

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 A FEDERATED GENERALIZED EXPECTATION-MAXIMIZATION ALGORITHM FOR MIXTURE MODELS WITH AN UNKNOWN NUMBER OF COMPONENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

We study the problem of federated clustering when the total number of clusters K across clients is unknown, and the clients have heterogeneous but potentially overlapping cluster sets in their local data. To that end, we develop FedGEM: a federated generalized expectation-maximization algorithm for the training of mixture models with an unknown number of components. Our proposed algorithm relies on each of the clients performing EM steps locally, and constructing an uncertainty set around the maximizer associated with each local component. The central server utilizes the uncertainty sets to learn potential cluster overlaps between clients, and infer the global number of clusters via closed-form computations. We perform a thorough theoretical study of our algorithm, presenting probabilistic convergence guarantees under common assumptions. Subsequently, we study the specific setting of isotropic GMMs, providing tractable, low-complexity computations to be performed by each client during each iteration of the algorithm, as well as rigorously verifying assumptions required for algorithm convergence. We perform various numerical experiments, where we empirically demonstrate that our proposed method achieves comparable performance to centralized EM, and that it outperforms various existing federated clustering methods.

1 INTRODUCTION

Original equipment manufacturers (OEMs) of capital-intensive industrial systems, such as power generators and medical imaging systems, often enter into lucrative long-term service contracts (LTSCs) with their clients, guaranteeing adherence to stringent reliability standards. Failure to meet such guarantees can incur multi-million dollar penalties (Schimmoller, 2001; Thompson et al., 2003). To manage these risks, OEMs must be able to accurately detect and diagnose faults in a timely manner (Lei et al., 2020; Dutta et al., 2023; Yang et al., 2025). However, OEMs face several critical challenges. First, OEMs **do not have prior knowledge of all the possible fault classes**. Second, OEMs cannot rely solely on labels provided by their clients due to the absence of a global labeling standard and differing maintenance practices, which result in inconsistent labels. Third, clients cannot readily share their raw data with the OEM due to the size and dimensionality of the data, and privacy concerns. Thus, centralized model training is infeasible.

Federated Learning (FL) (McMahan et al., 2017; Konečný et al., 2016) offers a promising solution. However, the majority of existing FL efforts (Li et al., 2020; Wang et al., 2020; Karimireddy et al., 2020; Arivazhagan et al., 2019; Lee et al., 2023) assume that all clients share identical cluster sets and are primarily focused on supervised learning. Unfortunately, these assumptions are not compatible with our problem setting as they violate one or more of the critical challenges mentioned above. Recent works on unsupervised FL (Dennis et al., 2021; Stallmann & Wilbik, 2022; Garst & Reinders, 2024; Bárcena et al., 2024; Yfantis et al., 2025) relax the assumption of identical cluster sets across clients. However, they still assume that the server knows the total number of unique clusters in advance—again, an assumption that does not hold in our problem setting. While Zhang et al. (2025) relax this assumption, their algorithm has two critical limitations: (i) it requires clients to share arrays of the same size (i.e. *dimensionality and cardinality*) as the raw data, and (ii) client data can be easily reconstructed at the central server via simple computations on the information shared by the clients, causing a violation of privacy.

This paper focuses on developing an **unsupervised federated learning methodology** for distributed clustering with an unknown number of clusters across privacy-constrained clients with high-dimensional data. Our methodology enables a central server to (i) infer the total number of distinct clusters (components) that emerge across all clients without requiring access to raw data or prior knowledge of the cluster count, and (ii) determine the cluster memberships of each client.

Contributions. We introduce FedGEM: the first federated generalized expectation-maximization (GEM) algorithm that can be used for the training of mixture models **without prior knowledge of the global number of components**. Our algorithm allows clients with overlapping clusters to collaborate on the training of cluster centers, whereas cluster weights are set locally at each client. This allows for model personalization, where local cluster weights can adapt the global model to client-specific distributions. We summarize our main contributions next.

1. We develop the first federated GEM (FedGEM) algorithm for the training of mixture models **without prior knowledge of the total number of components**. Our algorithm relies on uncertainty sets obtained by each client for each local component by solving an optimization problem. Intersections between the uncertainty sets enable the central server to detect cluster overlaps between clients via **closed-form computations**, allowing for collaborative model training.
2. We rigorously study the convergence properties of our algorithm and prove that iterates converge to a neighborhood of the ground truth model parameters with a certain probability under common assumptions. This allows our algorithm to correctly estimate the true total number of unique clusters.
3. We examine various theoretical aspects of our proposed algorithm in the context of multi-component isotropic Gaussian Mixture Models (GMMs). To that end:
 - (a) We derive a low-complexity, tractable, and bi-convex reformulation of the optimization problem that is solved by the client to obtain the local uncertainty sets.
 - (b) We prove the first-order stability (FOS) condition for multi-component isotropic GMMs, which allows us to derive the contraction region and prove convergence of our proposed algorithm.
4. We perform a thorough empirical evaluation on popular and synthetic datasets, showing that our algorithm outperforms state-of-the-art ones while scaling well with problem size, at times even outperforming methods with prior knowledge of the cluster count. We also highlight our algorithm's strong performance in various problem settings, including ones that violate modeling assumptions.

2 RELATED WORKS

Federated Learning. The canonical FL algorithm, FedAvg (McMahan et al., 2017), is primarily designed for *supervised* deep learning. It aggregates model gradients across clients to train a single global model. However, it can perform poorly under non-IID client data, often converging to suboptimal solutions. Numerous methods address this issue, including FedProx (Li et al., 2020), FedNova (Wang et al., 2020), SCAFFOLD (Karimireddy et al., 2020), FedPer (Arivazhagan et al., 2019), and FedL2P (Lee et al., 2023). However, these efforts overwhelmingly focus on supervised settings and assume that all clients have *identical cluster sets* in their training data.

Several works have attempted to relax the common cluster set assumption. For example, FedEM (Marfoq et al., 2021) trains a global mixture model with localized component weights to support personalization. A different version of FedEM is introduced by Dieuleveut et al. (2021), **focusing** on reducing client heterogeneity. Additionally, FedGMM (Wu et al., 2023) tackles covariate shift using Gaussian mixtures. However, these methods assume **prior knowledge of the global number of components**, making them unsuitable for real-world problems with unknown cluster counts.

Federated Clustering. Recent efforts have explored *unsupervised* federated clustering, allowing clients to have heterogeneous cluster sets. Examples of such efforts include k-FED (Dennis et al., 2021), FFCM (Stallmann & Wilbik, 2022), and FedKmeans (Garst & Reinders, 2024), among others (Bárcena et al., 2024; Yfantis et al., 2025). However, these works still require **prior knowledge of the global number of clusters**, limiting their applicability in many real-world problems.

To the best of our knowledge, only AFCL (Zhang et al., 2025) attempts federated clustering without requiring prior knowledge of the global cluster number. However, this work involves clients sharing arrays of the same size as the local data. It also suffers from significant privacy vulnerabilities that allow data reconstruction at the server via simple scalar multiplication and subtraction operations.

108 **Centralized Clustering with an Unknown Cluster Number.** A canonical example of such models is the Dirichlet Process Gaussian Mixture Model (DP-GMM) (Antoniak, 1974), which extends GMMs by placing a nonparametric Dirichlet Process prior over the mixture components. Other approaches include the density-based DBSCAN (Ester et al., 1996), the nonparametric DPM sampler (Hughes & Sudderth, 2013), and the neural network-based DeepDPM (Ronan et al., 2022). However, all of these methods assume centralized access to the full training dataset.

115 3 PROBLEM SETTING

117 We consider a federated clustering problem with G clients and an **unknown** number of K total clusters (we use “cluster” and “component” interchangeably). Each client g has access to N_g local data samples $\{\hat{\mathbf{x}}_{n_g}\}_{n_g=1}^{N_g}$ generated from a local mixture model $\mathcal{M}_g(\mathbf{x}) = \sum_{k_g=1}^{K_g} \pi_{k_g} p_{k_g}(\mathbf{x}|\boldsymbol{\theta}_{k_g}^*)$, where K_g is the local number of clusters, and $p_{k_g}(\mathbf{x}|\boldsymbol{\theta}_{k_g}^*)$ are the independent component distributions parameterized by ground truth parameters $\boldsymbol{\theta}_{k_g}^*$ and weighted by fixed π_{k_g} for all $k_g \in [K_g]$. We denote the vectorized concatenation of all ground truth parameters at client g by $\boldsymbol{\theta}_g^*$. We assume that K_g is known for all clients $g \in [G]$, whereas the global K is **unknown**. We also assume that clients may have some overlapping clusters, but no client has all the clusters locally, i.e., $2 \leq K_g < K, \forall g \in [G]$.

127 We denote the minimum and maximum distances between any two unique ground truth cluster 128 parameters by R_{\min} and R_{\max} , respectively. That is $R_{\min} = \min_{i,j \in [K], i \neq j} \|\boldsymbol{\theta}_i^* - \boldsymbol{\theta}_j^*\|_2$ and $R_{\max} = 129 \max_{i,j \in [K], i \neq j} \|\boldsymbol{\theta}_i^* - \boldsymbol{\theta}_j^*\|_2$. These quantities are used to study the convergence behavior of our 130 algorithm and do not need to be known in advance to use our algorithm. We make the following 131 crucial assumption to support algorithmic convergence analysis (in Section 4).

132 **Assumption 1** (Ground Truth Parameters). Each global cluster $k \in [K]$ is parameterized by a fixed 133 ground truth $\boldsymbol{\theta}_k^*$ that is consistent across all clients where the cluster is present. However, the weight 134 assigned to the cluster may vary locally across clients.

135 *Remark 1.* Assumption 1 motivates our algorithm design, where clients with overlapping clusters 136 can collaborate on learning the shared cluster parameters while retaining personalized cluster 137 weights. This respects the non-IID nature of the federated data while enabling collaborative training.

138 At client g , we denote the local population expected complete-data log-likelihood by

$$140 \quad Q_g(\boldsymbol{\theta}_g|\boldsymbol{\theta}'_g) := \mathbb{E}_{\mathbf{x} \sim \mathcal{M}(\mathbf{x})} \left[\sum_{k_g=1}^{K_g} \gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}'_g) \log(\pi_{k_g} p_{k_g}(\mathbf{x}|\boldsymbol{\theta}_{k_g})) \right],$$

144 where $\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}'_g)$ is the posterior responsibility function of the k_g^{th} component, computed using 145 current parameters $\boldsymbol{\theta}'_g$. Similarly, we denote the local finite-sample expected complete-data log- 146 likelihood function by

$$147 \quad \hat{Q}_g(\boldsymbol{\theta}_g|\boldsymbol{\theta}'_g) := \frac{1}{N_g} \sum_{n_g=1}^{N_g} \sum_{k_g=1}^{K_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \log(\pi_{k_g} p_{k_g}(\hat{\mathbf{x}}_{n_g}|\boldsymbol{\theta}_{k_g})).$$

151 4 OVERVIEW OF FEDGEM ALGORITHM

153 Our proposed FedGEM algorithm consists of two stages: (i) an iterative collaborative training stage, 154 and (ii) a single-step final aggregation stage. (**Pseudo-code in Algorithm 1 in Appendix A.1**).

155 The collaborative training stage can be summarized as follows. **Client:** (i) performs (potentially 156 multiple) EM steps locally, (ii) solves an optimization problem to obtain the radius of an uncertainty 157 set for each component centered at its corresponding maximizer of $\hat{Q}_g(\boldsymbol{\theta}_g|\boldsymbol{\theta}'_g)$, and (iii) broadcasts 158 the maximizer and uncertainty set radius pair for each component to the server. **Server:** performs 159 aggregation using overlaps between uncertainty sets and re-broadcasts updates to clients.

161 In the final aggregation step, the server merges cluster estimates from different clients if they are 162 within a specific radius of each other. This enables the server to estimate the total number of unique

162 global clusters and determine the cluster membership of each client. Before discussing our algo-
 163 rithm, we make the following assumption, which can be verified for common models such as GMM.
 164

165 **Assumption 2** (Strong Concavity). Each of the K_g terms in the population $Q_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g)$ or finite-
 166 sample $\widehat{Q}_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g)$ at client g are strongly concave in $\boldsymbol{\theta}_g$ for all $g \in [G]$.
 167

168 4.1 CLIENT COMPUTATIONS

169 Each client g performs two vital tasks during each iteration t of our algorithm: (i) it performs
 170 (potentially multiple) EM steps given current model parameters $\boldsymbol{\theta}_g^{(t-1)}$, and (ii) it solves for the
 171 radius $\varepsilon_{k_g}^{(t)}$ of the uncertainty set $\mathcal{U}_{k_g}^{(t)}$ associated with the maximizer of each local component k_g .
 172 Firstly, we examine the EM steps, which are displayed next.
 173

$$174 \mathbf{E\text{-}step:} \quad \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g^{(t-1)}) \leftarrow \frac{\pi_{k_g} p_{k_g}(\widehat{\mathbf{x}}_{n_g} | \boldsymbol{\theta}_{k_g}^{(t-1)})}{\sum_{j_g=1}^{K_g} \pi_{j_g} p_{k_g}(\widehat{\mathbf{x}}_{n_g} | \boldsymbol{\theta}_{j_g}^{(t-1)})} \quad \forall k_g \in [K_g], \forall n_g \in [N_g] \quad (1)$$

$$175 \mathbf{M\text{-}step:} \quad \widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) \leftarrow \arg \max_{\boldsymbol{\theta}_{k_g} \in \mathbb{R}^d} \sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g^{(t-1)}) \log(\pi_{k_g} p_{k_g}(\widehat{\mathbf{x}}_{n_g} | \boldsymbol{\theta}_{k_g})) \quad \forall k_g \in [K_g] \quad (2)$$

176 Next, client g solves for an uncertainty set $\mathcal{U}_{k_g}^{(t)}$ to capture potential perturbations in $\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)})$
 177 associated with each component $k_g \in [K_g]$. This uncertainty set is defined as a Euclidean ball
 178 $\mathbb{B}_2(\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}); \sqrt{\varepsilon_{k_g}^{(t)}})$ centered at $\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)})$ and whose radius is $\sqrt{\varepsilon_{k_g}^{(t)}}$. We construct the
 179 uncertainty set such that any iterate $\widehat{m}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) \in \mathbb{B}_2(\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}); \sqrt{\varepsilon_{k_g}^{(t)}})$ does not decrease the
 180 finite-sample expected complete-data log-likelihood function from the previous iteration. That is
 181

$$182 \sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g^{(t-1)}) \log(\pi_{k_g} p_{k_g}(\widehat{\mathbf{x}}_{n_g} | \widehat{m}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}))) \geqslant \\ 183 \sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g^{(t-1)}) \log(\pi_{k_g} p_{k_g}(\widehat{\mathbf{x}}_{n_g} | \boldsymbol{\theta}_{k_g}^{(t-1)})).$$

184 This renders our proposed algorithm an instance of a GEM, allowing it to exhibit similar conver-
 185 gence behavior locally at client g to the EM algorithm as we show later. Client g may obtain the
 186 radius $\sqrt{\varepsilon_{k_g}^{(t)}}$ of the component's k_g uncertainty set by solving the following optimization problem,
 187 which admits a unique solution as we argue in Proposition 1.
 188

$$189 J_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) := \\ 190 \max_{\varepsilon_{k_g}} \varepsilon_{k_g} \\ 191 \text{s. t.} \quad \sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g^{(t-1)}) \log(\pi_{k_g} p_{k_g}(\widehat{\mathbf{x}}_{n_g} | \widehat{m}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}))) \geqslant \\ 192 \sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g^{(t-1)}) \log(\pi_{k_g} p_{k_g}(\widehat{\mathbf{x}}_{n_g} | \boldsymbol{\theta}_{k_g}^{(t-1)})) \quad \forall \widehat{m}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) \in \mathbb{B}_2(\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}); \sqrt{\varepsilon_{k_g}}) \quad (3)$$

193 **Proposition 1** (Local Uncertainty Set Radius Problem). *Suppose Assumption 2 holds. Then, there
 194 must exist a unique solution $\varepsilon_{k_g} \geqslant 0$ to the optimization problem $J_{k_g}(\boldsymbol{\theta}_g^{(t-1)})$ for all components
 195 $k_g \in [K_g]$ and all clients $g \in [G]$. (Proof in Appendix C.1).*

196 After completing local computations, each client g transmits a tuple $(\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}), \varepsilon_{k_g}^{(t)})$ of the ob-
 197 tained local maximizer and uncertainty set radius for component $k_g \in [K_g]$ to the central server.
 198

216 This, however, only applies in the *collaborative training stage*. During the *final aggregation step*,
 217 each client transmits a tuple $(\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}), \varepsilon_{k_g}^{\text{final}})$ to the central server, where $\varepsilon_{k_g}^{\text{final}}$ is the final aggre-
 218 gation radius for component k_g , and is treated as a user-defined hyperparameter.
 219

220 **4.2 SERVER COMPUTATIONS**
 221

222 In both *collaborative training* and *final aggregation* stages, the server uses the uncertainty sets
 223 $\mathcal{U}_{k_g}^{(t)} \forall k_g \in [K_g], \forall g \in [G]$ to identify cluster overlaps between clients. This allows the server
 224 to group clients' components into *super-clusters* via pairwise comparisons and a series of closed-
 225 form computations. Specifically, the server begins by initializing an estimate $\widehat{K}^{(t)} = 0$. It then
 226 checks if the uncertainty sets of components k_g at client g and $k_{g'}$ at client g' overlap. That is, it
 227 checks if: $\|\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \widehat{M}_{k_{g'}}(\boldsymbol{\theta}_{g'}^{(t-1)})\|_2 \leq \sqrt{\varepsilon_{k_g}^{(t)}} + \sqrt{\varepsilon_{k_{g'}}^{(t)}}$. If this holds, then the server groups
 228 the two components k_g and $k_{g'}$ into a single super-cluster. Consequently, if one or both of the com-
 229 ponents already belong to a super-cluster, the server performs super-cluster merge and updates $\widehat{K}^{(t)}$.
 230 If there is no overlap, the components are assigned to different super-clusters, and $\widehat{K}^{(t)}$ is updated
 231 accordingly. This repeats for all $k_g \in [K_g]$ and $k_{g'} \in [K_{g'}]$ at all clients $g, g' \in [G]$.
 232

233 During the *collaborative training stage*, the server relies on uncertainty set intersections to compute
 234 an updated parameter vector $\boldsymbol{\theta}_{k_g}^{(t)}$ for component k_g at client g . This updated vector *remains within*
 235 *its respective uncertainty set*, thereby facilitating convergence. This is achieved by initializing a
 236 set $\mathcal{T}_{k_g}^{(t)}$ of vectors containing only the estimate $\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)})$ for each component k_g at client g .
 237 Subsequently, if any intersections are found between $\mathcal{U}_{k_g}^{(t)}$ and any other $\mathcal{U}_{k_{g'}}^{(t)}$ for any $g' \in [G] \setminus g$,
 238 then an optimal vector $\boldsymbol{\nu}^*$ is added to both the sets $\mathcal{T}_{k_g}^{(t)}$ and $\mathcal{T}_{k_{g'}}^{(t)}$. This vector $\boldsymbol{\nu}^*$ can be written as:
 239

$$240 \boldsymbol{\nu}^* = \widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) + \text{clip}\left(0.5, 1 - \frac{\sqrt{\varepsilon_{k_{g'}}^{(t)}}}{w}, \frac{\sqrt{\varepsilon_{k_g}^{(t)}}}{w}\right) \left(\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \widehat{M}_{k_{g'}}(\boldsymbol{\theta}_{g'}^{(t-1)}) \right),$$

241 where $w = \|\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \widehat{M}_{k_{g'}}(\boldsymbol{\theta}_{g'}^{(t-1)})\|_2$, and the $\text{clip}(x, a, b)$ function limits the input x to
 242 the range $[a, b]$. After all comparisons are complete, the server obtains the updated parameters $\boldsymbol{\theta}_{k_g}^{(t)}$
 243 for component k_g at client g by aggregating all the vectors in set $\mathcal{T}_{k_g}^{(t)}$.
 244

245 In contrast, in the *final aggregation step*, the server aggregates all the estimates $\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)})$ of
 246 components k_g that belong in the same super-cluster. This ensures that clients eventually reach
 247 consensus on the parameters of shared clusters. We present the server computations pseudo-code
 248 in Appendix A.2. [We also present a method for potentially improving the efficiency of the server](#)
 249 [computations and an analysis of communication costs incurred by our algorithm in Appendix B.5.](#)

250 **4.3 CONVERGENCE ANALYSIS**
 251

252 We provide a convergence analysis for our algorithm in the finite-sample setting. This is built upon
 253 a population convergence analysis, which we provide in Appendix B.1. The idea in our convergence
 254 proofs is to show that an algorithm for component k_g at client g whose iterates are $\widehat{m}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) \in$
 255 $\mathbb{B}_2(\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}); \sqrt{\varepsilon_{k_g}^{(t)}})$ converges at a desirable rate to some neighborhood of the true parameters
 256 $\boldsymbol{\theta}_{k_g}^*$. This ensures that estimates of the same component from different clients can eventually be
 257 aggregated due to their proximity at convergence. Our convergence analysis relies on the FOS
 258 property introduced by Balakrishnan et al. (2014), which is defined next. Subsequently, we provide
 259 key technical assumptions, followed by our convergence results.

260 **Definition 1** (First-Order Stability). The expected complete-data log-likelihood function $Q(\cdot | \boldsymbol{\theta})$ is
 261 said to obey first-order stability with parameter β if for any $\boldsymbol{\theta}_k \in \mathbb{B}_2(\boldsymbol{\theta}_k^*; a) \forall k \in [K]$ we have that

$$262 \|\nabla Q(M(\boldsymbol{\theta}) | \boldsymbol{\theta}) - \nabla Q(M(\boldsymbol{\theta}) | \boldsymbol{\theta}^*)\|_2 \leq \beta \|\boldsymbol{\theta} - \boldsymbol{\theta}^*\|_2, \quad (4)$$

263 where $\beta \in \mathbb{R}$ is a constant, and $\boldsymbol{\theta}$ is the vectorized concatenation of all $\boldsymbol{\theta}_k$ for all $k \in [K]$.
 264

270 **Assumption 3** (First-Order Stability). The expected complete-data log-likelihood $Q_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g)$ at
 271 client g obeys the FOS condition with parameter β_g , such that $0 \leq \beta_g < \lambda_g$ for all $g \in [G]$, where
 272 λ_g is the strong concavity parameter of $Q_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g)$.
 273

274 **Assumption 4** (Continuity). The local population and finite-sample $Q_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g)$ and $\hat{Q}_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g)$,
 275 respectively, at client g are continuous in both of their arguments.

276 **Assumption 5** (Likelihood Boundedness). The local population and finite-sample true log-
 277 likelihood functions $\mathcal{L}_g^*(\boldsymbol{\theta}_g)$ and $\hat{\mathcal{L}}_g^*(\boldsymbol{\theta}_g)$, respectively, at client g are bounded from above.
 278

279 **Assumption 6** (Finite-Sample and Population M-Step Proximity). Let $\mathbb{A} = \prod_{k_g=1}^{K_g} \mathbb{B}_2(\boldsymbol{\theta}_{k_g}^*, a_g)$,
 280 and $\epsilon_g^{\text{unif}}(N_g, \delta_g) \leq (1 - \frac{\beta_g}{\lambda_g})a_g$ be some constant. Then, with probability (w.p.) at least $(1 - \delta_g)$,
 281

$$\sup_{\boldsymbol{\theta}'_g \in \mathbb{A}} \|\hat{M}_{k_g}(\boldsymbol{\theta}'_g) - M_{k_g}(\boldsymbol{\theta}'_g)\|_2 \leq \epsilon_g^{\text{unif}}(N_g, \delta_g),$$

285 where $M_{k_g}(\boldsymbol{\theta}'_g)$ is the M-step map associated with the population $Q_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g)$.
 286

287 *Remark 2.* Assumptions 3 - 6 are standard assumptions that are commonly utilized in works focused
 288 on EM algorithms such as (Balakrishnan et al., 2014; Yan et al., 2017; Marfoq et al., 2021), and are
 289 verifiable for isotropic GMMs as we show later.

290 As shown by Balakrishnan et al. (2014), if Assumption 6 holds and the population M-step iterates
 291 converge as described in Appendix B.1, then the finite-sample M-step iterates converge to a neighbor-
 292 hood of the true component parameters $\boldsymbol{\theta}_{k_g}^*$ w.p. at least $(1 - \delta_g)$. We express this mathematically
 293 next, followed by Theorem 1 asserting convergence to a single point rather than oscillating.

$$294 \|\hat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^*\|_2 \leq \frac{\beta_g}{\lambda_g} \|\boldsymbol{\theta}_g^{(t-1)} - \boldsymbol{\theta}_{k_g}^*\|_2 + \frac{1}{1 - \frac{\beta_g}{\lambda_g}} \epsilon_g^{\text{unif}}(N_g, \delta_g) \quad \forall \boldsymbol{\theta}_g^{(t-1)} \in \mathbb{B}_2(\boldsymbol{\theta}_{k_g}^*; a_g), \quad (5)$$

297 where a_g is the radius of the contractive region associated with the population EM iterates.
 298

299 **Theorem 1** (Single-Point EM Convergence). *Suppose Assumptions 1 through 6 hold, and that
 300 $\boldsymbol{\theta}_{k_g}^{(t-1)} \in \mathbb{B}_2(\boldsymbol{\theta}_{k_g}^*, a_g)$. Then the finite sample EM iterates $\hat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)})$ converge to a single point
 301 within radius $\frac{1}{1 - \frac{\beta_g}{\lambda_g}} \epsilon_g^{\text{unif}}(N_g, \delta_g)$ from the ground truth parameters $\boldsymbol{\theta}_{k_g}^*$. (Proof in Appendix C.2).*
 302

303 Now, consider a local finite-sample GEM algorithm whose update during each iteration is any
 304 $\hat{m}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) \in \mathbb{B}_2(\hat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}); \sqrt{\varepsilon_{k_g}})$, where the radius $\sqrt{\varepsilon_{k_g}}$ is obtained by solving the problem
 305 in (3). We show in Theorem 2 next that this algorithm exhibits very similar convergence behavior to
 306 that shown in (5). Subsequently, we show in Theorem 3 that our proposed FedGEM algorithm infers
 307 the *true* global number of clusters K with a certain probability.

308 **Theorem 2** (Local Convergence of Finite-Sample GEM). *Suppose Assumptions 1 through 6 hold.
 309 Consider a GEM algorithm whose iterate $\hat{m}_{k_g}(\boldsymbol{\theta}_g^{(t-1)})$ at iteration t is such that $\hat{m}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) \in
 310 \mathbb{B}_2(\hat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}); \sqrt{\varepsilon_{k_g}})$, where the radius $\sqrt{\varepsilon_{k_g}}$ is obtained by solving the problem in (3). Then,
 311 this algorithm converges to a neighborhood of the ground truth parameters $\boldsymbol{\theta}_{k_g}^*$ as follows:*
 312

$$314 \|\hat{m}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^*\|_2 \leq \frac{\beta_g}{\lambda_g} \|\boldsymbol{\theta}_g^{(t-1)} - \boldsymbol{\theta}_{k_g}^*\|_2 + \frac{1}{1 - \frac{\beta_g}{\lambda_g}} \epsilon_g^{\text{unif}}(N_g, \delta_g) + \hat{\epsilon}(t) \quad \forall \boldsymbol{\theta}_g^{(t-1)} \in \mathbb{B}_2(\boldsymbol{\theta}_{k_g}^*; a_g),$$

316 w.p. at least $1 - \delta_g$, with $\hat{\epsilon}(t) = \|\hat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^{(t-1)}\|_2 \rightarrow 0$ as $t \rightarrow \infty$. (Proof in Appendix C.3).

317 **Theorem 3** (Number of Clusters Inference). *Suppose that all the assumptions associated with The-
 318 orems 2 hold, and that $\|\hat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^{(t-1)}\|_2$ diminishes to 0 at a sufficiently fast rate. Suppose
 319 further that the final aggregation radius $\varepsilon_{k_g}^{\text{final}}$ at client g is set such that $\varepsilon_{k_g}^{\text{final}} = \epsilon_g^{\text{unif}}(N_g, \delta_g)$, and
 320 such that $\max_{g \in [G], k_g \in [K_g]} \varepsilon_{k_g}^{\text{final}} \leq \frac{R_{\min}}{4}$. Then, the final \hat{K}^* inferred by the FedGEM algorithm is
 321 equivalent to the true K w.p. at least $\prod_{g=1}^G \prod_{k_g=1}^{K_g} (1 - \delta_g)$. (Proof in Appendix C.4).*
 322

324 **5 FEDGEM FOR MULTI-COMPONENT ISOTROPIC GMMS**
 325

326 **Model Setup.** Now that we have introduced our FedGEM algorithm, and studied its convergence
 327 in a general sense, we examine it in the context of an isotropic GMM. More specifically, we consider the setting where each client g data is governed by a local mixture model
 328 $GMM_g(\mathbf{x}) = \sum_{k_g=1}^{K_g} \pi_{k_g} \phi(\mathbf{x}|\boldsymbol{\theta}_{k_g}^*, I_d)$, where $\phi(\mathbf{x}|\boldsymbol{\theta}_{k_g}^*, I_d)$ is the Gaussian density with identity
 329 covariance. We denote the minimum and maximum component weights at client g by π_{\min_g} and
 330 π_{\max_g} , respectively. Moreover, we denote the ratio $\kappa_g = \frac{\pi_{\max_g}}{\pi_{\min_g}}$. The population and finite-sample
 331 M-steps associated with this model admit the following closed-form solutions.
 332

333

$$\text{Population M-step: } M_{k_g}(\boldsymbol{\theta}'_g) = \frac{\mathbb{E}_{\mathbf{x} \sim GMM_g(\mathbf{x})} [\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}'_g) \mathbf{x}]}{\mathbb{E}_{\mathbf{x} \sim GMM_g(\mathbf{x})} [\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}'_g)]} \quad \forall k_g \in [K_g]. \quad (6a)$$

334

$$\text{Finite-sample M-step: } \widehat{M}_{k_g}(\boldsymbol{\theta}'_g) = \frac{\sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \widehat{\mathbf{x}}_{n_g}}{\sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g)} \quad \forall k_g \in [K_g]. \quad (6b)$$

335 Note that for the described model, the population and finite-sample expected complete-data log-
 336 likelihood functions $Q_g(\boldsymbol{\theta}_g|\boldsymbol{\theta}'_g)$ and $\widehat{Q}_g(\boldsymbol{\theta}_g|\boldsymbol{\theta}'_g)$, respectively, are strongly concave in $\boldsymbol{\theta}_g$ and contin-
 337 uous in both of their arguments. Moreover, if $\boldsymbol{\theta}'_g = \boldsymbol{\theta}_g^*$, the strong concavity parameter of $Q_g(\boldsymbol{\theta}_g|\boldsymbol{\theta}'_g)$
 338 is π_{\min_g} . Finally, the true population and finite-sample log-likelihood functions associated with this
 339 model are bounded from above due to the identity covariances and fixed weights for all components.
 340

341 As shown in (6b), the finite-sample M-step associated with our model admits a closed form. Therefore,
 342 it remains to derive a tractable reformulation of the uncertainty set radius problem in (3). Next,
 343 we introduce Theorem 4, where we derive a bi-convex, 2-dimensional reformulation of the problem
 344 in (3). Additionally, we introduce a solution Algorithm 4 in Appendix B.2 to solve the problem,
 345 accompanied by Proposition 2 in Appendix B.2 asserting that the algorithm enjoys a low worst-
 346 case time complexity. Finally, we provide a **preliminary differential privacy discussion** for the
 347 finite-sample maximizers shared by the clients in Appendix B.4.
 348

349 **Theorem 4** (Radius Problem Reformulation). *The semi-infinite optimization problem $J_{k_g}(\boldsymbol{\theta}'_g)$ in
 350 (3) admits the following tractable, bi-convex, 2-dimensional reformulation for the isotropic GMM
 351 described in this section. (Proof in Appendix C.5).*

352

$$\begin{aligned} J_{k_g}(\boldsymbol{\theta}'_g) &= \max_{\varepsilon_{k_g}, \alpha_{k_g} \in \mathbb{R}} \varepsilon_{k_g} \quad (7) \\ \text{s. t.} \quad \varepsilon_{k_g} \alpha_{k_g}^2 + \left[\sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \left(\|\widehat{\mathbf{x}}_{n_g} - \widehat{M}_{k_g}(\boldsymbol{\theta}'_g)\|_2^2 - \|\widehat{\mathbf{x}}_{n_g} - \boldsymbol{\theta}'_{k_g}\|_2^2 - \varepsilon_{k_g} \right) \right] \alpha_{k_g} + \\ &\quad \left(\sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \right) \sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \|\widehat{\mathbf{x}}_{n_g} - \boldsymbol{\theta}'_{k_g}\|_2^2 \leq 0 \\ &\quad \alpha_{k_g} \geq \sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g). \end{aligned}$$

353 **Convergence Analysis.** To guarantee the convergence of our FedGEM algorithm for the multi-
 354 component isotropic GMM, we verify three key properties. Namely, we present Theorems 6, 7,
 355 and 8 in Appendix B.3 to establish the FOS property of $Q_g(\boldsymbol{\theta}_g|\boldsymbol{\theta}'_g)$, study the contractive radius of
 356 $M_{k_g}(\boldsymbol{\theta}_g)$, and establish an upper bound on the distance between the population $M_{k_g}(\boldsymbol{\theta}_g)$ and the
 357 finite-sample $\widehat{M}_{k_g}(\boldsymbol{\theta}_g)$, respectively. Consequently, the convergence of our algorithm for isotropic
 358 GMMs follows from these results. However, these results require the clusters to be *well-separated*.
 359

378

6 NUMERICAL EXPERIMENTS

381 We present a comprehensive set of numerical experiments that benchmark the performance of our
 382 proposed FedGEM algorithm against leading state-of-the-art federated clustering methods. All numbers
 383 reported in this section are averaged over 50 repetitions. Confidence intervals and error bars
 384 represent one standard deviation. Randomness in repetitions arises from initialization, cluster as-
 385 signments, and data shuffling/generation. We assign equal π_{k_g} for all $k_g \in [K_g]$ at client g . More-
 386 over, we weigh each client g by its sample count N_g , and we set the final aggregation radius equiva-
 387 lently for all clients. In all experiments, clusters are assigned randomly to the clients, whereby each
 388 client g has K_g clusters such that $2 \leq K_g < K$. More experimental details and results are provided
 389 in Appendix D. Additionally, a **Scalability Study** is provided in Appendix E, demonstrating that
 390 our algorithm scales exceptionally well with problem size compared to relevant benchmarks.

391 **Our Method.** Our method is the isotropic GMM from Section 5 trained via our FedGEM algorithm.

392 **Evaluation Metrics.** We utilize the Silhouette Score (SS) (Rousseeuw, 1987) for hyperparameter
 393 tuning as it does not require label knowledge. However, we mainly rely on the Adjusted Rand Index
 394 (ARI) (Hubert & Arabie, 1985) to evaluate model performance as it is robust to cluster shape and
 395 size unlike other metrics. We report experimental results in SS in Appendix D.4.

396 **Hyperparameters.** We tune the final aggregation radius for FedGEM via cross validation. However,
 397 we do not directly tune the radius itself. Instead, we use the heuristic $\varepsilon_{k_g}^{\text{final}} = \frac{v_g \hat{R}_{\min_g}}{\pi_g \sqrt{N_g}}$, where \hat{R}_{\min_g}
 398 is the minimum distance between any two estimated cluster centroids at client g , and v_g is the
 399 hyperparameter we tune (set equivalently across all clients for simplicity). This heuristic allows the
 400 final aggregation radius to scale with the feature space and the number of samples available at each
 401 client. We provide a thorough discussion on hyperparameter tuning is provided in Appendix D.3.
 402 We set hyperparameters for the benchmark methods as described in their associated works.

405

6.1 BENCHMARKING

406 This study aims to compare the performance of our proposed method to that of various existing
 407 methods using an array of popular benchmark datasets.

408 **Datasets.** We use MNIST, Fashion MNIST (FMNIST), Extended MNIST (EMNIST), CIFAR-10,
 409 and 4 other datasets from the UCI repository. For all datasets, we use 70% of the samples for training
 410 and the rest for testing, except for EMNIST where we use 50% of the samples for training. We use
 411 $G = 100$ for MNIST, FMNIST, and CIFAR-10, $G = 25$ for EMNIST, and $G = 5$ for UCI datasets.

412 **Baselines.** We compare our method to 2 centralized and 5 federated clustering methods from the
 413 literature. The centralized ones are a GMM and a DP-GMM (Antoniak, 1974). The federated
 414 methods are k-FED (Dennis et al., 2021), FFCM-avg1 and FFCM-avg2 (Stallmann & Wilbik, 2022),
 415 FedKmeans (Garst & Reinders, 2024), and AFCL (Zhang et al., 2025). Note that DP-GMM and
 416 AFCL are the only benchmarks that do not assume prior knowledge of K .

417 **Results.** The ARI attained by all models and the estimated number of clusters estimated by models
 418 with unknown K are shown in Tables 1 and 2, respectively. We observe that our method consistently
 419 outperforms AFCL for all datasets, which is the only other federated clustering model with unknown
 420 K . Additionally, our model also consistently outperforms DP-GMM, which can be attributed to
 421 its more accurate number of cluster estimation. Another key observation is that our method even
 422 outperforms some clustering algorithms with known K in various datasets. This result underscores
 423 the significant practical impact of our proposed method, which does not require prior knowledge of
 424 K . We highlight that similar trends are observed when performance is evaluated via the SS as shown
 425 in Appendix D.4, emphasizing the impact of our model. Despite our model’s strong performance,
 426 we also observe that it largely overestimates the number of clusters in datasets such as CIFAR-
 427 10, Frog A, and Frog B. While its estimate is the best achieved out of the models compared, this
 428 can potentially be further improved in future work by examining more complex mixture models.
 429 Finally, we note that the datasets used are verifiably **non-Gaussian** via a Henze-Zirkler multivariate
 430 normality test, and likely include cluster overlaps. This demonstrates that our model can perform
 431 well in practice even when assumptions are violated.

432 Table 1: ARI attained by all methods on tested datasets. (**Bold** = best, underline = second best.)
433

Model	Known K ?	MNIST	FMNIST	EMNIST	CIFAR-10	Abalone	Frog A	Frog B	Waveform
GMM (central)	Yes	.287 $\pm .067$.385 $\pm .023$.235 $\pm .010$.402 $\pm .022$.096 $\pm .028$.447 $\pm .097$.448 $\pm .172$.262 $\pm .016$
k-FED	Yes	<u>.354</u> $\pm .082$.288 $\pm .101$.223 $\pm .031$.358 $\pm .043$.100 $\pm .030$.617 $\pm .144$.467 $\pm .148$.277 $\pm .061$
FFCM-avg1	Yes	.148 $\pm .031$.164 $\pm .030$.025 $\pm .007$.312 $\pm .035$.096 $\pm .029$.470 $\pm .094$.442 $\pm .112$.254 $\pm .029$
FFCM-avg2	Yes	.336 $\pm .053$.352 $\pm .038$.114 $\pm .011$.513 $\pm .028$.102 $\pm .032$.720 $\pm .149$.645 $\pm .117$.268 $\pm .057$
FedKmeans	Yes	.640 $\pm .035$.449 $\pm .027$.285 $\pm .007$.437 $\pm .024$.098 $\pm .033$.546 $\pm .143$.492 $\pm .118$.260 $\pm .015$
DP-GMM (central)	No	.115 $\pm .021$.179 $\pm .011$.120 $\pm .015$.068 $\pm .003$.075 $\pm .023$.326 $\pm .090$.223 $\pm .065$.255 $\pm .015$
AFCL	No	.038 $\pm .002$.035 $\pm .002$.089 $\pm .005$.034 $\pm .002$.062 $\pm .020$.344 $\pm .108$.272 $\pm .079$.157 $\pm .036$
FedGEM (ours)	No	.452 $\pm .049$.287 $\pm .057$.285 $\pm .022$.286 $\pm .033$.138 $\pm .056$.552 $\pm .129$.468 $\pm .117$.335 $\pm .078$

449 Table 2: Estimated number of clusters for algorithms with unknown K .
450

Model	MNIST	FMNIST	EMNIST	CIFAR-10	Abalone	Frog A	Frog B	Waveform
True K	10	10	47	10	7	10	8	3
DP-GMM (central)	<u>110.20</u> ± 6.09	<u>86.34</u> ± 5.61	<u>247.40</u> ± 23.46	<u>364.03</u> ± 12.57	<u>15.46</u> ± 2.20	29.46 ± 5.49	24.38 ± 4.24	6.84 ± 0.65
AFCL	501.82 ± 18.00	501.37 ± 22.51	575.39 ± 55.63	502.97 ± 19.70	25.00 ± 4.43	<u>28.42</u> ± 6.42	<u>23.96</u> ± 4.26	12.52 ± 1.11
FedGEM (ours)	13.63 ± 2.29	17.59 ± 6.61	58.67 ± 5.23	37.72 ± 13.60	12.14 ± 3.65	23.94 ± 9.99	20.00 ± 7.07	4.42 ± 1.40

461 6.2 SENSITIVITY
462463 This study evaluates the performance of our model as R_{\min} changes. This includes *non-well-separated*
464 settings, which violate the convergence conditions of the GMM in Section 5. We also
465 examine the sensitivity of our algorithm to its hyperparameter in Appendix D.6.
466467 **Dataset.** The data used for this experiment is isotropic Gaussian clusters generated via the
468 make_blobs module in Python. We control R_{\min} , requiring that the centers of at least two
469 clusters in each dataset be R_{\min} apart. Moreover, we study three key settings: i) nominal: data
470 is balanced across clients and clusters, ii) client imbalance: the data distribution across clients is
471 [40%, 24%, 16%, 16%, 4%], and iii) cluster imbalance: the local data for each client is randomly
472 distributed across the local clusters. For all settings we use $G = 5$, $N_{\text{train}} = 2500$, and $N_{\text{test}} = 5000$.
473474 **Baseline.** We compare our model to a centralized GMM trained via EM as the latter represents a
475 strong benchmark. This allows us to quantify the effects of our model’s federation and unknown K .
476477 **Result.** Figure 1 illustrates that the performance for both models improves as R_{\min} increases. Notably,
478 our proposed model achieves very close performance to the centralized GMM, and even out-
479 performs it with $R_{\min} \in \{1, 2\}$ across all settings. This can be attributed to cluster heterogeneity
480 across clients. That is, each client only has a subset of the total clusters, so each client’s clustering
481 problem is potentially easier than the centralized problem. This can cause each client to perform
482 better individually than the centralized model, which is trained on all clusters. Indeed, the benefits
483 gained from cluster heterogeneity in clustering problems were first observed by Dennis et al. (2021).
484485 It is worth noting that some of the settings explored in this study involve **overlapping clusters**,
486 violating the *well-separated* cluster assumption required for convergence. However, our model still
487 achieves very competitive performance. This suggests that even when some assumptions are vi-
488 olated, our algorithm can still converge in practice to a well-performing model. Finally, we observe
489 that our model’s estimate \hat{K}^* across all experimental settings is very close to the true number of
490

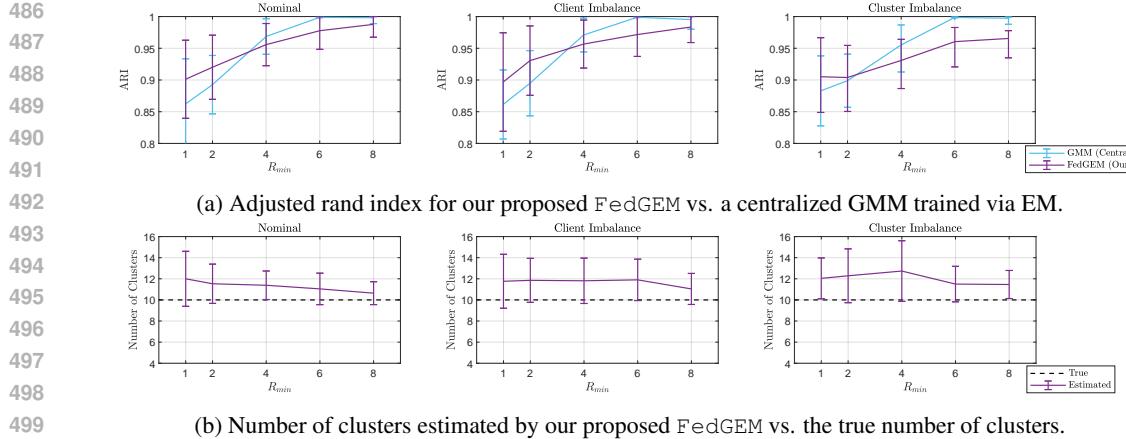


Figure 1: Results of the sensitivity study.

clusters K . While it tends to overestimate slightly in most settings, performance could potentially be further improved through better tuning of the final aggregation radius hyperparameter.

7 CONCLUSIONS

We introduce FedGEM: a federated GEM algorithm for training mixture models with an unknown number of components, geared towards federated clustering for clients whose local cluster sets are heterogeneous but potentially overlapping. Our algorithm requires clients to perform local EM steps, and compute an uncertainty set centered at the maximizer corresponding to each component. These uncertainty sets are then shared with the server. The server leverages uncertainty set intersections to infer overlap between clients' clusters, allowing it to perform model parameter aggregation and to estimate the total number of unique clusters. We study theoretical aspects of our algorithm, where we prove probabilistic convergence under standard assumptions. Subsequently, we study our algorithm in the context of isotropic GMMs. To that end, we derive a tractable and convex reformulation of the problem used by each client to obtain the uncertainty sets, and we verify key assumptions required to prove convergence. We empirically demonstrate that our proposed algorithm outperforms existing ones through a series of numerical experiments utilizing synthetic and popular datasets. We provide a thorough discussion on limitations and future work in Appendix F.3.

ETHICS STATEMENT

All software and datasets utilized in this work are used under proper licenses, as detailed in Appendix D. We do not release any data as part of our submission, and we provide full references to all datasets used.

REPRODUCIBILITY STATEMENT

We have taken various steps to ensure the ease of reproducibility of both the theoretical and experimental aspects of this paper. On the theoretical side, we have provided full formal and complete proofs for all theoretical results, as well as all the required assumptions and a full description of the problem setting. More specifically, the detailed description of the problem setting is provided in Section 3, whereas the required assumptions are provided in throughout the main body of the paper. Additionally, supplementary theoretical results along with their formal proofs are provided in Appendix B. The proofs of all theoretical results presented in the main body of the paper are provided in Appendix C. Finally, detailed explanations and interpretations of all assumptions and theoretical results are provided in Appendix F. On the experimental side, we have provided a summarized description of our experimental settings and results in Section 6, whereas we provided full detail on all aspects of the experiments as well as supplementary results in Appendices D and E. This includes

540 all software and hardware details, all dataset license information and preprocessing details, as well
 541 as hyperparameter details. Finally, we have included all the code used to run our experiments along
 542 with detailed instructions in a .zip file in the supplementary materials.
 543

544 **REFERENCES**
 545

546 Charles E. Antoniak. Mixtures of dirichlet processes with applications to bayesian nonparametric
 547 problems. *The Annals of Statistics*, 2(6):1152–1174, 1974. ISSN 00905364, 21688966. URL
 548 <http://www.jstor.org/stable/2958336>.

549 Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Federated
 550 learning with personalization layers. *arXiv preprint arXiv:1912.00818*, 2019.

551 Sivaraman Balakrishnan, Martin J. Wainwright, and Bin Yu. Statistical guarantees for the em algo-
 552 rithm: From population to sample-based analysis, 2014. URL <https://arxiv.org/abs/1408.2156>.

553 Jon Louis Bentley. Multidimensional binary search trees used for associative searching. *Commun.*
 554 *ACM*, 18(9):509–517, September 1975. ISSN 0001-0782. doi: 10.1145/361002.361007. URL
 555 <https://doi.org/10.1145/361002.361007>.

556 Freddie Bickford Smith, Adam Foster, and Tom Rainforth. Making better use of unlabelled data
 557 in Bayesian active learning. *International Conference on Artificial Intelligence and Statistics*,
 558 2024a.

559 Freddie Bickford Smith, Adam Foster, and Tom Rainforth. Making better use of unlabelled data
 560 in Bayesian active learning. *International Conference on Artificial Intelligence and Statistics*,
 561 2024b.

562 Stephen P Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

563 L. Breiman and C.J. Stone. Waveform Database Generator (Version 1). UCI Machine Learning
 564 Repository, 1984. DOI: <https://doi.org/10.24432/C5CS3C>.

565 José Luis Corcuerá Bárcena, Francesco Marcelloni, Alessandro Renda, Alessio Bechini, and Pietro
 566 Ducange. Federated c -means and fuzzy c -means clustering algorithms for horizontally and verti-
 567 cally partitioned data. *IEEE Transactions on Artificial Intelligence*, 5(12):6426–6441, 2024. doi:
 568 10.1109/TAI.2024.3426408.

569 Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
 570 to handwritten letters. In *2017 international joint conference on neural networks (IJCNN)*, pp.
 571 2921–2926. IEEE, 2017.

572 Juan Colonna, Eduardo Nakamura, Marco Cristo, and Marcelo Gordo. Anuran Calls (MFCCs). UCI
 573 Machine Learning Repository, 2015. DOI: <https://doi.org/10.24432/C5CC9H>.

574 Don Kurian Dennis, Tian Li, and Virginia Smith. Heterogeneity for the win: One-shot federated
 575 clustering. In *International conference on machine learning*, pp. 2611–2620. PMLR, 2021.

576 Aymeric Dieuleveut, Gersende Fort, Eric Moulines, and Geneviève Robin. Federated-
 577 em with heterogeneity mitigation and variance reduction. In M. Ranzato, A. Beygelz-
 578 imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural In-
 579 formation Processing Systems*, volume 34, pp. 29553–29566. Curran Associates, Inc.,
 580 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/f740c8d9c193f16d8a07d3a8a751d13f-Paper.pdf.

581 Nabanita Dutta, Palanisamy Kaliannan, and Paramasivam Shanmugam. Svm algorithm for vibration
 582 fault diagnosis in centrifugal pump. *INTELLIGENT AUTOMATION AND SOFT COMPUTING*,
 583 35(3):2997–3020, 2023. ISSN 1079-8587. doi: 10.32604/iasc.2023.028704.

584 Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. *Foundations
 585 and trends® in theoretical computer science*, 9(3–4):211–407, 2014.

594 Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for
 595 discovering clusters in large spatial databases with noise. In *Proceedings of the Second Inter-*
 596 *national Conference on Knowledge Discovery and Data Mining*, KDD’96, pp. 226–231. AAAI
 597 Press, 1996.

598 Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for finding best
 599 matches in logarithmic expected time. *ACM Trans. Math. Softw.*, 3(3):209–226, September
 600 1977. ISSN 0098-3500. doi: 10.1145/355744.355745. URL <https://doi.org/10.1145/355744.355745>.

603 Swier Garst and Marcel Reinders. Federated k-means clustering, 2024. URL <https://arxiv.org/abs/2310.01195>.

606 Lawrence Hubert and Phipps Arabie. Comparing partitions. *Journal of classification*, 2:193–218,
 607 1985.

608 Michael C Hughes and Erik Sudderth. Memoized online variational inference for dirichlet pro-
 609 cess mixture models. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q.
 610 Weinberger (eds.), *Advances in Neural Information Processing Systems*, volume 26. Curran
 611 Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/file/d490d7b4576290fa60eb31b5fc917ad1-Paper.pdf.

614 Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
 615 Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learn-
 616 ing. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Confer-
 617 ence on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp.
 618 5132–5143. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/karimireddy20a.html>.

620 Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimiza-
 621 tion: Distributed machine learning for on-device intelligence, 2016. URL <https://arxiv.org/abs/1610.02527>.

623 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images,
 624 2009.

626 Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. *ATT Labs [Online]*.
 627 Available: <http://yann.lecun.com/exdb/mnist>, 2, 2010.

629 Royson Lee, Minyoung Kim, Da Li, Xinchi Qiu, Timothy Hospedales, Ferenc Huszar,
 630 and Nicholas Lane. Fedl2p: Federated learning to personalize. In A. Oh, T. Nau-
 631 mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural
 632 Information Processing Systems*, volume 36, pp. 14818–14836. Curran Associates, Inc.,
 633 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/2fb57276bfbaf1b832d7bfcba36bb41c-Paper-Conference.pdf.

635 Yaguo Lei, Bin Yang, Xinwei Jiang, Feng Jia, Naipeng Li, and Asoke K. Nandi. Applications of
 636 machine learning to machine fault diagnosis: A review and roadmap. *MECHANICAL SYSTEMS
 637 AND SIGNAL PROCESSING*, 138, APR 2020. ISSN 0888-3270. doi: 10.1016/j.ymssp.2019.
 638 106587.

639 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
 640 Federated optimization in heterogeneous networks. *Proceedings of Machine learning and sys-
 641 tems*, 2:429–450, 2020.

643 Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard Vidal. Fed-
 644 erated multi-task learning under a mixture of distributions. In M. Ranzato, A. Beygelz-
 645 imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural In-
 646 formation Processing Systems*, volume 34, pp. 15434–15447. Curran Associates, Inc.,
 647 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/82599a4ec94aca066873c99b4c741ed8-Paper.pdf.

648 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
 649 cas. Communication-Efficient Learning of Deep Networks from Decentralized Data. In
 650 Aarti Singh and Jerry Zhu (eds.), *Proceedings of the 20th International Conference on Artifi-
 651 cial Intelligence and Statistics*, volume 54 of *Proceedings of Machine Learning Research*, pp.
 652 1273–1282. PMLR, 20–22 Apr 2017. URL <https://proceedings.mlr.press/v54/mcmahan17a.html>.

653

654 Warwick Nash, Tracy Sellers, Simon Talbot, Andrew Cawthorn, and Wes Ford. Abalone. UCI
 655 Machine Learning Repository, 1994. DOI: <https://doi.org/10.24432/C55C7W>.

656

657 Yurii Nesterov and Arkadii Nemirovskii. *Interior-Point Polynomial Algorithms in Convex Pro-
 658 gramming*. Society for Industrial and Applied Mathematics, 1994. doi: 10.1137/1.9781611970791.
 659 URL <https://pubs.siam.org/doi/abs/10.1137/1.9781611970791>.

660

661 Meitar Ronen, Shahaf E. Finder, and Oren Freifeld. Deepdpm: Deep clustering with an unknown
 662 number of clusters. In *2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
 663 (CVPR)*, pp. 9851–9860, 2022. doi: 10.1109/CVPR52688.2022.00963.

664 Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of clus-
 665 ter analysis. *Journal of Computational and Applied Mathematics*, 20:53–65, 1987. ISSN
 666 0377-0427. doi: [https://doi.org/10.1016/0377-0427\(87\)90125-7](https://doi.org/10.1016/0377-0427(87)90125-7). URL <https://www.sciencedirect.com/science/article/pii/0377042787901257>.

667

668 Brian K Schimmoller. Long-term service agreements: Weighing the risks and rewards. *Power
 669 Engineering*, 105(8):28–28, 2001.

670

671 Morris Stallmann and Anna Wilbik. Towards federated clustering: A federated fuzzy c -means algo-
 672 rithm (ffcm), 2022. URL <https://arxiv.org/abs/2201.07316>.

673

674 Richard E Thompson, Jason B Yost, et al. Long-term service agreements: Top 10 contractual pitfalls
 675 and how to avoid them–part i.(gas turbines). *Power Engineering*, 107(2):56–59, 2003.

676

677 Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling the objective
 678 inconsistency problem in heterogeneous federated optimization. In *Proceedings of the 34th Inter-
 679 national Conference on Neural Information Processing Systems*, NIPS ’20, Red Hook, NY, USA,
 680 2020. Curran Associates Inc. ISBN 9781713829546.

681

682 C. F. Jeff Wu. On the convergence properties of the em algorithm. *The Annals of Statistics*, 11
 683 (1):95–103, 1983. ISSN 00905364, 21688966. URL <http://www.jstor.org/stable/2240463>.

684

685 Yue Wu, Shuaicheng Zhang, Wenchao Yu, Yanchi Liu, Quanquan Gu, Dawei Zhou, Haifeng Chen,
 686 and Wei Cheng. Personalized federated learning under mixture of distributions. In *Proceedings
 687 of the 40th International Conference on Machine Learning*, ICML’23. JMLR.org, 2023.

688

689 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
 690 ing machine learning algorithms. *CoRR*, abs/1708.07747, 2017. URL <http://arxiv.org/abs/1708.07747>.

691

692 Bowei Yan, Mingzhang Yin, and Purnamrita Sarkar. Convergence of gradient em on multi-
 693 component mixture of gaussians. *Advances in Neural Information Processing Systems*, 30, 2017.

694

695 Shuming Yang, Changlin Xie, Yuqiang Cheng, Biao Wang, Xunyi Ma, and Zinuo Wang. Data-
 696 driven fault diagnosis for rolling bearings based on machine learning and multisensor information
 697 fusion. *IEEE SENSORS JOURNAL*, 25(2):3452–3464, JAN 15 2025. ISSN 1530-437X. doi:
 698 10.1109/JSEN.2024.3499365.

699

700 Vassilios Yfantis, Achim Wagner, and Martin Ruskowski. Federated k-means clustering
 701 via dual decomposition-based distributed optimization. *Franklin Open*, 10:100204, 2025.
 ISSN 2773-1863. doi: <https://doi.org/10.1016/j.fraope.2024.100204>. URL <https://www.sciencedirect.com/science/article/pii/S2773186324001348>.

702 Yunfan Zhang, Yiqun Zhang, Yang Lu, Mengke Li, Xi Chen, and Yiu-ming Cheung. Asynchronous
703 federated clustering with unknown number of clusters. *Proceedings of the AAAI Conference on*
704 *Artificial Intelligence*, 39(21):22695–22703, Apr. 2025. doi: 10.1609/aaai.v39i21.34429. URL
705 <https://ojs.aaai.org/index.php/AAAI/article/view/34429>.
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A FEDERATED GENERALIZED EXPECTATION-
757 MAXIMIZATION ALGORITHM FOR MIXTURE MODELS
758 WITH AN UNKNOWN NUMBER OF COMPONENTS
759 (APPENDICES)**

760 CONTENTS

766 A Supplementary Pseudo-code	17
767 A.1 Detailed FedGEM Pseudo-code	17
768 A.2 Detailed Server Computations Pseudo-code	18
770 B Supplementary Theoretical Results and Analysis	20
772 B.1 Population Convergence Analysis for FedGEM Algorithm	20
773 B.2 Solution Algorithm for Client Radius Problem Reformulation for Isotropic GMMs	21
774 B.3 Supplementary Theorems Verifying Assumptions for Isotropic GMMs	22
776 B.4 Preliminary Differential Privacy Discussion for Isotropic GMMs	34
777 B.5 Computational Efficiency and Communication Costs	35
779 B.5.1 Improving the Efficiency of Server Computations	35
780 B.5.2 A Note on Communication Costs	36
782 C Proofs	36
783 C.1 Proof of Proposition 1	36
784 C.2 Proof of Theorem 1	37
786 C.3 Proof of Theorem 2	37
787 C.4 Proof of Theorem 3	37
788 C.5 Proof of Theorem 4	38
790 D Supplementary Experimental Details and Results	40
792 D.1 Software and Hardware Details	40
793 D.2 Datasets Utilized	41
795 D.2.1 Benchmarking Study	41
796 D.2.2 Sensitivity Study	41
797 D.3 Hyperparameter Details and Performance Evaluation	42
798 D.4 Supplementary Benchmarking Study Results	42
799 D.5 Supplementary Sensitivity Study Results	43
800 D.6 Sensitivity to Hyperparameter	43
803 E Scalability Study	44
805 E.1 Scalability on Image Datasets	45
806 E.2 Scalability on Synthetic Data	45
808 F Further Discussion	46
809 F.1 Justification and Interpretation of Modeling Assumptions	46

810	F.2 Interpretation of Theoretical Results	47
811		
812	F.3 Limitations and Future Work	48
813		
814		
815		
816		
817		
818		
819		
820		
821		
822		
823		
824		
825		
826		
827		
828		
829		
830		
831		
832		
833		
834		
835		
836		
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864 A SUPPLEMENTARY PSEUDO-CODE
865
866
867

868 In this section we provide detailed pseudo-code for our FedGEM algorithm, as well as detailed
869 pseudo-code for the server computations both in the collaborative training and final aggregation
870 phases.

871
872
873
874 A.1 DETAILED FEDGEM PSEUDO-CODE
875
876
877
878
879

880 **Algorithm 1** FedGEM

881 **Input:** Number of communication rounds T , Number of local steps S_g , Final aggregation radius $\varepsilon_{k_g}^{\text{final}}$ and fixed
882 weights $\pi_{k_g} \forall k_g \in [K_g], \forall g \in [G]$

883 **Output:** Final $\theta_{k_g}^{\text{final}}$ for all components $k_g \in [K_g]$ and clients $g \in [G]$, inferred \hat{K}^*

884 1: **INITIALIZATION**
 2: **for** clients $g = 1, \dots, G$ in parallel **do**
 3: Initialize $\theta_{k_g}^{(0)}$ for all $k_g \in [K_g]$ via k-means++.
 4: **end for**
 5: **COLLABORATIVE TRAINING**
 6: **for** round $t = 0, \dots, T$ **do**
 7: **Clients**
 8: **for** clients $g = 1, \dots, G$ in parallel **do**
 9: $\theta_{k_g}^{(t-1,0)} \leftarrow \theta_{k_g}^{(t-1)}$ for all $k_g \in [K_g]$
 10: **for** step $s_g = 1, \dots, S_g$ **do**
 11: Compute $\gamma_{k_g}(\hat{x}_{n_g}, \theta_{k_g}^{(t-1,s_g-1)})$ via E-step in (1) for all $k_g \in [K_g]$ and samples $n_g \in [N_g]$.
 12: Compute $\hat{M}_{k_g}(\theta_{k_g}^{(t-1,s_g-1)})$ via M-step in (2) for all $k_g \in [K_g]$.
 13: Update $\theta_{k_g}^{(t,s_g)} \leftarrow \hat{M}_{k_g}(\theta_{k_g}^{(t-1,s_g-1)})$ for all $k_g \in [K_g]$.
 14: **end for**
 15: Solve for $\varepsilon_{k_g}^{(t)} \leftarrow \arg \max_{\varepsilon_{k_g} \in \mathbb{R}} J_{k_g}(\theta_{k_g}^{(t,S_g)})$ via problem in (3) for all $k_g \in [K_g]$.
 16: **if** $t < T$ **then**
 17: Transmit tuple $(\theta_{k_g}^{(t,S_g)}, \varepsilon_{k_g}^{(t)})$ for all $k_g \in [K_g]$ to central server.
 18: **else**
 19: Transmit tuple $(\theta_{k_g}^{(t,S_g)}, \varepsilon_{k_g}^{\text{final}})$ for all $k_g \in [K_g]$ to central server.
 20: **end if**
 21: **end for**
 22: **Server**
 23: **if** $t < T$ **then**
 24: Update $(\theta_{k_g}^{(t)}, \hat{K}^{(t)}) \leftarrow \text{server_update}(\theta_{k_g}^{(t,S_g)}, \varepsilon_{k_g}^{(t)})$ for all $k_g \in [K_g]$ and $g \in [G]$ via Algo-
25: Transmit $\theta_{k_g}^{(t+1)}$ to clients for all $k_g \in [K_g]$ and $g \in [G]$.
 26: **else**
 27: **FINAL AGGREGATION**
 28: Compute $(\theta_{k_g}^{\text{final}}, \hat{K}^*) \leftarrow \text{server_final_aggregation}(\theta_{k_g}^{(t,S_g)}, \varepsilon_{k_g}^{(t)})$ for all $k_g \in [K_g]$ and
29: Transmit $\theta_{k_g}^{\text{final}}$ to clients for all $k_g \in [K_g]$ and $g \in [G]$.
 30: **end if**
 31: **end for**

918 A.2 DETAILED SERVER COMPUTATIONS PSEUDO-CODE
919
920
921
922923 **Algorithm 2** `server_update($\theta_{k_g}, \varepsilon_{k_g}$)`

924 **Input:** θ_{k_g} and ε_{k_g} for all clients $g \in [G]$ and components $k_g \in [K_g]$ at the g^{th} client
 925 **Output:** Updated θ'_{k_g} for all clients $g \in [G]$ and components $k_g \in [K_g]$ at client g ,
 926 \hat{K}^*

927 1: Initialize $\hat{K} = 0$.
 928 2: Initialize set \mathcal{T}_{k_g} containing only θ_{k_g} for each $g \in [G]$ and $k_g \in [K_g]$.
 929 3: Initialize $\text{comp}(g, k_g).\text{assigned} \leftarrow \text{False}$ for all $g \in [G], k_g \in [K_g]$.
 930 4: Initialize $\text{comp}(g, k_g).\text{supercluster} \leftarrow \text{Null}$ for all $g \in [G], k_g \in [K_g]$.
 931 5: **for** client $g_1 = 1, \dots, G$ **do**
 932 6: **for** component $k_{g_1} = 1, \dots, K_{g_1}$ **do**
 933 7: **for** client $g_2 = g_1, \dots, G$ **do**
 934 8: **for** component $k_{g_2} = 1, \dots, K_{g_2}$ **do**
 935 9: **if** $\|\widehat{M}_{k_g}(\theta'_{g_1}) - \widehat{M}_{k_{g'}}(\theta'_{g'})\|_2 \leq \sqrt{\varepsilon_{k_g}} + \sqrt{\varepsilon_{k_{g'}}}$ **then**
 936 10: $\nu^* \leftarrow \widehat{M}_{k_g}(\theta'_{g_1}) + \text{clip}\left(0.5, 1 - \frac{\sqrt{\varepsilon_{k_{g'}}}}{w}, \frac{\sqrt{\varepsilon_{k_g}}}{w}\right) \left(\widehat{M}_{k_g}(\theta'_{g_1}) - \widehat{M}_{k_g}(\theta'_{g'})\right)$.
 937 11: $\mathcal{T}_{k_{g_1}} \leftarrow \mathcal{T}_{k_{g_1}} \cup \nu^*$.
 938 12: $\mathcal{T}_{k_{g_2}} \leftarrow \mathcal{T}_{k_{g_2}} \cup \nu^*$.
 939 13: **if** $\text{comp}(g_1, k_{g_1}).\text{assigned} = \text{False}$ & $\text{comp}(g_2, k_{g_2}).\text{assigned} = \text{True}$ **then**
 940 14: $\text{comp}(g_1, k_{g_1}).\text{supercluster} \leftarrow \text{comp}(g_2, k_{g_2}).\text{supercluster}$.
 941 15: $\text{comp}(g_1, k_{g_1}).\text{assigned} \leftarrow \text{True}$.
 942 16: **else if** $\text{comp}(g_1, k_{g_1}).\text{assigned} = \text{True}$ & $\text{comp}(g_2, k_{g_2}).\text{assigned} = \text{False}$
 943 **then**
 944 17: $\text{comp}(g_2, k_{g_2}).\text{supercluster} \leftarrow \text{comp}(g_1, k_{g_1}).\text{supercluster}$.
 945 18: $\text{comp}(g_2, k_{g_2}).\text{assigned} \leftarrow \text{True}$.
 946 19: **else if** $\text{comp}(g_1, k_{g_1}).\text{assigned} = \text{True}$ & $\text{comp}(g_2, k_{g_2}).\text{assigned} = \text{True}$
 947 **then**
 948 20: **if** $\text{comp}(g_1, k_{g_1}).\text{supercluster} \neq \text{comp}(g_2, k_{g_2}).\text{supercluster}$ **then**
 949 21: $\text{comp}(g', k_{g'})\text{.supercluster} \leftarrow \text{comp}(g_1, k_{g_1})\text{.supercluster} \forall k_{g'} \text{ such that}$
 950 22: $\text{comp}(g', k_{g'})\text{.supercluster} = \text{comp}(g_2, k_{g_2})\text{.supercluster}$.
 951 23: $\hat{K} \leftarrow \hat{K} - 1$.
 952 24: Reorganize supercluster numbers for all components.
 953 **end if**
 954 25: **else if** $\text{comp}(g_1, k_{g_1}).\text{assigned} = \text{False}$ & $\text{comp}(g_2, k_{g_2}).\text{assigned} = \text{False}$
 955 **then**
 956 26: $\hat{K} \leftarrow \hat{K} + 1$.
 957 27: $\text{comp}(g_1, k_{g_1}).\text{supercluster} \leftarrow \hat{K}$.
 958 28: $\text{comp}(g_2, k_{g_2}).\text{supercluster} \leftarrow \hat{K}$.
 959 29: $\text{comp}(g_1, k_{g_1}).\text{assigned} \leftarrow \text{True}$.
 960 30: $\text{comp}(g_2, k_{g_2}).\text{assigned} \leftarrow \text{True}$.
 961 **end if**
 962 31: **end if**
 963 32: **end for**
 964 33: **end for**
 965 34: **if** $\text{comp}(g_1, k_{g_1}).\text{assigned} = \text{False}$ **then**
 966 35: $\hat{K} \leftarrow \hat{K} + 1$.
 967 36: $\text{comp}(g_1, k_{g_1}).\text{supercluster} \leftarrow \hat{K}$.
 968 37: $\text{comp}(g_1, k_{g_1}).\text{assigned} \leftarrow \text{True}$.
 969 38: **end if**
 970 39: **end if**
 971 40: **end for**
 41: **end for**
 42: **for** client $g = 1, \dots, G$ **do**
 43: **for** component $k_g = 1, \dots, K_g$ **do**
 44: $\theta'_{k_g} \leftarrow \text{aggregate of elements in } \mathcal{T}_{k_g}$.
 45: **end for**
 46: **end for**
 47: $\hat{K}^* \leftarrow \hat{K}$

972 **Algorithm 3** `server_final_aggregation($\theta_{k_g}, \varepsilon_{k_g}^{\text{final}}$)`

973

974 **Input:** θ_{k_g} and $\varepsilon_{k_g}^{\text{final}}$ for all clients $g \in [G]$ and components $k_g \in [K_g]$ at the g^{th} client

975 **Output:** Final $\theta_{k_g}^{\text{final}}$ for all clients $g \in [G]$ and components $k_g \in [K_g]$ at client g , \hat{K}^*

976 1: Initialize $\hat{K} = 0$.

977 2: Initialize set \mathcal{T}_{k_g} containing only θ_{k_g} for each $g \in [G]$ and $k_g \in [K_g]$.

978 3: Initialize $\text{comp}(g, k_g).\text{assigned} \leftarrow \text{False}$ for all $g \in [G], k_g \in [K_g]$.

979 4: Initialize $\text{comp}(g, k_g).\text{supercluster} \leftarrow \text{Null}$ for all $g \in [G], k_g \in [K_g]$.

980 5: **for** client $g_1 = 1, \dots, G$ **do**

981 6: **for** component $k_{g_1} = 1, \dots, K_{g_1}$ **do**

982 7: **for** client $g_2 = g_1, \dots, G$ **do**

983 8: **for** component $k_{g_2} = 1, \dots, K_{g_2}$ **do**

984 9: **if** $\|\widehat{M}_{k_g}(\theta'_{g_1}) - \widehat{M}_{k_{g'}}(\theta'_{g'})\|_2 \leq \sqrt{\varepsilon_{k_g}} + \sqrt{\varepsilon_{k_{g'}}}$ **then**

985 10: **if** $\text{comp}(g_1, k_{g_1}).\text{assigned} = \text{False}$ & $\text{comp}(g_2, k_{g_2}).\text{assigned} = \text{True}$ **then**

986 11: $\text{comp}(g_1, k_{g_1}).\text{supercluster} \leftarrow \text{comp}(g_2, k_{g_2}).\text{supercluster}$.

987 12: $\text{comp}(g_1, k_{g_1}).\text{assigned} \leftarrow \text{True}$.

988 13: $\mathcal{T}_{k_{g_1}} \leftarrow \mathcal{T}_{k_{g_1}} \cup \mathcal{T}_{k_{g_2}}$.

989 14: $\mathcal{T}_{k_{g_2}} \leftarrow \mathcal{T}_{k_{g_2}} \cup \theta_{k_{g_1}}$.

990 15: **else if** $\text{comp}(g_1, k_{g_1}).\text{assigned} = \text{True}$ & $\text{comp}(g_2, k_{g_2}).\text{assigned} = \text{False}$ **then**

991 16: $\text{comp}(g_2, k_{g_2}).\text{supercluster} \leftarrow \text{comp}(g_1, k_{g_1}).\text{supercluster}$.

992 17: $\text{comp}(g_2, k_{g_2}).\text{assigned} \leftarrow \text{True}$.

993 18: $\mathcal{T}_{k_{g_2}} \leftarrow \mathcal{T}_{k_{g_2}} \cup \mathcal{T}_{k_{g_1}}$.

994 19: $\mathcal{T}_{k_{g_1}} \leftarrow \mathcal{T}_{k_{g_1}} \cup \theta_{k_{g_2}}$.

995 20: **else if** $\text{comp}(g_1, k_{g_1}).\text{assigned} = \text{True}$ & $\text{comp}(g_2, k_{g_2}).\text{assigned} = \text{True}$ **then**

996 21: **if** $\text{comp}(g_1, k_{g_1}).\text{supercluster} \neq \text{comp}(g_2, k_{g_2}).\text{supercluster}$ **then**

997 22: $\mathcal{T}_{\text{temp},1} \leftarrow \mathcal{T}_{k_{g_1}}$.

998 23: $\mathcal{T}_{\text{temp},2} \leftarrow \mathcal{T}_{k_{g_2}}$.

999 24: $\mathcal{T}_{k_{g'}} \leftarrow \mathcal{T}_{k_{g'}} \cup \mathcal{T}_{\text{temp},1} \quad \forall k_{g'} \text{ such that } \text{comp}(g', k_{g'})\text{.supercluster} = \text{comp}(g_2, k_{g_2})\text{.supercluster}$.

1000 25: $\mathcal{T}_{k_{g'}} \leftarrow \mathcal{T}_{k_{g'}} \cup \mathcal{T}_{\text{temp},2} \quad \forall k_{g'} \text{ such that } \text{comp}(g', k_{g'})\text{.supercluster} = \text{comp}(g_1, k_{g_1})\text{.supercluster}$.

1001 26: $\text{comp}(g', k_{g'})\text{.supercluster} \leftarrow \text{comp}(g_1, k_{g_1})\text{.supercluster} \quad \forall k_{g'} \text{ such that } \text{comp}(g', k_{g'})\text{.supercluster} = \text{comp}(g_2, k_{g_2})\text{.supercluster}$.

1002 27: $\hat{K} \leftarrow \hat{K} - 1$

1003 28: Reorganize supercluster numbers for all components.

1004 29: **end if**

1005 30: **else if** $\text{comp}(g_1, k_{g_1}).\text{assigned} = \text{False}$ & $\text{comp}(g_2, k_{g_2}).\text{assigned} = \text{False}$ **then**

1006 31: $\hat{K} \leftarrow \hat{K} + 1$.

1007 32: $\text{comp}(g_1, k_{g_1}).\text{supercluster} \leftarrow \hat{K}$.

1008 33: $\text{comp}(g_2, k_{g_2}).\text{supercluster} \leftarrow \hat{K}$.

1009 34: $\text{comp}(g_1, k_{g_1}).\text{assigned} \leftarrow \text{True}$.

1010 35: $\text{comp}(g_2, k_{g_2}).\text{assigned} \leftarrow \text{True}$.

1011 36: $\mathcal{T}_{k_{g_1}} \leftarrow \mathcal{T}_{k_{g_1}} \cup \theta_{k_{g_2}}$.

1012 37: $\mathcal{T}_{k_{g_2}} \leftarrow \mathcal{T}_{k_{g_2}} \cup \theta_{k_{g_1}}$.

1013 38: **end if**

1014 39: **end if**

1015 40: **end for**

1016 41: **end for**

1017 42: **if** $\text{comp}(g_1, k_{g_1}).\text{assigned} = \text{False}$ **then**

1018 43: $\hat{K} \leftarrow \hat{K} + 1$.

1019 44: $\text{comp}(g_1, k_{g_1}).\text{supercluster} \leftarrow \hat{K}$.

1020 45: $\text{comp}(g_1, k_{g_1}).\text{assigned} \leftarrow \text{True}$.

1021 46: **end if**

1022 47: **end for**

1023 48: **end for**

1024 49: **for** client $g = 1, \dots, G$ **do**

1025 50: **for** component $k_g = 1, \dots, K_g$ **do**

51: $\theta_{k_g}^{\text{final}} \leftarrow \text{aggregate of elements in } \mathcal{T}_{k_g}$.

52: **end for**

53: **end for**

54: $\hat{K}^* \leftarrow \hat{K}$

1026 **B SUPPLEMENTARY THEORETICAL RESULTS AND ANALYSIS**
 1027

1028 **B.1 POPULATION CONVERGENCE ANALYSIS FOR FEDGEM ALGORITHM**
 1029

1030 In this section we study the convergence behavior of our proposed algorithm in the population setting.
 1031 The population convergence of our algorithm relies on the convergence of the local EM algorithm at each client g to the likelihood maximizers $\boldsymbol{\theta}_{k_g}^*$ for all $k_g \in [K_g]$. As discussed by Balakrishnan et al. (2014), this requires that the local $Q_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g)$ to satisfy the first-order stability (FOS) condition defined in 1. Indeed, if Assumption 3 holds, then Balakrishnan et al. (2014) prove that the population EM algorithm at client g converges to the ground truth parameters $\boldsymbol{\theta}_{k_g}^*$ for component k_g geometrically as follows:

$$1037 \quad \|M_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^*\|_2 \leq \frac{\beta_g}{\lambda_g} \|\boldsymbol{\theta}_{k_g}^{(t-1)} - \boldsymbol{\theta}_{k_g}^*\|_2 \quad \forall \boldsymbol{\theta}_{k_g}^{(t-1)} \in \mathbb{B}_2(\boldsymbol{\theta}_{k_g}^*; a_g), \quad (8)$$

1039 where a_g is the radius of the contraction region for all components k_g located at client g , and $M_{k_g}(\cdot)$
 1040 is the population M-step map defined next
 1041

$$1042 \quad M_{k_g}(\boldsymbol{\theta}'_g) := \arg \max_{\boldsymbol{\theta}_{k_g} \in \mathbb{R}^d} \mathbb{E}_{\mathbf{x} \sim \mathcal{M}_g(\mathbf{x})} \gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}'_g) \log(\pi_{k_g} p_{k_g}(\mathbf{x} | \boldsymbol{\theta}_{k_g})) \quad \forall k_g \in [K_g]$$

1044 Now, consider a local GEM algorithm whose update during each iteration is any $m_{k_g}(\boldsymbol{\theta}'_g) \in$
 1045 $\mathbb{B}_2(M_{k_g}(\boldsymbol{\theta}'_g); \sqrt{\varepsilon_{k_g}})$, where the radius $\sqrt{\varepsilon_{k_g}}$ is obtained by solving the problem in (3). We show in
 1046 Theorem 5 next that this algorithm exhibits very similar convergence behavior to that shown in (8).

1047 **Theorem 5 (Local Convergence of Population GEM).** *Suppose Assumptions 1 through 5 hold.
 1048 Consider a GEM algorithm whose iterate $m_{k_g}(\boldsymbol{\theta}_g^{(t-1)})$ at iteration t is such that $m_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) \in$
 1049 $\mathbb{B}_2(M_{k_g}(\boldsymbol{\theta}'_g); \sqrt{\varepsilon_{k_g}})$, where the radius $\sqrt{\varepsilon_{k_g}}$ is obtained by solving the population counterpart
 1050 of the problem in (3). Then, this algorithm converges to the ground truth parameters $\boldsymbol{\theta}_{k_g}^*$ as follows:*

$$1053 \quad \|m_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^*\|_2 \leq \frac{\beta_g}{\lambda_g} \|\boldsymbol{\theta}_{k_g}^{(t-1)} - \boldsymbol{\theta}_{k_g}^*\|_2 + \epsilon(t) \quad \forall \boldsymbol{\theta}_{k_g}^{(t-1)} \in \mathbb{B}_2(\boldsymbol{\theta}_{k_g}^*; a_g), \quad (9)$$

1055 where $\epsilon(t) = \|M_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^{(t-1)}\|_2^2 \rightarrow 0$ as $t \rightarrow \infty$.
 1056

1057 *Proof.*

$$1059 \quad \|m_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^*\|_2 = \|m_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - M_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) + M_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^*\|_2 \quad (10a)$$

$$1060 \quad \leq \|M_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^*\|_2 + \|M_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - m_{k_g}(\boldsymbol{\theta}_g^{(t-1)})\|_2 \quad (10b)$$

$$1062 \quad \leq \frac{\beta_g}{\lambda_g} \|\boldsymbol{\theta}_{k_g}^{(t-1)} - \boldsymbol{\theta}_{k_g}^*\|_2 + \|M_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - m_{k_g}(\boldsymbol{\theta}_g^{(t-1)})\|_2 \quad (10c)$$

$$1064 \quad < \frac{\beta_g}{\lambda_g} \|\boldsymbol{\theta}_{k_g}^{(t-1)} - \boldsymbol{\theta}_{k_g}^*\|_2 + \underbrace{\|M_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^{(t-1)}\|_2}_{\epsilon(t)}, \quad (10d)$$

1067 where (10b) follows from the triangle inequality, (10c) relies on the convergence of $M_{k_g}(\boldsymbol{\theta}_g)$
 1068 with $\frac{\beta_g}{\lambda_g} < 1$, and (10d) follows from the definition of $m_{k_g}(\boldsymbol{\theta}_g)$. Now, we consider the
 1069 $\|M_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^{(t-1)}\|_2$ term. Firstly, observe that $\boldsymbol{\theta}_{k_g}^{(t)}$ for all $t \in [T]$ are iterates of a
 1070 GEM algorithm. Moreover, recall that we assume that the true log-likelihood of our problem is
 1071 bounded from above, and the expected complete-data log-likelihood $Q_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g)$ is continuous in
 1072 both its conditioning and input arguments. Therefore, by Theorem 1 in (Wu, 1983), the iterates
 1073 must converge to a stationary value of the true log-likelihood. This suggests that the quantity
 1074 $[Q_g(M_g(\boldsymbol{\theta}_g^{(t-1)}) | \boldsymbol{\theta}_g^{(t-1)}) - Q_g(\boldsymbol{\theta}_g^{(t-1)} | \boldsymbol{\theta}_g^{(t-1)})] \rightarrow 0$ as $t \rightarrow \infty$. Finally, by the assumed strong
 1075 concavity of the expected complete-data log-likelihood function everywhere, we have that
 1076

$$1078 \quad Q_g(M_g(\boldsymbol{\theta}_g^{(t-1)}) | \boldsymbol{\theta}_g^{(t-1)}) - Q_g(\boldsymbol{\theta}_g^{(t-1)} | \boldsymbol{\theta}_g^{(t-1)}) \geq \frac{\lambda_g}{2} \|M_g(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_g^{(t-1)}\|_2^2,$$

1079 proving that $\|M_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^{(t-1)}\|_2 \rightarrow 0$ as $t \rightarrow \infty$. This concludes the proof. \square

1080 B.2 SOLUTION ALGORITHM FOR CLIENT RADIUS PROBLEM REFORMULATION FOR
1081 ISOTROPIC GMMS
1082

1083 In this section, we introduce the low-complexity Algorithm 4, which can be used to solve the refor-
1084 mulated client radius problem in (7). Subsequently, we introduce Proposition 2, which establishes
1085 the worst-case time complexity of Algorithm 4.

1086

1087 **Algorithm 4** Radius Problem $J_{k_g}(\boldsymbol{\theta}'_g)$ (7) Solution Algorithm

1088 **Input:** $\boldsymbol{\theta}'_{k_g}$, $\widehat{M}_{k_g}(\boldsymbol{\theta}'_g)$, $\varepsilon_{k_g,lb}^{(0)} = 0$, $\varepsilon_{k_g,ub}^{(0)} = \|\widehat{M}_{k_g}(\boldsymbol{\theta}'_g) - \boldsymbol{\theta}'_{k_g}\|_2^2$

1089 **Parameters:** Number of iterations I

1090 **Output:** $\varepsilon_{k_g}^*$

1091 1: **for** $i = 0, \dots, I$ **do**
1092 2: $\widehat{\varepsilon}_{k_g}^{(i)} \leftarrow \frac{\varepsilon_{k_g,lb}^{(i)} + \varepsilon_{k_g,ub}^{(i)}}{2}$
1093 3: Solve for $t_{k_g}^{(i)}$ minimizer of $F_k(\boldsymbol{\theta}'_g, \widehat{\varepsilon}_{k_g}^{(i)})$ (11).
1094 4: **if** $t_{k_g}^{(i)} = 0$ **then**
1095 5: $\varepsilon_{k_g,lb}^{(i+1)} \leftarrow \widehat{\varepsilon}_{k_g}^{(i)}$
1096 6: $\varepsilon_{k_g,ub}^{(i+1)} \leftarrow \varepsilon_{k_g,ub}^{(i)}$
1097 7: **else**
1098 8: $\varepsilon_{k_g,ub}^{(i+1)} \leftarrow \widehat{\varepsilon}_{k_g}^{(i)}$
1099 9: $\varepsilon_{k_g,lb}^{(i+1)} \leftarrow \varepsilon_{k_g,lb}^{(i)}$
1100 10: **end if**
1101 11: **end for**

1104

1105 where $F_k(\boldsymbol{\theta}'_g, \widehat{\varepsilon}_{k_g}^{(i)})$ is the optimization problem shown next.
1106

1107
$$F_k(\boldsymbol{\theta}'_g, \widehat{\varepsilon}_{k_g}^{(i)}) =$$

1108
$$\left\{ \begin{array}{ll} \min_{t_{k_g}, \alpha_{k_g} \in \mathbb{R}} & t_{k_g} \\ \text{s. t.} & \varepsilon_{k_g} \alpha_{k_g}^2 + \left[\sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \left(\|\widehat{\mathbf{x}}_{n_g} - \widehat{M}_{k_g}(\boldsymbol{\theta}'_g)\|_2^2 - \|\widehat{\mathbf{x}}_{n_g} - \boldsymbol{\theta}'_{k_g}\|_2^2 - \varepsilon_{k_g} \right) \right] \alpha_{k_g} + \\ & - t_{k_g} + \left(\sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \right) \sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \|\widehat{\mathbf{x}}_{n_g} - \boldsymbol{\theta}'_{k_g}\|_2^2 \leq 0 \\ & \alpha_{k_g} \geq \sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g), \quad t_{k_g} \geq 0. \end{array} \right. \quad (11)$$

1120

1121 **Proposition 2** (Local Radius Algorithm Convergence). *The Algorithm 4 converges to an optimal
1122 solution $\varepsilon_{k_g}^*$ of the optimization problem in (7) at a linear rate, with a worst-case time complexity of
1123 $\mathcal{O}(\log(\varepsilon_{tol}^{-1}))$ per iteration, where ε_{tol}^{-1} is the solution tolerance of the feasibility problem (11).*

1124

1125 *Proof.* Consider the optimization problem in (7). Firstly, observe that the first constraint is non-
1126 decreasing in ε_{k_g} for a fixed α_{k_g} . This is because $\varepsilon_{k_g} \left(\alpha_{k_g}^2 - \alpha_{k_g} \sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \right) \geq 0$ due
1127 to the constraint that $\alpha_{k_g} \geq \sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g)$. Moreover, note that by the strong concavity of
1128 $\widehat{Q}_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g)$, we have that ε_{k_g} must obey $0 \leq \sqrt{\varepsilon_{k_g}} \leq \|\widehat{M}_{k_g}(\boldsymbol{\theta}'_g) - \boldsymbol{\theta}'_{k_g}\|_2$. Furthermore, it also
1129 follows from the strong concavity of $\widehat{Q}_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g)$ that $\varepsilon_{k_g} = 0$ must always be a feasible solution to
1130 the problem given that the algorithm has not yet converged. This is because the strong concavity
1131 of $\widehat{Q}_{k_g}(\boldsymbol{\theta}_{k_g} | \boldsymbol{\theta}'_g)$ for the GMM discussed in Section 5 suggests that $\sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \|\widehat{\mathbf{x}}_{n_g} - \boldsymbol{\theta}'_{k_g}\|_2^2 \geq \sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \|\widehat{\mathbf{x}}_{n_g} - \widehat{M}_{k_g}(\boldsymbol{\theta}'_g)\|_2^2$ with equality attained if and only if $\boldsymbol{\theta}'_{k_g} =$

1134 $\widehat{M}_{k_g}(\boldsymbol{\theta}'_g)$. Therefore, α_{k_g} can be made arbitrarily large to make sure the constraint is satisfied.
 1135 Combined with the uniqueness result presented in Proposition 1, these facts suggest that we can use
 1136 a bisection approach such as the one shown in Algorithm 4 to obtain the optimal radius. Moreover,
 1137 this also suggests that we can use the optimization problem presented in (11) to check the feasibility
 1138 of a given $\widehat{\varepsilon}_{k_g}$. More specifically, an optimal $t_{k_g} = 0$ suggests that the constraints are already
 1139 satisfied, and therefore the estimated $\widehat{\varepsilon}_{k_g}$ is feasible, and vice versa.

1140 Now, observe that the feasibility check problem in (1) is a quadratically constrained quadratic pro-
 1141 gram (QCQP) with 3 constraints and 2 1-dimensional decision variables. Therefore, it can readily
 1142 be solved via the barrier method with worst-case time complexity of $\mathcal{O}(\log(\epsilon_{\text{tol}}^{-1}))$, where $\epsilon_{\text{tol}}^{-1}$ is the
 1143 solution tolerance of the feasibility problem (11) (Nesterov & Nemirovskii, 1994). \square
 1144

1145 B.3 SUPPLEMENTARY THEOREMS VERIFYING ASSUMPTIONS FOR ISOTROPIC GMMS

1146
 1147 In this section, we verify three key assumptions to guarantee the convergence of our proposed
 1148 FedGEM for the GMM discussed in Section 5. More specifically, we begin by proving that the
 1149 population $Q_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g)$ function associated with the GMM under study obeys the FOS condition in
 1150 Theorem 6. Subsequently, we derive the radius of the region for which the population M-step map
 1151 for this model is indeed contractive in Theorem 7. Finally, we derive the upper bound on the distance
 1152 between the population and finite-sample M-step maps in Theorem 8.

1153 **Theorem 6 (GMM First-Order Stability).** *Suppose $R_{\min} = \tilde{\Omega}(\sqrt{\min\{d, K_g\}})$. Then the func-
 1154 tion $Q_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g)$ associated with the GMM described in this section obeys the first-order sta-
 1155 bility condition defined in 1 for all $\boldsymbol{\theta}_{k_g} \in \mathbb{B}_2(\boldsymbol{\theta}_{k_g}^*, a_g) \forall k_g \in [K_g]$, where $a_g \leq \frac{R_{\min}}{2} -$
 1156 $\sqrt{\min\{d, K_g\}} \max\{4\sqrt{2[\log(R_{\min}/4)]_+}, 8\sqrt{3}\}$. That is*

$$1157 \quad 1158 \quad \|\nabla Q_g(M(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g) - \nabla Q(M(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g^*)\|_2 \leq \beta_g \|\boldsymbol{\theta}_g - \boldsymbol{\theta}_g^*\|_2,$$

1159 with

$$1160 \quad \beta_g = (1 + \pi'_g) \beta'_g + \pi'_g \pi_{\max_g},$$

1161 where π'_g is a constant depending on K_g , R_{\min} , a_g , d , π_{\min_g} , and π_{\max_g} whose explicit form can be
 1162 found in the proof, and

$$1163 \quad 1164 \quad \beta'_g = K_g^2 (2\kappa + 4) (2R_{\max} + \min\{d, K_g\})^2 \exp\left(-\left(\frac{R_{\min}}{2} - a_g\right)^2 \sqrt{\min\{d, K_g\}/8}\right),$$

1166 *Proof.* We begin this proof by studying the FOS condition for each component k_g separately. Firstly,
 1167 note that

$$1168 \quad \nabla_{\boldsymbol{\theta}_{k_g}} Q(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g) = \mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)(\mathbf{x} - \boldsymbol{\theta}'_{k_g})].$$

1169 Therefore, we can plug in $\boldsymbol{\theta}_{k_g} = M_{k_g}(\boldsymbol{\theta}_g)$ to obtain the following.

$$1170 \quad \|\nabla_{M_{k_g}(\boldsymbol{\theta}_g)} Q(M_g(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g) - \nabla_{M_{k_g}(\boldsymbol{\theta}_g)} Q(M_g(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g^*)\|_2 \quad (12a)$$

$$1171 \quad = \|\mathbb{E}_{\mathbf{x}}[(\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) - \gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*))(\mathbf{x} - M_{k_g}(\boldsymbol{\theta}_g))]\|_2 \quad (12b)$$

$$1172 \quad = \|\mathbb{E}_{\mathbf{x}}[(\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) - \gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*))(\mathbf{x} - \boldsymbol{\theta}_{k_g} + \boldsymbol{\theta}_{k_g} - M_{k_g}(\boldsymbol{\theta}_g))]\|_2 \quad (12c)$$

$$1173 \quad = \|\mathbb{E}_{\mathbf{x}}[(\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) - \gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*))(\mathbf{x} - \boldsymbol{\theta}_{k_g})] - \mathbb{E}_{\mathbf{x}}[(\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) - \gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*))(M_{k_g}(\boldsymbol{\theta}_g) - \boldsymbol{\theta}_{k_g})]\|_2 \quad (12d)$$

$$1174 \quad \leq \underbrace{\|\mathbb{E}_{\mathbf{x}}[(\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) - \gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*))(\mathbf{x} - \boldsymbol{\theta}_{k_g})]\|_2}_{A_1} + \underbrace{\|\mathbb{E}_{\mathbf{x}}[(\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) - \gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*))(M_{k_g}(\boldsymbol{\theta}_g) - \boldsymbol{\theta}_{k_g})]\|_2}_{A_2}, \quad (12e)$$

1175 where (12d) follows by the linearity of the expectation operator, and (12e) follows from the triangle
 1176 inequality. Now, it is established in Theorem 4 in (Yan et al., 2017) that

$$1177 \quad 1178 \quad A_1 \leq \frac{\beta'_g}{K_g} \sum_{k_g=1}^{K_g} \|\boldsymbol{\theta}_{k_g} - \boldsymbol{\theta}_{k_g}^*\|_2, \quad (13)$$

1188 where β'_g is defined in our theorem statement. Therefore, it remains to obtain an upper bound for
 1189 A_2 . We begin this as follows.
 1190

$$A_2 := \|\mathbb{E}_{\mathbf{x}}[(\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) - \gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*))](M_{k_g}(\boldsymbol{\theta}_g) - \boldsymbol{\theta}_{k_g})]\|_2 \quad (14a)$$

$$= \|\mathbb{E}_{\mathbf{x}}[(\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) - \gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*))](M_{k_g}(\boldsymbol{\theta}_g) - \boldsymbol{\theta}_{k_g})]\|_2 \quad (14b)$$

$$= (\mathbb{E}_{\mathbf{x}}[(\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) - \mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*)])])\|M_{k_g}(\boldsymbol{\theta}_g) - \boldsymbol{\theta}_{k_g}\|_2 \quad (14c)$$

$$= (\mathbb{E}_{\mathbf{x}}[(\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) - \mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*)])]) \left\| \frac{\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)\mathbf{x}]}{\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)]} - \boldsymbol{\theta}_{k_g} \right\|_2 \quad (14d)$$

$$= \underbrace{\frac{(\mathbb{E}_{\mathbf{x}}[(\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) - \mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*)])])}{\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)]}}_{A_{2a}} \underbrace{\|\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)(\mathbf{x} - \boldsymbol{\theta}_{k_g})]\|_2}_{A_{2b}} \quad (14e)$$

1201 where (14b) is obtained by realizing that $M_{k_g}(\boldsymbol{\theta}_g)$ is comprised of expectations in \mathbf{x} , and thus is no
 1202 longer random, and (14c) follows from the linearity of the expectation, and from the fact that the
 1203 expectation terms become scalar quantities, and can therefore be taken outside the norm. Now, we
 1204 must obtain upper bounds for the terms A_{2a} and A_{2b} . In bounding A_{2a} , we proceed by obtaining
 1205 an upper bound for the numerator and a lower bound for the denominator. To achieve this, firstly
 1206 observe the following.

$$\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*)] = \int_{\mathbf{x}} \frac{\pi_{k_g} \phi(\mathbf{x} | \boldsymbol{\theta}_{k_g}^*)}{\sum_{j_g=1}^{K_g} \pi_{j_g} \phi(\mathbf{x} | \boldsymbol{\theta}_{j_g}^*)} \left(\sum_{m_g=1}^{K_g} \pi_{m_g} \phi(\mathbf{x} | \boldsymbol{\theta}_{m_g}^*) \right) d\mathbf{x} \quad (15a)$$

$$= \int_{\mathbf{x}} \pi_{k_g} \phi(\mathbf{x} | \boldsymbol{\theta}_{k_g}^*) d\mathbf{x} \quad (15b)$$

$$= \pi_{k_g}. \quad (15c)$$

1214 Next, we examine the $\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)]$ term as follows.
 1215

$$\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)] = \sum_{l_g=1}^{K_g} \pi_{l_g} \mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) | \mathbf{x} \sim \mathcal{N}(\boldsymbol{\theta}_{l_g}^*, I_d)] \quad (16a)$$

$$= \sum_{l_g=1}^{K_g} \pi_{l_g} \int_{\mathbf{x}} \gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) \phi(\mathbf{x} | \boldsymbol{\theta}_{l_g}^*) d\mathbf{x}, \quad (16b)$$

1222 which follows from the law of total expectation. Now, we analyze two cases as follows.
 1223

- **Case 1:** $l_g = k_g$

1224 In this case, we have that
 1225

$$\int_{\mathbf{x}} \underbrace{\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)}_{\leq 1} \phi(\mathbf{x} | \boldsymbol{\theta}_{l_g}^*) d\mathbf{x} \leq \int_{\mathbf{x}} \phi(\mathbf{x} | \boldsymbol{\theta}_{k_g}^*) d\mathbf{x} = 1.$$

1230 Thus, $\pi_{l_g} \int_{\mathbf{x}} \gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) \phi(\mathbf{x} | \boldsymbol{\theta}_{l_g}^*) d\mathbf{x} = \pi_{k_g}$
 1231

- **Case 2:** $l_g \neq k_g$

1232 In this case, we have that
 1233

$$\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) = \frac{\pi_{k_g} \exp(-\frac{1}{2} \|\mathbf{x} - \boldsymbol{\theta}_{k_g}\|_2^2)}{\sum_{j_g=1}^{K_g} \pi_{j_g} \exp(-\frac{1}{2} \|\mathbf{x} - \boldsymbol{\theta}_{j_g}\|_2^2)} \quad (17a)$$

$$\leq \frac{\pi_{k_g} \exp(-\frac{1}{2} \|\mathbf{x} - \boldsymbol{\theta}_{k_g}\|_2^2)}{\pi_{l_g} \exp(-\frac{1}{2} \|\mathbf{x} - \boldsymbol{\theta}_{l_g}\|_2^2)} \quad (17b)$$

$$= \frac{\pi_{k_g}}{\pi_{l_g}} \exp \left[-\frac{1}{2} (\|\mathbf{x} - \boldsymbol{\theta}_{k_g}\|_2^2 - \|\mathbf{x} - \boldsymbol{\theta}_{l_g}\|_2^2) \right]. \quad (17c)$$

Now, define event $\mathcal{A}_{k_g, r_g} = \{\mathbf{x} : \mathbf{x} \sim \mathcal{N}(\boldsymbol{\theta}_{l_g}^*, I_d), \|\mathbf{x} - \boldsymbol{\theta}_{l_g}^*\|_2 \leq r_g\}$, where $r_g \in \mathbb{R}$ is some constant, which we will obtain bounds for later. Since $l_g \neq k_g$ we can obtain a lower bound for the quantity $\|\mathbf{x} - \boldsymbol{\theta}_{l_g}\|_2$ for $\mathbf{x} \in \mathcal{A}_{k_g, r_g}$ via the triangle inequality as follows.

$$\begin{aligned} \|\mathbf{x} - \boldsymbol{\theta}_{k_g}\|_2 &= \|\mathbf{x} - \boldsymbol{\theta}_{l_g}^* + \boldsymbol{\theta}_{l_g}^* - \boldsymbol{\theta}_{k_g}\|_2 \\ &\geq \|\boldsymbol{\theta}_{l_g}^* - \boldsymbol{\theta}_{k_g}\|_2 - \|\boldsymbol{\theta}_{l_g}^* - \mathbf{x}\|_2 \\ &\geq \|\boldsymbol{\theta}_{l_g}^* - \boldsymbol{\theta}_{k_g}^* + \boldsymbol{\theta}_{k_g}^* - \boldsymbol{\theta}_{k_g}\|_2 - r_g \\ &\geq \|\boldsymbol{\theta}_{l_g}^* - \boldsymbol{\theta}_{k_g}^*\|_2 - \|\boldsymbol{\theta}_{k_g} - \boldsymbol{\theta}_{k_g}^*\|_2 - r_g \\ &\geq R_{\min} - a_g - r_g. \end{aligned}$$

Similarly, we can obtain an upper bound for the quantity $\|\mathbf{x} - \boldsymbol{\theta}_{k_g}\|_2$ for $\mathbf{x} \in \mathcal{A}_{k_g, r_g}$ as follows.

$$\begin{aligned} \|\mathbf{x} - \boldsymbol{\theta}_{l_g}\|_2 &= \|\mathbf{x} - \boldsymbol{\theta}_{l_g}^* + \boldsymbol{\theta}_{l_g}^* - \boldsymbol{\theta}_{l_g}\|_2 \\ &\leq \|\mathbf{x} - \boldsymbol{\theta}_{l_g}^*\|_2 + \|\boldsymbol{\theta}_{l_g}^* - \boldsymbol{\theta}_{l_g}\|_2 \\ &\leq r_g + a_g. \end{aligned}$$

Therefore, we have that

$$\frac{\pi_{k_g}}{\pi_{l_g}} \exp \left[-\frac{1}{2} (\|\mathbf{x} - \boldsymbol{\theta}_{k_g}\|_2^2 - \|\mathbf{x} - \boldsymbol{\theta}_{l_g}\|_2^2) \right] \leq \frac{\pi_{k_g}}{\pi_{l_g}} \exp \left[-\frac{1}{2} R_{\min}^2 - 2R_{\min}(a_g + r_g) \right],$$

with the requirement that $r_g < \frac{R_{\min}}{2} - a_g$ to ensure the negativity of the term inside the exponent. This allows us to write the following for $l_g \neq k_g$.

$$\begin{aligned} &\int_{\mathbf{x}} \gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) \phi(\mathbf{x} | \boldsymbol{\theta}_{l_g}^*) d\mathbf{x} \\ &\leq \int_{\mathbf{x} \in \mathcal{A}_{k_g, r_g}} \frac{\pi_{k_g}}{\pi_{l_g}} \exp \left[-\frac{1}{2} R_{\min}^2 - 2R_{\min}(a_g + r_g) \right] \phi(\mathbf{x} | \boldsymbol{\theta}_{l_g}^*) d\mathbf{x} + \\ &\quad \int_{\mathbf{x} \notin \mathcal{A}_{k_g, r_g}} \underbrace{\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)}_{\leq 1} \phi(\mathbf{x} | \boldsymbol{\theta}_{l_g}^*) d\mathbf{x} \quad (18a) \end{aligned}$$

$$\leq \frac{\pi_{k_g}}{\pi_{l_g}} \exp \left[-\frac{1}{2} R_{\min}^2 - 2R_{\min}(a_g + r_g) \right] + \int_{\mathbf{x} \notin \mathcal{A}_{k_g, r_g}} \phi(\mathbf{x} | \boldsymbol{\theta}_{l_g}^*) d\mathbf{x} \quad (18b)$$

$$= \frac{\pi_{k_g}}{\pi_{l_g}} \exp \left[-\frac{1}{2} R_{\min}^2 - 2R_{\min}(a_g + r_g) \right] + P(\|\mathbf{x} - \boldsymbol{\theta}_{l_g}^*\|_2 \geq r_g | \mathbf{x} \sim \mathcal{N}(\boldsymbol{\theta}_{l_g}^*, I_d)) \quad (18c)$$

$$\leq \frac{\pi_{k_g}}{\pi_{l_g}} \exp \left[-\frac{1}{2} R_{\min}^2 - 2R_{\min}(a_g + r_g) \right] + \exp \left(-\frac{r_g \sqrt{d}}{2} \right), \quad (18d)$$

where (18d) follows from standard tail analysis shown in Lemma 8 in (Yan et al., 2017) for $r_g \geq 2\sqrt{d}$.

Putting together the two cases analyzed previously, we obtain the following.

$$\begin{aligned} \mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)] &\leq \pi_{k_g} + \sum_{l_g \in [K_g], l_g \neq k_g} \pi_{l_g} \left[\frac{\pi_{k_g}}{\pi_{l_g}} \exp \left[-\frac{1}{2} R_{\min}^2 - 2R_{\min}(a_g + r_g) \right] + \exp \left(-\frac{r_g \sqrt{d}}{2} \right) \right] \\ &= \pi_{k_g} + \pi_{k_g}(K_g - 1) \exp \left[-\frac{1}{2} R_{\min}^2 - 2R_{\min}(a_g + r_g) \right] + (1 - \pi_{k_g}) \exp \left(-\frac{r_g \sqrt{d}}{2} \right). \end{aligned}$$

This allows us to directly observe that

$$\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)] - \mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*)] \leq (K_g - 1) \exp \left[-\frac{1}{2} R_{\min}^2 - 2R_{\min}(a_g + r_g) \right] + (1 - \pi_{k_g}) \exp \left(-\frac{r_g \sqrt{d}}{2} \right).$$

Now, it remains to obtain a lower bound for $\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)]$, which we do as follows. First, define an event $\mathcal{B}_{k_g, r_g} = \{\mathbf{x} : \mathbf{x} \sim \mathcal{N}(\boldsymbol{\theta}_{k_g}^*, I_d), \|\mathbf{x} - \boldsymbol{\theta}_{k_g}^*\|_2 \leq r_g\}$, where $r_g \in \mathbb{R}$ is such that $2\sqrt{D} \leq r_g < \frac{R_{\min}}{2} - a_g$ as we saw previously. Then we have that

$$\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)] = P(\mathcal{B}_{k_g, r_g})\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)|\mathcal{B}_{k_g, r_g}] + P(\mathcal{B}_{k_g, r_g}^c)\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)|\mathcal{B}_{k_g, r_g}^c] \quad (19a)$$

$$\geq P(\mathcal{B}_{k_g, r_g})\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)|\mathcal{B}_{k_g, r_g}], \quad (19b)$$

where (19a) follows from the law of total expectation, and (19b) follows from the fact that $\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)$ is uniformly lower bounded by 0. Now, consider $\mathbf{x} \in \mathcal{B}_{k_g, r_g}$. For $j_g \in [K_g]$, $j_g \neq k_g$, we can lower bound the quantity $\|\mathbf{x} - \boldsymbol{\theta}_{j_g}\|_2$ via the triangle inequality as follows.

$$\begin{aligned} \|\mathbf{x} - \boldsymbol{\theta}_{j_g}\|_2 &= \|\mathbf{x} - \boldsymbol{\theta}_{k_g}^* + \boldsymbol{\theta}_{k_g}^* - \boldsymbol{\theta}_{j_g}\|_2 \\ &\geq \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{k_g}^*\|_2 - \|\mathbf{x} - \boldsymbol{\theta}_{k_g}^*\|_2 \\ &\geq \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^* + \boldsymbol{\theta}_{j_g}^* - \boldsymbol{\theta}_{k_g}^*\|_2 - r_g \\ &\geq \|\boldsymbol{\theta}_{j_g}^* - \boldsymbol{\theta}_{k_g}^*\|_2 - \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 - r_g \\ &\geq R_{\min} - r_g - a_g. \end{aligned}$$

Similarly, for $j_g = k_g$ we can upper bound the quantity $\|\mathbf{x} - \boldsymbol{\theta}_{j_g}\|_2$ via the triangle inequality as follows.

$$\begin{aligned} \|\mathbf{x} - \boldsymbol{\theta}_{j_g}\|_2 &= \|\mathbf{x} - \boldsymbol{\theta}_{k_g}^* + \boldsymbol{\theta}_{k_g}^* - \boldsymbol{\theta}_{k_g}\|_2 \\ &\leq \|\mathbf{x} - \boldsymbol{\theta}_{k_g}^*\|_2 + \|\boldsymbol{\theta}_{k_g}^* - \boldsymbol{\theta}_{k_g}\|_2 \\ &\leq r_g + a_g. \end{aligned}$$

Now, let us write $\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)$ differently to simplify the analysis. To do that, let us define the following.

$$\begin{aligned} \tilde{\gamma}_k(\mathbf{x}, \boldsymbol{\theta}_g) &:= \frac{1}{\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)} \\ &= \frac{\sum_{j_g=1}^{K_g} \pi_{j_g} \phi(\mathbf{x} | \boldsymbol{\theta}_{j_g})}{\pi_{k_g} \phi(\mathbf{x} | \boldsymbol{\theta}_{k_g})} \\ &= \sum_{j_g=1}^{K_g} \frac{\pi_{j_g}}{\pi_{k_g}} \exp \left[-\frac{1}{2} (\|\mathbf{x} - \boldsymbol{\theta}_{j_g}\|_2^2 - \|\mathbf{x} - \boldsymbol{\theta}_{k_g}\|_2^2) \right] \end{aligned}$$

Therefore, given that $\mathbf{x} \in \mathcal{B}_{k_g, r_g}$, we can write

$$\begin{aligned} \gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) &= \frac{1}{\tilde{\gamma}_k(\mathbf{x}, \boldsymbol{\theta}_g)} \\ &= \frac{1}{\sum_{j_g=1}^{K_g} \frac{\pi_{j_g}}{\pi_{k_g}} \exp \left[-\frac{1}{2} (\|\mathbf{x} - \boldsymbol{\theta}_{j_g}\|_2^2 - \|\mathbf{x} - \boldsymbol{\theta}_{k_g}\|_2^2) \right]} \\ &\geq \frac{1}{1 + \sum_{j_g \in [K_g], j_g \neq k_g} \frac{\pi_{j_g}}{\pi_{k_g}} \exp \left[-\frac{1}{2} (R_{\min}^2 - 2R_{\min}(r_g + a_g)) \right]} \\ &= \frac{1}{1 + \frac{1 - \pi_{k_g}}{\pi_{k_g}} \exp \left[-\frac{1}{2} (R_{\min}^2 - 2R_{\min}(r_g + a_g)) \right]}. \end{aligned}$$

This lower bound on $\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)$ in the case where $\mathbf{x} \in \mathcal{B}_{k_g, r_g}$ allows us to write the following.

$$\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)|\mathcal{B}_{k_g, r_g}] \geq \frac{1}{1 + \frac{1 - \pi_{k_g}}{\pi_{k_g}} \exp \left[-\frac{1}{2} (R_{\min}^2 - 2R_{\min}(r_g + a_g)) \right]}$$

1350 Then, we can bound $\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)]$ as follows.
1351

1352

1353

1354

1355

1356

1357

$$\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)] \geq \frac{P(\mathcal{B}_{k_g, r_g})}{1 + \frac{1-\pi_{k_g}}{\pi_{k_g}} \exp\left[-\frac{1}{2}(R_{\min}^2 - 2R_{\min}(r_g + a_g))\right]} \quad (20)$$

$$= \frac{P(\mathbf{x} \sim \mathcal{N}(\boldsymbol{\theta}_{k_g}^*, I_d)) P(\|\mathbf{x} - \boldsymbol{\theta}_{k_g}^*\|_2 \leq r_g | \mathbf{x} \sim \mathcal{N}(\boldsymbol{\theta}_{k_g}^*, I_d))}{1 + \frac{1-\pi_{k_g}}{\pi_{k_g}} \exp\left[-\frac{1}{2}(R_{\min}^2 - 2R_{\min}(r_g + a_g))\right]} \quad (21)$$

$$= \frac{\pi_{k_g} P(\|\mathbf{x} - \boldsymbol{\theta}_{k_g}^*\|_2 \leq r_g | \mathbf{x} \sim \mathcal{N}(\boldsymbol{\theta}_{k_g}^*, I_d))}{1 + \frac{1-\pi_{k_g}}{\pi_{k_g}} \exp\left[-\frac{1}{2}(R_{\min}^2 - 2R_{\min}(r_g + a_g))\right]} \quad (22)$$

$$= \frac{\pi_{k_g} (1 - P(\|\mathbf{x} - \boldsymbol{\theta}_{k_g}^*\|_2 \geq r_g | \mathbf{x} \sim \mathcal{N}(\boldsymbol{\theta}_{k_g}^*, I_d)))}{1 + \frac{1-\pi_{k_g}}{\pi_{k_g}} \exp\left[-\frac{1}{2}(R_{\min}^2 - 2R_{\min}(r_g + a_g))\right]} \quad (23)$$

$$\geq \frac{\pi_{k_g} \left[1 - \exp\left(-\frac{r_g \sqrt{d}}{2}\right) \right]}{1 + \frac{1-\pi_{k_g}}{\pi_{k_g}} \exp\left[-\frac{1}{2}(R_{\min}^2 - 2R_{\min}(r_g + a_g))\right]} \quad (24)$$

$$\geq \frac{\pi_{k_g} \left[1 - \exp\left(-\frac{r_g \sqrt{d}}{2}\right) \right]}{1 + \frac{1-\pi_{k_g}}{\pi_{k_g}} \exp\left[-\frac{1}{2}(R_{\min}^2 - 2R_{\min}(r_g + a_g))\right]} \quad (25)$$

1374

1375

1376

1377

1378

1379

1380

1381 As a result, our previous analysis allows us to write the following uniform bound for the term A_{2a}
1382 for all $k_g \in [K_g]$.
1383

1384

1385

1386

1387

1388

1389

$$\frac{(\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)] - \mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*)])}{\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)]}$$

$$\leq \max \left\{ \frac{(K_g - 1) \exp\left[-\frac{1}{2}R_{\min}^2 - 2R_{\min}(a_g + r_g)\right] + (1 - \pi_{\min_g}) \exp\left(-\frac{r_g \sqrt{d}}{2}\right)}{\pi_{\min_g} \left[1 - \exp\left(-\frac{r_g \sqrt{d}}{2}\right) \right]}, \right.$$

$$\left. \frac{\pi_{\max_g} \left(1 - \frac{\left[1 - \exp\left(-\frac{r_g \sqrt{d}}{2}\right) \right]}{1 + \frac{1-\pi_{\max_g}}{\pi_{\min_g}} \exp\left[-\frac{1}{2}(R_{\min}^2 - 2R_{\min}(r_g + a_g))\right]} \right)}{\pi_{\min_g} \left[1 - \exp\left(-\frac{r_g \sqrt{d}}{2}\right) \right]} \right\}$$

$$\frac{\pi_{\max_g} \left(1 - \frac{\left[1 - \exp\left(-\frac{r_g \sqrt{d}}{2}\right) \right]}{1 + \frac{1-\pi_{\max_g}}{\pi_{\min_g}} \exp\left[-\frac{1}{2}(R_{\min}^2 - 2R_{\min}(r_g + a_g))\right]} \right)}{\pi_{\min_g} \left[1 - \exp\left(-\frac{r_g \sqrt{d}}{2}\right) \right]} \right\}$$

$$\frac{1 - \frac{\left[1 - \exp\left(-\frac{r_g \sqrt{d}}{2}\right) \right]}{1 + \frac{1-\pi_{\max_g}}{\pi_{\min_g}} \exp\left[-\frac{1}{2}(R_{\min}^2 - 2R_{\min}(r_g + a_g))\right]}}{1 + \frac{1-\pi_{\min_g}}{\pi_{\max_g}} \exp\left[-\frac{1}{2}(R_{\min}^2 - 2R_{\min}(r_g + a_g))\right]}$$

$$:= \pi'_g$$

1404
1405Thus, it remains to obtain an upper bound for A_{2b} . We achieve this as follows.1406
1407

1408
$$A_{2b} := \|\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)(\mathbf{x} - \boldsymbol{\theta}_{k_g})]\|_2 \quad (26a)$$

1409

1410
$$= \|\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)(\mathbf{x} - \boldsymbol{\theta}_{k_g})] - \mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*)(\mathbf{x} - \boldsymbol{\theta}_{k_g})] + \mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*)(\mathbf{x} - \boldsymbol{\theta}_{k_g})]\|_2 \quad (26b)$$

1411
1412

1413
$$\leq \|\mathbb{E}_{\mathbf{x}}[(\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g) - \gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*))(\mathbf{x} - \boldsymbol{\theta}_{k_g})]\|_2 + \|\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*)(\mathbf{x} - \boldsymbol{\theta}_{k_g})]\|_2 \quad (26c)$$

1414
1415

1416
$$\leq \frac{\beta'_g}{K_g} \sum_{j_g=1}^{K_g} \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 + \|\mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*)\mathbf{x}] - \mathbb{E}_{\mathbf{x}}[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g^*)\boldsymbol{\theta}_{k_g}]\|_2 \quad (26d)$$

1417
1418

1419
$$= \frac{\beta'_g}{K_g} \sum_{j_g=1}^{K_g} \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 + \left\| \int_{\mathbf{x}} \frac{\pi_{k_g} \phi(\mathbf{x} | \boldsymbol{\theta}_{k_g}^*)}{\sum_{j_g=1}^{K_g} \pi_{j_g} \phi(\mathbf{x} | \boldsymbol{\theta}_{j_g}^*)} \mathbf{x} \left(\sum_{m_g=1}^{K_g} \pi_{m_g} \phi(\mathbf{x} | \boldsymbol{\theta}_{m_g}^*) \right) d\mathbf{x} - \right. \\ \left. \int_{\mathbf{x}} \frac{\pi_{k_g} \phi(\mathbf{x} | \boldsymbol{\theta}_{k_g}^*)}{\sum_{j_g=1}^{K_g} \pi_{j_g} \phi(\mathbf{x} | \boldsymbol{\theta}_{j_g}^*)} \boldsymbol{\theta}_{k_g} \left(\sum_{m_g=1}^{K_g} \pi_{m_g} \phi(\mathbf{x} | \boldsymbol{\theta}_{m_g}^*) \right) d\mathbf{x} \right\|_2 \quad (26e)$$

1420
1421

1422
$$= \frac{\beta'_g}{K_g} \sum_{j_g=1}^{K_g} \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 + \pi_{k_g} \|\boldsymbol{\theta}_{k_g} - \boldsymbol{\theta}_{k_g}^*\|_2 \quad (26f)$$

1423
1424

1425
$$\leq \frac{\beta'_g}{K_g} \sum_{j_g=1}^{K_g} \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 + \pi_{\max_g} \|\boldsymbol{\theta}_{k_g} - \boldsymbol{\theta}_{k_g}^*\|_2, \quad (26g)$$

1426
1427

1428 where (26c) follows from the linearity of the expectation and the triangle inequality, and (26d) follows by leveraging the upper bound derived in Theorem 4 in (Yan et al., 2017) as discussed earlier. Therefore, we can summarize the results we have obtained thus far as follows.

1429
1430

1431

1432
$$\begin{aligned} & \|\nabla_{M_{k_g}(\boldsymbol{\theta}_g)} Q(M_g(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g) - \nabla_{M_{k_g}(\boldsymbol{\theta}_g)} Q(M_g(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g^*)\|_2 \\ & \leq \frac{\beta'_g}{K_g} \sum_{j_g=1}^{K_g} \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 + \pi'_g \left[\frac{\beta'_g}{K_g} \sum_{j_g=1}^{K_g} \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 + \pi_{\max_g} \|\boldsymbol{\theta}_{k_g} - \boldsymbol{\theta}_{k_g}^*\|_2 \right] \\ & = \frac{(1 + \pi'_g) \beta'_g}{K_g} \sum_{j_g=1}^{K_g} \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 + \pi'_g \pi_{\max_g} \|\boldsymbol{\theta}_{k_g} - \boldsymbol{\theta}_{k_g}^*\|_2. \end{aligned}$$

1441
1442
1443
14441445
1446
1447 Now, observe that1448
1449

1450

1451
$$\begin{aligned} & \|\nabla Q(M_g(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g) - \nabla Q(M_g(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g^*)\|_2^2 \\ & = \sum_{k_g=1}^{K_g} \|\nabla_{M_{k_g}(\boldsymbol{\theta}_g)} Q(M_g(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g) - \nabla_{M_{k_g}(\boldsymbol{\theta}_g)} Q(M_g(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g^*)\|_2^2 \\ & \leq \sum_{k_g=1}^{K_g} \left[\frac{(1 + \pi'_g) \beta'_g}{K_g} \sum_{j_g=1}^{K_g} \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 + \pi'_g \pi_{\max_g} \|\boldsymbol{\theta}_{k_g} - \boldsymbol{\theta}_{k_g}^*\|_2 \right]^2 \end{aligned}$$

1452
1453
14541455
1456
1457

1458 Expanding each term inside the square root results in
 1459

$$1460 \quad \|\nabla Q(M_g(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g) - \nabla Q(M_g(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g^*)\|_2^2 \quad (27a)$$

$$1461 \quad \leq \sum_{k_g=1}^{K_g} \left[\frac{(1+\pi'_g)^2 \beta_g'^2}{K_g^2} \left(\sum_{j_g=1}^{K_g} \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 \right)^2 + \right. \\ 1462 \quad \left. 2 \frac{(1+\pi'_g)\beta_g'}{K_g} \pi'_g \pi_{\max_g} \|\boldsymbol{\theta}_{k_g} - \boldsymbol{\theta}_{k_g}^*\|_2 \sum_{j_g=1}^{K_g} \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 + \pi'^2 \pi_{\max_g}^2 \|\boldsymbol{\theta}_{k_g} - \boldsymbol{\theta}_{k_g}^*\|_2^2 \right] \quad (27b)$$

$$1463 \quad = \frac{(1+\pi'_g)^2 \beta_g'^2}{K_g} \left(\sum_{j_g=1}^{K_g} \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 \right)^2 + \\ 1464 \quad 2 \frac{(1+\pi'_g)\beta_g'}{K_g} \pi'_g \pi_{\max_g} \sum_{k_g=1}^{K_g} \|\boldsymbol{\theta}_{k_g} - \boldsymbol{\theta}_{k_g}^*\|_2 \sum_{j_g=1}^{K_g} \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 + \pi'^2 \pi_{\max_g}^2 \sum_{k_g=1}^{K_g} \|\boldsymbol{\theta}_{k_g} - \boldsymbol{\theta}_{k_g}^*\|_2^2 \quad (27c)$$

$$1465 \quad = \frac{(1+\pi'_g)^2 \beta_g'^2}{K_g} \left(\sum_{j_g=1}^{K_g} \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 \right)^2 + \\ 1466 \quad 2 \frac{(1+\pi'_g)\beta_g'}{K_g} \pi'_g \pi_{\max_g} \left(\sum_{j_g=1}^{K_g} \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 \right)^2 + \pi'^2 \pi_{\max_g}^2 \|\boldsymbol{\theta}_g - \boldsymbol{\theta}_g^*\|_2^2 \quad (27d)$$

$$1467 \quad \leq \left[(1+\pi'_g)^2 \beta_g'^2 + 2(1+\pi'_g)\beta_g' \pi'_g \pi_{\max_g} + \pi'^2 \pi_{\max_g}^2 \right] \|\boldsymbol{\theta}_g - \boldsymbol{\theta}_g^*\|_2^2. \quad (27e)$$

1486 To see how we obtain (27d), consider a vector u of length K_g , all of whose entries are 1, and a vector
 1487 v of length K_g , with k_g^{th} entry $\|\boldsymbol{\theta}_{k_g} - \boldsymbol{\theta}_{k_g}^*\|_2$. Now we can rely on the Cauchy-Schwarz inequality
 1488 to write:

$$1489 \quad u^\top v = \sum_{j_g=1}^{K_g} \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 \\ 1490 \quad \leq \|u\|_2 \|v\|_2 \\ 1491 \quad = \sqrt{K_g} \sqrt{\sum_{k_g=1}^{K_g} \|\boldsymbol{\theta}_{k_g} - \boldsymbol{\theta}_{k_g}^*\|_2^2} \\ 1492 \quad = \sqrt{K_g} \|\boldsymbol{\theta}_g - \boldsymbol{\theta}_g^*\|_2$$

1493 Thus, this allows us to see that

$$1501 \quad \left(\sum_{j_g=1}^{K_g} \|\boldsymbol{\theta}_{j_g} - \boldsymbol{\theta}_{j_g}^*\|_2 \right)^2 \leq K_g \|\boldsymbol{\theta}_g - \boldsymbol{\theta}_g^*\|_2^2.$$

1505 Therefore, we obtain our final result by taking the square root of both sides, resulting in the follow-
 1506 ing:

$$1507 \quad \|\nabla Q(M_g(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g) - \nabla Q(M_g(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g^*)\|_2 \leq \underbrace{((1+\pi'_g)\beta_g' + \pi'_g \pi_{\max_g})}_{\beta_g} \|\boldsymbol{\theta}_g - \boldsymbol{\theta}_g^*\|_2$$

1508
 1509
 1510
 1511

□

1512 **Theorem 7** (GMM M-Step Contraction Region). *Suppose all the conditions of Theorem 6 hold, and*
 1513 *the radius a_g of the contraction region at client g is such that*

$$1515 \quad a \leq \frac{R_{\min}}{2} - \sqrt{\min\{d, K_g\}} \mathcal{O} \left(\sqrt{\log \left(\max \left\{ \frac{K_g^2 \kappa_g}{\frac{\pi_{\min_g} - \pi'_g \pi_{\max_g}}{1 + \pi'_g}}, R_{\max}, \min\{d, K_g\} \right\} \right)} \right).$$

1519 *Then, the contraction parameter $\frac{\beta_g}{\lambda_g}$ associated with the population M-step of the GMM described*
 1520 *in this section is less than 1.*

1522 *Proof.* In order to guarantee that the population M-step is contractive for the GMM described, we
 1523 must show that

$$1524 \quad \beta'_g < \frac{\pi_{\min_g} - \pi'_g \pi_{\max_g}}{1 + \pi'_g}. \quad (28)$$

1526 We can plug β'_g from the statement of Theorem 6 into inequality (28) and rearrange terms to obtain
 1527 the following.

$$1529 \quad a_g \leq \frac{R_{\min}}{2} - \frac{2\sqrt{2}}{\sqrt[4]{\min\{d, K_g\}}} \sqrt{\log \left(\frac{K_g^2(2\kappa_g + 4)(2R_{\max} + \min\{d, K_g\})^2}{\frac{\pi_{\min_g} - \pi'_g \pi_{\max_g}}{1 + \pi'_g}} \right)}.$$

1532 Subsequently, we can combine this upper bound on a with the one presented in the statement of
 1533 Theorem 6 to obtain the following.

$$1535 \quad a_g \leq \frac{R_{\min}}{2} - \max \left\{ \underbrace{\frac{2\sqrt{2}}{\sqrt[4]{\min\{d, K_g\}}} \sqrt{\log \left(\frac{K_g^2(2\kappa_g + 4)(2R_{\max} + \min\{d, K_g\})^2}{\frac{\pi_{\min_g} - \pi'_g \pi_{\max_g}}{1 + \pi'_g}} \right)}}_{A_1}, \right. \\ 1540 \quad \left. \underbrace{\sqrt{\min\{d, K_g\}} \max\{4\sqrt{2[\log(R_{\min}/4)]_+}, 8\sqrt{3}\}}_{A_2} \right\}$$

1544 Now, we derive an upper bound to the maximization term. In doing so, we begin by obtaining upper
 1545 bounds for A_1 and A_2 as follows, considering A_1 first.

$$1548 \quad A_1 := \frac{2\sqrt{2}}{\sqrt[4]{\min\{d, K_g\}}} \sqrt{\log \left(\frac{K_g^2(2\kappa_g + 4)(2R_{\max} + \min\{d, K_g\})^2}{\frac{\pi_{\min_g} - \pi'_g \pi_{\max_g}}{1 + \pi'_g}} \right)} \\ 1552 \quad \leq c \sqrt{\log \left(\frac{K_g^2(2\kappa_g + 4)(2R_{\max} + \min\{d, K_g\})^2}{\frac{\pi_{\min_g} - \pi'_g \pi_{\max_g}}{1 + \pi'_g}} \right)} \quad (29a)$$

$$1556 \quad \leq c \sqrt{\log \left(\frac{c_1 K_g^2 \kappa_g (2R_{\max} + \min\{d, K_g\})^2}{\frac{\pi_{\min_g} - \pi'_g \pi_{\max_g}}{1 + \pi'_g}} \right)} \quad (29b)$$

$$1560 \quad = c \sqrt{\log \left(\frac{c_1 K_g^2 \kappa_g}{\frac{\pi_{\min_g} - \pi'_g \pi_{\max_g}}{1 + \pi'_g}} \right) + 2 \log (2R_{\max} + \min\{d, K_g\})} \quad (29c)$$

$$1564 \quad \leq c \sqrt{\min\{d, K_g\}} \sqrt{\log \left(\frac{c_1 K_g^2 \kappa_g}{\frac{\pi_{\min_g} - \pi'_g \pi_{\max_g}}{1 + \pi'_g}} \right) + c_2 \log (c_3 R_{\max} + e + \min\{d, K_g\})}, \quad (29d)$$

1566 where (29a) follows by plugging in a constant c , and recalling that $\min\{d, K_g\} > 1$, (29b)
 1567 is obtained by noting that $\kappa_g \geq 1$ and choosing $c_1 \geq 6$, and (29d) again uses the fact that
 1568 $\min\{d, K_g\} > 1$, as well as the monotonicity of the log function, and plugging in constants
 1569 $c_2, c_3 > 1$.

1570 Now, we derive an upper bound to A_2 as follows.
 1571

$$\begin{aligned} A_2 &:= \sqrt{\min\{d, K_g\}} \max\{4\sqrt{2[\log(R_{\min}/4)]_+}, 8\sqrt{3}\} \\ &= \sqrt{\min\{d, K_g\}} \max\{c_1\sqrt{[\log(R_{\min}/4)]_+}, c_2\} \end{aligned} \quad (30a)$$

$$\leq \sqrt{\min\{d, K_g\}} \max\{c_1\sqrt{\log(R_{\max} + e)}, c_2\} \quad (30b)$$

$$\leq \sqrt{\min\{d, K_g\}} \max\{c_1\sqrt{\log(R_{\max} + e)}, c_2\sqrt{\log(R_{\max} + e)}\} \quad (30c)$$

$$\leq \sqrt{\min\{d, K_g\}} (c_1\sqrt{\log(R_{\max} + e)} + c_2\sqrt{\log(R_{\max} + e)}) \quad (30d)$$

$$= c' \sqrt{\min\{d, K_g\}} \sqrt{\log(R_{\max} + e)}, \quad (30e)$$

1584 where we obtain (30a) by rewriting the constants as $c_1, c_2 > 1$, (30b) is obtained by noting that
 1585 $R_{\max} \geq R_{\min} > \frac{R_{\min}}{4}$, and adding an e term inside the log to ensure that it is greater than or equal to
 1586 1. This allows us to obtain (30c), which is then upper bounded in (30d) by noting that both of the
 1587 terms inside the maximization are greater than 0. Finally, we obtain the final result by combining
 1588 the constants c_1, c_2 into a new constant c' .
 1589

1590 Given the bounds derived for A_1 and A_2 , we can write the following
 1591

$$\begin{aligned} &\max\{A_1, A_2\} \\ &\leq \sqrt{\min\{d, K_g\}} \max \left\{ c \sqrt{\log \left(\frac{c_1 K_g^2 \kappa_g}{\frac{\pi \min_g - \pi'_g \pi \max_g}{1 + \pi'_g}} \right) + c_2 \log(c_3 R_{\max} + e + \min\{d, K_g\})}, \right. \\ &\quad \left. c' \sqrt{\log(R_{\max} + e)} \right\} \end{aligned} \quad (31a)$$

$$\leq \sqrt{\min\{d, K_g\}} (c + c') \sqrt{\log \left(\frac{c_1 K_g^2 \kappa_g}{\frac{\pi \min_g - \pi'_g \pi \max_g}{1 + \pi'_g}} \right) + c_2 \log(c_3 R_{\max} + e + \min\{d, K_g\})} \quad (31b)$$

$$\leq \sqrt{\min\{d, K_g\}} (c + c') \sqrt{\log \left(\frac{c_1 K_g^2 \kappa_g}{\frac{\pi \min_g - \pi'_g \pi \max_g}{1 + \pi'_g}} \right) + c_2 \log(c_3 R_{\max} + e) + c_2 \log(\min\{d, K_g\})} \quad (31c)$$

$$\leq \sqrt{\min\{d, K_g\}} (c + c') \sqrt{c_2 \log \left(3 \max \left\{ \frac{c_1 K_g^2 \kappa_g}{\frac{\pi \min_g - \pi'_g \pi \max_g}{1 + \pi'_g}}, c_3 R_{\max} + e, \min\{d, K_g\} \right\} \right)} \quad (31d)$$

$$\leq \sqrt{\min\{d, K_g\}} \mathcal{O} \left(\sqrt{\log \left(\max \left\{ \frac{K_g^2 \kappa_g}{\frac{\pi \min_g - \pi'_g \pi \max_g}{1 + \pi'_g}}, R_{\max}, \min\{d, K_g\} \right\} \right)} \right), \quad (31e)$$

1618 where (31b) follows by absorbing A_2 into A_1 , (31c) is obtained by noting that each of the three
 1619 terms within log functions are greater than 1, and therefore the log of their sum is upper bounded by
 the sum of their logs. Finally, (31e) is obtained by eliminating all constants. Therefore, we obtain

1620 the following condition on a .
1621

$$1622 a \leq \frac{R_{\min}}{2} - \sqrt{\min\{d, K_g\}} \mathcal{O} \left(\sqrt{\log \left(\max \left\{ \frac{K_g^2 \kappa_g}{\frac{\pi_{\min_g} - \pi'_g \pi_{\max_g}}{1 + \pi'_g}}, R_{\max}, \min\{d, K_g\} \right\} \right)} \right)$$

□

1627 **Theorem 8** (GMM Finite-Sample and Population M-Step Distance). Suppose
1628 all the conditions and definitions of Theorems 6 and 7 hold. Let $\hat{\omega}(N_g) =$
1629 $\tilde{\mathcal{O}} \left(\max \left\{ N_g^{-\frac{1}{2}} K_g^3 (1 + R_{\max})^3 \sqrt{d} \max\{1, \log(\kappa_g)\}, (1 + R_{\max}) \frac{d}{\sqrt{N_g}} \right\} \right)$. Moreover, let $M_{k_g}(\boldsymbol{\theta}_g)$
1630 and $\hat{M}_{k_g}(\boldsymbol{\theta}_g)$ denote the population and finite-sample M-step maps associated with the GMM
1631 described in this section, respectively. Then, we have that

$$1634 \sup_{\boldsymbol{\theta}_g \in \mathbb{A}_g} \left\| M_{k_g}(\boldsymbol{\theta}_g) - \hat{M}_{k_g}(\boldsymbol{\theta}_g) \right\|_2 \leq \frac{1}{\hat{\tau}_{N_g}} \left(\hat{\omega}(N_g) + 2a_g \sqrt{\frac{1}{2N_g} \log \left(\frac{2}{\eta_g} \right)} \right),$$

1637 with probability at least $(1 - \exp(-cd \log N_g))(1 - \eta_g)$, where c is some positive constant, $\mathbb{A}_g =$
1638 $\prod_{k_g=1}^{K_g} \mathbb{B}_2(\boldsymbol{\theta}_{k_g}^*; a_g)$, and

$$1640 \hat{\tau}_{N_g} \geq \frac{\pi_{\min_g} \left[1 - \exp \left(-\frac{r_g \sqrt{d}}{2} \right) \right]}{1 + \frac{1 - \pi_{\min_g}}{\pi_{\max_g}} \exp \left[-\frac{1}{2} (R_{\min}^2 - 2R_{\min}(r_g + a_g)) \right]} - \sqrt{\frac{1}{2N_g} \log \left(\frac{2}{\eta_g} \right)}.$$

1643 *Proof.* Recall that the finite-sample expected complete-data log-likelihood function associated with
1644 out GMM model can be expressed as follows.
1645

$$1646 \hat{Q}_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g) = \frac{1}{N_g} \sum_{n_g=1}^{N_g} \sum_{k_g=1}^{K_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) (\log \pi_{k_g} + \log \phi(\hat{\mathbf{x}}_{n_g} | \boldsymbol{\theta}_{k_g})),$$

1649 Moreover, its gradient and Hessian can be written as follows.

$$1651 \nabla_{\boldsymbol{\theta}_{k_g}} \hat{Q}_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g) = \frac{1}{N_g} \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) (\hat{\mathbf{x}}_{n_g} - \boldsymbol{\theta}_{k_g}). \quad (32a)$$

$$1654 \nabla_{\boldsymbol{\theta}_{k_g}}^2 \hat{Q}_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g) = -\frac{1}{N_g} \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) I_d. \quad (32b)$$

1657 Now, observe that the Hessian is a diagonal matrix whose eigenvalues are all equal to the empirical
1658 expectation of the responsibility function $\gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g)$. Therefore, the function is strongly concave,
1659 with strong concavity parameter $\hat{\tau}_{N_g}$, which we define explicitly later.

1660 Thus, by the strong concavity of the $\hat{Q}_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g)$ function we can write the following.
1661

$$1662 \frac{\hat{\tau}_{N_g}}{2} \left\| M_{k_g}(\boldsymbol{\theta}_g) - \hat{M}_{k_g}(\boldsymbol{\theta}_g) \right\|_2^2 \\ 1663 \leq \hat{Q}_g(\hat{M}_{k_g}(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g) - \hat{Q}_g(M_{k_g}(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g) + \nabla_{\boldsymbol{\theta}_{k_g}} \hat{Q}_g(\hat{M}_{k_g}(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g)^\top (M_{k_g}(\boldsymbol{\theta}_g) - \hat{M}_{k_g}(\boldsymbol{\theta}_g)) \\ 1664 \quad (33a)$$

$$1666 = \hat{Q}_g(\hat{M}_{k_g}(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g) - \hat{Q}_g(M_{k_g}(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g). \quad (33b)$$

1668 Similarly, we can use the strong concavity to write the following.
1669

$$1670 \frac{\hat{\tau}_{N_g}}{2} \left\| M_{k_g}(\boldsymbol{\theta}_g) - \hat{M}_{k_g}(\boldsymbol{\theta}_g) \right\|_2^2 \\ 1671 \leq \hat{Q}_g(M_{k_g}(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g) - \hat{Q}_g(\hat{M}_{k_g}(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g) + \nabla_{\boldsymbol{\theta}_{k_g}} \hat{Q}_g(M_{k_g}(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g)^\top (\hat{M}_{k_g}(\boldsymbol{\theta}_g) - M_{k_g}(\boldsymbol{\theta}_g)) \\ 1672 \quad (34)$$

1674
1675

Summing up inequalities (33b) and (34), we can obtain the following.

1676

1677

1678

1679

1680

$$\hat{\tau}_{N_g} \left\| M_{k_g}(\boldsymbol{\theta}_g) - \widehat{M}_{k_g}(\boldsymbol{\theta}_g) \right\|_2^2 \leq \nabla_{\boldsymbol{\theta}_{k_g}} \widehat{Q}_g(M_{k_g}(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g)^\top (\widehat{M}_{k_g}(\boldsymbol{\theta}_g) - M_{k_g}(\boldsymbol{\theta}_g)) \quad (35a)$$

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

where (35b) is obtained via the Cauchy-Schwarz inequality, and (35c) follows from the fact that $\nabla_{\boldsymbol{\theta}_{k_g}} Q_g(M_{k_g}(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g) = 0$ as it is evaluated at its maximizer.

1692

1693

1694

1695

Now note that if $M^{(k)}(\boldsymbol{\theta}'_g) = M_N^{(k)}(\boldsymbol{\theta}'_g)$, then the finite sample EM algorithm converges trivially by the convergence of the population EM algorithm. Thus, we focus on the cases where $M^{(k)}(\boldsymbol{\theta}'_g) \neq M_N^{(k)}(\boldsymbol{\theta}'_g)$. In this case, we can write the inequality in (35c) as follows.

1696

1697

1698

1699

1700

1701

1702

$$\hat{\tau}_{N_g} \left\| M_{k_g}(\boldsymbol{\theta}_g) - \widehat{M}_{k_g}(\boldsymbol{\theta}_g) \right\|_2 \leq \left\| \nabla_{\boldsymbol{\theta}_{k_g}} \widehat{Q}_g(M_{k_g}(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g) - \nabla_{\boldsymbol{\theta}_{k_g}} Q_g(M_{k_g}(\boldsymbol{\theta}_g) | \boldsymbol{\theta}_g) \right\|_2 \quad (36a)$$

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

$$= \left\| \nabla_{\boldsymbol{\theta}_{k_g}} \widehat{Q}_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}_g) + \nabla_{\boldsymbol{\theta}_{k_g}}^2 \widehat{Q}_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}_g) (M_{k_g}(\boldsymbol{\theta}) - \boldsymbol{\theta}_{k_g}) - \nabla_{\boldsymbol{\theta}_{k_g}} Q_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}_g) - \nabla_{\boldsymbol{\theta}_{k_g}}^2 Q_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}_g) (M_{k_g}(\boldsymbol{\theta}) - \boldsymbol{\theta}_{k_g}) \right\|_2 \quad (36b)$$

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1883

1885

1887

1888

1889

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2

1728 comprised of N_g IID samples. Then we can write the following.
1729

$$\begin{aligned}
1730 \quad & P\left(\left|\sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g)) - \mathbb{E}_{\mathbf{x}}\left[\sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g)\right]\right|\right| \leq N_g \zeta_g\right) \\
1731 \quad & = P\left(\left|\sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g)) - \sum_{n_g=1}^{N_g} \mathbb{E}_{\mathbf{x}}\left[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)\right]\right|\right| \leq N_g \zeta_g\right) \\
1732 \quad & = P\left(\left|\sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g)) - N_g \mathbb{E}_{\mathbf{x}}\left[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)\right]\right|\right| \leq N_g \zeta_g\right) \\
1733 \quad & = P\left(N_g\left|\frac{1}{N_g} \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g)) - \mathbb{E}_{\mathbf{x}}\left[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)\right]\right|\right| \leq N_g \zeta_g\right) \\
1734 \quad & = P\left(\left|\frac{1}{N_g} \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g)) - \mathbb{E}_{\mathbf{x}}\left[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)\right]\right|\right| \leq \zeta_g\right),
\end{aligned}$$

1745 for some small $\zeta_g \in \mathbb{R}^+$. Moreover, by Hoeffding's inequality we have that
1746

$$1747 \quad P\left(\left|\sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g)) - \mathbb{E}_{\mathbf{x}}\left[\sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g)\right]\right|\right| \leq N_g \zeta_g\right) \geq 1 - 2 \exp(-2N_g \zeta_g^2).$$

1750 Therefore, this allows us to write the following.
1751

$$1752 \quad P\left(\left|\frac{1}{N_g} \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g)) - \mathbb{E}_{\mathbf{x}}\left[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)\right]\right|\right| \leq \zeta_g\right) \geq 1 - 2 \exp(-2N_g \zeta_g^2).$$

1755 Now suppose we set $\eta_g = 2 \exp(-2N_g \zeta_g^2)$, then we can obtain that with probability at least $1 - \eta_g$
1756

$$1757 \quad \left|\frac{1}{N_g} \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g)) - \mathbb{E}_{\mathbf{x}}\left[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)\right]\right| \leq \sqrt{\frac{1}{2N_g} \log\left(\frac{2}{\eta_g}\right)} \quad (37)$$

1761 Now, let us define \mathbb{A}_g as the contraction region $\prod_{k_g=1}^{K_g} \mathbb{B}_2(\boldsymbol{\theta}_{k_g}^*, a_g)$. Armed with the previous prob-
1762 abilistic result, we can say that with probability at least $(1 - \exp(-cd \log N_g))(1 - \eta_g)$.
1763

$$1764 \quad \sup_{\boldsymbol{\theta} \in \mathbb{A}} \left\| M_{k_g}(\boldsymbol{\theta}_g) - \hat{M}_{k_g}(\boldsymbol{\theta}_g) \right\|_2 \leq \frac{1}{\hat{\tau}_{N_g}} \left(\hat{\omega}^{unif}(N_g) + 2a_g \sqrt{\frac{1}{2N_g} \log\left(\frac{2}{\eta_g}\right)} \right), \quad (38)$$

1767 where $\hat{\omega}^{unif}(N_g)$ is defined in the theorem statement, and (38) follows directly
1768 from Theorem 5 in (Yan et al., 2017) which states that for our problem setting,
1769 $\sup_{\boldsymbol{\theta} \in \mathbb{A}} \left\| \nabla_{\boldsymbol{\theta}_{k_g}} \hat{Q}_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}_g) - \nabla_{\boldsymbol{\theta}_{k_g}} Q_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}_g) \right\|_2 \leq \hat{\omega}^{unif}(N_g)$ with probability at least
1770 $1 - \exp(-cd \log N_g)$, where c is some positive constant. Finally, note that under inequality
1771 (37), we can say that with probability $1 - \eta_g$.
1772

$$\begin{aligned}
1773 \quad & \frac{1}{N_g} \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g)) \geq \mathbb{E}_{\mathbf{x}}\left[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)\right] - \sqrt{\frac{1}{2N_g} \log\left(\frac{2}{\eta_g}\right)} \\
1774 \quad & \Rightarrow \hat{\tau}_{N_g} \geq \frac{\pi_{\min_g} \left[1 - \exp\left(-\frac{r_g \sqrt{d}}{2}\right)\right]}{1 + \frac{1 - \pi_{\min_g}}{\pi_{\max_g}} \exp\left[-\frac{1}{2}(R_{\min}^2 - 2R_{\min}(r_g + a_g))\right]} - \sqrt{\frac{1}{2N_g} \log\left(\frac{2}{\eta_g}\right)},
\end{aligned}$$

1779 which utilizes the lower bound we obtain on $\mathbb{E}_{\mathbf{x}}\left[\gamma_{k_g}(\mathbf{x}, \boldsymbol{\theta}_g)\right]$ in the proof of Theorem 6. This
1780 concludes the proof.
1781

□

1782 B.4 PRELIMINARY DIFFERENTIAL PRIVACY DISCUSSION FOR ISOTROPIC GMMS
1783

1784 We study a potential method for the clients to enhance the privacy of their data. More specifically,
1785 we consider the use of differential privacy (DP). In doing so, client g adds Gaussian noise to the
1786 estimated centroid $\theta_{k_g}^{(t)}$ of local cluster k_g at global iteration t . Next, we define various fundamental
1787 concepts in DP, first introduced in Dwork et al. (2014).

1788 **Definition 2** (Differential Privacy). A randomized algorithm \mathcal{C} is said to be (ρ, μ) -differentially
1789 private if for all $\mathcal{S} \subseteq \text{Range}(\mathcal{C})$ and any two neighboring datasets \mathbf{X} and \mathbf{X}' of the same size but
1790 differing only in one sample we have that $P(\mathcal{C}(\mathbf{X}) \in \mathcal{S}) \leq \exp(\rho)P(\mathcal{C}(\mathbf{X}') \in \mathcal{S}) + \mu$.
1791

1792 **Definition 3** (ℓ_2 -Sensitivity). The ℓ_2 -sensitivity $\Delta_2(f)$ of a function $f : \mathcal{X} \rightarrow \mathbb{R}^D$ is defined as
1793 $\Delta_2(f) := \max_{\mathbf{X}, \mathbf{X}'} \|f(\mathbf{X}) - f(\mathbf{X}')\|_2$, where \mathbf{X} and \mathbf{X}' are datasets of the same size, differing
1794 only in one sample.

1795 **Definition 4** (DP via Gaussian Noise). Given a function $f : \mathcal{X} \rightarrow \mathbb{R}^D$ with ℓ_2 -sensitivity
1796 $\Delta_2(f)$, then $\mathcal{C}(\mathbf{X}) = f(\mathbf{X}) + \mathcal{N}(0, \sigma^2 I_D)$ is said to be (ρ, μ) -differentially private if $\sigma \geq$
1797 $\frac{\Delta_2(f)\sqrt{2\log(\frac{1.25}{\mu})}}{\rho}$.
1798

1799 Now, consider the map $\widehat{M}_g(\boldsymbol{\theta}'_g) : \mathbb{R}^{dK_g} \rightarrow \mathbb{R}^{dK_g}$, which maps the current vectorized centroid
1800 estimates $\boldsymbol{\theta}'_g$ at client g to the vectorized maximizer associated with all clusters. In order to guarantee
1801 differential privacy, each client g independently perturbs its local $\widehat{M}_g(\boldsymbol{\theta}'_g)$ before sharing it with the
1802 server. In other words, client g shares a perturbed $\widetilde{M}_g(\boldsymbol{\theta}'_g) = \widehat{M}_g(\boldsymbol{\theta}'_g) + \mathcal{N}(0, \sigma^2 I_{dK_g})$. Next, we
1803 present an assumption on the support of the data, followed by Theorem 9 where we establish the
1804 required standard deviation of the Gaussian noise to ensure that this map is differentially private.
1805

1806 **Assumption 7** (Bounded Support). Any sample $\widehat{\mathbf{x}}_{n_g}$ at client $g \in [G]$ is such that $\|\widehat{\mathbf{x}}_{n_g}\|_2 \leq B_{\mathbf{x}} \in$
1807 \mathbb{R} .
1808

1809 *Remark 3.* Note that Assumption 7 is not restrictive in practice. This is because data is often col-
1810 lected via sensors or other methods with known ranges, and can therefore be readily normalized.

1811 **Theorem 9** (Client-to-Server Communication DP). *The perturbed estimate $\widetilde{M}_g(\boldsymbol{\theta}'_g) = \widehat{M}_g(\boldsymbol{\theta}'_g) +$
1812 $\mathcal{N}(0, \sigma^2 I_{dK_g})$ sent by client g to the server at global iteration t of the algorithm is guaranteed to be
1813 (ρ, μ) -differentially private if the standard deviation of the noise satisfies*

$$1815 \sigma \geq \frac{\sqrt{K_g} \left[\frac{3B_{\mathbf{x}}}{B_{\gamma_g}} + \frac{2B_{\mathbf{x}}}{B_{\gamma_g}^2} \right] \sqrt{2\log(\frac{1.25}{\mu})}}{\rho},$$

1818 where $B_{\mathbf{x}}$ is defined in Assumption 7, and B_{γ_g} is a constant depending on client-level parameters
1819 such as a_g , π_{\min_g} , and π_{\max_g} , and is explained in the proof.
1820

1821 *Proof.* In order to establish the differential privacy of the map $\widehat{M}_g(\boldsymbol{\theta}'_g)$ via Gaussian noise, it suf-
1822 fices to derive its ℓ_2 -sensitivity $\Delta_2(\widehat{M}_g(\boldsymbol{\theta}'_g))$. We begin by considering the maximizer $\widehat{M}_{k_g}(\boldsymbol{\theta}'_g)$
1823 associated with cluster k_g . Now, consider the two datasets \mathcal{X}_g and \mathcal{X}'_g , both of which have N_g
1824 samples. Without loss of generality, suppose the datasets differ only in their last sample. That is, the
1825 first $N_g - 1$ samples are identical across the two datasets, whereas the N_g^{th} samples in \mathcal{X}_g and \mathcal{X}'_g
1826 are $\widehat{\mathbf{x}}^*$ and $\widehat{\mathbf{x}}'$, respectively, with $\widehat{\mathbf{x}}^* \neq \widehat{\mathbf{x}}'$. To simplify notation and to highlight the datasets as the
1827 input of interest in the mapping function, let us define the following.
1828

$$1830 \mathbf{s}_{k_g} := \sum_{n_g=1}^{N_g-1} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \widehat{\mathbf{x}}_{n_g}, \quad 1831 \quad w_{k_g} := \sum_{n_g=1}^{N_g-1} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g),$$

$$1833 \gamma^* := \gamma_{k_g}(\widehat{\mathbf{x}}^*, \boldsymbol{\theta}'_g), \quad 1834 \quad \gamma' := \gamma_{k_g}(\widehat{\mathbf{x}}', \boldsymbol{\theta}'_g), \quad (39)$$

$$1835 f_g(\mathcal{X}) := \widehat{M}_g(\boldsymbol{\theta}'_g), \quad f_{k_g}(\mathcal{X}) := \widehat{M}_{k_g}(\boldsymbol{\theta}'_g).$$

1836 Moreover, assume without loss of generality that $\gamma' \geq \gamma^*$. Now, we analyze the ℓ_2 -sensitivity of
 1837 $f_{k_g}(\mathcal{X})$ as follows.
 1838

$$1839 \quad \|f_{k_g}(\mathcal{X}) - f_{k_g}(\mathcal{X}')\|_2 \\ 1840 \quad = \left\| \frac{\mathbf{s}_{k_g} + \gamma^* \hat{\mathbf{x}}^*}{w_{k_g} + \gamma^*} - \frac{\mathbf{s}_{k_g} + \gamma' \hat{\mathbf{x}}'}{w_{k_g} + \gamma'} \right\|_2 \quad (40)$$

$$1843 \quad = \left\| \frac{(w_{k_g} + \gamma')(\mathbf{s}_{k_g} + \gamma^* \hat{\mathbf{x}}^*) - (w_{k_g} + \gamma^*)(\mathbf{s}_{k_g} + \gamma' \hat{\mathbf{x}}')}{(w_{k_g} + \gamma^*)(w_{k_g} + \gamma')} \right\|_2 \quad (41)$$

$$1846 \quad = \frac{1}{(w_{k_g} + \gamma^*)(w_{k_g} + \gamma')} \left\| (w_{k_g} + \gamma')(\mathbf{s}_{k_g} + \gamma^* \hat{\mathbf{x}}^*) - (w_{k_g} + \gamma^*)(\mathbf{s}_{k_g} + \gamma' \hat{\mathbf{x}}') \right\|_2 \quad (42)$$

$$1848 \quad \leq \frac{1}{(w_{k_g} + \gamma^*)^2} \left\| (\gamma' - \gamma^*)\mathbf{s}_{k_g} + w_{k_g} \gamma^* \hat{\mathbf{x}}^* - w_{k_g} \gamma' \hat{\mathbf{x}}' + \gamma' \gamma^* (\hat{\mathbf{x}}^* - \hat{\mathbf{x}}') \right\|_2 \quad (43)$$

$$1850 \quad \leq \frac{1}{(w_{k_g} + \gamma^*)^2} \left[\|\mathbf{s}_{k_g}\|_2 + w_{k_g} \|\hat{\mathbf{x}}^*\|_2 + w_{k_g} \|\hat{\mathbf{x}}'\|_2 + \|\hat{\mathbf{x}}^* - \hat{\mathbf{x}}'\|_2 \right] \quad (44)$$

$$1853 \quad \leq \frac{1}{(w_{k_g} + \gamma^*)^2} \left[\sum_{n_g=1}^{N_g-1} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \|\hat{\mathbf{x}}_{n_g}\|_2 + w_{k_g} \|\hat{\mathbf{x}}^*\|_2 + w_{k_g} \|\hat{\mathbf{x}}'\|_2 + \|\hat{\mathbf{x}}^* - \hat{\mathbf{x}}'\|_2 \right] \quad (45)$$

$$1856 \quad \leq \frac{(3(w_{k_g} + \gamma^*) + 2)B_{\mathbf{x}}}{(w_{k_g} + \gamma^*)^2} \quad (46)$$

$$1858 \quad \leq \frac{3B_{\mathbf{x}}}{B_{\gamma_g}} + \frac{2B_{\mathbf{x}}}{B_{\gamma_g}^2}, \quad (47)$$

1861 where 40 follows from the definition of $\widehat{M}_{k_g}(\boldsymbol{\theta}'_g)$, 43 follows from the assumption that $\gamma' \geq \gamma^*$, 44
 1862 follows from the fact that $0 \leq \gamma^* \leq 1$ and $0 \leq \gamma' \leq 1$, 45 follows from the fact that the norm of a
 1863 sum is upper bounded by the sum of the norms of the individual terms, and finally, 46 follows from
 1864 Assumption 7, and the fact that γ^* is positive. Note that we denote the lower bound of $(w_{k_g} + \gamma^*)$ by
 1865 B_{γ_g} , which depends only on parameters specific to client g but not to cluster k_g . This lower bound
 1866 can be taken as $\widehat{\tau}_{N_g}$, which is derived in the proof of Theorem 8. Now that we have the ℓ_2 -sensitivity
 1867 of the maximizer of a single cluster, we obtain the overall ℓ_2 -sensitivity of the map over all clusters
 1868 as follows.

$$1869 \quad \|f_g(\mathcal{X}) - f_g(\mathcal{X}')\|_2 = \sqrt{\sum_{k_g}^{K_g} \|f_{k_g}(\mathcal{X}) - f_{k_g}(\mathcal{X}')\|_2^2} \\ 1870 \quad \leq \sqrt{K_g \left[\frac{3B_{\mathbf{x}}}{B_{\gamma_g}} + \frac{2B_{\mathbf{x}}}{B_{\gamma_g}^2} \right]^2} \\ 1871 \quad = \sqrt{K_g} \left[\frac{3B_{\mathbf{x}}}{B_{\gamma_g}} + \frac{2B_{\mathbf{x}}}{B_{\gamma_g}^2} \right].$$

1878 This concludes the proof. □

1879 *Remark 4.* Note that we can readily obtain an upper bound on the distance between the population
 1880 $M_{k_g}(\boldsymbol{\theta}_g^{(t)})$ and the perturbed, finite-sample $\widetilde{M}_{k_g}(\boldsymbol{\theta}_g^{(t)})$. Therefore, by the same argument in
 1881 Theorem 2 we can argue that iterates $\widetilde{M}_{k_g}(\boldsymbol{\theta}_g^{(t)})$ converge to the neighborhood of the ground truth
 1882 parameters $\boldsymbol{\theta}_{k_g}^*$. However, the iterates do not necessarily converge to a single point within the neighbor-
 1883 hood due to the randomness of the added noise. Further work should explore this convergence
 1884 behavior more carefully, as well as the implications of DP on the privacy and convergence of the
 1885 uncertainty set radius computations.

1887 B.5 COMPUTATIONAL EFFICIENCY AND COMMUNICATION COSTS

1888 B.5.1 IMPROVING THE EFFICIENCY OF SERVER COMPUTATIONS

1890 While the pairwise server computations described in the work are intuitive, they can be inefficient
 1891 for large-scale problems. To see this, consider a worst case where each client g has a local number
 1892 of clusters $K_g = \mathcal{O}(K)$. In this setting, the server would need to perform roughly $\mathcal{O}(G^2K^2)$
 1893 operations, which can be very expensive for very large G or K . To improve efficiency, the server may
 1894 leverage a d -dimensional binary search tree (commonly known as KD tree) (Bentley, 1975). More
 1895 specifically, the server would store the estimated cluster centroids $\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)})$ for all clusters $k_g \in [K_g]$
 1896 shared by clients $g \in [G]$ in the tree. Subsequently, the server would iterate over each centroid
 1897 $\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)})$, obtain its M nearest neighbors (by slight abuse of notation), then check for uncertainty
 1898 set overlaps and perform aggregation as described in Section 4. The construction of the tree incurs
 1899 a cost of $\mathcal{O}(GK \log GK)$ (Friedman et al., 1977), whereas a single nearest neighbor search incurs
 1900 an expected cost close to $\mathcal{O}(\log GK)$ (Friedman et al., 1977) in practice. Therefore, assuming that
 1901 the number of overlaps between uncertainty sets is significantly smaller than the total number of
 1902 available uncertainty sets (that is $M \ll GK$), then we have that the total cost of constructing and
 1903 using the binary search tree would be close to $\mathcal{O}(2GK \log GK) = \mathcal{O}(GK \log GK)$ in practice. This
 1904 approach can improve the efficiency of server computations without impacting any other aspects of
 1905 the algorithm.

1906 B.5.2 A NOTE ON COMMUNICATION COSTS

1907 During each communication round of our algorithm, each client g sends K_g arrays of size d and
 1908 K_g scalars to the central server, and receives K_g arrays of size d . This results in a per-round total
 1909 communication cost of approximately $2dG\tilde{K}_g + G\tilde{K}_g \leq 3dG\tilde{K}_g$, where \tilde{K}_g is the mean number of
 1910 clusters per client. We compare this to the communication cost of AFCL (Zhang et al., 2025). Due to
 1911 its asynchronous nature, we assume that only 10% of the clients participate in each communication
 1912 round (a favorable condition for AFCL). In AFCL, each active client sends N_g arrays of size d to
 1913 the central server, and receives \tilde{K} arrays of size d , where \tilde{K} is the estimated number of clusters.
 1914 Under the assumption of roughly balanced client sample sizes, it is clear that the total per-round
 1915 communication cost is approximately $0.1dG\tilde{N}_g + 0.1dG\tilde{K} > 0.1dG\tilde{N}_g$, where \tilde{N}_g is the mean
 1916 number of samples per client. Thus, our algorithm enjoys a lower per-round communication cost,
 1917 since $\tilde{N}_g \gg 30\tilde{K}_g$ in most practical applications.

1918 Furthermore, we theoretically prove in Theorems 2 and 5 that our algorithm achieves a linear con-
 1919 vergence rate for all clusters at all clients. In contrast, there is no theoretical convergence rate for
 1920 AFCL. However, empirical findings in (Zhang et al., 2025) suggest a near-linear convergence rate
 1921 at best. This suggests that our algorithm enjoys a lower total communication cost under the setting
 1922 studied.

1925 C PROOFS

1926 C.1 PROOF OF PROPOSITION 1

1927 *Proof.* Recall that Assumption 2 requires each term in the finite sample $\widehat{Q}_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g)$ at client g to be
 1928 strongly concave. Now, let us define $\widehat{Q}_{k_g}(\boldsymbol{\theta}_{k_g} | \boldsymbol{\theta}'_g)$ as follows:

$$1929 \widehat{Q}_{k_g}(\boldsymbol{\theta}_{k_g} | \boldsymbol{\theta}_g^{(t-1)}) := \sum_{n_g=1}^{N_g} \gamma_{k_g}(\widehat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}_g^{(t-1)}) \log(\pi_{k_g} p_{k_g}(\widehat{\mathbf{x}}_{n_g} | \boldsymbol{\theta}_{k_g})).$$

1930 Since $\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)})$ is a maximizer of $\widehat{Q}_{k_g}(\boldsymbol{\theta}_{k_g} | \boldsymbol{\theta}_g^{(t-1)})$, then by strong concavity it must be unique.
 1931 Therefore, we have that $\nabla_{\boldsymbol{\theta}_{k_g}} \widehat{Q}_{k_g}(\boldsymbol{\theta}_{k_g} | \boldsymbol{\theta}_g^{(t-1)}) = 0$ if and only if $\boldsymbol{\theta}_{k_g} = \widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)})$. As a result,
 1932 we must always be able to obtain a unique $\varepsilon_{k_g}^{(t)} \geq 0$ such that

$$1933 \widehat{Q}_{k_g}(\boldsymbol{\theta}_{k_g}^{(t-1)} | \boldsymbol{\theta}_g^{(t-1)}) \leq \widehat{Q}_{k_g}(\widehat{m}(\boldsymbol{\theta}_g^{(t-1)}) | \boldsymbol{\theta}_g^{(t-1)}) \leq \widehat{Q}_{k_g}(\widehat{M}(\boldsymbol{\theta}_g^{(t-1)}) | \boldsymbol{\theta}_g^{(t-1)}),$$

$$1934 \quad \forall \widehat{m}(\boldsymbol{\theta}_g^{(t-1)}) \in \mathbb{B}_2(\widehat{M}(\boldsymbol{\theta}_g^{(t-1)}), \sqrt{\varepsilon_{k_g}^{(t)}}).$$

□

1944 C.2 PROOF OF THEOREM 1
1945

1946 *Proof.* Note that Theorem 2 in (Balakrishnan et al., 2014) only guarantees convergence of the fi-
1947 nite sample M-step $\widehat{M}_{k_g}(\boldsymbol{\theta}_g)$ to the neighborhood of the true cluster parameters $\boldsymbol{\theta}_{k_g}^*$, but does not
1948 examine the behavior within the neighborhood. However, we note that the finite sample EM is still
1949 a GEM algorithm, albeit characterized via the finite sample expected complete-data log-likelihood
1950 function $\widehat{Q}_g(\boldsymbol{\theta}_g|\boldsymbol{\theta}'_g)$. Recall that we assume that the function $\widehat{Q}_g(\boldsymbol{\theta}_g|\boldsymbol{\theta}'_g)$ is both strongly concave
1951 and continuous in both its conditioning and input arguments. Moreover, we assume that the finite
1952 sample true log-likelihood is bounded from above. Therefore, by Theorem 1 in (Wu, 1983), the
1953 finite sample EM iterates must converge to a stationary point of the finite sample true log-likelihood.
1954 This suggests that $\left[\widehat{Q}_g(\widehat{M}_g(\boldsymbol{\theta}_g^{(t-1)})|\boldsymbol{\theta}_g^{(t-1)}) - \widehat{Q}_g(\boldsymbol{\theta}_g^{(t-1)}|\boldsymbol{\theta}_g^{(t-1)}) \right] \rightarrow 0$ as $t \rightarrow \infty$. Now, by the
1955 strong concavity of $\widehat{Q}_g(\boldsymbol{\theta}_g|\boldsymbol{\theta}'_g)$ we have that
1956

$$1957 \widehat{Q}_g(\widehat{M}_g(\boldsymbol{\theta}_g^{(t-1)})|\boldsymbol{\theta}_g^{(t-1)}) - \widehat{Q}_g(\boldsymbol{\theta}_g^{(t-1)}|\boldsymbol{\theta}_g^{(t-1)}) \geq \frac{\widehat{\tau}_g}{2} \|\widehat{M}_g(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_g^{(t-1)}\|_2^2,$$

1960 where $\widehat{\tau}_g$ is the strong concavity parameter. This implies that the algorithm must converge to a single
1961 point. \square

1962 C.3 PROOF OF THEOREM 2
1963

1964 *Proof.* Observe that we can write the following with probability $(1 - \delta_g)$, where $0 \leq \delta_g \leq 1$.
1965

$$1966 \|\widehat{m}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^*\|_2 = \left\| \widehat{m}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) + \widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^* \right\|_2 \quad (48a)$$

$$1967 \leq \left\| \widehat{m}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) \right\|_2 + \left\| \widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^* \right\|_2 \quad (48b)$$

$$1968 \leq \left\| \boldsymbol{\theta}_{k_g}^{(t-1)} - \widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) \right\|_2 + \left\| \widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^* \right\|_2 \quad (48c)$$

$$1969 \leq \frac{\beta_g}{\lambda_g} \|\boldsymbol{\theta}_{k_g}^{(t-1)} - \boldsymbol{\theta}_{k_g}^*\|_2 + \frac{1}{1 - \frac{\beta_g}{\lambda_g}} \epsilon_g^{\text{unif}}(N_g, \delta_g) + \left\| \boldsymbol{\theta}_{k_g}^{(t-1)} - \widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) \right\|_2, \quad (48d)$$

1970 where (48d) follows from the convergence of the finite-sample EM algorithm. Now, note
1971 that by the same argument used in the proof of Theorem 5, we can argue that the term
1972 $\left\| \boldsymbol{\theta}_{k_g}^{(t-1)} - \widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) \right\|_2$ goes to 0 as $t \rightarrow \infty$. This concludes the proof. \square
1973

1974 C.4 PROOF OF THEOREM 3
1975

1976 *Proof.* Firstly, note that if $\|\widehat{M}_{k_g}(\boldsymbol{\theta}_g^{(t-1)}) - \boldsymbol{\theta}_{k_g}^{(t-1)}\|_2$ for component $k_g \in [K_g]$ at client $g \in [G]$
1977 diminishes to 0 at a sufficiently fast rate (such as a geometric rate for example), then the local
1978 iterates $\widehat{m}_{k_g}(\boldsymbol{\theta}_g^{(t-1)})$ of our proposed algorithm for the component converge to a sphere of radius
1979 $\frac{1}{(1 - \frac{\beta_g}{\lambda_g})} \epsilon_g^{\text{unif}}(N_g, \delta_g)$ centered at the true centroid $\boldsymbol{\theta}_{k_g}^*$ with probability of at least $(1 - \delta_g)$. Now,
1980

1981 in the worst case, the iterates for a specific component $k \in [K]$ from all the clients containing
1982 this component will converge to some point on the surface of the local sphere for each client g .
1983 Therefore, if the final aggregation radius $\epsilon_{k_g}^{\text{final}}$ for all such clients is set according to match the radius
1984 of the local neighborhood of the true parameters, then all the aggregation uncertainty sets will also
1985 contain $\boldsymbol{\theta}_{k_g}^{ast}$. Therefore, our algorithm recognizes that all these estimates belong to one component
1986 and aggregates them. Moreover, the assumption that $\epsilon_{k_g}^{\text{final}} \leq \frac{R_{\min}}{2}$ at all components $k_g \in [K_g]$
1987 at clients $g \in [G]$ guarantees that upon convergence, the parameter estimates for different global
1988 components $k, k' \in [K]$ from all clients remain distant enough such that they are not aggregated
1989 together. This, however, relies on the iterates for all components at all clients converging to the
1990 neighborhood of their true parameters. This is why our proposed algorithm infers the correct number
1991 of global clusters with the probability provided in the Theorem statement. \square

1998
1999

C.5 PROOF OF THEOREM 4

2000

Proof. We analyze the local client g problem for each component k_g as follows.

2001
2002

$$J_{k_g}(\boldsymbol{\theta}'_g)$$

2003
2004
2005
2006
2007
2008
2009
2010

$$:= \begin{cases} \max_{\varepsilon_{k_g}} \varepsilon_{k_g} \\ \text{s. t.} \quad \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \log(\pi_{k_g} p_{k_g}(\hat{\mathbf{x}}_{n_g} | \hat{m}_{k_g}(\boldsymbol{\theta}'_g))) \geq \\ \quad \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \log(\pi_{k_g} p_{k_g}(\hat{\mathbf{x}}_{n_g} | \boldsymbol{\theta}'_{k_g})) \quad \forall \hat{m}_{k_g}(\boldsymbol{\theta}'_g) \in \mathbb{B}_2(\hat{M}_{k_g}(\boldsymbol{\theta}'_g); \sqrt{\varepsilon_{k_g}}) \end{cases} \quad (49)$$

2011

2012
2013
2014
2015
2016
2017

$$= \begin{cases} \max_{\varepsilon_{k_g}} \varepsilon_{k_g} \\ \text{s. t.} \quad \underbrace{\min_{\boldsymbol{\theta}_{k_g} \in \mathbb{B}_2(\hat{M}_{k_g}(\boldsymbol{\theta}'_g); \sqrt{\varepsilon_{k_g}})} - \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g} - \boldsymbol{\theta}_{k_g})}_{M_{k_g}(\boldsymbol{\theta}'_g, \varepsilon_{k_g})} \geq \underbrace{- \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g} - \boldsymbol{\theta}'_{k_g})}_{\text{constant}} \end{cases} \quad (50)$$

2018
2019
2020

where (50) follows by ignoring terms in $\hat{Q}_g(\boldsymbol{\theta}_g | \boldsymbol{\theta}'_g)$ that do not depend on $\boldsymbol{\theta}_{k_g}$, and from the fact that $\varepsilon_{k_g} \geq 0 \forall k_g \in [K_g]$. Now, let us consider the optimization problem $M_{k_g}(\boldsymbol{\theta}'_g, \varepsilon_{k_g})$ in more detail as follows.

2021
2022
2023
2024
2025

$$M_{k_g}(\boldsymbol{\theta}'_g, \varepsilon_{k_g}) = \begin{cases} \min_{\boldsymbol{\theta}_{k_g}} - \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \|\mathbf{x}_{n_g} - \boldsymbol{\theta}_{k_g}\|_2^2 \\ \text{s. t.} \quad \boldsymbol{\theta}_{k_g} \in \mathbb{B}_2(\hat{M}_{k_g}(\boldsymbol{\theta}'_g), \sqrt{\varepsilon_{k_g}}) \end{cases} \quad (51)$$

2026
2027
2028
2029
2030

$$= \begin{cases} \min_{\boldsymbol{\theta}_{k_g}} - \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) (\mathbf{x}_{n_g}^\top \mathbf{x}_{n_g} - 2\mathbf{x}_{n_g}^\top \boldsymbol{\theta}_{k_g} + \boldsymbol{\theta}_{k_g}^\top \boldsymbol{\theta}_{k_g}) \\ \text{s. t.} \quad \|\hat{M}_{k_g}(\boldsymbol{\theta}'_g) - \boldsymbol{\theta}_{k_g}\|_2^2 \leq \varepsilon_{k_g} \end{cases} \quad (52)$$

2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043

$$= \begin{cases} \min_{\boldsymbol{\theta}_{k_g}} \boldsymbol{\theta}_{k_g}^\top \underbrace{\left(- \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) I \right)}_{\mathbf{A}_0} \boldsymbol{\theta}_{k_g} + 2 \underbrace{\left(\sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \mathbf{x}_{n_g} \right)^\top}_{\mathbf{b}_0} \boldsymbol{\theta}_{k_g} + \\ \quad \underbrace{\mathbf{x}_{n_g}^\top \left(- \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) I \right) \mathbf{x}_{n_g}}_{c_0} \\ \text{s. t.} \quad \boldsymbol{\theta}_{k_g}^\top \underbrace{I}_{\mathbf{A}_1} \boldsymbol{\theta}_{k_g} + 2 \underbrace{\left(- \hat{M}_{k_g}(\boldsymbol{\theta}'_g) \right)^\top}_{\mathbf{b}_1} \boldsymbol{\theta}_{k_g} + \underbrace{\hat{M}_{k_g}(\boldsymbol{\theta}'_g)^\top \hat{M}_{k_g}(\boldsymbol{\theta}'_g) - \varepsilon_{k_g}}_{c_1} \leq 0, \end{cases} \quad (53)$$

where $\mathbf{A}_0, \mathbf{A}_1 \in \mathbb{R}^{d \times d}$, $\mathbf{b}_0, \mathbf{b}_1 \in \mathbb{R}^d$, and $c_0, c_1 \in \mathbb{R}$. Now, note that the above problem is nonconvex, since \mathbf{A}_0 is not PSD. However, note that for all $\varepsilon_{k_g} > 0$, the above problem is strictly feasible. Therefore, the problem obeys Slater's condition and admits a strong Lagrange dual. As shown by Boyd & Vandenberghe (2004), this Lagrange dual can be formulated as the SDP shown next.

2048
2049
2050
2051

$$M'_{k_g}(\boldsymbol{\theta}'_g, \varepsilon_{k_g}) := \begin{cases} \max_{\nu_{k_g}, \alpha_{k_g}} \nu_{k_g} \\ \text{s. t.} \quad \alpha_{k_g} \geq 0 \\ \quad \begin{bmatrix} \mathbf{A}_0 + \alpha_{k_g} \mathbf{A}_1 & \mathbf{b}_0 + \alpha_{k_g} \mathbf{b}_1 \\ (\mathbf{b}_0 + \alpha_{k_g} \mathbf{b}_1)^\top & c_0 + \alpha_{k_g} c_1 - \nu_{k_g} \end{bmatrix} \geq 0, \end{cases} \quad (54)$$

2052 where $\alpha_{k_g}, \nu_{k_g} \in \mathbb{R}$ are dual variables. We can reformulate this problem as follows.
 2053

2054

2055

2056

2057

2058

2059

2060

$$2061 \quad M'_{k_g}(\boldsymbol{\theta}'_g, \varepsilon_{k_g}) \\ 2062 = \begin{cases} \max_{\nu_{k_g}, \alpha_{k_g}} \nu_{k_g} \\ 2063 \quad \text{s. t.} \quad \alpha_{k_g} \geq 0 \\ 2064 \quad \quad \quad \left[\begin{array}{cc} \mathbf{A}_0 + \alpha_{k_g} \mathbf{A}_1 & \mathbf{b}_0 + \alpha_{k_g} \mathbf{b}_1 \\ (\mathbf{b}_0 + \alpha_{k_g} \mathbf{b}_1)^\top & c_0 + \alpha_{k_g} c_1 - \nu_{k_g} \end{array} \right] \succeq 0, \end{cases} \quad (55)$$

$$2068 \quad \begin{cases} \max_{\nu_{k_g}, \alpha_{k_g}} \nu_{k_g} \\ 2069 \quad \text{s. t.} \quad c_0 + \alpha_{k_g} c_1 - \nu_{k_g} - \\ 2070 \quad \quad \quad (\mathbf{b}_0 + \alpha_{k_g} \mathbf{b}_1)^\top \left(\left(\alpha_{k_g} - \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \right) I \right)^{-1} (\mathbf{b}_0 + \alpha_{k_g} \mathbf{b}_1) \geq 0 \\ 2071 \quad \quad \quad \alpha_{k_g} - \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \geq 0 \end{cases} \quad (56)$$

$$2078 \quad \begin{cases} \max_{\nu_{k_g}, \alpha_{k_g}} \nu_{k_g} \\ 2079 \quad \text{s. t.} \quad c_0 + \alpha_{k_g} c_1 - \nu_{k_g} - \frac{1}{\alpha_{k_g} - \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g)} \|\mathbf{b}_0 + \alpha_{k_g} \mathbf{b}_1\|_2^2 \geq 0 \\ 2080 \quad \quad \quad \alpha_{k_g} - \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \geq 0 \end{cases} \quad (57)$$

$$2086 \quad \begin{cases} \max_{\nu_{k_g}, \alpha_{k_g}} \nu_{k_g} \\ 2087 \quad \text{s. t.} \quad (c_0 + \alpha_{k_g} c_1 - \nu_{k_g})(\alpha_{k_g} - \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g)) \geq \|\mathbf{b}_0 + \alpha_{k_g} \mathbf{b}_1\|_2^2 \\ 2088 \quad \quad \quad \alpha_{k_g} \geq \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g), \end{cases} \quad (58)$$

2094

2095

2096

2097

2098

2099

2100

2101 where (56) is obtained via the Schur complement. Now, observe that the first constraint in (58) is
 2102 monotonic in ν_{k_g} . Moreover, note that plugging the problem in (58) into the constraint in problem
 2103 (50) can be interpreted as requiring that the maximum value of ν_{k_g} satisfying the constraint must
 2104 be greater than or equal to $-\sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \|\mathbf{x}_{n_g} - \boldsymbol{\theta}'_{k_g}\|_2^2$. Thus, it suffices to require that
 2105 $\nu_{k_g} = -\sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \|\mathbf{x}_{n_g} - \boldsymbol{\theta}'_{k_g}\|_2^2$ satisfies the constraint in problem (58). Therefore, we

can use this result to rewrite the problem in (50) as follows.

$$\begin{aligned}
& J_{k_g}(\boldsymbol{\theta}'_g) \\
&= \max_{\varepsilon_{k_g}, \alpha_{k_g}} \varepsilon_{k_g} \\
&\text{s. t.} \quad \left(c_0 + \alpha_{k_g} c_1 + \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \|\mathbf{x}_{n_g} - \boldsymbol{\theta}'_{k_g}\|_2^2 \right) \left(\alpha_{k_g} - \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \right) \geq 0 \\
&\quad \alpha_{k_g} \geq \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \\
&\quad \|\mathbf{b}_0 + \alpha_{k_g} \mathbf{b}_1\|_2^2
\end{aligned} \tag{59}$$

$$\begin{aligned}
& \max_{\varepsilon_{k_g}, \alpha_{k_g}} \varepsilon_{k_g} \\
\text{s. t.} \quad & \varepsilon_{k_g} \alpha_{k_g}^2 + \left[\sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \right. \\
= & \left. \left(-\widehat{M}_{k_g}(\boldsymbol{\theta}'_g)^\top \mathbf{x}_{n_g} + \mathbf{x}_{n_g}^\top \mathbf{x}_{n_g} + \widehat{M}_{k_g}(\boldsymbol{\theta}'_g)^\top \widehat{M}_{k_g}(\boldsymbol{\theta}'_g) - \varepsilon_{k_g} - \|\mathbf{x}_{n_g} - \boldsymbol{\theta}'_{k_g}\|_2^2 \right) \alpha_{k_g} + \right. \\
& \left. \left(\sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \right) \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \|\mathbf{x}_{n_g} - \boldsymbol{\theta}'_{k_g}\|_2^2 \leq 0 \right. \\
& \alpha_{k_g} \geq \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g)
\end{aligned} \tag{60}$$

$$\begin{aligned}
& \max_{\varepsilon_{k_g}, \alpha_{k_g}} \varepsilon_{k_g} \\
\text{s. t.} \quad & \varepsilon_{k_g} \alpha_{k_g}^2 + \left[\sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \left(\|\mathbf{x}_{n_g} - \hat{M}_{k_g}(\boldsymbol{\theta}'_g)\|_2^2 - \|\mathbf{x}_{n_g} - \boldsymbol{\theta}'_{k_g}\|_2^2 - \varepsilon_{k_g} \right) \right] \alpha_{k_g} + \\
= & \left(\sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \right) \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g) \|\mathbf{x}_{n_g} - \boldsymbol{\theta}'_{k_g}\|_2^2 \leq 0 \\
& \alpha_{k_g} \geq \sum_{n_g=1}^{N_g} \gamma_{k_g}(\hat{\mathbf{x}}_{n_g}, \boldsymbol{\theta}'_g)
\end{aligned} \tag{61}$$

D SUPPLEMENTARY EXPERIMENTAL DETAILS AND RESULTS

In this section we provide all the details of all the experiments presented in this paper, as well as supplementary results for both the Benchmarking and Sensitivity Studies. Please note that the all the code and instructions associated with all the experiments is provided separately in the supplementary materials.

D.1 SOFTWARE AND HARDWARE DETAILS

All the experiments presented in this work were executed on Intel Xeon Gold 6226 CPUs @ 2.7 GHz (using 10 cores) with 120 Gb of DDR4-2993 MHz DRAM. Table 3 provides more detail on all the software used in the paper.

2160
2161
2162 Table 3: Details on All the Software Used in the Numerical Experiments.
2163
2164
2165
2166
2167
2168
2169
2170

Software	Version	License
Gurobi	10.0.1	Academic license
MATLAB	R2021B	Academic license
Python	3.10.9	Open source license
Scikit-Learn	1.2.1	Open source license
Numpy	1.23.5	Open source license
Scipy	1.10.0	Open source license
UCIMLRepo	0.0.3	Open source license
TensorFlow	2.12.0	Open source license

2171
2172
2173 D.2 DATASETS UTILIZED
21742175 D.2.1 BENCHMARKING STUDY
21762177 In the benchmarking study we utilize various popular real-world datasets for evaluation. We provide
2178 more detail on the datasets in Table 4.
21792180 Table 4: Details on Datasets Utilized for UCI Experiments.
2181

Dataset	Abbreviation	License	N	K	d
MNIST (LeCun et al., 2010) (embeddings: (Bickford Smith et al., 2024b))	MNIST	CC BY 4.0 (embeddings: MIT License)	70,000	10	10
Fashion MNIST (Xiao et al., 2017)	FMNIST	CC BY 4.0	70,000	10	64
Extended MNIST (Balanced) (Cohen et al., 2017)	EMNIST	CC BY 4.0	131,600	47	16
CIFAR-10 (Krizhevsky et al., 2009) (embeddings: (Bickford Smith et al., 2024a))	CIFAR-10	CC BY 4.0 (embeddings: MIT License)	60,000	10	64
Abalone (Nash et al., 1994)	Abalone	CC BY 4.0	4177	7	8
Anuran Calls (MFCCs) (Colonna et al., 2015)	FrogA	CC BY 4.0	7195	10	21
Anuran Calls (MFCCs) (Colonna et al., 2015)	FrogB	CC BY 4.0	7195	8	21
Waveform Database Generator (Version 1) (Breiman & Stone, 1984)	Waveform	CC BY 4.0	5000	3	21

2182
2183
2184
2185
2186
2187
2188
2189
2190 **Preprocessing - Image Datasets.** Rather than directly clustering the images in the MNIST, FM-
2191 NIST, EMNIST, and CIFAR-10 datasets, we utilize embeddings extracted from them to reduce the
2192 computational expense of the experiments. These embeddings are extracted via variational autoen-
2193 coders (VAEs). More specifically, for the MNIST dataset we utilize the vanilla VAE embeddings
2194 available at (Bickford Smith et al., 2024b), which have dimension 10. For the FMNIST and EM-
2195 NIST datasets, we implement VAEs with latent dimensions 64 and 16, respectively. Subsequently,
2196 we utilize the encoded mean vectors of the samples as the data utilized for clustering. Finally, for the
2197 CIFAR-10 dataset we utilize the "Barlow" embeddings available at (Bickford Smith et al., 2024a).
2198 However, we further encode these embeddings via a VAE with latent dimension 64 as we do for
2199 FMNIST and EMNIST. All code utilized for feature extraction is provided in the supplementary
2200 materials available with the submission.2201
2202
2203
2204
2205
2206
2207
2208 **Preprocessing - Abalone.** Since the Abalone dataset has very small clusters (some of which contain
2209 only 1 sample), we combined various clusters together. This makes sense physically, as the target
2210 label in the dataset is an integer the age of the abalone. Therefore, combining various labels into bins
2211 enforces a more categorical structure on the age. More specifically, we combined labels 0 through
2212 5 into one cluster, kept labels 6 through 10 as separate clusters, combined labels 11 and 12 into one
2213 cluster, and combined labels 13 through 28 into one cluster.2207 D.2.2 SENSITIVITY STUDY
22082209 The data utilized in this experiment is generated using the `make_blobs` module of the
2210 `scikit-learn` Python package. This module generates isotropic Gaussian clusters, making it
2211 ideal for our problem setting. The data is generated so that the centroids of the clusters have a preset
2212 minimum distance of R_{\min} between them. Moreover, data generation is designed so that at least
2213 two of the generated clusters have centroids that are exactly R_{\min} apart. It is worth noting that for
the sensitivity study, the dataset generated during each repetition is tested 3 times for each model.

2214 During each of those times, the model starts with a random initialization via k-means++. The
 2215 results we report are the maximum performance obtained over the 3 initializations.
 2216

2217 **D.3 HYPERPARAMETER DETAILS AND PERFORMANCE EVALUATION**
 2218

2219 In this section, we provide a detailed practical discussion on the tuning our algorithm’s final aggre-
 2220 gation radii. As mentioned in Section 6, we use $\varepsilon_{k_g}^{\text{final}} = \frac{v_g \hat{R}_{\min_g}}{\pi_{k_g} \sqrt{N_g}}$ as a practical heuristic, where v_g
 2221 is the hyperparameter we directly tune. For simplicity, we set v_g equivalently for all clients $g \in [G]$.
 2222 This heuristic allows the aggregation radii to scale appropriately with the scale of the feature space
 2223 and the number of samples available at each client. Additionally, it allows the final aggregation radii
 2224 to adapt to each cluster at each client while requiring the tuning of only one hyperparameter.
 2225

2226 We utilize cross-validation to tune v_g , using SS Rousseeuw (1987) as a performance metric. We
 2227 also provide a practical guide to evaluate the estimated \hat{K} without knowledge of the true K . To that
 2228 end, we ensure that \hat{K} does not significantly exceed $\sqrt{\sum_{g=1}^G K_g}$. This guide is inspired by a rough
 2229 estimate that for any client $g \in [G]$, $K_g \sim \mathcal{O}(K)$, which suggests that $\sum_{g=1}^G K_g \sim \mathcal{O}(KG)$. Since
 2230 in most practical cases we have $G > K$, then we can see that $\sqrt{\sum_{g=1}^G K_g} \sim \mathcal{O}(\sqrt{KG}) > \mathcal{O}(K)$.
 2231

2232 All hyperparameters for all benchmark models are set as prescribed in their respective works. Ad-
 2233 ditionally, note that the estimated number of clusters provided to the DP-GMM and AFCL models
 2234 is $\sum_{g=1}^G K_g$, as this constitutes an upper bound for K . Note that this initial estimate is significantly
 2235 closer to the true number of clusters for all datasets than the initial value of $\frac{\sum_{g=1}^G N_g}{32}$ suggested for
 2236 AFCL in (Zhang et al., 2025). The reported estimated number of clusters for both algorithm is the
 2237 total number of clusters to which test samples were assigned. Moreover, we run all iterative algo-
 2238 rithms for $T = 20$ iterations, and we run our algorithm for $T = 10$ iterations. Furthermore, we
 2239 utilize $S = 1$ local steps for our model in all setting, as well as $I = 10$ iterations for Algorithm 4.
 2240

2241 It should be noted that since our model is personalized, the reported performance for our model is a
 2242 weighted average of the clients’ individual performance metrics.
 2243

2244 Table 5: Hyperparameter v_g tuning values for all datasets used in the Benchmarking Study.
 2245

2246	Dataset	Hyperparameter Value(s)
2247	MNIST	2e0
2248	FMNIST	3e2
2249	EMNIST	2e0
2250	CIFAR-10	2e1
2251	Abalone	{5e3, 7e3, 9e3}
2252	Frog A	{1e4, 1e5, 1e6}
2253	Frog B	{1e4, 1e5, 1e6}
2254	Waveform	{1e0, 5e0, 1e1}
2255	Synthetic	{5e-1, 1e0, 5e0, 1e1, 5e1}
2256		

2257 **D.4 SUPPLEMENTARY BENCHMARKING STUDY RESULTS**
 2258

2259 We provide additional results for our Benchmarking Study using the SS evaluation metric in Table
 2260 6. We immediately observe that our proposed method continues to attain the highest performance
 2261 out of the federated methods with unknown K for most datasets. Furthermore, we observe that on
 2262 datasets such as Abalone and Waveform, our method outperforms even the top performing method
 2263 with known K . Since the results using these evaluation metrics are similar to those using the ARI,
 2264 we reach a strong conclusion that our proposed model has a significant practical impact. Namely, it
 2265 can achieve similar performance to, or even outperform some clustering methods that assume prior
 2266 knowledge of K , and it often outperforms method without prior knowledge of K . It achieves this
 2267 while being federated (i.e. not requiring any data movement), and without prior knowledge of K .
 2268

Table 6: SS attained by all methods on tested datasets.

Model	Known K ?	MNIST	FMNIST	EMNIST	CIFAR-10	Abalone	Frog A	Frog B	Waveform
GMM (central)	Yes	.029 ±.020	.093 ±.008	.046 ±.006	.191 ±.013	.397 ±.014	.232 ±.042	.198 ±.089	.255 ±.026
k-FED	Yes	.076 ±.010	.106 ±.022	.075 ±.010	.177 ±.012	.406 ±.029	.285 ±.066	.278 ±.076	.245 ±.028
FFCM-avg1	Yes	−.045 ±.030	.009 ±.0023	−.113 ±.026	−.014 ±.045	.400 ±.011	.229 ±.051	.259 ±.061	.247 ±.008
FFCM-avg2	Yes	.036 ±.011	.052 ±.018	−.077 ±.023	.087 ±.021	.404 ±.016	.272 ±.071	.324 ±.056	.231 ±.042
FedKmeans	Yes	.105 ±.005	.127 ±.006	.091 ±.003	.203 ±.006	.404 ±.010	.302 ±.054	.289 ±.074	.252 ±.003
DP-GMM (central)	No	−.082 ±.014	−.058 ±.014	−.063 ±.007	.117 ±.005	.324 ±.023	.171 ±.040	.144 ±.025	.115 ±.013
AFCL	No	.015 ±.002	.017 ±.003	.028 ±.002	.106 ±.005	.192 ±.028	.144 ±.048	.156 ±.045	.018 ±.010
FedGEM (ours)	No	.095 ±.012	.069 ±.018	.063 ±.009	.094 ±.015	.307 ±.086	.324 ±.082	.284 ±.092	.271 ±.011

D.5 SUPPLEMENTARY SENSITIVITY STUDY RESULTS

We present the results of the Sensitivity Study utilizing the SS to compare model performance in Figure 2. Firstly, we again observe that performance of both models improves as R_{\min} increases. Surprisingly, however, we see that our proposed model outperforms GMM in all setting, which does not match the ARI result. This could be explained by SS’s sensitivity to the number of clusters. Indeed, a problem with a smaller number of clusters is likely to exhibit higher SS than an identical one with a larger number of clusters. Since each client only has a subset of the clusters locally, this can cause the local SS to be over-inflated. However, as seen in the ARI result, we can conclude that our proposed model offers very close performance to that of a centralized one with known K , which is a powerful result.

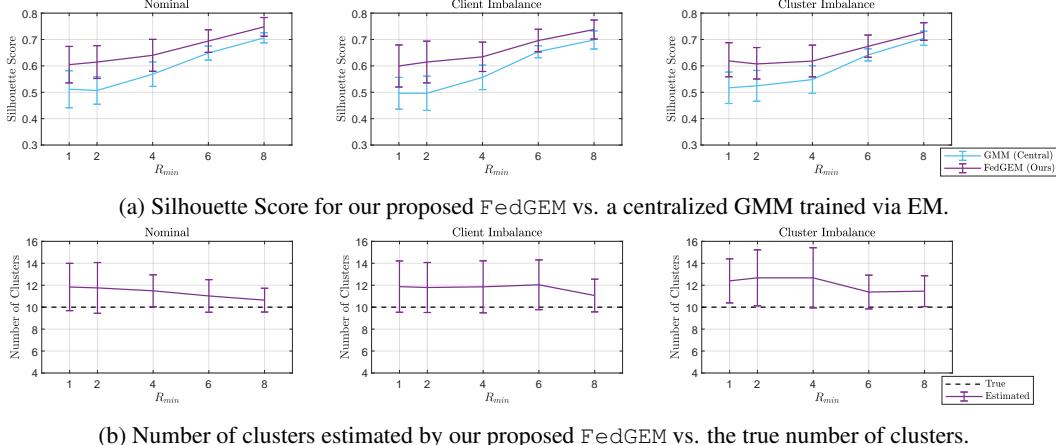


Figure 2: Supplementary results of the sensitivity study.

D.6 SENSITIVITY TO HYPERPARAMETER

This study evaluates the sensitivity of our proposed algorithm to its final aggregation radius hyperparameter.

Our Method. As with the other numerical experiments, our method is the isotropic GMM model trained via our proposed FedGEM algorithm.

Evaluation Metric. We examine the sensitivity of both the ARI and the estimated number of clusters to the hyperparameter.

2322
 2323 **Hyperparameters.** Recall our final aggregation radius heuristic $\varepsilon_{k_g}^{\text{final}} = \frac{v_g \hat{R}_{\min_g}}{\pi_{k_g} \sqrt{N_g}}$. We evaluate our
 2324 model's performance for $v_g \in \{1e-1, 1e0, 1e1, 1e2\}$.

2325 **Dataset.** The data used for this experiment is isotropic Gaussian clusters generated via the
 2326 `make_blobs` module in Python. We set $R_{\min} = 4$, and we study three key settings: i) nominal:
 2327 data is balanced across clients and clusters, ii) client imbalance: the data is imbalanced across
 2328 clients, and iii) cluster imbalance: the portion of each cluster in the local data at each client is
 2329 randomly samples followed by normalization. For all settings we use $G = 15$, $K = 10$, $N_{\text{train}} = 7500$,
 2330 and $N_{\text{test}} = 2000$.

2331 **Results.** The results of this study are displayed in Figure 3. We observe that the estimated number
 2332 of clusters can be more sensitive to the choice of v_g than ARI. This is intuitive, as a value of v_g
 2333 that is too small will result in insufficient cluster aggregation, which causes the estimated number of
 2334 clusters to be overinflated. However, since clustering performance evaluation is performed locally
 2335 at each client, ARI can still be somewhat stable in this setting. On the other hand, if v_g is too large,
 2336 this will cause estimates associated with different clusters to be aggregated together. This leads to an
 2337 underestimation of the number of clusters and also significantly affects clustering performance. A
 2338 key observation we make is that for an appropriately adjusted v_g , ARI seems to reach a peak value in
 2339 the nominal case while the estimated number of clusters almost coincides with the true value. This
 2340 highlights the importance of hyperparameter tuning via the protocol we present in Appendix D.3.
 2341 Finally, we note that the cluster and client imbalance settings do not significantly affect our model's
 2342 performance, suggesting robustness to such issues.

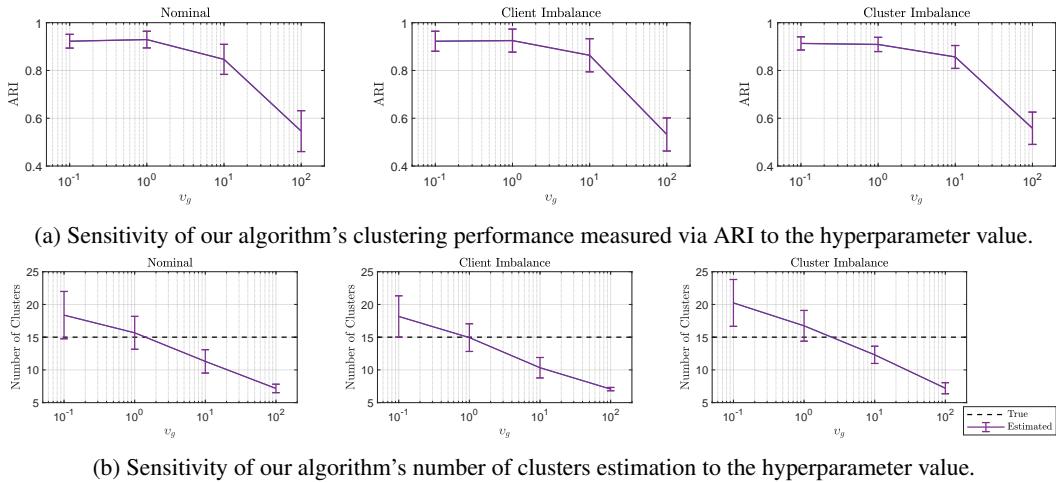


Figure 3: Results on the sensitivity of our algorithm to its hyperparameter.

E SCALABILITY STUDY

2367 In this section, we present two distinct studies we performed to evaluate the scalability of our
 2368 proposed algorithm.

2370 **Our Method.** As stated in the full paper, our method is the isotropic GMM model trained via our
 2371 proposed FedGEM algorithm.

2372 **Evaluation Metric.** We utilize runtime in seconds to evaluate the scalability of all methods.

2373 **Baselines.** We compare our algorithm to AFCL, which is the only other federated clustering method
 2374 that does not require knowledge of K . Additionally, we also use FFCM-avg2 and FedKmeans as
 2375 benchmarks as they achieved strong performance in the Benchmarking Study.

2376 E.1 SCALABILITY ON IMAGE DATASETS
23772378 We examine the runtime of some of our algorithm as well as some of the federated benchmarks on
2379 the larger-scale image datasets. This allows us to evaluate the scalability of our proposed algorithm
2380 in realistic settings.2381 **Hyperparameters.** All hyperparameters and experimental settings (e.g. number of clients G , hy-
2382 perparameter settings, etc...) are exactly the same as described in detail in Appendix D.3. However,
2383 in the interest of fairness, we run all federated algorithms for $T = 10$ iterations, and we confirm that
2384 their performance after training is on par with the values reported previously.2385 **Datasets.** In this experiment we focus solely on the MNIST, FMNIST, EMNIST, and CIFAR-10
2386 datasets. This is because they are on a much larger scale than the other datasets tested, therefore
2387 they provide meaningful insights into algorithm scalability.2388 **Results.** The results of this experiment are reported in Table 7. We observe that our algorithm
2389 achieves a much shorter runtime than AFCL (the only other federated clustering approach without
2390 prior knowledge of K). This emphasizes the significant practical impact of our algorithm, as it
2391 also achieved superior clustering performance and total number of cluster estimation as discussed in
2392 Section 6 and Appendix D. As we discuss in the Scalability Study on Synthetic Data in Appendix
2393 E.2, this advantage over AFCL is most likely due to improved scalability with respect to the number
2394 of clients. This suggests that our algorithm is better suited for distributed clustering problems over
2395 large networks involving large volumes of data.2396
2397 Table 7: Runtime in seconds of selected federated algorithms on the image datasets evaluated.

Model	Known K ?	MNIST	FMNIST	EMNIST	CIFAR-10
FFCM-avg2	Yes	220 ± 18	440 ± 25	6075 ± 842	188 ± 8
FedKmeans	Yes	30 ± 2	52 ± 3	314 ± 42	26 ± 1
AFCL	No	2047 ± 246	2013 ± 204	3176 ± 722	1798 ± 165
FedGEM (ours)	No	552 ± 52	645 ± 63	1628 ± 335	345 ± 35

2405 E.2 SCALABILITY ON SYNTHETIC DATA
24062407 This study aims to evaluate the scalability of our proposed algorithm as the size of the training
2408 dataset and the federated network grow. It also compares the scalability of our algorithm to that
2409 of multiple federated benchmarks. **We note that the implementation of our algorithm used in this**
2410 **study relies on pairwise server computations. Therefore, scalability can likely be further improved**
2411 **by leveraged a KD tree as explained in Appendix B.5.**2412 **Hyperparameters.** Since the focus of this study is more so on execution time than model perfor-
2413 mance, we did not perform hyperparameter tuning for this experiment. We fix our final aggregation
2414 radius hyperparameter $v_g = 1e0$ for all $g \in G$. We set the hyperparameters of benchmark models as
2415 prescribed in their corresponding papers. Additionally, we run all algorithms with $T = 10$ iterations.
2416 Finally, this experiment was repeated for 10 repetitions.2417 **Dataset.** In this experiment we utilize data generated via the `make_blobs` module in Python,
2418 which generates isotropic Gaussian clusters. We utilize $R_{\min} = 2$ across all experiments. Addition-
2419 ally, we study 4 distinct experimental settings, listed next.2420

1. **Increasing Features:** $G = 5, N_g = 500, K = 10, d \in \{5, 25, 45, 65\}$.
2. **Increasing Training Samples per Client:** $G = 5, K = 10, d = 15, N_g \in \{500, 2500, 4500, 6500\}$.
3. **Increasing Clusters:** $G = 5, N_g = 500, d = 15, K \in \{5, 25, 45, 65\}$.
4. **Increasing Clients:** $N = 1000, K = 10, d = 15, G \in \{5, 25, 45, 65\}$.

2421 Across all experiments, we uniformly sample K_g for all $g \in [G]$ such that $2 \leq K_g < K$.
24222423 **Results.** The results of this experiment are shown in Figure 4. Firstly, we observe that the runtime
2424 of all algorithms remains constant as the number of features increases. This suggests that all com-

pared algorithms, including ours, scale well with the number of features. Secondly, we observe that while our algorithm exhibits a greater runtime than benchmark methods in all experimental settings, it scales at a similar rate to them as the number of samples, clusters, and clients increase. This suggests strong scalability across all settings. Moreover, we observe in the increasing number of clients setting that AFCL’s runtime increases at a faster rate than our proposed algorithm. This suggests that our algorithm scales better in this setting, and can therefore be more suitable for settings with a large number of clients. This observation aligns with our results presented in the runtime analysis in Appendix E.1, where we observe that our algorithm achieves a shorter runtime than AFCL in experiments involving a high G and large datasets. Combined with the fact that our algorithm exhibited better clustering performance and true number of clusters estimation across all our experiments, this highlights the significant practical impact of our proposed FedGEM algorithm.

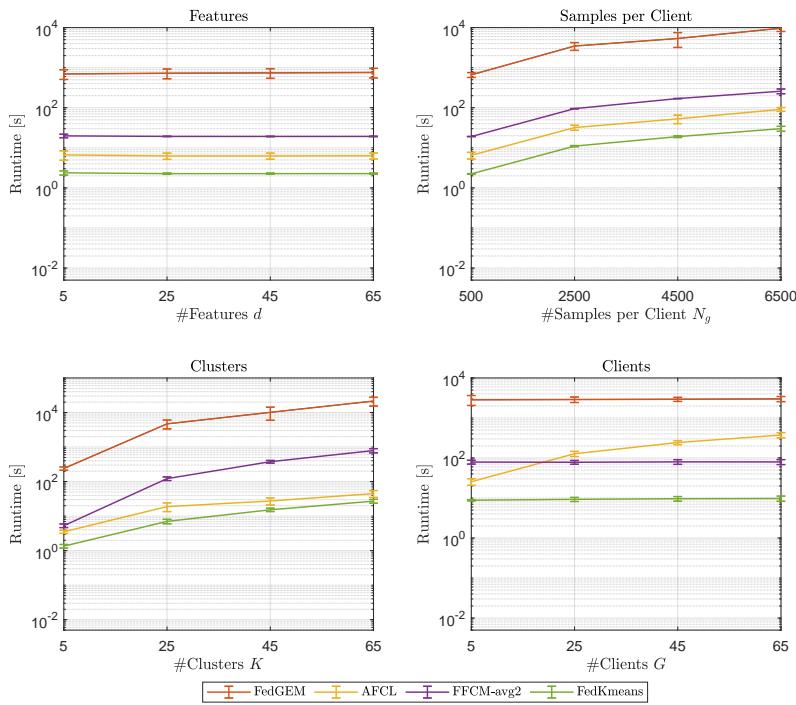


Figure 4: Results of the scalability experiment for all experimental settings and benchmark models.

F FURTHER DISCUSSION

F.1 JUSTIFICATION AND INTERPRETATION OF MODELING ASSUMPTIONS

- **Assumption 1: Ground Truth Parameters.** In this assumption, we enforce a modeling structure that is necessary for the convergence analysis of our algorithm. Namely, that any clusters that are shared by multiple clients, have the exact same ground truth parameters at all clients. Note that this assumption does not violate the non-IID nature of the data in FL problems. This is because cluster weights can be different across clients, and clients may have different clusters. Therefore, the data across clients is still non-IID. This assumption is common in works studying federated EM algorithms, such as (Marfoq et al., 2021).
- **Assumption 2: Strong Concavity.** This assumption requires each of the terms in the expected complete-data log-likelihood functions to be strongly concave, thereby allowing for the function to have a unique maximizer. Such assumption is very common (at least locally near the optimum) in works examining the convergence of EM algorithms such as (Balakrishnan et al., 2014). This assumption is also readily verifiable for models such as GMMs.
- **Assumption 3: First-Order Stability.** This assumption requires the expected complete-data log-likelihood to obey a Lipschitz-like smoothness constraint, introduced by Balakr-

2484 ishnan et al. (2014) and defined in 1. Such a technical assumption is vital for the theoretical
 2485 analysis, and the derivation of convergence guarantees, but is not required for the algorithm
 2486 to be used in practice.

2487

- 2488 • **Assumption 4: Continuity.** This is another technical assumption, which requires the
 2489 complete-data log-likelihood function of the model used to be smooth in both its input and
 2490 conditioning arguments. This is standard in many EM-related efforts, and is only required
 2491 for the theoretical convergence analysis but not for algorithm use in practice.
- 2492 • **Assumption 5: Likelihood Boundedness.** This assumption requires the log-likelihood of
 2493 the model used to be bounded from above, although that bound need not be known. Similar
 2494 to previous assumptions, this one is also purely required for the theoretical convergence
 2495 analysis, but not for the use of the algorithm in practice. Note that this assumption is
 2496 common in works investigating Federated EM algorithms such as (Marfoq et al., 2021),
 2497 and is easily verifiable for models such as GMM under mild conditions on the covariance
 2498 matrix.
- 2499 • **Assumption 6: Finite-Sample and Population M-Step Proximity.** This assumption re-
 2500 quires there to be an upper bound on the maximum difference between the population M-
 2501 step and the finite-sample M-step for each cluster with a certain probability. Whereas all
 2502 the previous assumptions allow us to theoretically study the convergence of our algorithm
 2503 on the population level (i.e. with infinite data), this one is necessary for the finite-sample
 2504 convergence analysis. Specifically, it allows us to prove that the algorithm updates made
 2505 via a finite data sample indeed converge to a neighborhood of the converged population-
 2506 based iterates. This assumption was utilized in works exploring the convergence of EM
 2507 algorithms such as (Balakrishnan et al., 2014; Yan et al., 2017), and is also purely technical
 2508 and does not impact algorithm usability in practice.
- 2509 • **Assumption 7: Bounded Support.** This assumption requires the support of the feature
 2510 vector to be bounded, and is needed **only** in the setting where DP is used to privatize
 2511 the cluster maximizers shared by the clients. Such an assumption is not restrictive. This
 2512 is because data is often collected via acquisition devices with known ranges. Therefore,
 2513 feature support is either already bounded, or can be via normalization.

2513 F.2 INTERPRETATION OF THEORETICAL RESULTS

2514

- 2515 • **Proposition 1: Local Uncertainty Set Radius Problem.** This proposition asserts that
 2516 the optimization problem solved by each client to obtain the radius of the uncertainty set
 2517 centered at the maximizer of each local cluster must have a unique solution. The unique
 2518 solution would be 0 at convergence. This holds under the modeling assumption thanks to
 2519 the strong concavity of the complete-data log-likelihood function.
- 2520 • **Theorem 1: Single-Point EM Convergence.** This theorem asserts that the finite sample
 2521 EM iterates computed by each client for each local cluster must converge to a single point
 2522 withing a certain proximity of the ground truth parameters. This is a subtle, but key result,
 2523 as it ensures stability and lack of oscillations upon convergence.
- 2524 • **Theorem 5: Local Convergence of Population GEM.** This theorem asserts that, in the
 2525 population setting (i.e. infinite training samples), iterates that are computed via our pro-
 2526 posed FedGEM algorithm converge exactly to the ground truth parameters. This is a very
 2527 strong convergence result, which is used to establish the finite-sample convergence of the
 2528 algorithm.
- 2529 • **Theorem 2: Local Convergence of Finite-Sample GEM.** This theorem asserts that, with
 2530 a certain probability, iterates that are computed via our proposed FedGEM algorithm con-
 2531 verge within a certain radius around the ground truth parameters at any client. This is
 2532 achieved with only a finite number of training samples. This result forms the basis for our
 2533 convergence argument. This is because iterates of a shared cluster across multiple clients
 2534 converge to a close proximity of each other. Therefore, given a final aggregation radius that
 2535 meets certain conditions, they can be successfully aggregated into a single cluster.
- 2536 • **Theorem 3: Number of Clusters Inference:** This theorem asserts that with a certain
 2537 probability, our algorithm correctly estimates the total unique number of clusters across
 2538 clients. This is reliant on the finite-sample convergence established in Theorem 2.

- **Theorem 4: Radius Problem Reformulation.** This theorem provides a tractable, bi-convex, 2-dimensional reformulation for the semi-infinite uncertainty set radius problem in the case of isotropic GMMs. This renders our algorithm tractable for this specific model, and allows us to implement it in our numerical experiments.
- **Proposition 2: Local Radius Algorithm Convergence.** This proposition shows that Algorithm 4 proposed to solve the uncertainty set radius problem reformulation from Theorem 4 enjoys a very low time complexity. This allows our FedGEM algorithm to scale well with problem size.
- **Theorem 6: GMM First-Order Stability.** This theorem proves that the multi-component isotropic GMM explored in this work indeed satisfies the FOS condition defined in 1. This is a very impactful result, as, to the best of our knowledge, this is the first time such result is formally proven for a GMM with more than two components. This condition is necessary for the convergence of our algorithm. Therefore, formally proving it allows us to argue that our FedGEM algorithm is guaranteed to converge for multi-component, isotropic GMMs.
- **Theorem 7: GMM M-Step Contraction Region.** This theorem derives the radius of the contraction region centered at the ground truth parameters for each cluster at each client. This bound allows us to argue that our proposed algorithm converges for the isotropic GMM under consideration. However, we note that this is a purely technical result needed only for the theoretical convergence analysis, but not for practical implementation.
- **Theorem 8: GMM Finite-Sample and Population M-Step Distance.** This theorem derives the upper bound on the distance between the population and final sample M-steps that is required by Assumption 6. The existence of this bound guarantees the convergence of our proposed FedGEM algorithm for the isotropic GMM under study. Note, however, that this is also a purely technical result required only for the theoretical convergence analysis. However, it is not needed for use of our algorithm in practice.
- **Theorem 9: Client-to-Server Communication DP.** This theorem is provided as part of a preliminary DP discussion. It provides the minimum standard deviation of the Gaussian noise to be applied to the maximizers shared by the clients to guarantee DP.

F.3 LIMITATIONS AND FUTURE WORK

This paper lays the foundation for a wide array of future work that can provide significant contributions and advance the fields of clustering, federated learning, and unsupervised representation learning via mixture models. Next, we discuss some of the limitations of our work, which should be addressed in future work.

- **Fixed Cluster Weights.** While our algorithm allows each client to set personalized local weights for their local clusters, these weights are fixed. In order to enhance modeling flexibility and personalization capabilities, future efforts should extend our algorithm to include trainable local cluster weights.
- **Stylized Clustering Model.** While the FedGEM algorithm we propose is generic, we mainly focus on its use with an isotropic GMM in this work. Future work may improve real-world performance by utilizing our algorithm with more complex mixture models, **potentially studying anisotropic GMMs with locally learnable cluster weights**. This would be theoretically challenging as it would involve verifying the needed assumptions, as well as deriving a tractable formulation for the local radius problem. **Moreover, this may require an alternative convergence analysis approach, such as one that focuses on convergence to stationary points rather than (neighborhoods of) global maximizers.** Furthermore, such efforts would need to study how the use of such complex models impacts the aggregation process at the central server.
- **Differential Privacy.** While we do provide a preliminary discussion on privatizing the cluster centroids shared by each client via DP in Appendix B.4, privatizing the uncertainty set radius and studying convergence in more detail remains an open problem. Since the radius is computed via an optimization problem, a key theoretical contribution would be analyzing its sensitivity and deriving the appropriate DP budget.

- 2592 • **Modeling Assumptions.** In order to derive theoretical convergence guarantees for our
2593 FedGEM algorithm, we make various modeling assumptions. While these assumptions
2594 are very commonly made, and do not severely impact performance in practice if they are
2595 violated as shown in Section 6, a valuable contribution would still be deriving convergence
2596 guarantees with relaxed assumptions.
- 2597 • **Pairwise Server Computation.** In our proposed work, the server relies on pairwise com-
2598 parisons between the clusters at all clients in order to infer overlaps. While we have shown
2599 in our Scalability Study in Appendix E that our algorithm scales well with problem size,
2600 scalability can be further improved. Future work may develop a more efficient algorithm
2601 to be used by the central server to infer cluster overlaps.
- 2602 • **Full Client Participation.** While the proofs presented in this work would still hold under
2603 partial client participation, they do not account for the potential drift that can be experienced
2604 by stragglers. While convergence to a neighborhood of the global maximizer is proven for
2605 centroid estimates at all clients, client drift can cause the estimates to end up in relatively
2606 distant areas of that neighborhood. This can increase the sensitivity of the estimated number
2607 of clusters to the final aggregation hyperparameter. Future work may study this setting both
2608 from the theoretical and practical perspectives, providing stricter convergence guarantees
2609 for stragglers and potential strategies to ensure an accurate estimation of K .
- 2610 • **Final Aggregation Radius Tuning.** While we present a reliable heuristic and a guideline
2611 that can be used to set the final aggregation radius in our algorithm, it still requires hyper-
2612 parameter tuning via cross-validation to exploit our algorithm’s full performance potential.
2613 Such tuning can incur very large computational costs, and can also significantly affect DP
2614 guarantees. Future work may seek to explore more robust, data-driven and theoretically
2615 verified heuristics that can achieve near-optimal performance while minimizing the com-
2616 putational and privacy costs associated with cross-validation-based tuning.

2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645