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ABSTRACT

We study the problem of federated clustering when the total number of clusters K
across clients is unknown, and the clients have heterogeneous but potentially over-
lapping cluster sets in their local data. To that end, we develop FedGEM: a feder-
ated generalized expectation-maximization algorithm for the training of mixture
models with an unknown number of components. Our proposed algorithm relies
on each of the clients performing EM steps locally, and constructing an uncer-
tainty set around the maximizer associated with each local component. The cen-
tral server utilizes the uncertainty sets to learn potential cluster overlaps between
clients, and infer the global number of clusters via closed-form computations. We
perform a thorough theoretical study of our algorithm, presenting probabilistic
convergence guarantees under common assumptions. Subsequently, we study the
specific setting of isotropic GMMs, providing tractable, low-complexity compu-
tations to be performed by each client during each iteration of the algorithm, as
well as rigorously verifying assumptions required for algorithm convergence. We
perform various numerical experiments, where we empirically demonstrate that
our proposed method achieves comparable performance to centralized EM, and
that it outperforms various existing federated clustering methods.

1 INTRODUCTION

Original equipment manufacturers (OEMs) of capital-intensive industrial systems, such as power
generators and medical imaging systems, often enter into lucrative long-term service contracts
(LTSCs) with their clients, guaranteeing adherence to stringent reliability standards. Failure to
meet such guarantees can incur multi-million dollar penalties (Schimmoller, [2001; Thompson et al.},
2003). To manage these risks, OEMs must be able to accurately detect and diagnose faults in a
timely manner (Lei et al.| 2020; Dutta et al., [2023} |Yang et al., [2025). However, OEMs face several
critical challenges. First, OEMs do not have prior knowledge of all the possible fault classes.
Second, OEMs cannot rely solely on labels provided by their clients due to the absence of a global
labeling standard and differing maintenance practices, which result in inconsistent labels. Third,
clients cannot readily share their raw data with the OEM due to the size and dimensionality of the
data, and privacy concerns. Thus, centralized model training is infeasible.

Federated Learning (FL) (McMahan et al., 2017; Konecny et al., [2016)) offers a promising solution.
However, the majority of existing FL efforts (Li et al., [2020; Wang et al.| 2020} [Karimireddy et al.,
20205 |Arivazhagan et al., 2019; [Lee et al., 2023) assume that all clients share identical cluster sets
and are primarily focused on supervised learning. Unfortunately, these assumptions are not com-
patible with our problem setting as they violate one or more of the critical challenges mentioned
above. Recent works on unsupervised FL (Dennis et al., [2021} Stallmann & Wilbik} 2022} |Garst &
Reinders} 2024} Barcena et al., 2024; [Yfantis et al., 2025) relax the assumption of identical cluster
sets across clients. However, they still assume that the server knows the total number of unique
clusters in advance—again, an assumption that does not hold in our problem setting. While Zhang
et al.| (2025)) relax this assumption, their algorithm has two critical limitations: (i) it requires clients
to share arrays of the same size (i.e. dimensionality and cardinality) as the raw data, and (ii) client
data can be easily reconstructed at the central server via simple computations on the information
shared by the clients, causing a violation of privacy.
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This paper focuses on developing an unsupervised federated learning methodology for dis-
tributed clustering with an unknown number of clusters across privacy-constrained clients with
high-dimensional data. Our methodology enables a central server to (i) infer the total number of
distinct clusters (components) that emerge across all clients without requiring access to raw data or
prior knowledge of the cluster count, and (ii) determine the cluster memberships of each client.

Contributions. We introduce FedGEM: the first federated generalized expectation-maximization
(GEM) algorithm that can be used for the training of mixture models without prior knowledge
of the global number of components. Our algorithm allows clients with overlapping clusters to
collaborate on the training of cluster centers, whereas cluster weights are set locally at each client.
This allows for model personalization, where local cluster weights can adapt the global model to
client-specific distributions. We summarize our main contributions next.

1. We develop the first federated GEM (FedGEM) algorithm for the training of mixture models with-
out prior knowledge of the total number of components. Our algorithm relies on uncertainty sets
obtained by each client for each local component by solving an optimization problem. Intersections
between the uncertainty sets enable the central server to detect cluster overlaps between clients via
closed-form computations, allowing for collaborative model training.

2. We rigorously study the convergence properties of our algorithm and prove that iterates converge
to a neighborhood of the ground truth model parameters with a certain probability under common
assumptions. This allows our algorithm to correctly estimate the true total number of unique clusters.

3. We examine various theoretical aspects of our proposed algorithm in the context of multi-
component isotropic Gaussian Mixture Models (GMMs). To that end:

(a) We derive a low-complexity, tractable, and bi-convex reformulation of the optimization prob-
lem that is solved by the client to obtain the local uncertainty sets.

(b) We prove the first-order stability (FOS) condition for multi-component isotropic GMMs, which
allows us to derive the contraction region and prove convergence of our proposed algorithm.

4. We perform a thorough empirical evaluation on popular and synthetic datasets, showing that our
algorithm outperforms state-of-the-art ones while scaling well with problem size, at times even
outperforming methods with prior knowledge of the cluster count. We also highlight our algorithm’s
strong performance in various problem settings, including ones that violate modeling assumptions.

2 RELATED WORKS

Federated Learning. The canonical FL algorithm, FedAvg (McMahan et al., 2017), is primarily
designed for supervised deep learning. It aggregates model gradients across clients to train a sin-
gle global model. However, it can perform poorly under non-IID client data, often converging to
suboptimal solutions. Numerous methods address this issue, including FedProx (Li et al |2020),
FedNova (Wang et al.l |2020), SCAFFOLD (Karimireddy et al., 2020), FedPer (Arivazhagan
et al., 2019), and FedL2P (Lee et al. 2023). However, these efforts overwhelmingly focus on
supervised settings and assume that all clients have identical cluster sets in their training data.

Several works have attempted to relax the common cluster set assumption. For example, FedEM
(Marfoq et al., 2021)) trains a global mixture model with localized component weights to support
personalization. A different version of FedEM is introduced by Dieuleveut et al.| (2021)), focusing
on reducing client heterogeneity. Additionally, FedGMM (Wu et al.l 2023)) tackles covariate shift
using Gaussian mixtures. However, these methods assume prior knowledge of the global number
of components, making them unsuitable for real-world problems with unknown cluster counts.

Federated Clustering. Recent efforts have explored unsupervised federated clustering, allowing
clients to have heterogeneous cluster sets. Examples of such efforts include k-FED (Dennis et al.,
2021), FFCM (Stallmann & Wilbik,2022), and FedKmeans (Garst & Reinders} 2024), among oth-
ers (Barcena et al., 2024} |Yfantis et al.,[2025). However, these works still require prior knowledge
of the global number of clusters, limiting their applicability in many real-world problems.

To the best of our knowledge, only AFCL (Zhang et al., 2025) attempts federated clustering without
requiring prior knowledge of the global cluster number. However, this work involves clients sharing
arrays of the same size as the local data. It also suffers from significant privacy vulnerabilities that
allow data reconstruction at the server via simple scalar multiplication and subtraction operations.
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Centralized Clustering with an Unknown Cluster Number. A canonical example of such mod-
els is the Dirichlet Process Gaussian Mixture Model (DP-GMM) (Antoniakl [{1974), which extends
GMMs by placing a nonparametric Dirichlet Process prior over the mixture components. Other
approaches include the density-based DBSCAN (Ester et al.l |1996), the nonparametric DPM sam-
pler (Hughes & Sudderth} [2013)), and the neural network-based DeepDPM (Ronen et al., [2022).
However, all of these methods assume centralized access to the full training dataset.

3 PROBLEM SETTING

We consider a federated clustering problem with G clients and an unknown number of K total
clusters (we use “cluster” and “component” interchangeably). Each client g has access to IV, local
data samples {Z,,, }jszl generated from a local mixture model My(x) = Z,i-;l Ty Pk, (267;,),
where K, is the local number of clusters, and py, (w|0zg) are the independent component distribu-
tions parameterized by ground truth parameters Ozg and weighted by fixed 7, for all k, € [K,].
We denote the vectorized concatenation of all ground truth parameters at client g by 0’9". We as-
sume that K, is known for all clients g € [G], whereas the global K is unknown. We also as-

sume that clients may have some overlapping clusters, but no client has all the clusters locally, i.e.,
2< K, < K, Yge[G].

We denote the minimum and maximum distances between any two unique ground truth cluster
parameters by Ruin and Riay, respectively. That is Ruyin = min, je[x],iz; |0 — 07|z and Ry =
max; je[k],i=j ||0; — 07|2. These quantities are used to study the convergence behavior of our

algorithm and do not need to be known in advance to use our algorithm. We make the following
crucial assumption to support algorithmic convergence analysis (in Section [)).

Assumption 1 (Ground Truth Parameters). Each global cluster k € [ K] is parameterized by a fixed
ground truth @} that is consistent across all clients where the cluster is present. However, the weight
assigned to the cluster may vary locally across clients.

Remark 1. Assumption [I] motivates our algorithm design, where clients with overlapping clus-
ters can collaborate on learning the shared cluster parameters while retaining personalized cluster
weights. This respects the non-IID nature of the federated data while enabling collaborative training.

At client g, we denote the local population expected complete-data log-likelihood by

K

Qq(0406,) == Eoptia) | . Vi, (@, 0})log(mn, pr, (€(64,)) | »
kg=1

where 7, (x, 0'9) is the posterior responsibility function of the kzzh component, computed using

current parameters 0’9. Similarly, we denote the local finite-sample expected complete-data log-
likelihood function by

2
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Qq(0,10,) = N, .

Viey (Zn,, 0),) log(mr, pr, (En, |Ok,)).
o=l kg=1

4 OVERVIEW OF FEDGEM ALGORITHM

Our proposed FedGEM algorithm consists of two stages: (i) an iterative collaborative training stage,
and (ii) a single-step final aggregation stage. (Pseudo-code in Algorithm[1]in Appendix[A.T).

The collaborative training stage can be summarized as follows. Client: (i) performs (potentially
multiple) EM steps locally, (ii) solves an optimization problem to obtain the radius of an uncertainty
set for each component centered at its corresponding maximizer of Qg(09|0;), and (iii) broadcasts
the maximizer and uncertainty set radius pair for each component to the server. Server: performs
aggregation using overlaps between uncertainty sets and re-broadcasts updates to clients.

In the final aggregation step, the server merges cluster estimates from different clients if they are
within a specific radius of each other. This enables the server to estimate the total number of unique
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global clusters and determine the cluster membership of each client. Before discussing our algo-
rithm, we make the following assumption, which can be verified for common models such as GMM.

Assumption 2 (Strong Concavity). Each of the K, terms in the population QQ(OQ\O;) or finite-
sample @9(09|6’g) at client g are strongly concave in 6, for all g € [G].

4.1 CLIENT COMPUTATIONS

Each client g performs two vital tasks during each iteration ¢ of our algorithm: (i) it performs
(potentially multiple) EM steps given current model parameters 0?71), and (ii) it solves for the
radius 6,(3 of the uncertainty set Z/{,gz) associated with the maximizer of each local component k,.

Firstly, we examine the EM steps, which are displayed next.
~ t—1
T, Dry (B, |0F 1)
K ~ t—1
Sy T, Py (&, 1051

NQ
M-step: M (0Y7") — argmax Y. 4y, (Zn,,05 V) log(mh, pr, (Zn,|Ok,)) kg € [K,]

Hk.geRd ng=1

E-step: i, (25,0 ") « Yk, € [K,], Yngy e [N,] (1)

2

Next, client g solves for an uncertainty set L{Ig? to capture potential perturbations in Mp, (0?71))

associated with each component k, € [K,]. This uncertainty set is defined as a Euclidean ball

IB%g(M\kg(G‘(qtfl)); el(fg)) centered at %(9&*”) and whose radius is 5,(;9). We construct the

uncertainty set such that any iterate iy, (0?71)) € BQ(M\ ky (6;“1)); 5,(2) does not decrease the
finite-sample expected complete-data log-likelihood function from the previous iteration. That is

Ng

Z Vi By O log (1, i, (B, [0k, (05 71))) =

ng=1
Ny
3 vk, @y 047D) log(mk, pr, (En, 05 )).
ng=1

This renders our proposed algorithm an instance of a GEM, allowing it to exhibit similar conver-
gence behavior locally at client g to the EM algorithm as we show later. Client g may obtain the
radius /€y, ®) of the component’s k4 uncertainty set by solving the following optimization problem,
which admits a unique solution as we argue in Proposition [I]

T, (0471 =

max 5kg
Ekg

NQ
st >, (Zn,, 05 ) log(mh, pr, (En, [k, (05 7))) =
ng=1
N.q
> Ay @,y 05 ) 108k, P, (@0, 101 ) Vi, (657) € Ba(My, (05 V); 2k,

ng=1
3)

Proposition 1 (Local Uncertainty Set Radius Problem). Suppose Assumption 2| holds. Then, there
must exist a unique solution €y, > 0 to the optimization problem Jy, (0!(;71)) for all components
kq € [Kg4] and all clients g € [G]. (Proof in Appendix|C.1).

After completing local computations, each client g transmits a tuple (]\7 kg (Oy_l) ), 5,(:;) of the ob-
tained local maximizer and uncertainty set radius for component k, € [K,] to the central server.
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This, however, only applies in the collaborative training stage. During the final aggregation step,
each client transmits a tuple (M, (0?71)) ﬁ“"”) to the central server, where Eﬁ“al is the final aggre-
gation radius for component k4, and is treated as a user-defined hyperparameter

4.2 SERVER COMPUTATIONS

In both collaborative training and final aggregation stages, the server uses the uncertainty sets
Z/llgi) Vky, € [K4], Vg € [G] to identify cluster overlaps between clients. This allows the server
to group clients’ components into super-clusters via pairwise comparisons and a series of closed-
form computations. Specifically, the server begins by initializing an estimate K® = 0. It then
checks if the uncertainty sets of components k, at client g and kg at client ¢’ overlap. That is, it

checks if: ||]\//qu (Oét_l)) O(t 1) M2 < 4/e (t . If this holds, then the server groups
the two components k, and k / 1nt0 a single super-cluster Consequently, if one or both of the com-
ponents already belong to a super-cluster, the server performs super-cluster merge and updates K ().

If there is no overlap, the components are assigned to different super-clusters, and K® is updated
accordingly. This repeats for all k, € [K,] and ky € [K,/] at all clients g, ¢’ € [G].

During the collaborative training stage, the server relies on uncertainty set intersections to compute
an updated parameter vector 9,(2 for component k, at client g. This updated vector remains within
its respective uncertainty set, thereby facilitating _convergence. This is achieved by initializing a
set ’7;(9 of vectors containing only the estimate Mk (O(t 1)) for each component £, at client g.

()

Subsequently, if any intersections are found between ), ” and any other Z/{,g ), for any ¢’ € [G]\g,
g 9

then an optimal vector v* is added to both the sets 77€(t) and E(t/). This vector v* can be written as:

(
M (e(t D)—l—cllp 0.5,1— \/7’ \/7 ( e(t 1)) M (0(t 1)))

where w = ||Mk G(t Dy — Mk (9( )||2, and the c1ip(z, a, b) function limits the input x to

)

the range [a, b]. After all comparisons are complete, the server obtains the updated parameters 1) k
for component £, at client g by aggregating all the vectors in set ’T(t)

In contrast, in the final aggregatzon step, the server aggregates all the estimates Mk (O(t 1)) of
components k, that belong in the same super-cluster. This ensures that clients eventually reach
consensus on the parameters of shared clusters. We present the server computations pseudo-code
in Appendix We also present a method for potentially improving the efficiency of the server
computations and an analysis of communication costs incurred by our algorithm in Appendix [B.5]

4.3 CONVERGENCE ANALYSIS

We provide a convergence analysis for our algorithm in the finite-sample setting. This is built upon
a population convergence analysis, which we provide in Appendix [B.I] The idea in our convergence

proofs is to show that an algorithm for component k, at client g whose iterates are 7y, (th_l)) €

BQ(M kq (B(t 1)) ,(C)) converges at a desirable rate to some neighborhood of the true parameters

0; . This ensures that estimates of the same component from different clients can eventually be
aggregated due to their proximity at convergence. Our convergence analysis relies on the FOS
property introduced by [Balakrishnan et al.|(2014)), which is defined next. Subsequently, we provide
key technical assumptions, followed by our convergence results.

Definition 1 (First-Order Stability). The expected complete-data log-likelihood function Q(+|0) is
said to obey first-order stability with parameter 3 if for any 8, € B2(0};a) Vk € [ K] we have that

IVQ(M(0)[6) — VQ(M(6)|0%)]|2 < BI|6 — 6|2, )

where ( € R is a constant, and 0 is the vectorized concatenation of all 8y, for all k € [K].
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/

Assumption 3 (First-Order Stability). The expected complete-data log-likelihood Q,(8,6) at
client g obeys the FOS condition with parameter 3,4, such that 0 < 8, < A4 for all g € [G], where
Ag is the strong concavity parameter of Q(6,(6",).

Assumption 4 (Continuity). The local population and finite-sample Q,(6,/6;) and Q,(0,10)),
respectively, at client g are continuous in both of their arguments.

Assumption 5 (Likelihood Boundedness). The local population and finite-sample true log-
likelihood functions L% (8,) and L7 (6,), respectively, at client g are bounded from above.

Assumption 6 (Finite-Sample and Population M-Step Proximity). Let A = HZ":l IB%Q(OZQ ,ag),
and €2 (N, 64) < (1 — f—z)ag be some constant. Then, with probability (w.p.) at least (1 — d,),
sup | M, (8,) — My, (0))1> < ¢ (N, 6,),
AN

where My, (6),) is the M-step map associated with the population Q,(8,6).

Remark 2. Assumptions|3]-[6]are standard assumptions that are commonly utilized in works focused
on EM algorithms such as (Balakrishnan et al.,|2014;|Yan et al., 2017; Marfoq et al., 2021), and are
verifiable for isotropic GMMs as we show later.

As shown by [Balakrishnan et al| (2014), if Assumption [6]holds and the population M-step iterates
converge as described in Appendix then the finite-sample M-step iterates converge to a neigh-
borhood of the true component parameters ng w.p. at least (1—d,). We express this mathematically
next, followed by Theorem [I] asserting convergence to a single point rather than oscillating.

T - - L i -
1My, (65 1)=65 Il < %Ileffg V0%l g (N, 8y) O € Ba(6], ). 9
g

By
Ag

where a, is the radius of the contractive region associated with the population EM iterates.

Theorem 1 (Single-Point EM Convergence). Suppose Assumptions [I| through [6] hold, and that

0;;;1) € Bo(05,, ag). Then the finite sample EM iterates M\kg (9571)) converge to a single point

within radius 1_1Bg eg’”f(Ng, dq) from the ground truth parameters 0:9. (Proof in Appendix .

g

Now, consider a local finite-sample GEM algorithm whose update during each iteration is any
mg (O;t_l)) € By(My, (0?‘”); /Ek, )> wWhere the radius , /£ is obtained by solving the problem
in @) We show in Theorem 2] next that this algorithm exhibits very similar convergence behavior to
that shown in (5). Subsequently, we show in Theorem [3that our proposed FedGEM algorithm infers
the true global number of clusters K with a certain probability.

Theorem 2 (Local Convergence of Finite-Sample GEM). Suppose Assumptions [I| through [6] hold.
Consider a GEM algorithm whose iterate ﬁlkg(ﬂét_l)) at iteration t is such that my, (9§t_1)) €
IB%Q(]\//fkg (H;t_l)); VEk, )» Where the radius . /€, is obtained by solving the problem in (3). Then,
this algorithm converges to a neighborhood of the ground truth parameters Bzg as follows:

||mkg<0§t71))_0;:g||2 < %He}f;l)_ E ot "(Ny,0q) +€(t) vel(:qfl) € B2(05 ;ay),
g

w.p. at least 1 —§,4, with €(t) = Hﬁkg (Og_l)) — 0,(:;1) [l = 0ast — oo. (Proofin Appendix.
Theorem 3 (Number of Clusters Inference). Suppose that all the assumptions associated with The-
oremhold, and that ||JT4\ ky (Og_l)) — Ol(fg_l) |2 diminishes to 0 at a sufficiently fast rate. Suppose
further that the final aggregation radius EZZ"Z at client g is set such that 5’2’2“1 = e;’”f (Ng,dg), and
such that maxge(c) k,e[K,] 5);?;“1 < %- Then, the final K* inferred by the FedGEM algorithm is

equivalent to the true K w.p. at least H?:l ny“’:l(l — dg)- (Proof in Appendix .

6
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5 FEDGEM FOR MULTI-COMPONENT ISOTROPIC GMMS

Model Setup. Now that we have introduced our FedGEM algorithm, and studied its conver-

gence in a general sense, we examine it in the context of an isotropic GMM. More specifi-

cally, we consider the setting where each client g data is governed by a local mixture model

GMM,(z) = Z?g“’:l i, ¢(|05,, Ia), where ¢(x|65 ,I4) is the Gaussian density with identity

covariance. We denote the minimum and maximum component weights at client g by mpyn, and
max g

Tmax,» Fespectively. Moreover, we denote the ratio ry = : . The population and finite-sample

‘min

M-steps associated with this model admit the following closed-form solutions.

Eo~cmnm, (@) [k, (€, 05)x]
Eg~cnn, (@) [Tk, (2, 605)]

Population M-step: M, (0)) = Vky € [K,]. (6a)

N
an:l Vg (xng79 )wnJ

Finite-sample M-step: M, (6.) = <
Zn_::l ’71435] ($ng, 0;)

g\ " g

Yk, € [K,].  (6b)

Note that for the described model, the population and finite-sample expected complete-data log-
likelihood functions Q4 (60,4]6;,) and Q,(8,|6,), respectively, are strongly concave in 6, and contin-

uous in both of their arguments. Moreover, if 9’9 = 0’; , the strong concavity parameter of Q (6| 0;)
is in, - Finally, the true population and finite-sample log-likelihood functions associated with this

model are bounded from above due to the identity covariances and fixed weights for all components.

As shown in (6b), the finite-sample M-step associated with our model admits a closed form. There-
fore, it remains to derive a tractable reformulation of the uncertainty set radius problem in (3)). Next,
we introduce Theorem ] where we derive a bi-convex, 2-dimensional reformulation of the problem
in (3). Additionally, we introduce a solution Algorithm [f]in Appendix [B.2]to solve the problem,
accompanied by Proposition [2] in Appendix [B.2] asserting that the algorithm enjoys a low worst-
case time complexity. Finally, we provide a preliminary differential privacy discussion for the
finite-sample maximizers shared by the clients in Appendix [B.4]

Theorem 4 (Radius Problem Reformulation). The semi-infinite optimization problem Jy, (0;) in
@) admits the following tractable, bi-convex, 2-dimensional reformulation for the isotropic GMM
described in this section. (Proof in Appendix[C.3).

i, (0) = (7)
max Ek
Ekg ,akQER g
s. t. skgai [ Z Viy (Zn, , 0 (||wng - ng(é);)ﬂg — |2, — 9;%”% - Ekg)} ag,+
ng=1

(Z Vi, (Zn,, 0 ) Z Vky (B, 0,) [T, — 05 |5 <0

ng=1 ng=1

Ng
ay, = Z Yy (T, 0))

ng=1

Convergence Analysis. To guarantee the convergence of our FedGEM algorithm for the multi-
component isotropic GMM, we verify three key properties. Namely, we present Theorems [6] [7]
andln Appendlx to establish the FOS property of Q4(60,, \0 ), study the contractive radius of

My, (8,), and establish an upper bound on the distance between the population My, (6,) and the

finite-sample ng (8,), respectively. Consequently, the convergence of our algorithm for isotropic
GMMs follows from these results. However, these results require the clusters to be well-separated.
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6 NUMERICAL EXPERIMENTS

We present a comprehensive set of numerical experiments that benchmark the performance of our
proposed FedGEM algorithm against leading state-of-the-art federated clustering methods. All num-
bers reported in this section are averaged over 50 repetitions. Confidence intervals and error bars
represent one standard deviation. Randomness in repetitions arises from initialization, cluster as-
signments, and data shuffling/generation. We assign equal 7y, for all k&, € [K,] at client g. More-
over, we weigh each client g by its sample count IV, and we set the final aggregation radius equiva-
lently for all clients. In all experiments, clusters are assigned randomly to the clients, whereby each
client g has K clusters such that 2 < K, < K. More experimental details and results are provided
in Appendix [D} Additionally, a Scalability Study is provided in Appendix [E] demonstrating that
our algorithm scales exceptionally well with problem size compared to relevant benchmarks.

Our Method. Our method is the isotropic GMM from Section[3]trained via our FedGEM algorithm.

Evaluation Metrics. We utilize the Silhouette Score (SS) (Rousseeuwl |1987) for hyperparameter
tuning as it does not require label knowledge. However, we mainly rely on the Adjusted Rand Index
(ARI) (Hubert & Arabie, [1985) to evaluate model performance as it is robust to cluster shape and
size unlike other metrics. We report experimental results in SS in Appendix [D.4]

Hyperparameters. We tune the final aggregation radius for FedGEM via cross validation. However,
we do not directly tune the radius itself. Instead, we use the heuristic 52“'“‘1 = “937"“"9’ where Emin

g 7"17\/]\79 7
is the minimum distance between any two estimated cluster centroids at client g, and v, is the
hyperparameter we tune (set equivalently across all clients for simplicity). This heuristic allows the
final aggregation radius to scale with the feature space and the number of samples available at each
client. We provide a thorough discussion on hyperparameter tuning is provided in Appendix
We set hyperparameters for the benchmark methods as described in their associated works.

6.1 BENCHMARKING

This study aims to compare the performance of our proposed method to that of various existing
methods using an array of popular benchmark datasets.

Datasets. We use MNIST, Fashion MNIST (FMNIST), Extended MNIST (EMNIST), CIFAR-10,
and 4 other datasets from the UCI repository. For all datasets, we use 70% of the samples for training
and the rest for testing, except for EMNIST where we use 50% of the samples for training. We use
G = 100 for MNIST, FMNIST, and CIFAR-10, G = 25 for EMNIST, and G = 5 for UCI datasets.

Baselines. We compare our method to 2 centralized and 5 federated clustering methods from the
literature. The centralized ones are a GMM and a DP-GMM (Antoniakl, (1974). The federated
methods are k-FED (Dennis et al.,|2021)), FFCM-avgl and FFCM-avg?2 (Stallmann & Wilbikl,|2022),
FedKmeans (Garst & Reinders| 2024), and AFCL (Zhang et al.| [2025). Note that DP-GMM and
AFCL are the only benchmarks that do not assume prior knowledge of K.

Results. The ARI attained by all models and the estimated number of clusters estimated by models
with unknown K are shown in Tables[T]and 2] respectively. We observe that our method consistently
outperforms AFCL for all datasets, which is the only other federated clustering model with unknown
K. Additionally, our model also consistently outperforms DP-GMM, which can be attributed to
its more accurate number of cluster estimation. Another key observation is that our method even
outperforms some clustering algorithms with known K in various datasets. This result underscores
the significant practical impact of our proposed method, which does not require prior knowledge of
K. We highlight that similar trends are observed when performance is evaluated via the SS as shown
in Appendix emphasizing the impact of our model. Despite our model’s strong performance,
we also observe that it largely overestimates the number of clusters in datasets such as CIFAR-
10, Frog A, and Frog B. While its estimate is the best achieved out of the models compared, this
can potentially be further improved in future work by examining more complex mixture models.
Finally, we note that the datasets used are verifiably non-Gaussian via a Henze-Zirkler multivariate
normality test, and likely include cluster overlaps. This demonstrates that our model can perform
well in practice even when assumptions are violated.
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Table 1: ARI attained by all methods on tested datasets. (Bold = best, underline = second best.)

Model Known K?  MNIST FMNIST EMNIST CIFAR-10  Abalone  Frog A Frog B Waveform

287 385 235 402 096 447 448 262

GMM (central) Yes +.067  +.023 +.010 +.022 +.028  +£.097 +.172  +.016
FED Voo 354 288 223 358 .100 617 467 277
: e +.082  +.101 +.031 +.043 +.030 +.144 +.148  +.061
148 164 025 312 .096 470 442 254

FFCM-avel Yes £.031  +.030  +.007 +£.035  +.020 +.094 +.112  +.029
336 352 114 513 102 720 .645 268

FFCM-ave2 Yes +.053  +.038  +.011  +.028  +.032 +.149 +.117  +.057
Fedk v 640 449 285 437 .098 546 .492 260
ecmeans e +.035  £.027  +.007 £.024 +.033  +.143 +.118  +.015
115 179 120 .068 .075 326 223 255

DP-GMM (central) No £.021  +.011  +.015  +£.008  +.023  +.090 +.065  +.015
AFCL N 038 035 .089 034 062 344 272 157
© +£.002  +.002  +.005 +£.002  +.020 +.108 +.079  +.036

452 287 285 286 138 552 .468 335

FedGEM (ours) No +.049  +.057  +.022 +£.033  +.056 +.129 +.117  +.078

Table 2: Estimated number of clusters for algorithms with unknown K.

Model MNIST FMNIST EMNIST CIFAR-10 Abalone Frog A Frog B ‘Waveform
True K 10 10 47 10 7 10 8 3
110.20 86.34 247.40 364.03 15.46  29.46  24.38 6.84
DP-GMM (central) - ¢"q +5.61  +£23.46  +12.57  £2.20 +5.49 +4.24 +0.65
AFCL 501.82  501.37  575.39 502.97 25.00  28.42  23.96 12.52
+18.00 +22.51  455.63  +19.70  +4.43  +6.42 +4.26 +1.11
13.63 17.59 58.67 37.72 12.14 23.94 20.00 4.42

FedGEM (ours) 4229  +6.61 4523  +13.60  +3.65 +9.99 +7.07  +1.40

6.2 SENSITIVITY

This study evaluates the performance of our model as Rni, changes. This includes non-well-
separated settings, which violate the convergence conditions of the GMM in Section [5] We also
examine the sensitivity of our algorithm to its hyperparameter in Appendix [D.6]

Dataset. The data used for this experiment is isotropic Gaussian clusters generated via the
make_blobs module in Python. We control Ry,, requiring that the centers of at least two
clusters in each dataset be R, apart. Moreover, we study three key settings: i) nominal: data
is balanced across clients and clusters, ii) client imbalance: the data distribution across clients is
[40%, 24%, 16%, 16%, 4%], and iii) cluster imbalance: the local data for each client is randomly
distributed across the local clusters. For all settings we use G = 5, Nyin = 2500, and Ny, = 5000.

Baseline. We compare our model to a centralized GMM trained via EM as the latter represents a
strong benchmark. This allows us to quantify the effects of our model’s federation and unknown K.

Result. Figure [T]illustrates that the performance for both models improves as Ry, increases. No-
tably, our proposed model achieves very close performance to the centralized GMM, and even out-
performs it with Ry, € {1, 2} across all settings. This can be attributed to cluster heterogeneity
across clients. That is, each client only has a subset of the total clusters, so each client’s clustering
problem is potentially easier than the centralized problem. This can cause each client to perform
better individually than the centralized model, which is trained on all clusters. Indeed, the benefits
gained from cluster heterogeneity in clustering problems were first observed by Dennis et al.|(2021).

It is worth noting that some of the settings explored in this study involve overlapping clusters,
violating the well-separated cluster assumption required for convergence. However, our model still
achieves very competitive performance. This suggests that even when some assumptions are vio-
lated, our algorithm can still converge in practice to a well-performing model. Finally, we observe

that our model’s estimate K * across all experimental settings is very close to the true number of
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(a) Adjusted rand index for our proposed FedGEM vs. a centralized GMM trained via EM.
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(b) Number of clusters estimated by our proposed FedGEM vs. the true number of clusters.

Figure 1: Results of the sensitivity study.

clusters K. While it tends to overestimate slightly in most settings, performance could potentially
be further improved through better tuning of the final aggregation radius hyperparameter.

7 CONCLUSIONS

We introduce FedGEM: a federated GEM algorithm for training mixture models with an unknown
number of components, geared towards federated clustering for clients whose local cluster sets are
heterogeneous but potentially overlapping. Our algorithm requires clients to perform local EM steps,
and compute an uncertainty set centered at the maximizer corresponding to each component. These
uncertainty sets are then shared with the server. The server leverages uncertainty set intersections to
infer overlap between clients’ clusters, allowing it to perform model parameter aggregation and to
estimate the total number of unique clusters. We study theoretical aspects of our algorithm, where we
prove probabilistic convergence under standard assumptions. Subsequently, we study our algorithm
in the context of isotropic GMMs. To that end, we derive a tractable and convex reformulation of the
problem used by each client to obtain the uncertainty sets, and we verify key assumptions required to
prove convergence. We empirically demonstrate that our proposed algorithm outperforms existing
ones through a series of numerical experiments utilizing synthetic and popular datasets. We provide
a thorough discussion on limitations and future work in Appendix

ETHICS STATEMENT

All software and datasets utilized in this work are used under proper licenses, as detailed in Appendix
[D] We do not release any data as part of our submission, and we provide full references to all datasets
used.

REPRODUCIBILITY STATEMENT

We have taken various steps to ensure the ease of reproducibility of both the theoretical and exper-
imental aspects of this paper. On the theoretical side, we have provided full formal and complete
proofs for all theoretical results, as well as all the required assumptions and a full description of
the problem setting. More specifically, the detailed description of the problem setting is provided in
Section 3] whereas the required assumptions are provided in throughout the main body of the paper.
Additionally, supplementary theoretical results along with their formal proofs are provided in Ap-
pendix [B] The proofs of all theoretical results presented in the main body of the paper are provided
in Appendix [C} Finally, detailed explanations and interpretations of all assumptions and theoretical
results are provided in Appendix [F] On the experimental side, we have provided a summarized de-
scription of our experimental settings and results in Section[6] whereas we provided full detail on all
aspects of the experiments as well as supplementary results in Appendices [D]and [E] This includes
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all software and hardware details, all dataset license information and preprocessing details, as well
as hyperparameter details. Finally, we have included all the code used to run our experiments along
with detailed instructions in a .zip file in the supplementary materials.
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A SUPPLEMENTARY PSEUDO-CODE

In this section we provide detailed pseudo-code for our FedGEM algorithm, as well as detailed
pseudo-code for the server computations both in the collaborative training and final aggregation
phases.

A.1 DETAILED FEDGEM PSEUO-CODE

Algorithm 1 FedGEM

Input: Number of communication rounds 7', Number of local steps S, Final aggregation radius 52':" and fixed
weights mx,, Vkg € [Ky],Vg € [G]
Output: Final 0',1“;] for all components k, € [K,] and clients g € [G], inferred K*

1: INITIALIZATION
2: for clients g = 1,..., G in parallel do
3:  Initialize 6} for all ky € [K,] via k-means-++.
4: end for
5: COLLABORATIVE TRAINING
6: forroundt =0,...,7 do
7:  Clients
8: forclientsg = 1,...,G in parallel do
9: 011 — 0 forall ky € [K,]
10: forstepsg =1,...,5, do
11: Compute Vi, (Zn, , 0;;9_1’35’_1)) via E-step in (I) for all k4 € [ K] and samples ng € [Ng].
12: Compute M\kg (0}(;;1,5971)) via M-step in () for all k4 € [K,].
13: Update 0" — My, (05 ""™") for all ky € [K,].
14: end for
15: Solve for 5,(;; argmax,, cp Tk, (0,(;’59)) via problem in (@) for all k4 € [K,].
16: if t < T then
17: Transmit tuple (0,(;’59) , E;:g)) for all k4 € [ K] to central server.
18: else . (6.52) ool
19: Transmit tuple (6 ko 2 Eky ) for all k4 € [ K] to central server.
20: end if
21:  end for
22:  Server
23:  ift< T then R
24: Update (Bgfg), K®) « server_update(e,(:fg),Effg)) for all k, € [K,] and g € [G] via Algo-
rithm2]in Appendix
25: Transmit 05:;1) to clients for all kg € [K4] and and g € [G].
26:  else
27: FINAL AGGREGATION
28: Compute (92‘:‘1,](*) — server_final_aggregation(O,itg’Sg),Effg)) for all k4 € [K,] and
g € [G] via Algorithm[3]in Appendix
29: Transmit 02‘;‘1 to clients for all ky € [K,] and and g € [G].
30:  endif
31: end for
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A.2 DETAILED SERVER COMPUTATIONS PSEUDO-CODE

Algorithm 2 server_update(0y,,¢x,)

Input: 6, and e, for all clients g € [G] and components kg € [K,] at the g*"* client

Output: Updated ), for all clients g € [G] and components k; € [K,] at client g,
K* '
1: Initialize K = 0.
2: Initialize set T, containing only 8y, for each g € [G] and ky € [K].
3: Initialize comp(g, kg) . assigned « False forall g € [G], kg € [K].
4: Initialize comp(g, kg) . supercluster « Null forall g € [G], kg € [K].
5: forclientg; = 1,...,G do
6:  for component kg, =1,..., K,y do
7: for client g2 = g1,...,G do
8: for component kg, = 1,..., Ky, do
9: if || My, (05) — Mk, (0,2 < \/Ek, + \/Zk,, then
— €k 4 € — —
10: V¥ Ny, (0)) + clip (0.5, 1 Ve @) (3, (0)) — i, (6)).
11 Ty, < Ty, W V™.
12: Trgy — Ty, U V™.
13: if comp(g1, kg, ).assigned = False & comp(gz,kq,).assigned = True then
14: comp(g1, kg, ) - supercluster « comp(gz, kg, ) - supercluster.
15: comp(g1, kg, ) . assigned < True.
16: else if comp(g1,ky,).assigned = True & comp(gz,kg,).assigned = False
then
17: comp(g2, kg, ) . supercluster « comp(gi, kg, ) - supercluster.
18: comp(gz, kg, ) - assigned < True.
19: else if comp(gi,ky,).assigned = True & comp(gz,kg,).assigned = True
then
20: if comp(g1, kg, ) - supercluster != comp(g2,kq,).supercluster then
21: comp(g’, ky/) . supercluster « comp(g1, kg, ) . supercluster Vk, such that
comp(g’, ky ). supercluster = comp(gz, kg, ) - supercluster.
22: K K-1
23: Reorganize supercluster numbers for all components.
24: end if
25: else if comp(g1,kg,).assigned = False & comp(gz,kg,).assigned = False
then R
26: K« K+1. .
27: comp(g1, kg, ) . supercluster « K.
28: comp(ge, kg, ) . supercluster « K.
29: comp(g1, kg, ) -assigned « True.
30: comp(ge, kg, ) . assigned < True.
31: end if
32: end if
33: end for
34: end for
35: if comp(g1, kg, ) -assigned = False then
36: K« K+1. R
37: comp(g1, kg, ) - supercluster « K.
38: comp(g1, kg, ) . assigned « True.
39: end if
40:  end for
41: end for
42: for clientg =1,...,G do
43:  for componentky = 1,..., K, do
44: 0;9 « aggregate of elements in 7, .
45:  end for
46: end for _
47: K* « K
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Algorithm 3 server_final_aggregation(fy,, €k,

ﬁnal)

Input: 6, and £i"" for all clients g € [G] and components kq € [K,] at the g** client

g

Output: Final 92‘;’“‘1 for all clients g € [G] and components k4 € [K,] at client g, K*

26:

27:
28:
29:
30:

- Initialize K = 0.
: Initialize set T, containing only 0y, for each g € [G] and ky € [K].
: Initialize comp(g, ky) - assigned <« False forall g € [G], kg € [Ky].
: Initialize comp(g, kg) . supercluster « Null forall g € [G], kg € [K].
: forclientg; = 1,...,G do
for component k,, = 1,..., Ky, do
for client go = g1,...,G do
for component kg, = 1,..., Ky, do
lf||ng(9;) — ng/ (Olg/)Hz < \/ETg-‘r \/@then
if comp(g1, kg, )-assigned = False & comp(gz,kg,).assigned = True then
comp(g1, kg, ) - supercluster « comp(gz, kg, ) - supercluster.
comp(g1, kg, ) . assigned < True.
77%71 - 77“91 v 77“92'
77“5/2 - 7795/2 v 9’%1'
else if comp(g1,ky,).assigned = True & comp(gz,kg,).assigned = False
then
comp(g2, kg,) . supercluster « comp(gi, kg, ) - supercluster.
comp(gz, kg, ) - assigned < True.
77692 - 77%2 v 77“91'
77“91 - 77“91 v Okgz'
else if comp(gi,ky,).assigned = True & comp(gz,kg,).assigned = True
then
if comp(g1, kg, ) . supercluster != comp(gz,ky,).supercluster then
7Temp,1 <~ 77“91'
7ldemp,2 <~ 77692~
77vg/ — ﬁg, U Teemp,1 Vk, such that comp(¢’,ky).supercluster =
comp(gz, kg, ) - supercluster.
7}9, — 77cg/ U Temp,2 Vkg such that comp(g’,k,).supercluster =
comp(g1, kg, ) - supercluster.
comp(g’, ky) . supercluster « comp(gi, kg, ) . supercluster Vk, such that
comp(g’, ky ). supercluster = comp(gz, kg, ) . supercluster.
Ke—K-1
Reorganize supercluster numbers for all components.
end if
else if comp(g1,kg,).assigned = False & comp(gz,kg,).assigned = False
then R
K RK+1. R
comp(g1, kg, ) . supercluster « K.
comp(ge, kg,) . supercluster « K.
comp(g1, kg, ) -assigned « True.
comp(ge, kg, ) . assigned < True.
Trg, < Thgy Oy, -
77“5;2 - 7795/2 v 9’%1'
end if
end if
end for
end for
if comp(g1, kg, ) -assigned = False then
f? «— f? + 1. R
comp(gi, kg, ) . supercluster « K.
comp(g1, kg, ) -assigned « True.
end if
end for
: end for
: forclientg=1,...,Gdo
for componentky, = 1,..., K, do
022”1 « aggregate of elements in T, .
end for
: end for _
c K* K
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B SUPPLEMENTARY THEORETICAL RESULTS AND ANALYSIS

B.1 POPULATION CONVERGENCE ANALYSIS FOR FEDGEM ALGORITHM

In this section we study the convergence behavior of our proposed algorithm in the population set-
ting. The population convergence of our algorithm relies on the convergence of the local EM algo-
rithm at each client g to the likelihood maximizers OZ for all k, € [K,]. As discussed by Balakr-

ishnan et al.| (2014), this requires that the local (), (0, |0’ ) to satisfy the first-order stability (FOS)
condition defined in E} Indeed, if Assumption @holds then Balakrishnan et al.|(2014) prove that the
population EM algorithm at client g converges to the ground truth parameters 6} ky for component k,
geometrically as follows:

100,05 = 0} o < 521017 <0F o OV eBalO ). ®

where a is the radius of the contraction region for all components k, located at client g, and M, (-)
is the population M-step map defined next

kg(O’) = argmaX]EwNM (w)’)/k (:13 9 )log(ﬁkgpkg(a:wkg)) ng € [Kg]

0k€

Now, consider a local GEM algorithm whose update during each iteration is any myg, (9/) €

B ( My, ( /€%, )» Where the radius )/sk is obtained by solving the problem in (3). We show in
Theorem E]gnext that this algorithm exhibits very similar convergence behavior to that shown in (8).

Theorem 5 (Local Convergence of Population GEM). Suppose Assumptions [I| through 5] hold.
Consider a GEM algorithm whose iterate mkg(eétfl)) at iteration t is such that my,, (0§t71)) €
Bo (M, (G(t Dy, \/Ek, ), where the radius . /Ey, is obtained by solving the population counterpart
of the problem in (3). Then, this algorithm converges to the ground truth parameters H:g as follows:

e, (0) — 07 1o < 21010 07 lls +c(t) 0L € Ba(6f ra), O
g

where €(t) = || M, (0§t_1)) - 0,(:;1)”% — OQast — .

Proof.

Ik, (05 1) — 65 112 = [Imu, (85 ™) — My, (851 + My, (8 1) — 0F |2 (10a)
< |03, (851) = 07, llo + 1M, (65 7) — o, (85l (10b)
< 20000 07, + ||, (00 — i, (02 (100

g
< 5960 — 67 Il + || M, (00 ) — 01V, (10d)

g

e(t)

where (I0b) follows from the triangle inequality, relies on the convergence of My ()
with % < 1, and (I0Od) follows from the definition of my, (6,). Now, we consider the
|| M, (Og_l)) - Offg_l)Hg term. Firstly, observe that 9,(:; for all ¢t € [T] are iterates of a
GEM algorithm. Moreover, recall that we assume that the true log-likelihood of our problem is
bounded from above, and the expected complete-data log-likelihood QQ(OQ\G’Q) is continuous in

both its conditioning and input arguments. Therefore, by Theorem 1 in (Wul [1983), the iterates
must converge to a a stationary value of the true log-likelihood. This suggests that the quantity

[Qg( (B(f 1))|0 =1y _ Qg(ﬂg‘_l)w(gt_l))] — 0 as t — oo. Finally, by the assumed strong
concavity of the expected complete-data log-likelihood function everywhere, we have that

_ _ C1gtt—1)y o A _ _
Qu(My (05 7)]60)7Y) — Qq(0F V105" = T2IMy (0 Y) — 67 VI3,

proving that || M, (0?‘1)) — Olgtg_l) [|2 — 0 as t — co. This concludes the proof. O

20



Under review as a conference paper at ICLR 2026

B.2 SOLUTION ALGORITHM FOR CLIENT RADIUS PROBLEM REFORMULATION FOR
IsoTrOPIC GMMS

In this section, we introduce the low-complexity Algorithm[d] which can be used to solve the refor-
mulated client radius problem in (7). Subsequently, we introduce Proposition 2] which establishes
the worst-case time complexity of Algorithm 4]

Algorithm 4 Radius Problem Jj, (0;) Solution Algorithm

— o o —
Input: 0}, , My, (6),). g;g{lb =0, ggg{ub = || My, (6;) — 03,113
Parameters: Number of iterations
.
Output: €k,
1: fori =0,...,/do

(i) (i)
. (%) Clg b kg ub
2: kg < — 2

Solve for t,(;q) minimizer of Fy (67, §§;q)) (TT).
if ti) = 0 then
e < Ek,
ot < €k

else(,H)
€k, ub
(i+1) ()
€kgtb < Ekylb

10:  endif

11: end for

3
4
5
6:
7 NO)
8 — &g,
9
0
1

where Fy (6, 5559)) is the optimization problem shown next.

Fi(6),5)) =

9’ kg
min g,
tkg,llkgER
N.q
2 ~ / ~ AT ANV ~ /o2
s.1. e, 0, + [ 3 o, (@n,. 0)) (H% — M, O3~ | @0, — 0}, 113~ ekg)] a, +
ng=1

Ng Ng
- tkg + ( Z rYkg (3371970;)) Z ’ng (:/B\ng70/g)||5}”g - ;m,H% <0
n

ng=1 1g=1
Ny
~ !
g, = Z Vi (X, > 05), tk, = 0.
ng=1

1D
Proposition 2 (Local Radius Algorithm Convergence). The Algorithm 4| converges to an optimal
solution 6;‘2] of the optimization problem in (/) at a linear rate, with a worst-case time complexity of
O(log(e,,})) per iteration, where ¢, is the solution tolerance of the feasibility problem (TT).

tol

Proof. Consider the optimization problem in (7). Firstly, observe that the first constraint is non-
decreasing in &y, for a fixed oy, . This is because ey, (a%g —ay, Zgy":l Viey (T, » 0;)) > 0 due
to the constraint that a, > ij::l Vi, (Zn,,0,). Moreover, note that by the strong concavity of
Q4(8,10)), we have that e, must obey 0 < ek, < ||Z\7kg(9’g) — 0}, ||2. Furthermore, it also

follows from the strong concavity of @g(eg \0'(]) that e, = 0 must always be a feasible solution to
the problem given that the algorithm has not yet converged. This is because the strong concavity

of Qx, (65,16;,) for the GMM discussed in Section |5| suggests that Zﬁszl Viy (Zny, 0| En, —
N, ~ ~ = . : L :
02g)||§ > Ynl1Vk, (@, 0,)||@n, — My, (6,)]|3 with equality attained if and only if 029 =
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M, kg (0’ ). Therefore, ay,, can be made arbitrarily large to make sure the constraint is satisfied.
Combmed with the uniqueness result presented in Proposition [I] these facts suggest that we can use
a bisection approach such as the one shown in Algorithm 4] to obtain the optimal radius. Moreover,
this also suggests that we can use the optimization problem presented in (TT)) to check the feasibility
of a given &, . More specifically, an optimal Z;, = 0 suggests that the constraints are already
satisfied, and therefore the estimated ?kg is feasible, and vice versa.

Now, observe that the feasibility check problem in (I) is a quadratically constrained quadratic pro-
gram (QCQP) with 3 constraints and 2 1-dimensional decision variables. Therefore it can readlly
be solved via the barrier method with worst-case time complexity of O(log (e )), where e, is the
solution tolerance of the feasibility problem (TI)) (Nesterov & Nemirovskii, [T994).

B.3 SUPPLEMENTARY THEOREMS VERIFYING ASSUMPTIONS FOR ISOTROPIC GMMS

In this section, we verify three key assumptions to guarantee the convergence of our proposed
FedGEM for the GMM discussed in Section [5] More specifically, we begin by proving that the
population Q4(8, \0 ) function associated with the GMM under study obeys the FOS condition in
Theorem [6] Subsequently, we derive the radius of the region for which the population M-step map
for this model is indeed contractive in Theorem[7} Finally, we derive the upper bound on the distance
between the population and finite-sample M-step maps in Theorem 8]

Theorem 6 (GMM First-Order Stability). Suppose Ry = $(+/min{d, K,}). Then the func-
tion Qg(ggw/g) associated with the GMM described in this section obeys the first-order sta-

bility condition defined in for all 0y, € Ba(0%,,aq) Yy € [Ky|, where ay < By _
v/min{d, K,} max{4,/2[log(Ruin/4)]+,8V3}. That is
IVQy(M(0,)10,4) — VQ(M(6,)[67)ll2 < Byll05 — 052,

with

/ / /
where 7r’g is a constant depending on Ky, Ryin, ag, d, Tmin,, and Tmax, whose explicit form can be
found in the proof, and

2
By = K;(Qn + 4)(2Rypax + min{d, K,})? exp (— (R;“" — ag) min{d, Kg}/8> ,

Proof. We begin this proof by studying the FOS condition for each component k, separately. Firstly,
note that

Vo, Q(0,]05) = Ex [, (,0,)(x — 0}, )].

Therefore, we can plug in 6, = My, (8,) to obtain the following.

Hkag (eg)Q(Mg(ag)|09) - kag (GQ)Q(MQ(GQ)‘B;)||2 (12a)
= |[Ea[(7k, (@, 04) — 7k, (@, 6))(x — Mg, (89))]ll2 (12b)
= Bz [(y, (,04) = v, (2, 05)) (@ — Ok, + Ok, — My, (6))]]]2 (12¢)
= |[Ex[(yx, (2, 84) — 7k, (=, 9*))(56 —0i,)]-

Eo[(vk, (®,04) — Y&, (x,0}))(My, (8,) — 0r,)]|l2 (12d)
< |[Ez[(v, (2,04) — i, (z,07))(x — Ok,)]||2 +

A

B[ (vk, (2, 09) — Y, (@, 07)) (M, (05) — Ok, )ll2,  (12€)

Az

where (12d) follows by the linearity of the expectation operator, and follows from the triangle
inequality. Now, it is established in Theorem 4 in (Yan et al.,|2017) that

g Z 10k, — 65 1|2, (13)

Ky kg=1
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where (3 is defined in our theorem statement. Therefore, it remains to obtain an upper bound for

As. We begin this as follows.
Ap = |[Ea[(, (. 04) — i, (2, 05)) (My, (8y) — Ok, )]ll2
= [[Ba[ (v, (@, 04) — 1, (, 0*))](Mk (04) = Or,)ll2
= (B[ (7k, (2, 09)] — Ea [, (z. 05)) DI M, ( g) — Gk Il2

= (Eal(m, (. 6,)] — Eal, (z.6)) H ( )]] o,

| (Eal, (. 6,)] w[vw,eg))m

- Bl (@.0,) P Bj AL
A2a 2b

(14a)
(14b)
(14c)

(144d)

(14e)

where ( is obtained by realizing that My, (6,) is comprised of expectations in &, and thus is no
longer random and (T4c) follows from the hnearlty of the expectation, and from the fact that the
expectation terms become scalar quantities, and can therefore be taken outside the norm. Now, we
must obtain upper bounds for the terms As, and Ag. In bounding As,, we proceed by obtaining
an upper bound for the numerator and a lower bound for the denominator. To achieve this, firstly

observe the following.

T 0* K,
Balon, (2.07))] = | ZKO’“Q‘“”S k) ( 3’ W¢<m|efng>> in

jo=1 ng(b(wwz) mg=1

- f v, 6(x|0} )dax

= 7Tkg~

Next, we examine the E [y, (, 8,)] term as follows.

K.‘]
Ea [k, (®,0,)] = Y m,Eal, (,0,)lz ~ N (6], 12)]

lg=1

ZmJ’yk x,0,) £B|91)

lg=1
which follows from the law of total expectation. Now, we analyze two cases as follows.
e Casel: [, = kg4
In this case, we have that

ka_x 8,) 6(x|6} )d fmw* _

<1
Thus, 7, Sw Vi, (2, 09)¢(w|0?‘g)dm = T,
* Case2: 1, # Kk,
In this case, we have that
7, exp(—3 @ — Oy |[3)
iy, exp(—3 |z — 65, 113)
i, exp(—3 |z — O, 13)

’Ykg (213, 09) =

N

m, exp(—gllz — 6y, [3)

Tk, 1
- T oxp |5 lle — 00, B~ 12~ 0,1

71'[9
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Now, define event Ay, ,, = {x: & ~ N(0] ,1a), ||z — 0] ||2 < 7,4}, where 7, € Ris
some constant, which we will obtain bounds for later. Since [, # k, we can obtain a lower
bound for the quantity ||z — 6, || for x € Ay, ,, via the triangle inequality as follows.

|z — Ok, |2 = || — 6} + 6] — 65,1

> ||60) — 0,2 — 1167, — ||

> [10] — 05, + 0%, — Ok, ll2— 1y

> (107 — 05, [l2 — |10k, — 05,1l — g
2 Ruin — ag — 7g-

Similarly, we can obtain an upper bound for the quantity ||z — 8y, ||> for © € Ay, ., as
follows.

|z — 01,2 =[x — 6] +6] —6,]l
<z — 67 [l2 + (1607 — 64,]|2
<1yt ag.

Therefore, we have that

7Tkg 7Tkg

1
7Tlg exp [_2Rl?nin - 2Rmin(ag + Tg) )

1
exp [ 5 le = 00, I8 ~ 11z - 61,11) | <

Riin

g

with the requirement that r, < — ag4 to ensure the negativity of the term inside the
exponent. This allows us to write the following for [, # k.

| (@0 0l6r )i

T 1
< J kg exp [—Rfmn — 2Rmin(ag + rg)] o(x|0] )dx+
wE.Akg,T 2 g

7Tlg

j iy (@, 8,) (|6} Jdz  (18a)
Tt ARy g T~

<1
7qu [ 1 i
< 2 exp |~ 5 Ray — 2Ruin(ag + 1) +J o(|6} )da (18b)
Ty L J Tt Ak gy, rg
Tk M1 i
= ﬂ_lg €xp _§R12nin_2Rmin(ag+rg) "‘P(Hm_eZHZ > rglx ”N(Bfga—rd))
A ] (18¢)
T 1 | d
< ﬂ’;" exp —iRﬁﬁn — 2Rnin(ag +74) | + exp (—%;F) , (18d)
g L |

where (T8d) follows form standard tail analysis shown in Lemma 8 in (Yan et al.| 2017)) for
Tg = 2¢/d.

Putting together the two cases analyzed previously, we obtain the following.

7T 1 d
" oxp [—ZR?nin — 2Rmin(ag + rg)] + exp <—W>]

Eg ,04)] <
[, (@, 0,)] < i, + o >

g

7Tlg [
lge[Kg)lg#kg

1 d
= Ty, + T, (Kg — 1) exp [—Zanin — 2Rnin(ag + rg)] + (1 =7, ) exp (_ Tgf) .

This allows us to directly observe that

Ex[vk, (z,04)]—Ex[ys, (, 0;‘)] < (Ky—1)exp [;R,zmn — 2Rmin(ag + T'g)]+(1ﬂ'kg) exp ( Tgf) .
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Now, it remains to obtain a lower bound for E¢ [y, (x,8,)], which we do as follows. First, define
an event By ., = {z: & ~ N(0 ,1a), |z — 0} |l2 < 4)}, where 4 € R is such that 24/D <

ry < Hmin — g, as we saw previously. Then we have that

Eg ['Ykg (x, Og)] = P(Bkg,rg )Ez [’Ykg (, 09) |Bkg,rg] + P(ng,rg)Em ['Ykg (x, eg) |Blig,rg] (19a)
P(Bkgvrg)]Em[rYkg (m709)|3k9,7"g]a (19b)
where follows from the law of total expectation, and (I9b)) follows from the fact that v, (x, 6,)

is uniformly lower bounded by 0. Now, consider x € By, . For j, € [K], jg, # kg, we can lower
bound the quantity ||z — €}, ||2 via the triangle inequality as follows.

\Y

|z —0;,[l2 = [l — 6%, + 65, — 65l

> 16, — 0,112 — |z — 65 |2

> [16;, — 65, + 05, — 05,2 —

> (165, — 0%, 112 = 1165, — 67 [l — g
= Ryin — g — ag.

Similarly, for j, = k, we can upper bound the quantity ||z — 6;_||> via the triangle inequality as
follows. ‘

| = 05,12 = [|@ — 6%, + 65, — O,||2

Iz — 607, |l2 + 1165, — Ok, |2

NN

rg + ag.

Now, let us write v, (x, 8,) differently to simplify the analysis. To do that, let us define the follow-
ing.
1
Vkg (337 99)
K‘]
B 25,2175, 0(20;,)

7Tkg¢(m|9kg)
K, _

T 1
- Z 9 exp [—2(|x_ejg|§_||x_6’%||§)]

’\)//k(ib, 09) =

dg=1 ks

Therefore, given that x € By, ,,, we can write

1
Viy (2,04) = —————
g ’Yk(xvgg)
1
- Ky 7
ng=1 Ty exp [—%(Hw - gng% — |z — akg %)]
1
= ] 1/ p2
L 35 etk 1y by s P [—5 (Biin = 2Bmin(rg + ag))]
B 1
Lt D exp [ 3 (R, — 2R + )]

This lower bound on Vig (x,0,) in the case where « € Bkg,,,g allows us to write the following.

1

Ea [k, (@, 0)|Bryry] > — 1=
” ! L+ 2% oxp [~ (RS, — 2Rmin(rg + ay))]

'min
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Then, we can bound Eg [k, (z, 6,))] as follows.

P(By, r
Ea [, (,8,)] > —— (By.r,) 20)
1 + < exp [ (R?Tlm — 2Rmin(rg + ag))]
P N(ek TPl =0 b < e~ NOL L)

1-|-

2 exp [~ 5 (RZ, — 2Ruin(rg + ay))]
o, P<||w 01l < ryle ~ A6, 1) -
1 —|— )”9 exp [—7(R2 — 2Rmin(rg + ag))]

'min

(1— P(|lz — 65 |12 = rolz ~ N(6 ,1a)))

= (23)
1 + kg €xp [_7<Rﬁ1m 2Rmin(rg + ag))]
rgVd
 mfe()
= 1—m
L+ ﬂ'kgkg exp [_%(R?mn 2ijn(7‘g + a’g))]
(25)

As a result, our previous analysis allows us to write the following uniform bound for the term A,,
for all k, € [K].

(Ea[ (&, (@, 09)] — B[, (. 05))])
Ea [k, (2, 0,)]

{ (Kg—1)exp [—3R2,, — 2Rmin(ag + r¢)] + (1 — Tmin, ) exp (—#)

rg/d ’
o[

1—7mi
ming

< max

1+

exp [— 4 (RZ,—2Rmin(rg+ay))]

L [rrem(=2)

1—m,
1+ .man ex [_* (Rim 2Rmin('fg+ag))] }

TTmax g

ks
ming

Tming [lfexp <7 Tgﬁ)]

I—7
ming

1+ g <P [7—(Ram 2Rm;n(7’g+ag))]
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Thus, it remains to obtain an upper bound for A,,. We achieve this as follows.

Agp = |[Eg [k, (x, 0g)(z — Or,)]]|2 (262)
= |[Ex[vk, (2, 04)(x — k)] — Ex[yk, (,07)(x — Ok,)] + Ex[ i, (,07) (z — 0x,)]]]2
(26b)
< |[Eq [( o (,84) =, (2,07) (@ — 0y )]l2 + |[Ex[ vk, (,07) (z — O0,)]]|2 (26¢)
g Z 165, — 05 |l2 + [[Ea [k, (,05)2] — Ex [k, (0, 0505 ]2 (26d)
g Jg=1
g i, ¢(]0%,) <
= 9 Z Hejg ‘ J K, % T Z 7T’rrLg¢(m|0;kng) dx—
Ky jo=1 z ng:1 Ty (m‘ejg) mg=1
s, O(x|0F Ky
J - ky ( ‘ k_q)* O, ( Z wmgqs(a:B:%)) dx
x ZJ =1 Tjg (5’5|9jg) mg=1 9
(26e)
! K_}
= g 165, — 07 |2 + mx, |10k, — 0%, || (26f)
q Jg=1 ‘ .
, K,
g Z Hejg 0* [2 +7rmaxq”0k 929”2’ (262)
g Jg=1

where follows from the linearity of the expectation and the triangle inequality, and (26d)
follows by leveraging the upper bound derived in Theorem 4 in (Yan et al., |2017) as discussed
earlier. Therefore, we can summarize the results we have obtained thus far as follows.

IV, aq)Q(M (64)|04) — Vs, (eq)Q(M (6,)10)]l2

/6/
K Z 16, — H2 + 77 Z 165, — 9* ll2 + Tmax, |6k, 0:g|‘2
]g*l ]g*l
(1 +7r

g 2 Hejg _0* 2+ 7rmdxgHek 0Z9||2~
jo=1

Now, observe that

IVQ(My(8,)10,) — VQ(M,(8,)[07)]13

Kg
= 2 IV, 0,)Q(M,(64)185) = Vs, (0,)Q(M,(6,)165)]]3
k=1

Xy (1+7T )3,

< )
kg=1

LT Tg)Pg Z 16;, — 0;-;”2 + ﬂ;ﬂmaxgﬂekg — 0:g||2
Jg=1
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Expanding each term inside the square root results in

||VQ(M9(99)|99) - VQ(Mg(Og)IGZ?)H% (272)
2
X 1+ ) [3' Ky
< Z K2 Z Hejq ;:H2 +
Jg=1
1+ )[3’
P s, 6, — O, Zlut%g — 6} 2 + 7" 72 10k, — 07, 1
Jg=
(27b)
2
(1+m)280 [
iy el DI
g9 jg=1
K K
(1 + 7 )BI g 2 g
2 Ty T, Z 10k, — 05,112 D 1165, — 05, 1o + 7" moe, D 110k, — 05,113
9 ky=1 Jg=1 kg=1
27¢)
2
1+7)280 [
= el (3 ey, - 65l | +
g jy=1
2
(1+m)B5 , * 2_2 *(12
QTTF Tmax, Z 10, — 05 |12 | + 7" Tax, 105 — 513 (27d)
g jg=1
[(1+7r )28+ 2(1 + 7)) B Toman, + T 2 ]||0 —6%|3, 27¢)

To see how we obtain (27d)), consider a vector u of length K, all of whose entries are 1, and a vector
v of length K, with k! entry ||6), — ng ||2. Now we can rely on the Cauchy-Schwarz inequality
to write:

Ky
UTU= Z ||0jg —9;: 2

jgzl

< [ullafloll2

K.q
=Eqy| D) 116k, — 65,113

kg=1

= V105 — 01l

Thus, this allows us to see that

2

K.q
D 1165, — 65 112 | < K,ll6, 65113

jgzl
Therefore, we obtain our final result by taking the square root of both sides, resulting in the follow-
ing:
IVQ(My(0,)6,) — VQ(M,(0,)107)]2 < (1 + m5) 8, + 7 Tmax, ) |05 — O]
By
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Theorem 7 (GMM M-Step Contraction Region). Suppose all the conditions of Theorem|[6|hold, and
the radius a4 of the contraction region at client g is such that

Rmin . ngfig .
a < 5 min{d, K,}O log | max W,Rmm,mm{d,f(g}

14wy

Then, the contraction parameter ’f—J associated with the population M-step of the GMM described
9

in this section is less than 1.

Proof. In order to guarantee that the population M-step is contractive for the GMM described, we
must show that ,

/ < g
Ay L+
We can plug B; from the statement of Theorem @ into inequality (28) and rearrange terms to obtain
the following.

Tming — 7, 7Tmaxg

(28)

< Riumin 2v/2 1 K3 (2kg + 4)(2Rmax + min{d, Ky})?
a, < — o - -
g 2 4 /min{d, Kig} g Wmlng;+ﬂg/ﬂman

Tg

Subsequently, we can combine this upper bound on a with the one presented in the statement of
Theorem []to obtain the following.

Rinin 2¢/2 K2(2kg + 4)(2Rmax + min{d, K,})?
g S —ma : 0g ming —7r/ Tmax ’
2 {/min{d, K} T Te T
Ay
y/min{d, K} max{4+/2[log(Rmin/4)] 1, 8V3} }
As

Now, we derive an upper bound to the maximization term. In doing so, we begin by obtaining upper
bounds for A; and A, as follows, considering A; first.

24/2 K2(2kg +4)(2Rmax + min{d, K,})?
Al = m IOg ﬂminq—ﬂ;ﬂ'maxq
min{d, K4} T
K22k, + 4)(2Rmax + min{d, K,})2
s¢ log 9( : 72r§1in —7! Tmax { g}) (293)
9 9
=)
c1 K2k, (2Rnax + min{d, K, })?
Sc¢ log = g(ﬂmin:—‘n"gfrmaxg{ g}) (29b)
1+7'r’g
c1 K2k, )
=C log m + 2 lOg (2Rmax =+ mln{d, Kq}) (29C)
= —

< . ClKgQ"ig .
< cy/min{d, K4} |log i, | T2 log (c3Rmax + € + min{d, K4}),  (29d)

1+7r;]
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where (29a) follows by plugging in a constant ¢, and recalling that min{d, K;} > 1, (29b)
is obtained by noting that k, > 1 and choosing ¢; > 6, and (29d) again uses the fact that
min{d, K,} > 1, as well as the monotonicity of the log function, and plugging in constants
Co,C3 > 1.

Now, we derive an upper bound to A5 as follows.

Ay = \fmin{d, Ky} mase{d/2[log( R/ D]+ 8V3)
= \/min{d, K} max{e1y/[log(Ruin/ D] c2} (30a)
< /min{d, K} max{e:/10g(Ruws + ). 2} (30b)
< \/min{d, &} max{e; Iog (R + €), 21/ 108 (R + €} (30c)
< y/min{d, K} (e 08B + €) + c2v/108 (Fos + ©)) (30d)
= ¢\ /min{d, K,}/10g(Ruus + ©). (30¢)

where we obtain (30a) by rewriting the constants as ¢;,co > 1, (30b) is obtained by noting that
Ruyax = Rmin > Rgl“i", and adding an e term inside the log to ensure that it is greater than or equal to
1. This allows us to obtain (30c), which is then upper bounded in by noting that both of the
terms inside the maximization are greater than 0. Finally, we obtain the final result by combining
the constants c1, cp into a new constant ¢’.

Given the bounds derived for A; and As, we can write the following

H@X{AerQ}

. Clj(gﬁg .
< 4/min{d, K} max < ¢ |log iy Fma, + c21og (3 Rimax + € + min{d, K,}),

1+ﬂ;

cv/1og(Rmax + e)}

(31a)

a K2k
< 4/min{d, K}(c+ ¢) |log m + ¢ log (c3Rmax + € + min{d, K,}) (31b)
9Ty g

1+

- , ClKglig )
< 4/min{d, K }(c+ ') |log iy =y | T2 log (c3Rmax + €) + c2log (min{d, K,})
g

1+

(3lc)

- , clKgmg )
< y/min{d, Ky} (c+ ') |ealog [ 3max { ——————— c3Rmax + €, min{d, K,} (31d)
g g g

1+

EEE—— K2k, )
< mln{d, Kg}o log max P —"—— Rmaxa mln{d, Kg} 3 (313)
9 g 9

147y

where (31b) follows by absorbing As into A;, is obtained by noting that each of the three
terms within log functions are greater than 1, and therefore the log of their sum is upper bounded by
the sum of their logs. Finally, (31¢)) is obtained by eliminating all constants. Therefore, we obtain
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the following condition on a.

Rmin . K{?KQ .
a < 5 min{d, K,}O log | max W,Rmax,mm{d,f{g}

g
’
147y

O

Theorem 8 (GMM Finite-Sample and Population M-Step Distance). Suppose
all the conditions and definitions of Theorems [5] and [?] hold. Let O(Ng) =

o (max {N;éKg(l + Ryar)®Vdmax{1,log(k,)}, (1 + R’"“")\/ivfg}

and M\kg(gg) denote the population and finite-sample M-step maps associated with the GMM
described in this section, respectively. Then, we have that

). Moreover, let My, (0,)

sup || My, (8,) — M, (6, <3<@<N9>+2ag ;Vlog(Q)),

0,€A, 2 TN, g

with probability at least (1 — exp (—cdlog Ng)) (1 — ng), where c is some positive constant, A, =
]_[f;:l By (0%, ag), and

R Tmin, [1 — exp (—Tﬂ)] 1 ( 2 )

N, Z T —Tin - log
1+ —Fex [7%(R3nn - Rmin(rg + ag))] 2N

Tmaxg

Proof. Recall that the finite-sample expected complete-data log-likelihood function associated with
out GMM model can be expressed as follows.

@g(egw/ N Z Z Vg wnja (IOng +log¢($n |0k ),

ng—lk: =1

Moreover, its gradient and Hessian can be written as follows.

ka Qg(0 |0, AT 2 ’Yk wng7 / ( ng _akg)- (323)
nq—l
61, Q9(0416;)) = —~— Z Yy By, 0) L. (32b)
q ng=1

Now, observe that the Hessian is a diagonal matrix whose eigenvalues are all equal to the empirical
expectation of the responsibility function g, (:’Eng , 0;). Therefore, the function is strongly concave,
with strong concavity parameter T, , which we define explicitly later.

Thus, by the strong concavity of the @g (8,4167,)) function we can write the following.

(6,) 1, (6,)]
2
< Qy(My, (8,)10,) — Qg<ng<0g>|0g> + Ve, Qo(Mi, (84)10,)T (My, (84) — My, (8,))
(33a)
= Qy (M, (04)10,) — Qy (M, (6,)16,). (33b)

Similarly, we can use the strong concavity to write the following.
2

My, (8y) — M, (8,)

2

Qg (M, (8,)105) — Qq(Mi, (8,)18,) + Vo, Qg(Mi, (85)10,)" (M, (84) — My, (8,))
(34)
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Summing up inequalities (33b) and (34), we can obtain the following.

—~ 2 ~ —
My, (8,) = M, (0,)| | < Vo, Qu(M, (6,)16,)" (M, (8,) — My, (9,)) (352)

TN,
< [Vo., Qs(Ms, (6,)16,) (35b)
~ || Vo., @M, (6,)16,) — Vo,,Q,(My, (6,)16,)]

. HMk (8,) — My, (9g)H2 . (35¢)

L |[p, 85) — 301, (6,)]|

where (33b) is obtained via the Cauchy-Schwarz inequality, and follows from the fact that
Vo,,Qq(My,(04)|04) = 0 as it is evaluated at its maximizer.

Now note that if M/ *)(8)) = M J(f ) (6,,), then the finite sample EM algorithm converges trivially by
the convergence of the population EM algorithm. Thus, we focus on the cases where M () (0;) #

M ](f ) (6,). In this case, we can write the inequality in as follows.

A, ||, (8,) = M, (6,)]
<[ Voy, Qs (M1, (0,)16,) = Vo,, Qy(11,(8,)16,) | (362)
- Vﬂkg @g(egwg) + V%kg @g(egwg)(ng (6) — akg)

— Vo, Qq(0410,) — V5, Qg(0410,)(My, (6) — O,)

’2 (36b)

< Vek9©9(09|05) - vﬂngg(egwg) )
+||V5, Q0(65105) (M, (60) = 61,) = V5, Qn(616)(My, (6) — 61,)||, (360)
= vag @g(agwg) - vag Qg(0416,) ‘2
1 O
+ Fg Z Vig (T, 04)) — ]Em[’Ykg(a:,Og))]‘ Hng(ag) - 9’6;;”2 (36d)
~ g 1 Ny
<[ Vor, Q(8510,) = Vo, Q0(6,10,)||_ + 2|5 5 0, @n,:05) — Ealn, (@.0,))]] s
g ng=1
(36e)

where (36b) follows by writing the Taylor series expansion of the function f: R? — R%, f(8,) =
Vo, Qq(04]0y), follows from the triangle inequality, and (36d) uses the fact that the Hes-
sian of both the population and finite sample functions is diagonal with identical entries. Finally,
leverages the fact that My, (8), 0, € Bo( "k‘g ,aq). Now, suppose we have a training set X
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comprised of Ny IID samples. Then we can write the following.

N, Ny
P( >y (@ny, 0y)) — o l ) %g(@nw@g))] <NgCg>
/| v, N,
=P< Z ’Ykg(ingveg))_ Z Ee ['ch(waag))] <NgCg)
ng=1 ng=1
= ( Z Vkg mngv ) NyEqg [ (mvog))] <‘NgCg>
" Ny
= ( Ng Z o (Z,.05)) = Eq [k, (2,09))]| < NgCg)

Ny
Z Vky wnJ7 >_Em [7k9($700)):|

9 ng=1

o )

for some small (, € R*. Moreover, by Hoeffding’s inequality we have that

P( i Vky (Zn,,0g)) — B [ i ’ng(@ng,eg))]

ng=1

< Ng<g> >1—2exp (—2Ny(7) .

Therefore, this allows us to write the following.

7

Now suppose we set 1y = 2 exp (—2N ¢ 2), then we can obtain that with probability at least 1 — 7,

1 2
%% () o7

Z Yy (B, 04)) — B [, (2, 6,))]

g ng=1

< cg> >1—2exp (—2Ny(7) .

Zw %, 00) — Ea [0, (2,0,))]| <

g ng=1

Now, let us define A as the contraction region Hngg=1 Bg(Ozg , ag). Armed with the previous prob-
abilistic result, we can say that with probability at least (1 — exp (—cdlog Nyg)) (1 — ).

1 . 1 2
< — | O"(N,) +2 1 , 38
’2 N, (w (No) +2ay 2N, o8 (Wg)) %)

where @“"/(N,) is defined in the theorem statement, and follows directly
from Theorem 5 in (Yan et al| 2017) which states that for our problem setting,

SquEAHvekg@g(eg|0g)_vngQg(eg‘eg)HQ < @"MS(N,) with probability at least

1 — exp (—cdlog Ny), where ¢ is some positive constant. Finally, note that under inequality
(37), we can say that with probability 1 — 7.

1 2
*qn;nk Zn,.0,)) = Eq [, (2, 0,))] — 2]\710g< )
? row |1 00 (-2 \aes(2).

= TN, > 1 177\'mmg 1 R2 —2R ) 2N, n
+ ex [ 5( min (7' +ag))] g g

g
7rman ‘min

sup || My, (6,) — M, (6,)
OeA

which utilizes the lower bound we obtain on Eg [k, (,6,))] in the proof of Theorem @ This
concludes the proof.

O
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B.4 PRELIMINARY DIFFERENTIAL PRIVACY DISCUSSION FOR ISOTROPIC GMMS

We study a potential method for the clients to enhance the privacy of their data. More specifically,
we consider the use of differential privacy (DP). In doing so, client g adds Gaussian noise to the

estimated centroid 0,(2 of local cluster k, at global iteration ¢. Next, we define various fundamental
concepts in DP, first introduced in Dwork et al.[(2014)).
Definition 2 (Differential Privacy). A randomized algorithm C is said to be (p, u)-differentially

private if for all S € Range(C) and any two neighboring datasets X and X' of the same size but
differing only in one sample we have that P (C(X) € S) < exp(p)P (C(X') € S) + p.

Definition 3 (/,-Sensitivity). The /5-sensitivity A (f) of a function f : X — RP is defined as
As(f) = maxx x' || f(X) — f(X')||2, where X and X' are datasets of the same size, differing
only in one sample.

Definition 4 (DP via Gaussian Noise). Given a function f : X — R with /,-sensitivity
As(f), then C(X) = f(X) + N(0,0%Ip) is said to be (p, u)—differentially private if o >

Aa(f)y/2log(225)

p

Now, consider the map Mg(%) : Ry — R4s which maps the current vectorized centroid
estimates 0; at client g to the vectorized maximizer associated with all clusters. In order to guarantee
differential privacy, each client g independently perturbs its local M|, (0;) before sharing it with the

server. In other words, client g shares a perturbed ]\79 6,) = 1\79(0;) + N(0,0%14k,). Next, we
present an assumption on the support of the data, followed by Theorem [9] where we establish the
required standard deviation of the Gaussian noise to ensure that this map is differentially private.

Assumption 7 (Bounded Support). Any sample Z,, at client g € [G] is such that [|Z,,,||2 < By €
R.

Remark 3. Note that Assumption [/|is not restrictive in practice. This is because data is often col-
lected via sensors or other methods with known ranges, and can therefore be readily normalized.

Theorem 9 (Client-to-Server Communication DP). The perturbed estimate Mg(a’g) = J\//.Tg(%) +

N(0,0%1, K,) sent by client g to the server at global iteration t of the algorithm is guaranteed to be
(p, n)-differentially private if the standard deviation of the noise satisfies
] 21og(L1:25)

/K 3B 2B,

g [Bﬁ, + B m

S g Yg

= )

p

where By is defined in Assumption [2] and B, is a constant depending on client-level parameters
such as ag, Tpin,, and Tyay,, and is explained in the proof.

Proof. In order to establish the differential privacy of the map M\g(O'g) via Gaussian noise, it suf-
fices to derive its £o-sensitivity Ag (M\g (6,)). We begin by considering the maximizer M\kg )
associated with cluster k,. Now, consider the two datasets X'; and X 'g, both of which have N,

samples. Without loss of generality, suppose the datasets differ only in their last sample. That is, the
first N, — 1 samples are identical across the two datasets, whereas the N ;h samples in X' ; and X ;

are 2" and &, respectively, with Z* # 2'. To simplify notation and to highlight the datasets as the
input of interest in the mapping function, let us define the following.

Ny—1 Ny—1
Sk, = Z Vkg (ingaefg)féngy Wk, = Z Vky (fﬁnwelg)v
ng=1 ng=1
'7* = Vkg (£*7 alg)a ’7/ = Vky (:/E\la 0/9)7 (39)
fg(X) = M,y (85), Sy (X) = My, (8y).
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Moreover, assume without loss of generality that v/ > ~v*. Now, we analyze the £5-sensitivity of
Jr, (X) as follows.

£, () = fr, (X)]]2

||kt yEE* Sk, y'& o)
W, + v* wg, + 7' )
3 (wr, +7")(8k, + y*z*) — (wr, +7%)(sk, +’y’z?3/) @1
(wr, +7*)(wk, +7") ,
1 R .
= Ton, + 1) (wn, £ || Wiy + )8k, +V*B) — (wr, +7)(sk, +7'2)]|, (42)
g
1 R R x ~
< T 3 10 =78k, + w0, 7E w3 @ - )], (43)
g
1 _ R x A
< 7@1, PP (158, ll2 + wie, [18%]|2 + wi, ||&]]2 + |2 — &'[]2] (44)
< D1 kg @y O |Zm, ]2 + wiy [[27]2 + wi, [|&]]2 + |8 — 2|2 | (49)
(wk +7 [n ) g 9 9
3(wi, +7*) + 2)B
_ (3w, 7)2)m 6
(wr, +7*)
3B, 2B
<S5+ 5o 47)
B,, B2

wherefol]ows from the deﬁnition of My, (67),14 follows from the assumption that " > ~+*,
follows from the fact that 0 < v* < 1 and 0 ~ < 1,45 . follows from the fact that the norm of a
sum is upper bounded by the sum of the norms of the individual terms, and finally, 6] follows from
Assumption|7} and the fact that * is positive. Note that we denote the lower bound of (wy, +7*) by
B.,,, which depends only on parameters specific to client g but not to cluster k. This lower bound
can be taken as 7y, , which is derived in the proof of Theorem|8| Now that we have the £2-sensitivity
of the maximizer of a single cluster, we obtain the overall /5-sensitivity of the map over all clusters
as follows.

15 (X) = fo(X)]|2 = Zka e, (X013
<\ K, 3B, QB;
l B'Yg B’Y.q
3B, 2B,
=+/K
! B'Yg B’%y
This concludes the proof. O

Remark 4. Note that we can readily obtain an upper bound on the distance between the popula-
tion M, (09(t)) and the perturbed, finite-sample 1, kq (Gg(t)). Therefore, by the same argument in
Theoremwe can argue that iterates M, k, (Og (t)) converge to the neighborhood of the ground truth
parameters 0,";9. However, the iterates do not necessarily converge to a single point within the neigh-
borhood due to the randomness of the added noise. Further work should explore this convergence

behavior more carefully, as well as the implications of DP on the privacy and convergence of the
uncertainty set radius computations.

B.5 COMPUTATIONAL EFFICIENCY AND COMMUNICATION COSTS

B.5.1 IMPROVING THE EFFICIENCY OF SERVER COMPUTATIONS
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While the pairwise server computations described in the work are intuitive, they can be inefficient
for large-scale problems. To see this, consider a worst case where each client g has a local number
of clusters K, = O(K). In this setting, the server would need to perform roughly O(G?K?)
operations, which can be very expensive for very large G or K. To improve efficiency, the server may
leverage a d-dimensional binary search tree (commonly known as KD tree) [1975). More

specifically, the server would store the estimated cluster centroids M, kg (0§t_1)) for all clusters kg €

[K,] shared by clients g € [G] in the tree. Subsequently, the server would iterate over each centroid
M, kg (05(;_1) ), obtain its M nearest neighbors (by slight abuse of notation), then check for uncertainty
set overlaps and perform aggregation as described in Sectiond] The construction of the tree incurs
a cost of O(GK log GK') (Friedman et al., [1977), whereas a single nearest neighbor search incurs
an expected cost close to O(log GK) (Friedman et al., [1977) in practice. Therefore, assuming that
the number of overlaps between uncertainty sets is significantly smaller than the total number of
available uncertainty sets (that is M << GK), then we have that the total cost of constructing and
using the binary search tree would be close to O(2G K log GK) = O(GK log GK) in practice. This
approach can improve the efficiency of server computations without impacting any other aspects of
the algorithm.

B.5.2 A NOTE ON COMMUNICATION COSTS

During each communication round of our algorithm, each client g sends K, arrays of size d and
K scalars to the central server, and receives K, arrays of size d. This results in a per-round total
communication cost of approximately 2dG K, g+ GK g < 3dGK, 4> Where K ¢ 18 the mean number of
clusters per client. We compare this to the communication cost of AFCL (Zhang et al.}[2025)). Due to
its asynchronous nature, we assume that only 10% of the clients participate in each communication
round (a favorable condition for AFCL). In AFCL, each active client sends N, arrays of size d to
the central server, and receives K arrays of size d, where K is the estimated number of clusters.
Under the assumption of roughly balanced client sample sAizes, it is clear that the total per-round
communication cost is approximately 0.1dGN, + 0.1dGK > 0.1dGN,, where N, is the mean
number of samples per client. Thus, our algorithm enjoys a lower per-round communication cost,
since N, >> 30K, in most practical applications.

Furthermore, we theoretically prove in Theorems [2] and [3] that our algorithm achieves a linear con-
vergence rate for all clusters at all clients. In contrast, there is no theoretical convergence rate for
AFCL. However, empirical findings in (Zhang et al, 2025)) suggest a near-linear convergence rate
at best. This suggests that our algorithm enjoys a lower total communication cost under the setting
studied.

C PROOFS

C.1 PROOF OF PROPOSITION[I]

Proof. Recall that Assumptionrequires each term in the finite sample @9(99|0’g) at client g to be

strongly concave. Now, let us define @kg (65,10,) as follows:

NQ
Q, (01,107 = D Wy (@, 04~V log(mk, i, (Zn, |0, )-
ng=1
Since M\kg (0?*1) ) is a maximizer of @kg (O, |0§t71) ), then by strong concavity it must be unique.
Therefore, we have that ngg ng (O, |0§t_1)) = 0if and only if 6, = M\kg (Hgt_l)). As a result,

we must always be able to obtain a unique 5,(:; > 0 such that

Qu, (0 71057D) < Qi (M(OF )05 ) < Qu, (M (05105,

V(0 1) e Bo(M(8), 4 /e)).

g

O
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C.2 PROOF OF THEOREM[I]

Proof. Note that Theorem 2 in (Balakrishnan et al., [2014) only guarantees convergence of the fi-
nite sample M-step M, k,(04) to the neighborhood of the true cluster parameters Oz( , but does not
examine the behavior within the neighborhood. However, we note that the finite sample EM is still
a GEM algorithm albeit characterized via the finite sample expected complete-data log-likelihood

function Q 4, |9 )). Recall that we assume that the function Qq(O |6,) is both strongly concave
and continuous in both its condltlonlng and input arguments. Moreover we assume that the finite
sample true log-likelihood is bounded from above. Therefore, by Theorem 1 in (Wul [1983)), the
finite sample EM iterates must converge to a stationary point of the finite sample true log-likelihood.

~

This suggests that [@g(ﬁg(ey—”)wg*)) — Qg(gy—l)wgﬁ—l)] — 0 ast — oo. Now, by the
strong concavity of @g (6,416,)) we have that

~ o~ B B ~ _ B T, —~ B B
Qo(My (05 7)10y 1) — Qq (05 V10g ™" > J[[M,(0~") — 073,

where 7, is the strong concavity parameter. This implies that the algorithm must converge to a single
point. O

C.3 PROOF OF THEOREM[Z]

Proof. Observe that we can write the following with probability (1 — d,), where 0 < §, < 1.

7, (84V) — 0, ||z = Hmk (6471 — Ny, (8471 + M, (9<t—1>) — 0}, (48a)
< Hmkg (Bgtil)) - M\kg( g H e(t K ) 0;:9 ‘2 (48D)
< Ha}fg‘” — My, (6) H2 + Hng _g;—1>> -0}, ‘2 (48¢)

Bgint-1) % 1
< —=|l6 -0 +
R

5 (N, 0y) + |6 — M, (65 V)

g

(48d)

where (48d) follows from the convergence of the finite-sample EM algorithm. Now, note
that by the same argument used in the proof of Theorem [5] , we can argue that the term

Hoﬁg‘l) - ]/\/[\;fg (0?—1))“2 goes to 0 as t — co. This concludes the proof. O

C.4 PROOF OF THEOREM[3]

Proof. Firstly, note that if ||M;C ( (t=1)y _ 0 (t= 1)H2 for component k, € [K,] at client g € [G]
diminishes to 0 at a sufficiently fast rate (such as a geometric rate for example), then the local
iterates 7y, (6?(t 1)) of our proposed algorithm for the component converge to a sphere of radius

(1_179) 1;“”(N dg) centered at the true centroid €} with probability of at least (1 — d,). Now,
Ag

in the worst case, the iterates for a specific component & € [K] from all the clients containing
this component will converge to some point on the surface of the local sphere for each client g.
Therefore, if the final aggregation radius k“al for all such clients is set according to match the radius
of the local neighborhood of the true parameters, then all the aggregation uncertainty sets will also
contain 0‘“1t Therefore, our algorithm recognizes that all these estimates belong to one component

and aggregates them. Moreover, the assumption that &:ﬁ“dl < % at all components k, € [K]

at clients g € [G] guarantees that upon convergence, the parameter estimates for different global
components k, k' € [K] from all clients remain distant enough such that they are not aggregated
together. This, however, relies on the iterates for all components at all clients converging to the
neighborhood of their true parameters. This is why our proposed algorithm infers the correct number
of global clusters with the probability provided in the Theorem statement. [
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C.5 PROOF OF THEOREM[4]

Proof. We analyze the local client g problem for each component k&, as follows.

/
Jr, (0)
I?}i;x €;€g
Ny
B s. 1. Z Vg ({i’nwa;) log(ﬂ—kgpkg(é}”Amkg (0;))) =
- ng=1
Ng
Z Vi (B, 0y) log(mk, pry (%0, |0,) Vi, (87) € Bo(My, (6)); \/Ek,)
ng=1
(49)
max Ekg
Ekg
= s.t _min =D Yy (@, — Vi, (T —0},), (50)
gkgEBQ(ng (0’9)7\/%) nzg g\ g 9 n;l g kg

N

A/[kg (eg,gkg) constant

where (50) follows by ignoring terms in @9(09|9;) that do not depend on 6}, and from the fact

that e, > 0 Vk, € [K,]. Now, let us consider the optimization problem My, (6, ¢y, ) in more
detail as follows.

min — Viy (Zn, , 0 ||wnq qu|‘2
My, (60, ex,) = 4 O n;l e (51
st O, eBQ(m CANGS
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where Ay, A; € R¥*? by, by € R, and ¢, ¢; € R. Now, note that the above problem is nonconvex,
since Ag is not PSD. However, note that for all €k, > 0, the above problem is strictly feasible.
Therefore, the problem obeys Slater’s condition and admits a strong Lagrange dual. As shown by
Boyd & Vandenberghe| (2004), this Lagrange dual can be formulated as the SDP shown next.

max Vg,
ng ,akg
Még(a;’gkg) — J s.t. ag, =20 (54)

>0

— )

Ag + akgAl by + akgbl
(bo + akgbl)T co + g, C1 — Vg,

38



Under review as a conference paper at ICLR 2026

where ay,, v, € R are dual variables. We can reformulate this problem as follows.

Mllcg (9;7 5169)
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where (56) is obtained via the Schur complement. Now, observe that the first constraint in (58) is
monotonic in v, . Moreover, note that plugging the problem in (38) into the constraint in problem
(50) can be interpreted as requiring that the maximum value of vy, satisfying the constraint must

be greater than or equal to — Zi\’ggzl Viy (B, O)|[®5, — 0 |[5. Thus, it suffices to require that

N, ~
Vg, = _angzl ’Ykg(mngaolgmmng -

39
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can use this result to rewrite the problem in (50) as follows.
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D SUPPLEMENTARY EXPERIMENTAL DETAILS AND RESULTS

In this section we provide all the details of all the experiments presented in this paper, as well as
supplementary results for both the Benchmarking and Sensitivity Studies. Please note that the all the
code and instructions associated with all the experiments is provided separately in the supplementary
materials.

D.1 SOFTWARE AND HARDWARE DETAILS
All the experiments presented in this work were executed on Intel Xeon Gold 6226 CPUs @ 2.7

GHz (using 10 cores) with 120 Gb of DDR4-2993 MHz DRAM. Table 3| provides more detail on all
the software used in the paper.
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Table 3: Details on All the Software Used in the Numerical Experiments.

Software Version  License

Gurobi 10.0.1 Academic license
MATLAB R2021B  Academic license
Python 3.10.9 Open source license
Scikit-Learn  1.2.1 Open source license
Numpy 1.23.5 Open source license
Scipy 1.10.0 Open source license
UCIMLRepo 0.0.3 Open source license
TensorFlow 2.12.0 Open source license

D.2 DATASETS UTILIZED
D.2.1 BENCHMARKING STUDY

In the benchmarking study we utilize various popular real-world datasets for evaluation. We provide
more detail on the datasets in Table

Table 4: Details on Datasets Utilized for UCI Experiments.

Dataset Abbreviation License N K d
MNIST (LeCun et al.,|2010) CCBY 4.0

(embeddings: (Bickford Smith et al|[2024b)) MNIST (embeddings: MIT License) /0000 1010
Fashion MNIST (Xiao et al.[[2017) FMNIST CCBY 4.0 70,000 10 64
Extended MNIST (Balanced) (Cohen et al.;|2017) EMNIST CCBY 4.0 131,600 47 16
CIFAR-10 (Krizhevsky et al.|[2009) CCBY 4.0

(embeddings: (Bickford Smith et al.|[2024a) CIFAR-10 (embeddings: MIT License) 60,000 10 64
Abalone (Nash et al.[|1994) Abalone CCBY 4.0 4177 7 8
Anuran Calls (MFCCs) (Colonna et al.}2015) FrogA CCBY 4.0 7195 10 21
Anuran Calls (MFCCs) (Colonna et al.}2015) FrogB CCBY 4.0 7195 8 21
‘Waveform Database Generator (Version 1) (Breiman & Stone}|1984) Waveform CCBY 4.0 5000 3 21

Preprocessing - Image Datasets. Rather than directly clustering the images in the MNIST, FM-
NIST, EMNIST, and CIFAR-10 datasets, we utilize embeddings extracted from them to reduce the
computational expense of the experiments. These embeddings are extracted via variational autoen-
coders (VAEs). More specifically, for the MNIST dataset we utilize the vanilla VAE embeddings
available at (Bickford Smith et al., 2024bl), which have dimension 10. For the FMNIST and EM-
NIST datasets, we implement VAEs with latent dimensions 64 and 16, respectively. Subsequently,
we utilize the encoded mean vectors of the samples as the data utilized for clustering. Finally, for the
CIFAR-10 dataset we utilize the "Barlow" embeddings available at (Bickford Smith et al., 2024a)).
However, we further encode these embeddings via a VAE with latent dimension 64 as we do for
FMNIST and EMNIST. All code utilized for feature extraction is provided in the supplementary
materials available with the submission.

Preprocessing - Abalone. Since the Abalone dataset has very small clusters (some of which contain
only 1 sample), we combined various clusters together. This makes sense physically, as the target
label in the dataset is an integer the age of the abalone. Therefore, combining various labels into bins
enforces a more categorical structure on the age. More specifically, we combined labels 0 through
5 into one cluster, kept labels 6 through 10 as separate clusters, combined labels 11 and 12 into one
cluster, and combined labels 13 through 28 into one cluster.

D.2.2 SENSITIVITY STUDY

The data utilized in this experiment is generated using the make_blobs module of the
scikit—-learn Python package. This module generates isotropic Gaussian clusters, making it
ideal for our problem setting. The data is generated so that the centroids of the clusters have a preset
minimum distance of Ry, between them. Moreover, data generation is designed so that at least
two of the generated clusters have centroids that are exactly Ry, apart. It is worth noting that for
the sensitivity study, the dataset generated during each repetition is tested 3 times for each model.
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During each of those times, the model starts with a random initialization via k—-means++. The
results we report are the maximum performance obtained over the 3 initializations.

D.3 HYPERPARAMETER DETAILS AND PERFORMANCE EVALUATION

In this section, we provide a detailed practical discussion on the tuning our algorithm’s final aggre-

. .e . . . v Rmin . . .
gation radii. As mentioned in Section [6} we use finl = 07\/1\% as a practical heuristic, where v,
‘g Tky g

is the hyperparameter we directly tune. For simplicity, we set v, equivalently for all clients g € [G].
This heuristic allows the aggregation radii to scale appropriately with the scale of the feature space
and the number of samples available at each client. Additionally, it allows the final aggregation radii
to adapt to each cluster at each client while requiring the tuning of only one hyperparameter.

We utilize cross-validation to tune v, using SS [Rousseeuw| (1987) as a performance metric. We
also provide a practical guide to evaluate the estimated K without knowledge of the true K. To that

end, we ensure that K does not significantly exceed 4 /Zf:1 K. This guide is inspired by a rough
estimate that for any client g € [G], K, ~ O(K), which suggests that Z§=1 K, ~ O(KG). Since

in most practical cases we have G > K, then we can see that  / ZS’;I K, ~OWKG) > O(K).

All hyperparameters for all benchmark models are set as prescribed in their respective works. Ad-
ditionally, note that the estimated number of clusters provided to the DP-GMM and AFCL models

is Z§=1 K, as this constitutes an upper bound for K. Note that this initial estimate is significantly

G
C .. 1 N
closer to the true number of clusters for all datasets than the initial value of 29512 % suggested for

AFCL in (Zhang et al.| |2025). The reported estimated number of clusters for both algorithm is the
total number of clusters to which test samples were assigned. Moreover, we run all iterative algo-
rithms for 7' = 20 iterations, and we run our algorithm for 77 = 10 iterations. Furthermore, we
utilize S = 1 local steps for our model in all setting, as well as I = 10 iterations for Algorithm [4]

It should be noted that since our model is personalized, the reported performance for our model is a
weighted average of the clients’ individual performance metrics.

Table 5: Hyperparameter v, tuning values for all datasets used in the Benchmarking Study.

Dataset Hyperparameter Value(s)
MNIST 2e0

FMNIST 3e2

EMNIST 2e0
CIFAR-10 2el

Abalone {5e3,7e3,9e3}
Frog A {1le4, 1eb, 1e6}
Frog B {1e4, 1eb, 16}
Waveform {1e0, 5¢0, 1el}

Synthetic ~ {5e — 1, 1e0, 5¢0, lel, 5el}

D.4 SUPPLEMENTARY BENCHMARKING STUDY RESULTS

We provide additional results for our Benchmarking Study using the SS evaluation metric in Table
[6] We immediately observe that our proposed method continues to attain the highest performance
out of the federated methods with unknown K for most datasets. Furthermore, we observe that on
datasets such as Abalone and Waveform, our method outperforms even the top performing method
with known K. Since the results using these evaluation metrics are similar to those using the ARI,
we reach a strong conclusion that our proposed model has a significant practical impact. Namely, it
can achieve similar performance to, or even outperform some clustering methods that assume prior
knowledge of K, and it often outperforms method without prior knowledge of K. It achieves this
while being federated (i.e. not requiring any data movement), and without prior knowledge of K.
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Table 6: SS attained by all methods on tested datasets.

Model Known K?  MNIST FMNIST EMNIST CIFAR-10  Abalone  Frog A Frog B Waveform
029 093 046 191 397 232 198 255
GMM (central) Yes +.020  +.008 +.006 +.013 +.014  +.042 +.089  +.026
FED Voo .076 .106 075 177 406 285 278 245
3 e +.010  +.022 +.010 +.012 +.029 +.066 +.076  +.028
—.045  .009 —.113 —.014 400 229 259 247
FFCM-avel Yes +£.030  +.0023  +.026 +.045  +.011 +.051 +.061  +.008
036 052 —.077 087 404 272 324 231
FFCM-ave2 Yes £.011  +.018  +.023  +.021  +.016 +.071 +.056  +.042
Fedk v 105 127 091 203 404 302 .289 252
ecmeans e +.005  £.006  +.003 +.006 +.010 +.054 +.074  +.003
_.082 —.058  —.063 117 324 171 144 115
DP-GMM (central) No +.014  +.014  +.007  +.005  +.023 +.040 +.025  +.013
AFCL N 015 017 028 106 192 144 156 018
© +£.002  +.003  +.002 £.005  +.028 +.048 +.045  +.010
.095 .069 .063 094 307 324 284 271
FedGEM (ours) No +£.012  +.018  +.009 +£.015  +.086 +.082 +.092  +.011

D.5 SUPPLEMENTARY SENSITIVITY STUDY RESULTS

We present the results of the Sensitivity Study utilizing the SS to compare model performance in
Figure 2] Firstly, we again observe that performance of both models improves as Ry, increases.
Surprisingly, however, we see that our proposed model outperforms GMM in all setting, which does
not match the ARI result. This could be explained by SS’s sensitivity to the number of clusters.
Indeed, a problem with a smaller number of clusters is likely to exhibit higher SS than an identical
one with a larger number of clusters. Since each client only has a subset of the clusters locally, this
can cause the local SS to be over-inflated. However, as seen in the ARI result, we can conclude that
our proposed model offers very close performance to that of a centralized one with known K, which

is a powerful result.

Nominal

Client Tmbalance

Silhouette Score
o o
o 3
Silhouette Score
o o
o N

Silhouette Score

Cluster Imbalance

GMM (Central)

—F— FedGEM (Ours)

(a) Silhouette Score for our proposed FedGEM vs. a centralized GMM trained via EM.

Nominal

Client Imbalance

Number of Clusters

Number of Clusters

(b) Number of clusters estimated by our proposed FedGEM vs. the true number of clusters.

Cluster Imbalance

Figure 2: Supplementary results of the sensitivity study.

D.6 SENSITIVITY TO HYPERPARAMETER

8 |= === True

—F— Estimated

This study evaluates the sensitivity of our proposed algorithm to its final aggregation radius hyper-

parameter.

Our Method. As with the other numerical experiments, our method is the isotropic GMM model

trained via our proposed FedGEM algorithm.

Evaluation Metric. We examine the sensitivity of both the ARI and the estimated number of clusters

to the hyperparameter.
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final __ Ugﬁ”mi"g
il — 2 729

Hyperparameters. Recall our final aggregation radius heuristic € ) . We evaluate our

TI'k-g g

model’s performance for v, € {le — 1, 10, lel, 1e2}.

Dataset. The data used for this experiment is isotropic Gaussian clusters generated via the
make_blobs module in Python. We set Ry, = 4, and we study three key settings: i) nomi-
nal: data is balanced across clients and clusters, ii) client imbalance: the data is imbalanced across
clients, and iii) cluster imbalance: the portion of each cluster in the local data at each client is ran-
domly samples followed by normalization. For all settings we use G = 15, K = 10, Nyin = 7500,
and Ny = 2000.

Results. The results of this study are displayed in Figure[3] We observe that the estimated number
of clusters can be more sensitive to the choice of v, than ARI. This is intuitive, as a value of v,
that is too small will result in insufficient cluster aggregation, which causes the estimated number of
clusters to be overinflated. However, since clustering performance evaluation is performed locally
at each client, ARI can still be somewhat stable in this setting. On the other hand, if v, is too large,
this will cause estimates associated with different clusters to be aggregated together. This leads to an
underestimation of the number of clusters and also significantly affects clustering performance. A
key observation we make is that for an appropriately adjusted v,, ARI seems to reach a peak value in
the nominal case while the estimated number of clusters almost coincides with the true value. This
highlights the importance of hyperparameter tuning via the protocol we present in Appendix
Finally, we note that the cluster and client imbalance settings do not significantly affect our model’s
performance, suggesting robustness to such issues.

1 Nominal 1 Client Imbalance i Cluster Imbalance
0.8 0.8 0.8
=] = 2
- < <
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(a) Sensitivity of our algorithm’s clustering performance measured via ARI to the hyperparameter value.
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(b) Sensitivity of our algorithm’s number of clusters estimation to the hyperparameter value.

Figure 3: Results on the sensitivity of our algorithm to its hyperparameter.

E SCALABILITY STUDY

In this section, we present two distinct studies we performed to evaluate the scalability of our pro-
posed algorithm.

Our Method. As stated in the full paper, our method is the isotropic GMM model trained via our
proposed FedGEM algorithm.

Evaluation Metric. We utilize runtime in seconds to evaluate the scalability of all methods.

Baselines. We compare our algorithm to AFCL, which is the only other federated clustering method
that does not require knowledge of K. Additionally, we also use FFCM-avg2 and FedKmeans as
benchmarks as they achieved strong performance in the Benchmarking Study.

44



Under review as a conference paper at ICLR 2026

E.1 SCALABILITY ON IMAGE DATASETS

We examine the runtime of some of our algorithm as well as some of the federated benchmarks on
the larger-scale image datasets. This allows us to evaluate the scalability of our proposed algorithm
in realistic settings.

Hyperparameters. All hyperparameters and experimental settings (e.g. number of clients G, hy-
perparameter settings, etc...) are exactly the same as described in detail in Appendix [D.3] However,
in the interest of fairness, we run all federated algorithms for 7' = 10 iterations, and we confirm that
their performance after training is on par with the values reported previously.

Datasets. In this experiment we focus solely on the MNIST, FMNIST, EMNIST, and CIFAR-10
datasets. This is because they are on a much larger scale than the other datasets tested, therefore
they provide meaningful insights into algorithm scalability.

Results. The results of this experiment are reported in Table [/| We observe that our algorithm
achieves a much shorter runtime than AFCL (the only other federated clustering approach without
prior knowledge of K). This emphasizes the significant practical impact of our algorithm, as it
also achieved superior clustering performance and total number of cluster estimation as discussed in
Section [6] and Appendix [D] As we discuss in the Scalability Study on Synthetic Data in Appendix
this advantage over AFCL is most likely due to improved scalability with respect to the number
of clients. This suggests that our algorithm is better suited for distributed clustering problems over
large networks involving large volumes of data.

Table 7: Runtime in seconds of selected federated algorithms on the image datasets evaluated.

Model Known K? MNIST FMNIST EMNIST CIFAR-10
FFCM-avg2 Yes 220 + 18 440 £+ 25 6075 + 842 188 + 8
FedKmeans Yes 30 £ 2 52+ 3 314 + 42 26+ 1
AFCL No 2047 + 246 2013 +204 3176 £ 722 1798 + 165
FedGEM (ours) No 552 + 52 645 + 63 1628 + 335 345 + 35

E.2 SCALABILITY ON SYNTHETIC DATA

This study aims to evaluate the scalability of our proposed algorithm as the size of the training
dataset and the federated network grow. It also compares the scalability of our algorithm to that
of multiple federated benchmarks. We note that the implementation of our algorithm used in this
study relies on pairwise server computations. Therefore, scalability can likely be further improved
by leveraged a KD tree as explained in Appendix

Hyperparameters. Since the focus of this study is more so on execution time than model perfor-
mance, we did not perform hyperparameter tuning for this experiment. We fix our final aggregation
radius hyperparameter v, = 1e0 for all g € G. We set the hyperparameters of benchmark models as
prescribed in their corresponding papers. Additionally, we run all algorithms with 7' = 10 iterations.
Finally, this experiment was repeated for 10 repetitions.

Dataset. In this experiment we utilize data generated via the make_blobs module in Python,
which generates isotropic Gaussian clusters. We utilize Ry, = 2 across all experiments. Addition-
ally, we study 4 distinct experimental settings, listed next.

1. Increasing Features: G = 5, Ny, = 500, K = 10, d € {5, 25,45, 65}.

2. Increasing Training Samples per Client: G = 5, K = 10, d = 15, N, €
{500, 2500, 4500, 6500}.

3. Increasing Clusters: G = 5, Ny, = 500, d = 15, K € {5,25,45,65}.
4. Increasing Clients: N = 1000, K = 10,d = 15, G € {5, 25,45, 65}.
Across all experiments, we uniformly sample K, for all g € [G] such that 2 < K, < K.

Results. The results of this experiment are shown in Figure 4| Firstly, we observe that the runtime
of all algorithms remains constant as the number of features increases. This suggests that all com-
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pared algorithms, including ours, scale well with the number of features. Secondly, we observe that
while our algorithm exhibits a greater runtime than benchmark methods in all experimental settings,
it scales at a similar rate to them as the number of samples, clusters, and clients increase. This sug-
gests strong scalability across all settings. Moreover, we observe in the increasing number of clients
setting that AFCL’s runtime increases at a faster rate than our proposed algorithm. This suggests
that our algorithm scales better in this setting, and can therefore be more suitable for settings with a
large number of clients. This observation aligns with our results presented in the runtime analysis in
Appendix [E.T] where we observe that our algorithm achieves a shorter runtime than AFCL in exper-
iments involving a high GG and large datasets. Combined with the fact that our algorithm exhibited
better clustering performance and true number of clusters estimation across all our experiments, this
highlights the significant practical impact of our proposed FedGEM algorithm.

4 Features 4 Samples per Client
10 10
E =5
_ 10? _ 10?
2 =
g g
& 100 & 100
102 102
5 25 45 65 500 2500 4500 6500
#Features d #Samples per Client N,
Clusters " Clients
10
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=  + - 102
T z
~ ok & 10°
10
102 102
5 25 45 65 5 25 45 65
#Clusters K #Clients G
[—F— FedGEM AFCL —F— FFCM-avg2 —F— FedKmeans|

Figure 4: Results of the scalability experiment for all experimental settings and benchmark models.

F FURTHER DISCUSSION

F.1

JUSTIFICATION AND INTERPRETATION OF MODELING ASSUMPTIONS

* Assumption |1 Ground Truth Parameters. In this assumption, we enforce a modeling
structure that is necessary for the convergence analysis of our algorithm. Namely, that any
clusters that are shared by multiple clients, have the exact same ground truth parameters at
all clients. Note that this assumption does not violate the non-IID nature of the data in FL.
problems. This is because cluster weights can be different across clients, and clients may
have different clusters. Therefore, the data across clients is still non-IID. This assumption
is common in works studying federated EM algorithms, such as (Marfoq et al., [2021)).

* Assumption 2} Strong Concavity. This assumption requires each of the terms in the
expected complete-data log-likelihood functions to be strongly concave, thereby allowing
for the function to have a unique maximizer. Such assumption is very common (at least
locally near the optimum) in works examining the convergence of EM algorithms such as
(Balakrishnan et al., [2014)). This assumption is also readily verifiable for models such as
GMMs.

* Assumption 3} First-Order Stability. This assumption requires the expected complete-
data log-likelihood to obey a Lipschitz-like smoothness constraint, introduced by |Balakr-
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ishnan et al.|(2014) and defined in E} Such a technical assumption is vital for the theoretical
analysis, and the derivation of convergence guarantees, but is not required for the algorithm
to be used in practice.

Assumption [d; Continuity. This is another technical assumption, which requires the
complete-data log-likelihood function of the model used to be smooth in both its input and
conditioning arguments. This is standard in many EM-related efforts, and is only required
for the theoretical convergence analysis but not for algorithm use in practice.

Assumption 5} Likelihood Boundedness. This assumption requires the log-likelihood of
the model used to be bounded from above, although that bound need not be known. Similar
to previous assumptions, this one is also purely required for the theoretical convergence
analysis, but not for the use of the algorithm in practice. Note that this assumption is
common in works investigating Federated EM algorithms such as (Marfoq et al., 2021},
and is easily verifiable for models such as GMM under mild conditions on the covariance
matrix.

Assumption [6; Finite-Sample and Population M-Step Proximity. This assumption re-
quires there to be an upper bound on the maximum difference between the population M-
step and the finite-sample M-step for each cluster with a certain probability. Whereas all
the previous assumptions allow us to theoretically study the convergence of our algorithm
on the population level (i.e. with infinite data), this one is necessary for the finite-sample
convergence analysis. Specifically, it allows us to prove that the algorithm updates made
via a finite data sample indeed converge to a neighborhood of the converged population-
based iterates. This assumption was utilized in works exploring the convergence of EM
algorithms such as (Balakrishnan et al.||2014;|Yan et al., 2017), and is also purely technical
and does not impact algorithm usability in practice.

Assumption [7/; Bounded Support. This assumption requires the support of the feature
vector to be bounded, and is needed only in the setting where DP is used to privatize
the cluster maximizers shared by the clients. Such an assumption is not restrictive. This
is because data is often collected via acquisition devices with known ranges. Therefore,
feature support is either already bounded, or can be via normalization.

F.2 INTERPRETATION OF THEORETICAL RESULTS

Proposition [T Local Uncertainty Set Radius Problem. This proposition asserts that
the optimization problem solved by each client to obtain the radius of the uncertainty set
centered at the maximizer of each local cluster must have a unique solution. The unique
solution would be 0 at convergence. This holds under the modeling assumption thanks to
the strong concavity of the complete-data log-likelihood function.

Theorem I} Single-Point EM Convergence. This theorem asserts that the finite sample
EM iterates computed by each client for each local cluster must converge to a single point
withing a certain proximity of the ground truth parameters. This is a subtle, but key result,
as it ensures stability and lack of oscillations upon convergence.

Theorem 5; Local Convergence of Population GEM. This theorem asserts that, in the
population setting (i.e. infinite training samples), iterates that are computed via our pro-
posed FedGEM algorithm converge exactly to the ground truth parameters. This is a very
strong convergence result, which is used to establish the finite-sample convergence of the
algorithm.

Theorem 2} Local Convergence of Finite-Sample GEM. This theorem asserts that, with
a certain probability, iterates that are computed via our proposed FedGEM algorithm con-
verge within a certain radius around the ground truth parameters at any client. This is
achieved with only a finite number of training samples. This result forms the basis for our
convergence argument. This is because iterates of a shared cluster across multiple clients
converge to a close proximity of each other. Therefore, given a final aggregation radius that
meets certain conditions, they can be successfully aggregated into a single cluster.

Theorem 3 Number of Clusters Inference: This theorem asserts that with a certain
probability, our algorithm correctly estimates the total unique number of clusters across
clients. This is reliant on the finite-sample convergence established in Theorem 2]
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¢ Theorem E]: Radius Problem Reformulation. This theorem provides a tractable, bi-
convex, 2-dimensional reformulation for the semi-infinite uncertainty set radius problem in
the case of isotropic GMMs. This renders our algorithm tractable for this specific model,
and allows us to implement it in our numerical experiments.

* Proposition2; Local Radius Algorithm Convergence. This proposition shows that Algo-
rithm [4] proposed to solve the uncertainty set radius problem reformulation from Theorem
Hlenjoys a very low time complexity. This allows our FedGEM algorithm to scale well with
problem size.

* Theorem|[6; GMM First-Order Stability. This theorem proves that the multi-component
isotropic GMM explored in this work indeed satisfies the FOS condition defined in|I| This
is a very impactful result, as, to the best of our knowledge, this is the first time such result is
formally proven for a GMM with more than two components. This condition is necessary
for the convergence of our algorithm. Therefore, formally proving it allows us to argue that
our FedGEM algorithm is guaranteed to converge for multi-component, isotropic GMMs.

* Theorem [7: GMM M-Step Contraction Region. This theorem derives the radius of the
contraction region centered at the ground truth parameters for each cluster at each client.
This bound allows us to argue that our proposed algorithm converges for the isotropic
GMM under consideration. However, we note that this is a purely technical result needed
only for the theoretical convergence analysis, but not for practical implementation.

¢ Theorem [8; GMM Finite-Sample and Population M-Step Distance. This theorem de-
rives the upper bound on the distance between the population and final sample M-steps that
is required by Assumption [f] The existence of this bound guarantees the convergence of
our proposed FedGEM algorithm for the isotropic GMM under study. Note, however, that
this is also a purely technical result required only for the theoretical convergence analysis.
However, it is not needed for use of our algorithm in practice.

* Theorem [J; Client-to-Server Communication DP. This theorem is provided as part of
a preliminary DP discussion. It provides the minimum standard deviation of the Gaussian
noise to be applied to the maximizers shared by the clients to guarantee DP.

F.3 LIMITATIONS AND FUTURE WORK

This paper lays the foundation for a wide array of future work that can provide significant con-
tributions and advance the fields of clustering, federated learning, and unsupervised representation
learning via mixture models. Next, we discuss some of the limitations of our work, which should be
addressed in future work.

* Fixed Cluster Weights. While our algorithm allows each client to set personalized local
weights for their local clusters, these weights are fixed. In order to enhance modeling
flexibility and personalization capabilities, future efforts should extend our algorithm to
include trainable local cluster weights.

* Stylized Clustering Model. While the FedGEM algorithm we propose is generic, we
mainly focus on its use with an isotropic GMM in this work. Future work may improve
real-world performance by utilizing our algorithm with more complex mixture models,
potentially studying anisotropic GMMs with locally learnable cluster weights. This would
be theoretically challenging as it would involve verifying the needed assumptions, as well
as deriving a tractable formulation for the local radius problem. Moreover, this may require
an alternative convergence analysis approach, such as one that focuses on convergence to
stationary points rather than (neighborhoods of) global maximizers. Furthermore, such
efforts would need to study how the use of such complex models impacts the aggregation
process at the central server.

* Differential Privacy. While we do provide a preliminary discussion on privatizing the
cluster centroids shared by each client via DP in Appendix privatizing the uncertainty
set radius and studying convergence in more detail remains an open problem. Since the
radius is computed via an optimization problem, a key theoretical contribution would be
analyzing its sensitivity and deriving the appropriate DP budget.
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* Modeling Assumptions. In order to derive theoretical convergence guarantees for our
FedGEM algorithm, we make various modeling assumptions. While these assumptions
are very commonly made, and do not severely impact performance in practice if they are
violated as shown in Section[f] a valuable contribution would still be deriving convergence
guarantees with relaxed assumptions.

* Pairwise Server Computation. In our proposed work, the server relies on pairwise com-
parisons between the clusters at all clients in order to infer overlaps. While we have shown
in our Scalability Study in Appendix [E] that our algorithm scales well with problem size,
scalability can be further improved. Future work may develop a more efficient algorithm
to be used by the central server to infer cluster overlaps.

* Full Client Participation. While the proofs presented in this work would still hold under
partial client participation, they do not account for the potential drift that can be experienced
by stragglers. While convergence to a neighborhood of the global maximizer is proven for
centroid estimates at all clients, client drift can cause the estimates to end up in relatively
distant areas of that neighborhood. This can increase the sensitivity of the estimated number
of clusters to the final aggregation hyperparameter. Future work may study this setting both
from the theoretical and practical perspectives, providing stricter convergence guarantees
for stragglers and potential strategies to ensure an accurate estimation of K.

* Final Aggregation Radius Tuning. While we present a reliable heuristic and a guideline
that can be used to set the final aggregation radius in our algorithm, it still requires hyper-
parameter tuning via cross-validation to exploit our algorithm’s full performance potential.
Such tuning can incur very large computational costs, and can also significantly affect DP
guarantees. Future work may seek to explore more robust, data-driven and theoretically
verified heuristics that can achieve near-optimal performance while minimizing the com-
putational and privacy costs associated with cross-validation-based tuning.
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