN 83.19 ± 0.12 72.36 ± 0.94 85.75 ± 0.42 79.74 ± 0.35 65.77 ± 0.15 63.83 ± 0.13 80.34 ± 0.32 6.00
GRAND 83.97 ± 0.92 71.71 ± 0.14 87.16 ± 0.30 80.71 ± 0.38 65.94 ± 0.27 61.58 ± 1.33 80.35 ± 0.27 4.43
SoftmedianGDC 82.77 ± 1.35 71.99 ± 0.28 85.15 ± 0.07 74.33 ± 0.49 65.98 ± 0.40 59.67 ± 0.52 78.04 ± 0.08 10.57
EvenNet 82.88 ± 0.56 71.70 ± 0.70 86.50 ± 0.24 80.71 ± 0.31 65.77 ± 0.72 64.61 ± 0.68 80.48 ± 0.07 5.57
ElasticGNN 83.19 ± 0.17 73.14 ± 0.40 87.00 ± 0.17 80.18 ± 0.27 65.41 ± 0.37 60.58 ± 0.47 80.67 ± 0.07 5.43
GNNGuard 80.31 ± 0.37 71.20 ± 0.28 86.13 ± 0.26 77.08 ± 0.28 64.26 ± 0.79 58.79 ± 0.43 79.54 ± 0.18 12.71
RUNG 81.91 ± 0.59 72.20 ± 0.80 85.57 ± 0.30 78.75 ± 0.47 65.55 ± 0.23 60.24 ± 0.11 – 10.17
Cosine-GCN 79.48 ± 1.38 69.70 ± 0.92 84.03 ± 0.26 77.61 ± 0.47 64.78 ± 0.50 59.07 ± 0.36 78.26 ± 0.21 14.57
Jaccard-GCN 80.60 ± 1.25 69.98 ± 0.82 84.12 ± 0.34 79.11 ± 0.29 65.66 ± 0.13 61.77 ± 0.26 78.44 ± 0.19 10.86
Stable 79.97 ± 0.45 68.29 ± 0.67 84.00 ± 0.43 78.94 ± 0.55 64.66 ± 0.51 63.32 ± 0.31 – 12.83
ProGNN 77.79 ± 0.19 70.13 ± 0.93 – – – – – 14.50

J.2.3 STRUCTURE ATTACK, INDUCTIVE

Results are in Tables 27, 29, 28, 30.

J.2.4 STRUCTURE ATTACK, TRANSDUCTIVE

Results are in Tables 31, 32, 33.

J.2.5 TEXT ATTACK, INDUCTIVE

Results are in Tables 34, 35, 36.

J.2.6 TEXT ATTACK, TRANSDUCTIVE

Results are in Tables 37, 38, 39.
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Table 25: Clean test accuracy under the transductive setting. (ptb rate=0.3, atk emb=BoW,
def emb=MiniLM)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Avg Rank

GCN 84.34 ± 0.34 74.32 ± 0.88 86.78 ± 0.48 81.31 ± 0.05 65.67 ± 0.33 65.81 ± 0.63 82.94 ± 0.11 8.43
GAT 83.97 ± 1.30 73.86 ± 0.61 85.94 ± 0.35 81.85 ± 0.31 65.56 ± 0.07 63.31 ± 0.86 82.65 ± 0.01 10.29
APPNP 84.33 ± 0.79 74.43 ± 0.36 88.36 ± 0.26 81.59 ± 0.28 65.68 ± 0.44 62.54 ± 0.09 83.44 ± 0.10 5.14
GPRGNN 84.31 ± 0.17 73.98 ± 0.91 88.04 ± 0.21 81.45 ± 0.23 65.21 ± 0.30 62.34 ± 0.25 82.61 ± 0.09 10.00
RobustGCN 84.05 ± 0.51 75.10 ± 0.65 86.92 ± 0.12 81.82 ± 0.30 66.14 ± 0.41 64.05 ± 0.29 83.18 ± 0.06 5.86
GCORN 82.77 ± 0.80 74.94 ± 0.65 86.99 ± 0.14 81.07 ± 0.35 65.75 ± 0.15 67.37 ± 0.29 83.12 ± 0.02 7.86
NoisyGCN 83.73 ± 0.44 74.11 ± 0.59 87.15 ± 0.23 81.42 ± 0.07 65.46 ± 0.01 67.52 ± 0.25 82.84 ± 0.12 9.00
GRAND 84.33 ± 0.53 75.82 ± 0.49 87.38 ± 0.16 81.69 ± 0.22 65.51 ± 0.24 65.02 ± 0.83 83.10 ± 0.18 5.86
SoftmedianGDC 84.42 ± 0.25 75.47 ± 0.45 88.16 ± 0.30 81.04 ± 0.38 65.88 ± 0.28 63.72 ± 0.29 83.54 ± 0.10 4.57
EvenNet 84.39 ± 0.60 74.75 ± 0.99 87.45 ± 0.23 82.11 ± 0.59 65.60 ± 0.23 62.01 ± 0.42 83.28 ± 0.07 5.86
ElasticGNN 84.63 ± 0.15 74.43 ± 0.36 87.69 ± 0.05 81.47 ± 0.23 65.77 ± 0.31 62.54 ± 0.14 83.24 ± 0.05 5.43
GNNGuard 82.71 ± 0.29 74.36 ± 0.58 87.37 ± 0.10 81.55 ± 0.01 64.79 ± 0.67 59.29 ± 0.57 82.75 ± 0.26 11.57
RUNG 82.19 ± 0.26 73.68 ± 0.20 87.76 ± 0.26 81.37 ± 0.01 65.02 ± 0.53 61.51 ± 0.11 – 12.67
Cosine-GCN 82.02 ± 0.81 74.19 ± 0.34 86.30 ± 0.22 81.36 ± 0.09 65.45 ± 0.38 59.37 ± 0.08 82.50 ± 0.08 13.43
Jaccard-GCN 83.42 ± 0.19 73.85 ± 0.73 86.30 ± 0.26 80.94 ± 0.16 65.67 ± 0.41 66.10 ± 0.33 82.30 ± 0.06 11.57
Stable 84.09 ± 0.19 73.68 ± 1.06 86.84 ± 0.23 82.53 ± 0.28 65.33 ± 0.54 66.21 ± 0.24 – 8.83
ProGNN 83.20 ± 0.51 75.34 ± 0.72 – – – – – 8.00

Table 26: Clean test accuracy under the transductive setting. (ptb rate=0.3, atk emb=BoW,
def emb=RoBERTa)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Avg Rank

GCN 84.03 ± 0.51 73.98 ± 0.70 87.39 ± 0.11 81.85 ± 0.46 66.68 ± 0.20 63.41 ± 0.12 83.55 ± 0.20 10.57
GAT 84.25 ± 0.48 74.19 ± 0.40 86.20 ± 0.20 82.05 ± 0.25 66.45 ± 0.24 62.91 ± 0.19 83.33 ± 0.21 12.29
APPNP 85.03 ± 0.24 74.74 ± 0.22 89.13 ± 0.04 82.51 ± 0.55 67.48 ± 0.11 63.80 ± 0.15 84.43 ± 0.20 3.43
GPRGNN 85.05 ± 0.36 74.42 ± 0.50 89.06 ± 0.28 82.17 ± 0.44 67.26 ± 0.13 63.74 ± 0.12 84.05 ± 0.21 4.86
RobustGCN 83.54 ± 0.91 74.55 ± 1.12 87.27 ± 0.07 81.83 ± 0.19 66.62 ± 0.25 62.73 ± 0.74 83.20 ± 0.09 12.43
GCORN 84.34 ± 0.61 74.67 ± 1.32 87.44 ± 0.05 82.17 ± 0.15 66.46 ± 0.30 67.60 ± 0.18 83.81 ± 0.10 7.86
NoisyGCN 84.59 ± 0.75 73.69 ± 0.77 87.29 ± 0.23 82.12 ± 0.18 66.66 ± 0.61 63.87 ± 0.14 83.55 ± 0.16 9.71
GRAND 85.16 ± 0.61 76.06 ± 0.62 89.11 ± 0.08 84.16 ± 0.31 66.94 ± 0.47 66.34 ± 0.61 84.93 ± 0.09 2.00
SoftmedianGDC 83.56 ± 0.61 74.11 ± 0.43 88.48 ± 0.21 80.22 ± 0.67 66.93 ± 0.21 63.10 ± 0.40 84.30 ± 0.13 9.43
EvenNet 84.06 ± 1.02 74.94 ± 0.60 88.99 ± 0.14 83.15 ± 0.53 67.05 ± 0.16 63.23 ± 0.51 83.90 ± 0.14 5.29
ElasticGNN 84.88 ± 0.19 74.41 ± 1.05 88.28 ± 0.17 82.65 ± 0.23 66.87 ± 0.20 63.17 ± 0.13 83.99 ± 0.18 6.57
GNNGuard 83.22 ± 0.55 73.81 ± 0.50 87.98 ± 0.29 82.47 ± 0.19 67.23 ± 0.31 59.39 ± 0.39 83.87 ± 0.15 10.14
RUNG 83.42 ± 0.64 75.35 ± 0.88 88.86 ± 0.26 82.64 ± 0.33 66.82 ± 0.27 62.85 ± 0.17 – 8.17
Cosine-GCN 83.25 ± 1.08 73.43 ± 0.61 87.05 ± 0.16 82.60 ± 0.63 66.96 ± 0.21 59.37 ± 0.49 83.75 ± 0.20 11.43
Jaccard-GCN 83.54 ± 0.77 72.98 ± 0.42 87.04 ± 0.15 81.47 ± 0.42 66.70 ± 0.50 63.41 ± 0.12 83.18 ± 0.05 12.86
Stable 84.40 ± 0.80 72.70 ± 1.30 86.66 ± 0.27 82.65 ± 0.36 66.75 ± 0.26 65.33 ± 0.58 – 9.00
ProGNN 83.57 ± 0.79 74.91 ± 0.55 – – – – – 7.50

Table 27: Accuracy under the inductive/evasion setting against structural attack. (ptb rate=0.2,
atk emb=BoW, def emb=BoW)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo Computer ArXiv Avg Rank

GCN 66.11 ± 2.48 54.86 ± 1.00 80.12 ± 0.71 20.39 ± 0.56 7.11 ± 0.81 50.47 ± 3.28 41.70 ± 0.39 38.88 ± 2.42 35.95 ± 0.33 32.86 ± 0.00 11.60
GAT 67.53 ± 2.03 57.31 ± 1.07 80.18 ± 0.58 39.47 ± 1.08 45.03 ± 5.36 53.83 ± 3.18 49.44 ± 1.63 51.95 ± 1.37 44.08 ± 0.03 39.62 ± 0.00 8.10
APPNP 69.13 ± 2.82 64.37 ± 0.99 83.75 ± 0.14 57.37 ± 1.22 55.61 ± 2.66 52.40 ± 2.04 59.33 ± 0.76 55.21 ± 0.26 41.06 ± 0.19 43.12 ± 0.00 5.40
GPRGNN 71.83 ± 1.22 62.49 ± 0.60 82.53 ± 0.25 57.64 ± 0.86 60.96 ± 1.02 64.21 ± 1.65 64.79 ± 0.97 59.31 ± 0.10 50.72 ± 0.45 50.18 ± 0.00 2.90
RobustGCN 69.99 ± 2.80 58.25 ± 1.48 80.33 ± 0.61 31.14 ± 0.82 60.89 ± 0.47 52.74 ± 1.37 51.27 ± 0.75 48.72 ± 0.90 40.05 ± 0.94 41.67 ± 0.00 7.90
GCORN 68.57 ± 2.52 58.52 ± 0.97 81.69 ± 0.50 34.16 ± 0.21 32.63 ± 2.84 59.81 ± 1.73 41.51 ± 0.77 39.00 ± 0.67 37.12 ± 0.15 31.39 ± 0.00 8.90
NoisyGCN 66.24 ± 2.87 54.49 ± 0.73 80.27 ± 0.37 20.38 ± 0.57 6.08 ± 0.55 55.26 ± 1.17 41.41 ± 0.76 39.05 ± 1.28 36.61 ± 0.33 34.48 ± 0.00 10.90
GRAND 71.89 ± 3.25 64.00 ± 0.93 82.45 ± 0.08 48.57 ± 1.07 64.15 ± 0.37 58.74 ± 3.02 47.45 ± 0.66 49.11 ± 0.74 45.02 ± 0.16 49.90 ± 0.00 4.60
SoftmedianGDC 74.11 ± 2.93 64.32 ± 1.07 82.35 ± 0.25 72.66 ± 0.24 55.28 ± 1.11 61.88 ± 0.92 69.80 ± 0.49 – – – 3.86
EvenNet 70.42 ± 2.27 61.86 ± 1.03 82.47 ± 0.33 32.88 ± 1.56 62.38 ± 1.38 60.10 ± 1.03 61.94 ± 0.41 54.04 ± 0.65 46.07 ± 0.72 38.01 ± 0.00 5.10
ElasticGNN 68.51 ± 2.73 56.43 ± 0.00 81.07 ± 0.64 37.33 ± 0.24 39.99 ± 6.61 45.74 ± 0.54 60.02 ± 0.80 55.96 ± 0.40 40.43 ± 0.38 43.43 ± 0.00 7.60
GNNGuard 67.16 ± 2.91 68.03 ± 0.90 84.56 ± 0.14 75.02 ± 0.71 63.57 ± 0.58 53.91 ± 0.30 53.70 ± 0.28 46.16 ± 0.33 44.98 ± 0.28 39.25 ± 0.00 5.00
RUNG 78.04 ± 2.22 67.97 ± 1.37 85.70 ± 0.25 75.00 ± 0.25 62.42 ± 0.08 55.41 ± 0.58 – – – – 2.50

Table 28: Accuracy under the inductive/evasion setting against structural attack. (ptb rate=0.2,
atk emb=BoW, def emb=Mistral-7B)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo Computer ArXiv Avg Rank

GCN 73.06 ± 2.89 63.06 ± 1.54 82.33 ± 1.07 34.86 ± 1.97 62.23 ± 1.33 62.90 ± 9.60 64.32 ± 1.25 55.53 ± 0.58 51.20 ± 0.30 47.70 ± 0.00 8.10
GAT 67.59 ± 1.23 61.39 ± 1.56 81.65 ± 1.16 38.33 ± 3.51 64.23 ± 0.56 57.27 ± 0.44 65.34 ± 1.52 54.54 ± 0.27 51.71 ± 1.72 49.98 ± 0.00 8.60
APPNP 78.54 ± 0.71 69.70 ± 1.09 90.35 ± 0.26 79.27 ± 1.00 68.52 ± 0.35 60.18 ± 0.63 76.83 ± 0.83 64.66 ± 1.12 50.41 ± 1.33 59.74 ± 0.00 3.50
GPRGNN 80.57 ± 1.81 67.40 ± 1.05 88.59 ± 0.74 75.64 ± 2.00 65.78 ± 1.72 69.00 ± 0.22 75.27 ± 1.04 67.23 ± 1.51 47.75 ± 0.83 63.55 ± 0.00 3.80
RobustGCN 52.21 ± 7.89 41.17 ± 2.86 44.91 ± 6.81 25.12 ± 3.15 64.17 ± 0.42 53.50 ± 0.29 56.18 ± 0.42 42.14 ± 0.11 25.89 ± 0.18 5.86 ± 0.00 11.20
GCORN 72.69 ± 2.23 63.06 ± 0.41 84.22 ± 0.78 33.45 ± 0.25 58.89 ± 1.76 71.78 ± 3.75 57.14 ± 1.16 53.32 ± 0.54 44.48 ± 0.14 43.08 ± 0.00 8.90
NoisyGCN 73.19 ± 1.55 62.64 ± 0.60 82.20 ± 0.65 34.96 ± 0.61 61.71 ± 0.18 60.23 ± 9.70 64.24 ± 1.06 56.87 ± 1.04 51.36 ± 0.99 48.39 ± 0.00 8.20
GRAND 78.72 ± 1.40 68.97 ± 0.38 85.75 ± 0.26 69.40 ± 1.64 65.89 ± 0.26 57.97 ± 1.01 73.79 ± 0.70 64.17 ± 2.55 61.53 ± 1.13 – 4.67
SoftmedianGDC 77.12 ± 1.63 67.92 ± 0.85 88.31 ± 0.25 77.08 ± 2.93 – 59.37 ± 0.30 76.97 ± 0.47 – – – 4.83
EvenNet 79.21 ± 1.88 68.60 ± 1.31 87.26 ± 0.25 63.04 ± 1.29 69.24 ± 0.27 65.92 ± 0.10 69.05 ± 0.50 56.15 ± 1.44 52.42 ± 1.95 51.32 ± 0.00 4.10
ElasticGNN 76.01 ± 2.11 63.17 ± 0.44 83.50 ± 0.75 57.28 ± 3.23 62.01 ± 3.46 49.95 ± 0.31 68.02 ± 0.49 62.22 ± 0.21 51.74 ± 1.08 54.03 ± 0.00 7.10
GNNGuard 73.37 ± 1.06 71.89 ± 0.30 84.59 ± 0.73 80.83 ± 1.86 67.56 ± 0.30 55.14 ± 5.73 – – – – 5.67
RUNG 82.41 ± 1.66 73.56 ± 0.45 92.33 ± 0.08 83.55 ± 0.56 68.69 ± 0.13 60.14 ± 1.15 – – – – 2.17
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Table 29: Accuracy under the inductive/evasion setting against structural attack. (ptb rate=0.2,
atk emb=BoW, def emb=MiniLM)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo Computer ArXiv Avg Rank

GCN 72.39 ± 2.45 61.34 ± 1.31 83.87 ± 0.87 30.44 ± 1.40 57.58 ± 0.72 65.79 ± 1.80 64.83 ± 0.83 58.03 ± 0.53 55.90 ± 0.31 41.35 ± 0.00 9.60
GAT 73.19 ± 1.28 61.60 ± 0.64 82.34 ± 0.70 47.83 ± 0.63 62.71 ± 0.53 64.50 ± 2.28 66.16 ± 1.46 58.86 ± 0.77 54.95 ± 0.74 48.70 ± 0.00 8.60
APPNP 80.87 ± 2.20 74.66 ± 0.66 87.32 ± 0.39 76.79 ± 0.71 63.30 ± 0.34 57.28 ± 0.80 78.18 ± 0.31 65.51 ± 0.25 54.42 ± 0.59 57.86 ± 0.00 4.50
GPRGNN 77.86 ± 2.42 70.69 ± 0.22 87.17 ± 0.12 71.37 ± 0.74 61.41 ± 0.79 58.05 ± 0.17 77.44 ± 0.39 66.16 ± 0.35 60.50 ± 0.48 64.18 ± 0.00 4.50
RobustGCN 73.31 ± 2.70 62.70 ± 1.63 82.55 ± 0.52 34.20 ± 0.96 63.86 ± 0.50 52.26 ± 0.38 65.76 ± 0.76 58.02 ± 0.68 55.38 ± 0.64 50.41 ± 0.00 9.10
GCORN 74.29 ± 2.02 62.23 ± 0.89 83.01 ± 0.54 36.32 ± 1.47 55.29 ± 2.25 67.74 ± 2.32 59.00 ± 0.87 53.73 ± 0.63 46.66 ± 0.40 38.91 ± 0.00 9.70
NoisyGCN 72.82 ± 2.34 61.55 ± 0.85 83.77 ± 0.61 30.49 ± 1.29 55.28 ± 2.89 68.01 ± 2.17 65.27 ± 0.68 58.19 ± 0.68 56.79 ± 0.15 41.32 ± 0.00 9.20
GRAND 78.60 ± 1.34 70.22 ± 1.22 83.88 ± 0.36 66.75 ± 0.42 64.32 ± 0.38 65.06 ± 1.18 72.45 ± 0.62 65.91 ± 0.14 61.17 ± 0.27 57.13 ± 0.00 4.40
SoftmedianGDC 78.66 ± 2.83 70.48 ± 0.53 86.61 ± 0.26 77.43 ± 0.34 59.22 ± 0.67 66.16 ± 0.80 77.78 ± 0.43 – – – 4.57
EvenNet 78.41 ± 2.03 68.86 ± 1.29 84.90 ± 0.17 55.20 ± 1.07 64.18 ± 0.86 57.46 ± 1.19 69.13 ± 0.28 60.29 ± 0.29 58.03 ± 0.59 48.64 ± 0.00 6.10
ElasticGNN 73.74 ± 1.80 63.01 ± 1.67 82.94 ± 0.51 55.26 ± 0.68 56.32 ± 2.31 53.90 ± 3.37 68.84 ± 0.67 63.10 ± 0.35 54.48 ± 0.63 55.27 ± 0.00 8.40
GNNGuard 82.84 ± 1.14 75.08 ± 0.46 88.73 ± 0.13 80.66 ± 0.59 60.95 ± 1.04 56.83 ± 0.61 82.93 ± 0.16 74.64 ± 0.23 73.27 ± 0.15 71.25 ± 0.00 2.80
RUNG 83.64 ± 1.65 73.46 ± 0.87 89.78 ± 0.14 79.95 ± 0.23 63.93 ± 0.74 55.34 ± 0.80 – – – – 3.50

Table 30: Accuracy under the inductive/evasion setting against structural attack. (ptb rate=0.2,
atk emb=BoW, def emb=RoBERTa)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo Computer ArXiv Avg Rank

GCN 73.31 ± 2.11 62.70 ± 0.59 82.92 ± 0.52 31.54 ± 0.71 60.60 ± 0.89 65.16 ± 2.29 65.81 ± 0.48 57.37 ± 0.97 55.09 ± 0.23 45.28 ± 0.00 10.50
GAT 73.43 ± 1.59 63.64 ± 0.90 83.60 ± 0.60 49.65 ± 1.11 62.86 ± 1.37 61.50 ± 1.18 69.08 ± 1.89 58.25 ± 0.89 54.77 ± 1.09 54.77 ± 0.00 9.10
APPNP 81.06 ± 2.31 70.43 ± 0.70 89.30 ± 0.18 76.53 ± 0.48 63.11 ± 1.23 55.37 ± 0.72 79.28 ± 0.40 65.14 ± 0.64 58.17 ± 0.46 58.06 ± 0.00 6.10
GPRGNN 79.27 ± 2.79 69.96 ± 1.82 89.47 ± 0.45 74.38 ± 0.63 60.85 ± 0.58 56.34 ± 0.35 81.30 ± 0.50 66.96 ± 0.62 62.63 ± 0.94 68.73 ± 0.00 6.20
RobustGCN 73.49 ± 1.80 60.97 ± 1.02 82.15 ± 0.24 36.85 ± 1.66 64.68 ± 0.32 57.59 ± 1.97 64.25 ± 0.40 56.74 ± 0.78 51.85 ± 2.42 51.90 ± 0.00 10.80
GCORN 73.49 ± 2.22 63.48 ± 0.66 83.98 ± 0.55 34.97 ± 0.79 58.11 ± 0.58 68.09 ± 1.86 59.00 ± 1.36 53.80 ± 0.53 46.08 ± 0.17 41.82 ± 0.00 10.60
NoisyGCN 73.55 ± 1.35 62.59 ± 1.28 83.02 ± 0.48 32.14 ± 0.77 60.85 ± 0.70 65.77 ± 2.11 65.44 ± 0.58 57.76 ± 1.11 55.09 ± 0.55 45.43 ± 0.00 9.60
GRAND 79.89 ± 0.80 70.74 ± 1.58 86.41 ± 0.52 71.86 ± 0.61 64.68 ± 0.32 63.44 ± 0.81 76.87 ± 0.18 69.54 ± 0.14 64.94 ± 0.23 69.80 ± 0.00 4.70
SoftmedianGDC 80.01 ± 2.53 70.53 ± 1.02 87.36 ± 0.26 81.43 ± 0.66 62.85 ± 0.61 63.10 ± 0.18 79.89 ± 0.51 – – – 5.71
EvenNet 79.83 ± 1.30 71.47 ± 0.64 87.53 ± 0.45 63.02 ± 0.33 66.64 ± 1.09 61.98 ± 2.69 72.86 ± 0.14 61.93 ± 0.38 59.79 ± 0.47 53.73 ± 0.00 6.00
ElasticGNN 74.91 ± 1.09 61.96 ± 1.03 84.22 ± 0.74 57.77 ± 1.09 57.10 ± 4.69 54.11 ± 1.06 70.63 ± 0.73 62.71 ± 0.60 54.45 ± 0.70 54.50 ± 0.00 9.90
GNNGuard 83.64 ± 1.94 74.03 ± 0.53 90.14 ± 0.44 83.03 ± 0.53 64.07 ± 1.19 58.58 ± 0.33 84.64 ± 0.49 63.04 ± 0.71 63.07 ± 0.60 71.16 ± 0.00 3.60
RUNG 84.56 ± 1.52 73.30 ± 1.19 90.72 ± 0.25 82.73 ± 0.78 67.12 ± 0.56 58.11 ± 0.75 – – – – 3.17
Guardual 83.95 ± 1.63 74.71 ± 1.22 89.53 ± 0.39 83.07 ± 0.55 65.40 ± 0.05 61.64 ± 0.46 84.85 ± 0.29 73.78 ± 0.44 71.30 ± 0.39 72.15 ± 0.00 2.10

Table 31: Accuracy under the transductive/poisoning setting against structural attack. (ptb rate=0.2,
atk emb=BoW, def emb=BoW)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Avg Rank

GCN 64.56 ± 1.14 71.31 ± 0.44 77.59 ± 0.23 79.96 ± 0.35 63.87 ± 0.17 52.28 ± 1.42 64.39 ± 0.33 8.71
GAT 60.78 ± 2.21 70.55 ± 1.26 75.51 ± 0.28 78.55 ± 0.83 70.54 ± 1.75 53.49 ± 2.11 71.18 ± 1.21 8.57
APPNP 70.47 ± 1.21 72.32 ± 0.77 83.61 ± 0.19 79.83 ± 0.17 64.33 ± 0.25 54.73 ± 0.79 74.60 ± 0.07 3.71
GPRGNN 71.45 ± 2.32 71.61 ± 0.99 81.74 ± 0.78 79.02 ± 1.30 69.35 ± 0.42 69.21 ± 1.36 73.49 ± 0.69 4.14
RobustGCN 59.94 ± 0.31 70.16 ± 1.81 69.61 ± 0.35 80.84 ± 0.20 63.56 ± 0.60 52.19 ± 0.21 63.72 ± 2.69 12.00
GCORN 47.92 ± 3.14 69.75 ± 0.80 55.58 ± 0.59 77.62 ± 0.41 63.77 ± 0.14 52.92 ± 0.27 58.59 ± 0.09 13.71
NoisyGCN 63.74 ± 0.44 71.87 ± 0.15 76.88 ± 0.76 79.79 ± 0.34 63.87 ± 0.17 52.21 ± 1.42 63.14 ± 1.96 9.86
GRAND 64.05 ± 3.51 72.22 ± 0.98 77.90 ± 1.65 79.98 ± 0.35 63.65 ± 0.13 55.05 ± 0.92 63.92 ± 0.06 7.57
SoftmedianGDC 69.65 ± 0.71 71.85 ± 0.73 80.65 ± 1.03 73.97 ± 0.50 63.50 ± 0.14 53.19 ± 1.01 72.79 ± 0.14 8.71
EvenNet 72.28 ± 1.98 69.78 ± 0.66 85.63 ± 0.23 80.79 ± 0.61 79.57 ± 0.84 66.64 ± 0.55 77.04 ± 0.20 3.14
ElasticGNN 64.37 ± 1.89 71.64 ± 0.57 78.75 ± 0.68 79.90 ± 0.50 63.81 ± 0.26 51.76 ± 1.63 66.72 ± 0.80 9.14
GNNGuard 65.68 ± 0.36 70.81 ± 0.51 81.63 ± 0.39 77.45 ± 0.28 64.52 ± 0.62 54.60 ± 0.33 69.35 ± 0.79 7.57
RUNG 68.60 ± 2.18 71.14 ± 0.38 82.46 ± 0.27 78.20 ± 0.38 63.89 ± 0.14 52.37 ± 1.16 – 7.83
Cosine-GCN 65.13 ± 0.98 69.01 ± 1.45 82.03 ± 0.45 77.07 ± 0.36 64.36 ± 0.59 54.32 ± 0.99 70.11 ± 1.38 8.71
Jaccard-GCN 61.21 ± 0.80 69.49 ± 0.61 74.76 ± 0.52 78.45 ± 0.51 64.23 ± 0.64 51.89 ± 0.65 63.40 ± 2.38 12.14
Stable 60.18 ± 4.17 67.02 ± 1.18 72.35 ± 2.72 77.58 ± 0.58 63.89 ± 0.23 55.77 ± 0.73 – 11.67
ProGNN 76.57 ± 1.96 70.22 ± 0.54 – – – – – 6.00

Table 32: Accuracy under the transductive/poisoning setting against structural attack. (ptb rate=0.2,
atk emb=BoW, def emb=MiniLM)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Avg Rank

GCN 71.84 ± 2.32 73.66 ± 0.20 79.44 ± 0.27 81.19 ± 0.28 63.81 ± 0.18 49.89 ± 0.01 66.90 ± 1.80 11.00
GAT 70.64 ± 0.61 73.51 ± 0.31 79.59 ± 0.65 80.98 ± 0.28 73.43 ± 0.80 58.88 ± 0.84 78.92 ± 0.42 8.86
APPNP 78.39 ± 0.48 74.79 ± 0.58 86.55 ± 0.11 81.04 ± 0.15 64.02 ± 0.62 58.86 ± 0.23 82.15 ± 0.11 4.43
GPRGNN 78.10 ± 0.74 74.70 ± 0.75 85.80 ± 0.27 81.32 ± 0.35 72.95 ± 2.44 67.84 ± 0.36 80.39 ± 0.10 4.57
RobustGCN 71.33 ± 1.69 74.00 ± 0.32 78.17 ± 0.48 81.65 ± 0.20 63.80 ± 0.19 49.99 ± 0.13 65.64 ± 1.31 10.29
GCORN 58.96 ± 2.70 74.71 ± 0.74 57.61 ± 0.29 79.47 ± 0.44 63.87 ± 0.17 49.87 ± 0.02 56.22 ± 0.07 12.86
NoisyGCN 72.79 ± 3.09 73.99 ± 0.31 79.23 ± 0.88 81.18 ± 0.27 63.75 ± 0.12 49.96 ± 0.07 68.48 ± 2.00 10.14
GRAND 74.08 ± 1.81 75.18 ± 0.96 80.62 ± 0.66 81.55 ± 0.26 63.65 ± 0.04 50.79 ± 0.73 68.14 ± 0.50 8.00
SoftmedianGDC 78.06 ± 0.49 75.19 ± 1.08 85.76 ± 0.39 80.66 ± 0.60 62.83 ± 1.24 51.03 ± 0.55 81.18 ± 0.15 8.29
EvenNet 78.93 ± 1.18 74.74 ± 0.19 87.37 ± 0.12 82.18 ± 0.26 78.67 ± 0.82 67.23 ± 1.28 82.81 ± 0.08 2.00
ElasticGNN 74.70 ± 1.77 74.16 ± 0.68 79.21 ± 0.63 81.25 ± 0.38 63.83 ± 0.15 50.02 ± 0.24 64.78 ± 0.24 9.29
GNNGuard 80.08 ± 0.54 73.69 ± 1.47 86.08 ± 0.25 81.00 ± 0.13 64.34 ± 0.39 58.70 ± 0.94 82.14 ± 0.06 5.86
RUNG 78.20 ± 0.94 73.78 ± 0.16 86.13 ± 0.42 80.76 ± 0.10 64.15 ± 0.36 51.70 ± 0.90 – 7.50
Cosine-GCN 80.08 ± 0.83 73.90 ± 0.45 85.50 ± 0.42 80.68 ± 0.26 64.53 ± 0.73 58.59 ± 0.95 81.98 ± 0.08 6.57
Jaccard-GCN 72.07 ± 1.57 73.47 ± 0.22 77.08 ± 0.35 80.45 ± 0.51 63.74 ± 0.14 40.96 ± 5.10 63.14 ± 0.45 14.43
Stable 75.20 ± 0.81 72.80 ± 0.69 78.89 ± 0.91 80.88 ± 0.17 63.63 ± 0.38 49.02 ± 0.64 – 13.33
ProGNN 83.20 ± 0.51 73.78 ± 1.51 – – – – – 6.00
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Table 33: Accuracy under the transductive/poisoning setting against structural attack. (ptb rate=0.2,
atk emb=BoW, def emb=RoBERTa)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Avg Rank

GCN 69.57 ± 3.44 74.68 ± 0.41 78.44 ± 1.30 81.69 ± 0.37 63.86 ± 0.18 52.77 ± 0.72 68.51 ± 1.53 11.00
GAT 67.64 ± 2.71 73.86 ± 0.43 78.80 ± 1.09 81.44 ± 0.13 72.22 ± 1.78 56.14 ± 3.40 78.09 ± 0.41 9.86
APPNP 80.62 ± 0.26 75.01 ± 0.50 88.23 ± 0.27 82.87 ± 0.50 66.24 ± 0.09 59.59 ± 0.21 83.73 ± 0.12 3.57
GPRGNN 79.93 ± 1.21 75.11 ± 0.59 87.36 ± 0.55 82.32 ± 0.38 73.19 ± 6.80 68.58 ± 0.59 82.70 ± 0.13 3.71
RobustGCN 66.44 ± 3.26 74.19 ± 0.28 64.78 ± 1.59 81.96 ± 0.26 63.64 ± 0.20 51.28 ± 0.46 64.55 ± 2.99 12.86
GCORN 67.65 ± 0.86 74.68 ± 0.96 61.51 ± 0.48 80.77 ± 0.40 63.88 ± 0.17 49.40 ± 0.33 62.32 ± 0.67 13.29
NoisyGCN 71.57 ± 1.42 74.57 ± 0.94 77.73 ± 0.92 81.61 ± 0.47 63.75 ± 0.21 53.08 ± 3.68 70.33 ± 1.22 11.29
GRAND 80.05 ± 0.76 75.81 ± 0.74 83.73 ± 0.50 83.23 ± 0.45 63.93 ± 0.20 57.16 ± 0.40 77.99 ± 0.55 5.43
SoftmedianGDC 78.00 ± 0.44 73.14 ± 0.42 85.85 ± 0.43 79.78 ± 0.56 64.38 ± 0.35 57.77 ± 0.51 82.63 ± 0.26 9.43
EvenNet 80.82 ± 1.22 75.02 ± 0.16 88.86 ± 0.10 83.34 ± 0.81 81.09 ± 0.20 68.71 ± 0.46 84.10 ± 0.05 1.57
ElasticGNN 75.02 ± 0.48 73.87 ± 0.19 82.05 ± 0.74 82.28 ± 0.17 63.84 ± 0.14 52.56 ± 1.83 70.57 ± 1.78 10.43
GNNGuard 79.93 ± 1.52 73.99 ± 0.62 86.95 ± 0.06 82.45 ± 0.75 66.80 ± 0.29 60.06 ± 0.46 83.48 ± 0.13 5.14
RUNG 79.23 ± 1.25 75.45 ± 0.88 87.55 ± 0.45 81.80 ± 0.23 63.90 ± 0.23 54.61 ± 1.40 – 6.83
Cosine-GCN 79.88 ± 0.66 73.10 ± 1.19 86.75 ± 0.27 81.91 ± 0.71 66.65 ± 0.35 58.18 ± 0.38 83.54 ± 0.23 7.00
Jaccard-GCN 69.82 ± 1.49 72.47 ± 0.45 75.94 ± 1.43 81.05 ± 0.47 63.50 ± 0.49 49.56 ± 2.21 63.00 ± 4.95 14.29
Stable 78.28 ± 1.45 72.46 ± 0.66 77.66 ± 1.31 80.25 ± 0.96 63.93 ± 0.20 53.32 ± 2.22 – 12.00
ProGNN 83.57 ± 0.79 74.98 ± 0.38 – – – – – 3.50

Table 34: Accuracy under the inductive/evasion setting against textual attack. (ptb rate=0.4,
def emb=BoW)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo Avg Rank

GCN 82.72 ± 1.65 60.66 ± 0.77 82.00 ± 1.30 78.50 ± 0.21 61.16 ± 0.92 59.70 ± 1.08 78.01 ± 0.45 78.65 ± 0.25 4.38
GAT 82.90 ± 2.20 61.76 ± 2.50 83.05 ± 0.69 71.54 ± 1.13 63.21 ± 1.40 60.60 ± 1.30 79.55 ± 1.09 82.05 ± 0.30 3.25
APPNP 80.07 ± 0.94 38.35 ± 1.03 67.82 ± 0.80 50.23 ± 0.54 60.42 ± 0.46 55.08 ± 0.21 74.79 ± 0.41 73.52 ± 0.54 9.88
GPRGNN 74.11 ± 2.38 40.39 ± 1.58 73.55 ± 2.15 54.82 ± 0.44 59.80 ± 1.14 58.65 ± 0.89 67.48 ± 0.93 71.34 ± 1.77 10.12
RobustGCN 84.01 ± 2.26 63.79 ± 2.22 82.16 ± 0.80 74.60 ± 0.52 65.70 ± 0.16 56.33 ± 0.87 77.49 ± 0.31 78.39 ± 0.17 3.88
GCORN 77.31 ± 1.63 54.49 ± 0.64 77.09 ± 0.83 76.35 ± 0.19 62.02 ± 0.47 65.51 ± 0.65 76.46 ± 0.35 74.52 ± 0.75 5.75
NoisyGCN 83.27 ± 1.35 59.93 ± 0.45 81.68 ± 1.24 78.39 ± 0.09 60.52 ± 0.61 61.32 ± 0.64 78.13 ± 0.31 79.03 ± 0.16 3.75
GRAND 75.77 ± 2.22 47.96 ± 1.48 78.54 ± 1.72 73.77 ± 0.24 64.64 ± 0.38 62.69 ± 2.23 75.60 ± 0.91 74.99 ± 0.10 6.25
SoftmedianGDC 70.54 ± 2.01 47.23 ± 0.27 70.63 ± 1.04 47.05 ± 0.39 59.16 ± 0.56 59.10 ± 0.36 61.46 ± 0.46 – 10.71
EvenNet 79.95 ± 0.74 52.72 ± 0.90 81.17 ± 1.09 74.94 ± 0.61 62.45 ± 1.25 59.61 ± 0.40 75.90 ± 0.49 82.24 ± 0.26 5.50
ElasticGNN 82.96 ± 2.05 58.73 ± 1.53 83.07 ± 0.31 69.59 ± 0.87 64.34 ± 1.24 59.96 ± 0.59 77.40 ± 0.29 78.73 ± 0.37 4.25
GNNGuard 76.81 ± 1.51 37.62 ± 0.34 66.37 ± 0.47 43.70 ± 0.32 58.91 ± 0.97 51.93 ± 0.65 68.78 ± 1.17 66.70 ± 0.63 11.75
RUNG 65.50 ± 4.14 43.26 ± 0.90 64.24 ± 1.08 48.90 ± 0.38 61.20 ± 0.67 55.69 ± 0.63 – – 10.83

Table 35: Accuracy under the inductive/evasion setting against textual attack. (ptb rate=0.4,
def emb=MiniLM)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo Avg Rank

GCN 80.01 ± 2.22 58.52 ± 0.91 78.25 ± 0.82 67.45 ± 0.54 59.01 ± 0.93 64.33 ± 0.20 76.48 ± 0.33 73.66 ± 1.11 3.38
GAT 81.98 ± 1.09 58.62 ± 1.81 78.66 ± 3.94 61.65 ± 1.15 63.18 ± 1.19 62.65 ± 1.46 77.01 ± 0.75 72.78 ± 3.41 3.00
APPNP 58.73 ± 0.23 40.23 ± 1.84 66.51 ± 0.64 46.68 ± 0.30 58.83 ± 1.19 53.07 ± 0.32 66.07 ± 1.04 54.41 ± 0.26 10.25
GPRGNN 71.77 ± 2.13 43.16 ± 1.53 69.84 ± 0.66 46.53 ± 0.28 57.88 ± 1.54 53.98 ± 0.31 65.12 ± 0.85 54.71 ± 0.33 9.25
RobustGCN 82.29 ± 1.29 60.61 ± 1.97 78.15 ± 0.26 69.83 ± 1.37 63.67 ± 0.51 55.63 ± 0.22 77.73 ± 0.41 73.08 ± 0.67 2.88
GCORN 79.21 ± 0.53 54.70 ± 0.84 72.06 ± 0.70 62.45 ± 1.18 57.51 ± 0.46 64.15 ± 0.47 74.47 ± 0.50 63.62 ± 0.48 6.00
NoisyGCN 79.46 ± 1.43 58.41 ± 1.03 78.50 ± 0.83 67.81 ± 1.22 58.85 ± 1.30 64.67 ± 0.76 76.24 ± 0.48 74.12 ± 0.75 3.38
GRAND 68.08 ± 2.39 46.92 ± 1.41 69.79 ± 0.40 47.50 ± 0.37 64.58 ± 0.98 60.92 ± 0.21 69.08 ± 0.62 55.84 ± 0.50 7.38
SoftmedianGDC 68.57 ± 0.63 51.15 ± 0.39 69.32 ± 0.74 54.46 ± 1.76 51.94 ± 0.42 – 63.31 ± 3.21 – 9.17
EvenNet 75.46 ± 1.34 48.33 ± 1.85 74.37 ± 0.68 51.86 ± 1.37 59.58 ± 0.73 56.55 ± 0.36 72.73 ± 0.44 75.15 ± 1.57 6.00
ElasticGNN 76.75 ± 1.96 56.11 ± 1.89 78.57 ± 0.64 51.80 ± 0.97 61.45 ± 1.02 60.19 ± 0.60 75.86 ± 0.73 60.90 ± 1.07 5.38
GNNGuard 52.34 ± 0.57 39.66 ± 0.56 65.82 ± 0.39 45.25 ± 0.34 51.53 ± 2.12 51.53 ± 0.77 56.90 ± 0.51 43.72 ± 0.22 12.50
RUNG 55.78 ± 0.63 39.76 ± 1.03 66.60 ± 0.34 46.45 ± 0.39 57.72 ± 1.00 53.22 ± 1.01 – – 11.17

Table 36: Accuracy under the inductive/evasion setting against textual attack. (ptb rate=0.4,
def emb=RoBERTa)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo Avg Rank

GCN 81.12 ± 1.61 59.14 ± 0.96 80.13 ± 0.39 73.27 ± 0.93 63.57 ± 1.47 65.42 ± 0.34 78.68 ± 0.22 74.01 ± 0.33 2.50
GAT 81.49 ± 1.58 57.84 ± 3.32 81.94 ± 0.97 67.54 ± 7.56 64.29 ± 1.30 63.29 ± 0.12 79.10 ± 1.36 79.17 ± 0.80 2.62
APPNP 59.29 ± 1.84 42.58 ± 0.96 67.57 ± 0.55 48.21 ± 0.37 58.35 ± 1.28 55.12 ± 0.72 68.43 ± 0.51 54.96 ± 0.91 10.25
GPRGNN 66.30 ± 1.54 41.80 ± 0.27 67.43 ± 0.71 48.40 ± 0.79 57.39 ± 1.73 54.69 ± 0.37 62.84 ± 1.09 55.86 ± 2.28 10.25
RobustGCN 83.03 ± 2.11 60.24 ± 1.07 79.07 ± 1.13 69.81 ± 2.56 64.51 ± 0.57 60.51 ± 0.60 78.51 ± 0.10 68.58 ± 1.45 3.25
GCORN 79.21 ± 1.28 56.06 ± 0.74 74.51 ± 0.58 66.75 ± 1.32 58.80 ± 1.18 64.97 ± 0.42 76.91 ± 0.67 64.81 ± 0.94 5.50
NoisyGCN 80.75 ± 1.43 59.72 ± 1.91 79.97 ± 0.64 73.25 ± 0.97 62.85 ± 1.84 65.60 ± 0.63 78.74 ± 0.30 73.90 ± 0.53 2.88
GRAND 69.43 ± 2.72 46.08 ± 1.56 72.62 ± 0.75 52.44 ± 0.50 66.05 ± 1.24 63.42 ± 1.38 74.01 ± 0.47 57.19 ± 1.09 6.38
SoftmedianGDC 65.99 ± 0.31 49.69 ± 0.22 69.09 ± 0.37 51.45 ± 0.88 55.00 ± 1.00 – 63.03 ± 2.97 – 9.50
EvenNet 68.82 ± 0.75 44.15 ± 1.07 73.50 ± 0.48 54.32 ± 2.56 58.86 ± 0.72 56.70 ± 0.48 72.50 ± 0.66 72.42 ± 1.18 7.25
ElasticGNN 78.91 ± 3.48 52.19 ± 0.56 78.19 ± 0.28 56.07 ± 1.37 63.32 ± 2.08 60.48 ± 0.30 76.95 ± 0.37 59.24 ± 2.94 5.88
GNNGuard 51.91 ± 1.14 38.82 ± 0.63 65.73 ± 0.52 47.12 ± 0.13 54.32 ± 0.65 53.94 ± 1.22 61.69 ± 1.77 54.98 ± 0.08 12.25
RUNG 62.12 ± 3.13 38.56 ± 2.11 66.49 ± 0.66 48.07 ± 0.42 58.80 ± 1.09 54.07 ± 0.80 – – 11.17
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Table 37: Accuracy under the transductive/poisoning setting against textual attack. (ptb rate=0.8,
def emb=BoW)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Avg Rank

GCN 83.63 ± 0.61 65.20 ± 1.19 85.16 ± 0.09 79.85 ± 0.25 65.81 ± 0.29 61.18 ± 0.61 79.69 ± 0.33 6.14
GAT 83.74 ± 0.12 65.54 ± 0.90 84.98 ± 0.05 79.05 ± 0.97 65.55 ± 0.34 60.92 ± 0.30 80.52 ± 0.16 6.86
APPNP 84.59 ± 0.69 66.58 ± 1.11 86.48 ± 0.28 79.88 ± 0.49 65.65 ± 0.38 60.60 ± 0.17 80.72 ± 0.13 3.57
GPRGNN 84.43 ± 0.45 66.93 ± 1.32 85.75 ± 0.07 78.83 ± 0.14 65.56 ± 0.44 59.83 ± 0.40 80.12 ± 0.22 6.43
RobustGCN 83.65 ± 0.48 64.60 ± 1.05 85.53 ± 0.16 80.39 ± 0.37 65.59 ± 0.12 59.26 ± 0.31 80.62 ± 0.10 6.00
GCORN 74.71 ± 1.80 64.35 ± 1.03 83.32 ± 0.19 77.63 ± 0.41 64.79 ± 0.51 65.30 ± 0.16 77.94 ± 0.17 10.86
NoisyGCN 83.13 ± 0.70 65.36 ± 0.83 85.26 ± 0.12 79.77 ± 0.26 65.81 ± 0.35 63.27 ± 0.65 80.09 ± 0.09 6.00
GRAND 83.93 ± 0.30 67.70 ± 0.68 86.58 ± 0.25 79.46 ± 0.46 65.53 ± 0.25 62.91 ± 0.08 80.28 ± 0.15 4.43
SoftmedianGDC 82.23 ± 0.88 60.27 ± 1.34 83.70 ± 0.04 70.02 ± 0.11 66.09 ± 0.31 61.00 ± 0.58 77.21 ± 0.35 10.71
EvenNet 83.39 ± 1.02 59.98 ± 0.16 85.98 ± 0.17 80.07 ± 0.59 65.30 ± 0.46 64.56 ± 0.53 80.19 ± 0.13 6.71
ElasticGNN 83.62 ± 0.53 68.37 ± 0.93 86.39 ± 0.21 79.78 ± 0.14 65.53 ± 0.27 60.59 ± 0.38 80.52 ± 0.05 5.43
GNNGuard 79.23 ± 0.36 17.98 ± 0.47 85.14 ± 0.19 72.80 ± 0.55 64.37 ± 0.14 58.73 ± 0.30 78.93 ± 0.09 13.29
RUNG 82.88 ± 0.59 61.48 ± 1.49 85.01 ± 0.24 77.69 ± 0.51 65.28 ± 0.25 60.49 ± 0.11 – 10.67
Cosine-GCN 78.59 ± 0.51 59.74 ± 0.21 82.06 ± 0.30 72.68 ± 0.18 64.72 ± 0.11 58.66 ± 0.34 77.44 ± 0.22 14.86
Jaccard-GCN 79.17 ± 1.96 60.25 ± 0.58 82.36 ± 0.22 77.38 ± 0.36 64.94 ± 0.59 61.16 ± 0.27 77.72 ± 0.03 12.14
Stable 77.86 ± 0.62 61.11 ± 0.40 82.22 ± 0.24 77.51 ± 0.16 64.59 ± 0.22 62.95 ± 0.34 74.80 ± 0.35 12.57
ProGNN 76.08 ± 0.34 66.07 ± 0.84 – – – – – 10.50

Table 38: Accuracy under the transductive/poisoning setting against textual attack. (ptb rate=0.8,
def emb=MiniLM)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Avg Rank

GCN 83.65 ± 1.28 69.52 ± 0.53 86.01 ± 0.31 80.65 ± 0.28 65.16 ± 0.58 65.36 ± 0.38 82.46 ± 0.07 8.14
GAT 84.33 ± 0.67 70.46 ± 0.75 85.38 ± 0.28 81.47 ± 0.53 65.29 ± 0.07 63.69 ± 0.43 82.45 ± 0.18 6.71
APPNP 84.17 ± 0.90 70.94 ± 0.62 87.35 ± 0.05 81.13 ± 0.16 65.70 ± 0.69 61.86 ± 0.27 83.13 ± 0.06 4.57
GPRGNN 84.23 ± 0.56 70.35 ± 0.40 87.47 ± 0.40 80.76 ± 0.25 64.76 ± 0.47 61.40 ± 0.48 82.31 ± 0.08 7.86
RobustGCN 84.60 ± 0.61 69.77 ± 0.28 86.04 ± 0.21 81.41 ± 0.13 65.98 ± 0.23 64.06 ± 0.39 82.81 ± 0.08 4.57
GCORN 82.66 ± 1.20 71.26 ± 0.77 85.30 ± 0.22 78.91 ± 0.10 65.72 ± 0.25 67.37 ± 0.13 82.41 ± 0.10 7.14
NoisyGCN 83.53 ± 0.75 68.72 ± 0.22 86.04 ± 0.38 80.35 ± 0.40 65.87 ± 0.63 67.86 ± 0.28 82.69 ± 0.10 6.57
GRAND 84.85 ± 0.55 71.60 ± 0.90 85.17 ± 0.24 78.54 ± 0.65 65.48 ± 0.19 65.24 ± 0.34 82.07 ± 0.07 7.14
SoftmedianGDC 84.22 ± 0.37 65.87 ± 1.06 85.78 ± 0.60 77.88 ± 0.43 65.45 ± 0.41 – 82.99 ± 0.10 9.33
EvenNet 84.09 ± 0.40 68.51 ± 0.60 86.90 ± 0.05 82.00 ± 0.34 65.59 ± 0.18 61.70 ± 0.09 82.94 ± 0.18 6.43
ElasticGNN 84.37 ± 0.70 69.94 ± 0.80 87.28 ± 0.16 81.36 ± 0.11 65.17 ± 0.75 62.62 ± 0.17 83.05 ± 0.18 5.71
GNNGuard 79.70 ± 0.25 17.98 ± 0.47 83.85 ± 0.35 76.18 ± 0.36 65.39 ± 0.92 58.95 ± 0.32 80.99 ± 0.15 14.29
RUNG 81.96 ± 0.79 67.09 ± 0.48 86.45 ± 0.13 80.41 ± 0.56 64.93 ± 0.04 61.32 ± 0.16 – 11.33
Cosine-GCN 79.45 ± 1.23 67.50 ± 1.22 82.62 ± 0.11 76.23 ± 0.31 65.10 ± 0.68 58.91 ± 0.29 80.64 ± 0.14 14.86
Jaccard-GCN 81.63 ± 1.34 67.09 ± 0.59 84.15 ± 0.25 80.11 ± 0.29 65.51 ± 0.16 66.19 ± 0.12 81.46 ± 0.17 10.43
Stable 81.62 ± 0.95 70.35 ± 0.66 84.06 ± 0.32 80.54 ± 0.58 65.35 ± 0.56 64.67 ± 0.22 – 9.67
ProGNN 81.88 ± 0.89 69.30 ± 0.58 – – – – – 11.50

Table 39: Accuracy under the transductive/poisoning setting against textual attack. (ptb rate=0.8,
def emb=RoBERTa)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Avg Rank

GCN 84.29 ± 0.68 68.67 ± 0.21 86.38 ± 0.15 81.70 ± 0.11 66.56 ± 0.22 63.80 ± 0.27 83.21 ± 0.13 8.14
GAT 84.97 ± 0.51 67.58 ± 1.60 85.54 ± 0.24 81.81 ± 0.30 66.37 ± 0.49 63.84 ± 0.48 83.31 ± 0.10 8.57
APPNP 85.03 ± 0.31 70.97 ± 0.35 87.83 ± 0.27 81.39 ± 0.06 66.86 ± 0.66 63.65 ± 0.28 83.57 ± 0.23 5.43
GPRGNN 85.00 ± 0.59 70.00 ± 1.38 87.82 ± 0.47 81.65 ± 0.07 66.76 ± 0.18 62.64 ± 0.46 83.53 ± 0.22 6.43
RobustGCN 84.28 ± 0.24 68.05 ± 0.23 86.28 ± 0.08 81.48 ± 0.16 65.89 ± 0.51 63.47 ± 0.12 83.00 ± 0.13 10.57
GCORN 83.40 ± 0.44 71.00 ± 1.12 85.69 ± 0.05 81.09 ± 0.37 66.58 ± 0.20 67.71 ± 0.11 83.67 ± 0.03 7.29
NoisyGCN 84.29 ± 0.23 68.35 ± 1.19 86.41 ± 0.08 81.47 ± 0.21 66.40 ± 0.33 63.65 ± 0.26 83.31 ± 0.03 8.71
GRAND 85.54 ± 0.35 71.40 ± 0.17 87.15 ± 0.21 82.89 ± 0.20 67.29 ± 0.20 67.02 ± 0.54 84.31 ± 0.09 2.14
SoftmedianGDC 83.33 ± 0.56 64.50 ± 0.98 86.25 ± 0.18 76.51 ± 0.37 66.10 ± 0.27 – 83.41 ± 0.08 12.67
EvenNet 84.96 ± 0.15 67.87 ± 0.59 87.64 ± 0.31 82.77 ± 0.27 66.78 ± 0.58 63.28 ± 1.04 83.63 ± 0.02 6.29
ElasticGNN 85.25 ± 0.81 72.02 ± 0.50 87.62 ± 0.09 82.33 ± 0.29 66.75 ± 0.34 63.88 ± 0.38 83.99 ± 0.05 3.43
GNNGuard 80.23 ± 0.78 17.98 ± 0.47 84.35 ± 0.30 77.26 ± 0.38 66.88 ± 0.36 58.93 ± 0.69 82.19 ± 0.17 13.00
RUNG 83.37 ± 0.56 68.71 ± 0.64 87.37 ± 0.28 81.56 ± 0.69 65.95 ± 1.54 63.01 ± 0.08 – 9.83
Cosine-GCN 77.33 ± 0.56 66.41 ± 0.66 83.29 ± 0.23 77.03 ± 0.54 66.58 ± 0.70 57.61 ± 1.08 81.77 ± 0.18 14.43
Jaccard-GCN 82.36 ± 0.85 66.92 ± 0.91 84.95 ± 0.22 81.04 ± 0.27 66.87 ± 0.31 63.82 ± 0.19 82.50 ± 0.18 10.86
Stable 83.83 ± 0.35 71.31 ± 0.67 84.87 ± 0.12 80.68 ± 0.53 66.88 ± 0.18 65.14 ± 0.38 – 7.67
ProGNN 82.48 ± 1.08 71.61 ± 2.06 – – – – – 8.00
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J.3 GRAPHLLM RESULTS

Results are in Tables 40, 41, 42, 43, 44, 45.

Table 40: GraphLLM’s clean results in the inductive/evasion setting.
Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo Computer ArXiv

GraphGPT 81.06 ± 2.33 74.35 ± 2.51 94.14 ± 0.23 82.31 ± 1.31 66.93 ± 1.44 61.87 ± 0.52 85.34 ± 1.07 84.77 ± 0.34 85.80 ± 0.60 74.78
GraphGPT-noise 80.63 ± 2.24 74.56 ± 3.07 94.09 ± 0.33 82.32 ± 1.97 67.59 ± 0.67 60.89 ± 1.61 85.70 ± 0.72 83.55 ± 0.58 – –
GraphGPT-noisetxt 66.79 ± 3.84 57.37 ± 5.20 86.15 ± 1.88 64.56 ± 2.94 – – – – – –
LLaGA 86.29 ± 1.76 75.81 ± 0.63 90.23 ± 0.59 84.88 ± 1.60 68.06 ± 0.49 68.53 ± 1.34 85.96 ± 0.53 86.96 ± 0.21 90.00 ± 0.20 74.52
LLaGA-noise 86.04 ± 2.18 75.55 ± 0.57 90.55 ± 0.57 84.14 ± 0.49 68.46 ± 0.59 68.62 ± 0.77 85.81 ± 0.38 86.57 ± 0.50 – –
LLaGA-noisefull 83.70 ± 2.23 75.29 ± 1.01 89.13 ± 0.59 83.15 ± 1.64 68.31 ± 0.87 68.91 ± 0.48 85.52 ± 0.34 86.60 ± 0.39 – –
LLaGA-noisetxt 83.64 ± 1.66 73.72 ± 1.89 86.37 ± 3.70 80.89 ± 1.20 68.15 ± 0.34 67.99 ± 2.25 84.11 ± 1.22 84.27 ± 1.78 – –
LLaGA-sim 83.76 ± 1.03 75.08 ± 0.96 90.27 ± 0.19 82.39 ± 2.59 67.40 ± 0.46 56.75 ± 1.04 85.48 ± 0.85 79.51 ± 0.04 – –
SFT-auto 83.27 ± 2.34 74.56 ± 1.19 94.74 ± 0.24 86.40 ± 0.69 68.39 ± 1.04 66.61 ± 1.44 86.08 ± 0.50 84.58 ± 0.09 83.58 ± 0.11 –
SFT (w/o neighbor) 82.96 ± 1.65 74.19 ± 0.48 94.98 ± 0.18 87.30 ± 0.20 69.27 ± 0.40 62.70 ± 0.50 86.51 ± 0.80 80.78 ± 0.35 77.19 ± 0.21 76.83
SFT-neighbor 88.25 ± 1.29 76.17 ± 1.81 95.08 ± 0.51 87.75 ± 0.46 69.24 ± 0.54 66.74 ± 1.06 86.81 ± 0.77 87.51 ± 0.07 89.74 ± 0.14 77.84
SFT-noise 85.30 ± 2.58 75.65 ± 1.89 95.13 ± 0.27 87.78 ± 0.30 69.78 ± 0.88 67.33 ± 1.09 86.53 ± 0.67 87.52 ± 0.13 89.65 ± 0.11 77.93
SFT-noisefull 87.45 ± 1.87 78.00 ± 1.42 94.96 ± 0.19 86.59 ± 0.20 69.39 ± 0.54 67.13 ± 0.68 86.31 ± 0.88 86.76 ± 0.12 89.37 ± 0.07 77.35
SFT-noisetxt 86.29 ± 1.26 76.18 ± 1.34 94.96 ± 0.23 86.70 ± 0.43 69.59 ± 0.50 66.99 ± 0.69 86.12 ± 0.47 86.78 ± 0.12 89.37 ± 0.19 77.60
SFT-simp 88.19 ± 1.58 76.38 ± 1.33 95.00 ± 0.08 87.84 ± 0.29 69.37 ± 0.33 66.23 ± 1.30 86.61 ± 0.71 87.53 ± 0.32 89.71 ± 0.04 77.68
SFT-simf 85.30 ± 2.04 76.02 ± 1.96 95.16 ± 0.39 87.61 ± 0.49 69.66 ± 0.46 51.78 ± 1.14 86.72 ± 0.87 83.12 ± 0.18 – –

Table 41: GraphLLM’s clean results in the transductive/poisoning setting.
Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo

GraphGPT 68.97 ± 2.30 67.28 ± 1.56 92.13 ± 0.69 75.35 ± 0.16 63.21 ± 1.83 59.92 ± 0.06 83.46 ± 0.13 80.86 ± 0.55
GraphGPT-noise 69.71 ± 1.63 66.07 ± 0.06 91.87 ± 0.79 75.66 ± 0.12 55.44 ± 3.63 58.51 ± 0.58 83.09 ± 0.25 80.14 ± 0.89
LLaGA 78.94 ± 0.47 70.51 ± 2.98 85.60 ± 3.83 79.65 ± 1.15 61.56 ± 4.71 68.44 ± 1.39 83.55 ± 0.30 –
LLaGA-noise 79.53 ± 2.37 71.40 ± 1.76 84.71 ± 3.98 77.08 ± 1.59 66.65 ± 0.15 68.59 ± 0.37 82.94 ± 0.34 82.72 ± 0.52
LLaGA-noisefull 78.39 ± 3.82 71.82 ± 1.81 86.10 ± 1.46 78.39 ± 0.81 63.04 ± 4.14 68.18 ± 0.90 83.40 ± 0.42 83.40 ± 1.20
LLaGA-noisetxt 80.11 ± 3.95 71.26 ± 0.70 86.39 ± 1.17 79.60 ± 0.93 65.28 ± 2.14 67.31 ± 1.06 83.71 ± 0.22 84.38 ± 0.67
SFT (w/o neighbor) 75.45 ± 2.03 72.10 ± 0.94 93.93 ± 0.35 82.31 ± 0.49 66.53 ± 1.03 60.49 ± 1.02 84.78 ± 0.50 –
SFT-neighbor 79.40 ± 1.97 72.03 ± 2.03 93.80 ± 0.31 82.65 ± 0.83 66.85 ± 0.96 66.01 ± 0.57 85.72 ± 0.09 85.05 ± 0.57
SFT-noise 81.46 ± 2.39 71.88 ± 1.44 94.14 ± 0.35 83.12 ± 1.27 65.95 ± 1.18 66.02 ± 0.42 85.47 ± 0.12 –
SFT-noisefull 80.34 ± 1.32 70.79 ± 3.08 93.53 ± 0.49 82.86 ± 0.51 66.09 ± 1.83 66.17 ± 0.17 85.38 ± 0.13 –
SFT-noisetxt 76.92 ± 2.00 72.31 ± 0.49 93.46 ± 0.26 82.48 ± 0.12 66.23 ± 0.40 65.96 ± 0.74 85.07 ± 0.58 –
SFT-simp 78.80 ± 1.46 72.77 ± 1.22 94.06 ± 0.37 83.59 ± 0.61 66.37 ± 1.17 63.52 ± 2.06 85.54 ± 0.13 –

Table 42: GraphLLM’s results under the inductive/evasion setting against structural attacks
(ptb rate=0.20).

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo Computer ArXiv

GraphGPT 77.68 ± 4.77 73.51 ± 0.72 93.62 ± 0.77 76.51 ± 5.85 65.31 ± 1.03 58.01 ± 0.74 81.59 ± 3.79 77.47 ± 3.32 76.12 ± 5.52 70.61
GraphGPT-noise 78.60 ± 5.05 73.98 ± 1.90 93.81 ± 0.44 78.87 ± 4.39 65.24 ± 1.37 58.01 ± 0.88 83.20 ± 2.69 – – –
LLaGA 75.21 ± 3.73 66.35 ± 1.25 87.38 ± 1.15 66.99 ± 5.07 66.33 ± 1.44 73.48 ± 5.39 81.24 ± 1.66 63.91 ± 4.11 62.32 ± 2.80 70.68
LLaGA-noise 76.26 ± 0.75 68.03 ± 1.57 88.29 ± 0.65 74.95 ± 1.94 67.73 ± 0.53 73.65 ± 6.02 82.34 ± 1.26 71.88 ± 0.63 – –
LLaGA-noisefull 74.17 ± 2.05 66.35 ± 0.59 85.38 ± 0.84 62.40 ± 2.24 66.92 ± 1.73 75.16 ± 3.43 73.41 ± 2.06 66.48 ± 1.69 – –
LLaGA-noisetxt 72.02 ± 1.26 65.41 ± 1.25 82.67 ± 0.57 51.17 ± 1.70 66.01 ± 1.31 74.44 ± 4.75 68.14 ± 0.39 57.96 ± 1.41 – –
LLaGA-sim 81.92 ± 2.61 73.77 ± 0.48 89.43 ± 0.58 82.91 ± 0.46 68.21 ± 0.49 55.20 ± 1.68 85.57 ± 0.39 76.32 ± 0.42 73.99 ± 0.40 73.73
SFT-auto 82.59 ± 3.53 74.24 ± 2.14 92.29 ± 0.45 84.05 ± 0.69 66.93 ± 0.99 66.18 ± 2.74 85.54 ± 0.69 83.99 ± 0.14 83.62 ± 0.13 –
SFT-neighbor 82.35 ± 1.94 71.53 ± 1.86 94.73 ± 0.41 86.00 ± 1.40 68.25 ± 0.20 62.29 ± 3.31 85.98 ± 0.51 81.72 ± 0.34 82.39 ± 0.20 77.21
SFT-noise 79.52 ± 2.72 73.14 ± 0.36 94.51 ± 0.31 84.38 ± 0.60 68.45 ± 0.48 54.54 ± 2.95 85.31 ± 0.73 81.75 ± 0.12 – 77.49
SFT-noisefull 78.04 ± 0.85 70.17 ± 0.86 91.53 ± 0.55 82.07 ± 1.23 68.62 ± 1.01 62.39 ± 2.69 76.16 ± 2.83 79.00 ± 0.84 – 73.89
SFT-noisetxt 77.80 ± 2.51 68.18 ± 1.44 90.35 ± 0.51 79.98 ± 2.08 68.37 ± 0.72 62.07 ± 2.06 79.52 ± 2.36 78.20 ± 1.84 78.24 ± 1.07 74.38
SFT-simp 81.12 ± 2.77 72.26 ± 1.63 94.61 ± 0.17 86.39 ± 0.86 68.87 ± 0.36 64.27 ± 1.27 85.69 ± 0.23 81.63 ± 0.53 82.45 ± 0.42 77.11
SFT-simf 84.19 ± 2.72 75.29 ± 2.40 94.96 ± 0.36 86.00 ± 1.36 69.21 ± 0.60 64.88 ± 2.96 86.50 ± 0.89 81.23 ± 0.09 – –

J.4 RESULTS WITH DIFFERENT PERTURB RATIOS

In Tables 46, 47, 48 and 49, we present results against different attack ratios. In Figures 12 and 13,
we further visualize the accuracy–perturbation curves across different datasets under structural and
textual attacks in the inductive setting. The trends align with our observations in the main paper.
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Table 43: GraphLLM’s results under the transductive/poisoning setting against structural attacks.
(ptb rate=0.30)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo

GraphGPT 64.53 ± 1.81 64.91 ± 1.55 90.02 ± 2.33 76.28 ± 0.95 58.95 ± 0.69 45.73 ± 0.66 79.82 ± 0.38 73.58 ± 1.47
GraphGPT-noise 65.70 ± 0.76 64.46 ± 2.67 90.60 ± 1.77 75.06 ± 0.70 58.13 ± 0.94 45.78 ± 0.35 80.82 ± 0.30 74.02 ± 0.37
LLaGA 71.02 ± 4.70 69.41 ± 1.42 81.63 ± 1.58 76.70 ± 1.25 58.94 ± 1.72 45.07 ± 0.76 79.00 ± 0.72 72.54 ± 2.18
LLaGA-noise 72.39 ± 1.59 71.41 ± 1.61 82.91 ± 1.36 79.07 ± 1.79 55.43 ± 10.44 46.90 ± 0.70 80.16 ± 0.28 73.43 ± 1.48
LLaGA-noisefull 64.22 ± 2.80 68.69 ± 2.53 81.11 ± 0.64 74.85 ± 3.57 59.83 ± 0.96 45.29 ± 0.57 73.68 ± 1.58 73.14 ± 0.59
LLaGA-noisetxt 61.92 ± 9.72 68.12 ± 1.98 81.05 ± 1.11 76.37 ± 1.81 57.36 ± 5.04 45.63 ± 1.36 72.64 ± 2.52 73.04 ± 0.93
SFT-neighbor 69.65 ± 4.42 71.99 ± 1.28 92.33 ± 0.62 82.00 ± 1.18 62.48 ± 2.60 51.90 ± 1.02 82.82 ± 1.61 80.51 ± 0.51
SFT-noise 70.56 ± 2.34 71.56 ± 1.82 92.84 ± 0.71 82.73 ± 0.61 60.95 ± 4.73 51.25 ± 0.86 83.38 ± 0.60 81.25 ± 0.82
SFT-noisefull 71.48 ± 4.09 71.78 ± 0.71 92.35 ± 0.86 81.92 ± 0.56 63.90 ± 0.24 51.39 ± 0.47 83.71 ± 0.29 81.16 ± 0.52
SFT-noisetxt 71.10 ± 1.19 70.52 ± 3.10 92.02 ± 0.47 81.35 ± 0.71 60.77 ± 5.23 53.60 ± 0.32 83.69 ± 0.67 80.74 ± 0.63
SFT-simp 70.45 ± 5.39 70.89 ± 1.16 92.65 ± 1.18 82.82 ± 1.41 63.89 ± 0.23 51.73 ± 0.63 83.48 ± 0.83 80.76 ± 0.48

Table 44: GraphLLM’s results under the inductive/evasion setting against textual attacks.
(ptb rate=0.40)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo

GraphGPT 66.48 ± 15.39 59.51 ± 13.47 71.21 ± 14.22 66.45 ± 17.17 63.38 ± 3.93 57.27 ± 3.57 70.53 ± 14.86 54.23 ± 2.63
GraphGPT-noise 51.66 ± 4.54 59.87 ± 13.78 70.36 ± 15.72 65.91 ± 18.43 62.99 ± 4.04 57.56 ± 2.34 70.26 ± 15.90 –
LLaGA 81.73 ± 1.76 61.65 ± 2.30 73.84 ± 1.08 61.14 ± 3.87 63.40 ± 3.54 68.83 ± 1.61 72.55 ± 1.70 77.58 ± 1.62
LLaGA-noise 80.88 ± 1.67 61.23 ± 3.46 70.82 ± 1.00 51.29 ± 1.55 59.44 ± 1.15 68.21 ± 2.07 71.15 ± 1.53 67.24 ± 1.28
LLaGA-noisefull 79.89 ± 2.13 61.65 ± 1.04 77.12 ± 0.21 63.40 ± 1.99 62.14 ± 2.41 68.59 ± 0.56 78.06 ± 0.94 74.93 ± 1.80
LLaGA-noisetxt 78.54 ± 0.93 59.19 ± 0.80 79.51 ± 1.73 67.92 ± 2.92 64.70 ± 1.35 69.10 ± 1.38 78.15 ± 0.69 77.00 ± 1.73
LLaGA-sim 52.21 ± 1.66 39.08 ± 0.77 65.68 ± 0.42 47.10 ± 0.36 55.12 ± 2.67 52.03 ± 0.71 60.24 ± 4.61 47.08 ± 0.58
SFT-auto 76.75 ± 1.76 65.36 ± 3.29 77.86 ± 1.38 77.83 ± 0.55 61.70 ± 0.84 65.68 ± 0.87 73.55 ± 0.83 77.96 ± 1.76
SFT-neighbor 75.65 ± 1.33 43.84 ± 2.14 72.27 ± 3.53 51.53 ± 1.24 64.33 ± 1.46 65.52 ± 1.24 64.84 ± 0.98 63.76 ± 1.87
SFT-noise 71.71 ± 8.20 43.00 ± 3.42 72.10 ± 0.98 50.63 ± 0.50 63.67 ± 0.12 66.00 ± 0.86 59.50 ± 4.01 62.88 ± 1.47
SFT-noisefull 77.06 ± 5.97 52.46 ± 5.80 74.72 ± 1.06 66.16 ± 6.06 64.20 ± 1.13 65.64 ± 0.81 67.22 ± 3.19 72.36 ± 0.70
SFT-noisetxt 75.64 ± 0.49 51.67 ± 1.22 76.35 ± 1.50 68.27 ± 6.29 64.78 ± 0.93 65.26 ± 1.23 67.49 ± 0.76 74.71 ± 1.30
SFT-simp 75.03 ± 4.71 43.57 ± 3.46 74.66 ± 2.67 51.16 ± 0.86 63.54 ± 1.87 64.49 ± 1.37 66.37 ± 3.40 64.79 ± 0.70
SFT-simf 53.38 ± 1.29 40.28 ± 1.88 71.66 ± 3.38 51.52 ± 1.24 63.70 ± 2.10 65.92 ± 0.86 59.42 ± 1.24 51.24 ± 1.35

Table 45: GraphLLM’s results in the transductive/poisoning setting against textual attacks.
(ptb rate=0.80)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History

GraphGPT 63.54 ± 2.39 40.82 ± 11.87 84.52 ± 1.46 61.96 ± 3.44 42.13 ± 3.52 46.42 ± 2.04 73.18 ± 1.18
GraphGPT-noise 62.94 ± 1.39 41.01 ± 5.32 86.25 ± 2.95 62.19 ± 1.42 38.71 ± 1.55 46.83 ± 2.65 70.51 ± 0.98
LLaGA 78.96 ± 2.60 52.52 ± 1.31 72.16 ± 8.62 75.60 ± 3.10 36.33 ± 0.26 50.67 ± 6.62 75.57 ± 4.36
LLaGA-noise 79.05 ± 3.07 51.87 ± 10.89 78.33 ± 5.89 71.42 ± 2.64 36.82 ± 0.78 47.41 ± 3.08 71.54 ± 2.20
LLaGA-noisefull 77.66 ± 2.19 50.24 ± 5.85 80.16 ± 1.53 70.41 ± 7.15 42.64 ± 4.51 62.39 ± 2.86 75.22 ± 5.33
LLaGA-noisetxt 76.27 ± 4.31 51.96 ± 4.09 81.46 ± 2.41 73.94 ± 3.49 41.82 ± 2.11 63.95 ± 1.00 76.16 ± 3.77
SFT-neighbor 72.40 ± 4.62 46.44 ± 4.32 93.07 ± 0.55 79.33 ± 1.10 62.11 ± 2.91 59.12 ± 6.06 79.88 ± 3.15
SFT-noise 73.99 ± 3.44 47.89 ± 4.41 93.49 ± 0.26 80.04 ± 0.41 61.86 ± 3.34 60.59 ± 2.97 82.07 ± 0.86
SFT-noisefull 74.59 ± 1.40 47.33 ± 10.74 92.94 ± 0.43 79.11 ± 1.12 63.88 ± 0.22 63.26 ± 0.57 81.46 ± 1.58
SFT-noisetxt 72.73 ± 4.19 43.87 ± 4.94 93.07 ± 0.47 79.21 ± 1.17 63.35 ± 0.64 61.62 ± 1.54 80.24 ± 0.88
SFT-simp 76.64 ± 1.70 46.92 ± 6.90 93.04 ± 0.22 79.51 ± 1.76 55.40 ± 14.53 60.41 ± 2.40 79.38 ± 1.78

Table 46: Accuracy under the inductive/evasion setting against structural attack. (ptb rate=0.1,
atk emb=BoW, def emb=RoBERTa)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo Computer ArXiv Avg Rank

GCN 77.24 ± 2.39 64.99 ± 1.81 84.58 ± 0.38 45.55 ± 0.84 59.41 ± 0.81 62.89 ± 1.72 70.36 ± 0.50 66.13 ± 0.85 64.39 ± 0.03 52.21 ± 0.00 10.00
GAT 77.80 ± 0.97 67.35 ± 1.41 84.41 ± 0.66 58.89 ± 0.37 62.70 ± 0.78 60.87 ± 1.07 72.41 ± 1.17 66.73 ± 0.30 64.82 ± 0.59 60.07 ± 0.00 7.80
APPNP 81.80 ± 2.05 72.73 ± 1.44 89.78 ± 0.28 78.76 ± 1.08 64.15 ± 1.01 56.53 ± 0.59 80.84 ± 0.39 70.76 ± 0.44 64.35 ± 0.23 62.73 ± 0.00 5.10
GPRGNN 81.80 ± 2.32 72.15 ± 0.70 89.96 ± 0.20 78.29 ± 0.98 60.95 ± 0.38 59.97 ± 1.01 82.50 ± 0.32 71.98 ± 0.51 69.51 ± 0.67 68.59 ± 0.00 4.20
RobustGCN 76.75 ± 2.27 65.57 ± 1.07 83.72 ± 0.36 51.94 ± 1.23 64.79 ± 0.79 57.29 ± 1.36 69.21 ± 0.40 64.10 ± 0.36 60.71 ± 0.99 57.20 ± 0.00 10.00
GCORN 77.86 ± 1.05 66.46 ± 0.66 85.38 ± 0.08 46.55 ± 0.26 59.69 ± 1.00 66.91 ± 1.50 65.15 ± 0.69 62.61 ± 0.11 56.28 ± 0.23 49.74 ± 0.00 9.70
NoisyGCN 77.31 ± 1.74 65.78 ± 1.58 84.46 ± 0.47 46.65 ± 0.79 60.95 ± 1.02 63.26 ± 1.37 70.52 ± 0.47 66.29 ± 0.72 64.75 ± 0.21 51.40 ± 0.00 8.80
GRAND 81.73 ± 1.45 72.68 ± 0.83 87.04 ± 0.25 75.78 ± 1.08 65.29 ± 0.25 63.45 ± 1.51 79.41 ± 0.33 74.37 ± 0.07 71.06 ± 0.33 70.93 ± 0.00 3.70
SoftmedianGDC 81.80 ± 2.70 71.47 ± 1.55 87.82 ± 0.08 81.57 ± 0.75 62.18 ± 0.65 – 80.89 ± 0.39 – – – 5.00
EvenNet 80.75 ± 1.06 72.78 ± 1.22 88.44 ± 0.26 70.94 ± 0.60 66.80 ± 0.16 62.01 ± 2.06 76.49 ± 0.12 69.84 ± 0.30 68.87 ± 0.20 59.48 ± 0.00 4.90
ElasticGNN 78.23 ± 1.38 65.46 ± 1.03 85.42 ± 0.27 66.61 ± 0.63 60.05 ± 3.30 56.66 ± 0.77 74.21 ± 0.59 70.20 ± 0.15 63.96 ± 0.58 60.48 ± 0.00 8.30
GNNGuard 83.64 ± 1.94 73.67 ± 0.22 90.26 ± 0.33 83.10 ± 0.31 63.93 ± 0.57 58.52 ± 0.42 84.78 ± 0.42 69.12 ± 0.65 68.60 ± 0.44 71.26 ± 0.00 3.40
RUNG 84.75 ± 1.15 74.09 ± 0.70 90.64 ± 0.19 83.38 ± 0.59 65.18 ± 1.08 58.50 ± 0.53 – – – – 2.67
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Figure 12: Performance under structural attacks (inductive setting). Accuracy trends on eight
datasets as the perturbation rate increases. Each curve corresponds to a different GNN/RGNN/-
GraphLLM method.
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Figure 13: Performance under textual attacks (inductive setting). Accuracy trends on eight datasets
as the perturbation rate increases. Each curve corresponds to a different GNN/RGNN/GraphLLM
method.

Table 47: Accuracy under the inductive/evasion setting against textual attack. (ptb rate=0.2,
def emb=RoBERTa)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo Avg Rank

GCN 84.87 ± 0.40 67.45 ± 0.63 84.90 ± 0.30 77.50 ± 0.45 64.15 ± 0.45 66.62 ± 0.67 82.05 ± 0.28 78.92 ± 0.19 2.62
GAT 86.16 ± 1.83 67.55 ± 1.34 85.76 ± 0.74 75.98 ± 2.19 64.67 ± 1.06 64.13 ± 0.20 81.76 ± 0.93 82.44 ± 0.33 2.50
APPNP 71.22 ± 1.20 58.78 ± 0.66 79.51 ± 0.75 66.75 ± 0.56 61.30 ± 0.42 55.89 ± 0.67 77.11 ± 0.26 70.07 ± 0.05 8.62
GPRGNN 76.63 ± 0.71 57.99 ± 0.46 79.68 ± 0.60 66.62 ± 0.67 59.05 ± 2.20 56.62 ± 0.84 73.74 ± 1.08 69.45 ± 0.69 8.88
RobustGCN 84.50 ± 0.84 67.66 ± 0.52 84.17 ± 0.57 75.17 ± 1.68 65.83 ± 0.16 61.64 ± 0.71 81.44 ± 0.66 76.13 ± 0.83 3.62
GCORN 83.33 ± 0.53 65.62 ± 0.37 82.18 ± 0.05 74.16 ± 0.55 61.63 ± 0.54 66.86 ± 0.49 81.26 ± 0.66 73.37 ± 0.16 5.00
NoisyGCN 84.50 ± 0.40 68.03 ± 1.48 84.84 ± 0.48 77.33 ± 0.49 64.23 ± 0.94 66.39 ± 1.07 82.08 ± 0.38 78.86 ± 0.12 2.62
GRAND 78.72 ± 0.38 61.86 ± 1.10 81.83 ± 0.53 68.86 ± 0.82 65.53 ± 0.67 65.30 ± 1.00 80.21 ± 0.43 71.11 ± 0.15 5.75
EvenNet 80.01 ± 1.48 60.19 ± 1.12 82.69 ± 0.78 70.41 ± 1.53 62.82 ± 1.36 59.07 ± 0.90 79.32 ± 0.63 79.44 ± 0.21 5.75
GNNGuard 68.14 ± 1.32 56.22 ± 0.07 78.05 ± 0.97 65.23 ± 0.41 59.45 ± 0.77 55.96 ± 0.29 73.32 ± 0.50 68.47 ± 0.25 10.50
RUNG 70.05 ± 1.26 56.84 ± 0.53 78.76 ± 0.38 66.47 ± 0.50 61.16 ± 0.57 56.00 ± 0.77 – – 9.67
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Table 48: GraphLLM’s results under the inductive/evasion setting against structural attacks.
(ptb rate=0.10)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo

LLaGA 78.41 ± 0.64 68.49 ± 1.50 87.97 ± 1.28 71.46 ± 3.37 66.87 ± 1.03 71.26 ± 5.87 81.93 ± 1.56 70.53 ± 2.44
SFT-neighbor 83.21 ± 1.21 72.78 ± 2.28 94.85 ± 0.49 86.17 ± 0.90 68.65 ± 0.28 64.29 ± 2.96 86.21 ± 0.64 83.33 ± 0.60

Table 49: GraphLLM’s results under the inductive/evasion setting against textual attacks.
(ptb rate=0.20)

Method Cora CiteSeer PubMed WikiCS Instagram Reddit History Photo

LLaGA 82.41 ± 1.86 64.63 ± 1.81 81.94 ± 1.12 69.86 ± 2.27 64.99 ± 1.35 68.84 ± 1.97 79.29 ± 1.14 78.40 ± 0.64
SFT-neighbor 81.61 ± 0.21 59.30 ± 2.28 83.85 ± 1.25 69.80 ± 0.64 65.62 ± 1.10 66.28 ± 1.35 76.15 ± 1.15 74.94 ± 0.51
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K ADDITIONAL BASELINE EVALUATION

To further validate the persistence of the text-structure robustness trade-off, we evaluate three recent
methods: GPRGNN-AT Gosch et al. (2023) (with PR-BCD training), GOOD-AT Li et al. (2024),
and GPR-GAE Lee & Park (2025). Tables 50 and 51 present results under inductive structural and
textual attacks, respectively.

Table 50: Performance under inductive structural attacks (PGD 20%). Format: Clean/Attacked (%).
Method Cora CiteSeer PubMed WikiCS

GCN 87.76/73.31 76.07/62.70 88.76/82.92 84.86/31.54
GPRGNN 86.29/79.27 74.19/69.96 91.05/89.47 84.38/74.38
GPRGNN-AT 86.10/81.92 74.03/71.32 90.61/90.49 83.11/81.43
GOOD-AT 88.44/73.68 76.18/63.27 88.83/82.99 84.85/32.09
GPR-GAE 87.82/79.03 76.44/74.71 88.48/88.39 84.19/41.73

SFT-Auto 83.27/82.59 74.56/74.24 94.74/92.29 86.40/84.05

Table 51: Performance under inductive textual attacks (GPT 40%). Format: Clean/Attacked (%).
Method Cora CiteSeer PubMed WikiCS

GCN 87.76/81.12 76.07/59.14 88.76/80.13 84.86/73.27
GPRGNN 86.29/66.30 74.19/41.80 91.05/67.43 84.38/48.40
GPRGNN-AT 86.10/65.68 74.03/39.71 90.61/66.78 83.11/47.20
GOOD-AT 88.44/83.03 76.18/59.93 88.83/80.35 84.85/75.35
GPR-GAE 87.82/67.10 76.44/40.07 88.48/70.86 84.19/66.38

SFT-Auto 83.27/76.75 74.56/65.36 94.74/77.86 86.40/77.83

Key Observations: The results confirm that the text-structure trade-off persists in adversarial train-
ing methods. GPR-GAE and GPRGNN-AT significantly improve structural robustness but degrade
textual robustness. Conversely, GOOD-AT excels under textual attacks (83.03% on Cora) but col-
lapses under structural attacks (32.09% on WikiCS). This validates our finding that existing defenses
exhibit inherent trade-offs, while SFT-Auto achieves balanced robustness across both modalities.
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