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Abstract
Out-of-distribution (OoD) generalization occurs
when representation learning encounters a distri-
bution shift. This occurs frequently in practice
when training and testing data come from dif-
ferent environments. Covariate shift is a type of
distribution shift that occurs only in the input data,
while the concept distribution stays invariant. We
propose RIA - Regularization for Invariance with
Adversarial training, a new method for OoD gen-
eralization under convariate shift, that performs
an adversarial search for training data environ-
ments. These new environments are induced by
adversarial data augmentations that prevent a col-
lapse to an in-distribution trained learner. It works
with many existing OoD generalization methods
for covariate shift that can be formulated as con-
strained optimization problems. We develop an
alternating gradient descent-ascent algorithm to
solve the problem, and perform extensive exper-
iments on OoD graph classification for various
kinds of synthetic and natural distribution shifts.
We demonstrate that our method can achieve high
accuracy compared with OoD baselines.

1. Introduction
The out-of-distribution (OoD) generalization problem is an
important topic in machine learning (Li et al., 2022; Shen
et al., 2021) where one attempts to extrapolate from training
data to in-the-wild distribution shifted data. For example,
in computer vision this is commonly demonstrated by the
example of identifying cows vs. camels on green or sandy
backgrounds (Beery et al., 2018) or the colored MNIST ex-
ample from (Arjovsky et al., 2019). Covariate shift is when
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the covariate, or input, distribution shifts while the concept
distribution does not change. These varying data conditions
are known as varying environments, which can be defined
as data distributions conditioned on some varying environ-
mental factors. A covariate shift is an example of a change
in environment. Common approaches such as Empirical
Risk Minimization (ERM), which selects a model with min-
imal loss over the training set, cannot generalize to OoD
test data as the training environment(s) often rarely reflect
the testing environments. Thus OoD generalization requires
specialized methods and assumptions beyond minimizing
the loss on the training environment.

When there is covariate shift, the distribution of input data
shifts due to the change of environments. For various rea-
sons, there may be a scarcity of training environments. It is
common, in fact, to just have a few, or possibly one, train-
ing environment. Existing OoD generalization methods are
based on the concept of achieving invariance, or stability
amongst learners on various environments. Due to the lack
of diverse training environments, there is a possibility of
such a learner collapsing to an ERM solution.

Non-Euclidean data such as graphs offer new challenges to
the problem of OoD generalization. The primary challenge
is the variable structure of the graphs. The number of nodes
of each graph is variable and the interconnection structure
of a graph is represented by a 0-1 matrix space different
from the graph signal space of node attributes. It is particu-
larly computationally expensive to handle the edges whose
count grows quadratically in the number of nodes. Both ten-
sors must be accounted for to define a graph. Furthermore,
graphs have the permutation invariance inductive bias.

We will assume a common concept distribution across en-
vironments and only covariate shift exists between training
and testing distributions. Existing OoD solution methods do
not prevent the collapse to an ERM solution during training
due to a lack of diverse training environments. We design
an algorithm to search, using alternating gradient descent-
ascent, for counterfactually generated environments that
are hard to learn. This adversarial search prevents collapse
to an ERM solution by introducing difficult and diverse
environments.

The contributions of this paper are as follows:
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• We identify a common issue with many existing OoD
solutions, namely when there is a ”collapse”, or fitting,
to the ERM solution.

• We introduce RIA: Regularization for Invariance with
Adversarial training, a method to learn more environ-
ments for improved OoD generalization. The data
exploration process corresponds to adversarially ex-
panding the search space for training environments.

• We perform extensive experiments to demonstrate the
effective OoD generalizability of our method on real
world as well as synthetic datasets by comparing with
existing graph OoD generalization approaches.

2. Related Work
A common approach to tackling the OoD problem is to find
a representation that performs stably across multiple envi-
ronments (Arjovsky et al., 2019; Bagnell, 2005; Ben-Tal
et al., 2009; Chang et al., 2020; Duchi et al., 2016; Krueger
et al., 2021; Liu et al., 2021a; Mahajan et al., 2021; Mitro-
vic et al., 2020; Sinha et al., 2017). The goal of such an
approach is to eliminate spurious or shortcut correlations
that would normally be learned through empirical risk min-
imization (ERM). ERM is the common approach taken in
machine learning to minimize the training error over a union
of training environments in order to achieve well known gen-
eralization bounds (Vapnik, 1991a). For graph data, (Wu
et al., 2022b) assume an underlying data generation process,
then their assumptions provide a guarantee (Xie et al., 2020)
that they can learn a representation that is stable across
environments. In their data generation assumptions, they
assume graph data can be decomposed into causal and spu-
rious parts. By learning stably across environments, their
objective is to learn to ignore the spurious parts of the data.

Non-Euclidean data such as graphs offer new challenges to
the OoD problem. Many of the existing works on this topic
are explained in the survey (Li et al., 2022).

3. The Problem and Assumptions
Let a labeled graph, denoted by (G,Y), be described by
the pair of pairs ((X,A),Y), where the variable X is the
node attribute signal, A is the 0-1 symmetric adjacency
matrix describing the graph structure, and Y is the ground
truth label. The goal is to predict Y from G = (X,A),
where the covariate distribution Pe(X,A) depends on the
environment e, and the concept distribution P(Y|(X,A))
does not change.

Definition 3.1. Denote Eall the set of all environment in-
dices that index all data distributions for some classification
task that we want to learn. Let Etr ⊂ Eall be a set of training
environments that are accessible during training.

We assume that there is a shift in the covariate distribution
for testing different from the training distribution. The out-
of-distribution generalization problem seeks to predict a
graph label on any unseen testing distribution. Since we
do not know the testing distribution(s), we optimize for
the worst case data distribution in the following minimax
optimization problem.

min
h

sup
e∈Eall

E(Ge,Ye)∼Pe [le(h(Ge),Ye)] (1)

where e indexes a specific environment, Pe is the distribution
from which input data is drawn, and h(·) is a classifier to
predict ground truth label Y. We assume there is a convex
loss for each environment, called le, for e ∈ Eall (Arjovsky
et al., 2019). The expected loss over an environment is
oftentimes called the risk. The environmental risk is denoted
by the symbol Re.

For the data generation, we assume there are causal and
spurious random variables XC ,XS representing the graph
signal as well as causal and spurious variables AC ,AS rep-
resenting the graph connectivity. The causal and spurious
signals and connectivity join together to induce the input
graph G = (X = JX(XC ,XS ),A = JA(AC ,AS ). Let the
graph C = (XC ,AC) be the pairing of the causal signal
and connectivity. The ground truth label Y is generated by
the following composition: Y = m(C, η) for η a random
exogenous variable. The graph C is called a causal graph.
The causal graph C satisfies Y y (X,A)|C and determines
the label Y up to an η. The map m is by a graph data gen-
eration process due to some Structural Causal Model (see
Definition A.1 in Appendix for more details). Many OoD
generalization methods seek to find the graph C from the
graph G.

ERM: When there is no distribution shift at all, the standard
approach would be to take Etr, and minimize the average
risk over these training environments. This is known as
Empirical Risk Minimization (ERM), which is given in the
following equation:

min
h

1
|Etr |

∑
e∈Etr

E[le(h(Ge),Ye)] (2)

However, this does not generalize to when there is a distribu-
tion shift of P(Ge) from training environments with e ∈ Etr

to testing distributions with e ∈ Eall (Ahuja et al., 2021).

3.1. Failing to Extrapolate like ERM: ERM Collapse

ERM Collapse refers to when an OoD generalization method
behaves similarly to ERM on both training and testing data.
Therefore, ERM collapse denotes when an OoD method
fails to extrapolate to OoD data because it treats the OoD
data the same as in-distribution data. This results in a mim-
icking of the training and testing behavior of ERM. This can
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occur when the training environments are all very similar
to each other. In this case, when an OoD generalization
method is formulated as a constrained optimization method,
the constraint becomes ineffective, and the optimization
problem collapses to ERM. Stabilizing only two similar
training environments, for example, may be insignificant
as an optimization constraint. In some OoD generalization
methods, certain causal assumptions beyond those given
in Section 3 and Section A are assumed. For example, a
deterministic map from the data to the causal part may be
assumed. This assumption may not hold in the data gen-
eration process, e.g. the Motif dataset from (Wu et al.,
2022a). In Motif, the graph data are generated by attaching
a causal motif and a spurious graph. There is no guarantee
that there can be a deterministic map from the graph data
to its causal subgraph. The map may not be well defined
since there could be many such subgraphs in a given graph.
Some formal explanations for when an OoD generalization
method can become ”spurious free,” or independent of spu-
rious attributes, are given in (Chen et al., 2022). Formally
speaking, ERM collapse implies not being ”spurious free.”
ERM collapse also implies many other characterizations of
failures to extrapolate OoD.

Figure 1. Geometric view of the minimax optimization procedure
RIA algorithm on Regularized Loss(θ,w) as given in Equation (5)
where w indexes the artificial search environments, θ indexes the
learner’s neural weights.

4. Method
We design a training algorithm for OoD generalization that
adversarially explores data points by data augmentation
for extrapolation beyond the training environments for OoD
generalization. We focus on graph data, however our method
can be generalized to any kind of data. The exploration is
done by stochastic gradient ascent updates, adversarially
maximizing against the ERM loss of any regularized OoD
loss to search over environments (Yi et al., 2021). By learn-
ing a distribution of data augmentations and not a single data
augmentation, we ensure diversity of solutions in addition

to OoD robustness (Wang et al., 2021a).

There are many existing OoD generalization methods and
architectures. It is common for these generalization methods
to be formulated as a constrained optimization equation
with ERM as the minimization objective. A constrained
optimization equation such as

ERM(h)
s.t. C(h)

(3)

can be reformulated as regularized ERM loss of the form
ERM(h) +OoD-Reg•(h) with ERM(h) from Equation (2).
The minimization of OoD-Reg•(h) to zero is a sufficient
condition to obtaining the constraint C(h). The constraint
C(h) usually imposes invariance to spurious correlations
from training data.

Some common constrained optimization methods that are
reformulated as regularized ERM losses (2) to form an OoD
generalization loss include IRM (Arjovsky et al., 2019),
VREx (Krueger et al., 2021), and RICE (Wang et al., 2022).
IRM is a constrained optimization method that learns a rep-
resentation whose correlation between the representation
and the label across multiple training environments is in-
variant. VREx is also a constrained optimization method
that guarantees that the variance across environmental risks
is low. RICE studies OoD generalization with causal in-
variant transformations. It shows that if such transforma-
tions are available, then one can learn a minimax optimal
model across the domains using only single domain data.
It proposes a regularized training procedure for OoD gen-
eralization on a combination of the training environments.
For more information about the three OoD generalization
methods as constrained optimization problems and their
implementation, see Section B in Appendix. We introduce
adversarial data augmentations to search for a robust OoD
solution preventing collapse to the ERM solution. Our data
generation assumptions, as given in the Appendix, are com-
patible with all three methods.

We introduce a distribution of data augmentations and aim
to find an approximate distribution that maximizes the ERM
loss, preventing a collapse to the ERM solution.
Definition 4.1. LetQw be a distribution indexed by w of data
augmentations on graphs, with each augmentation denoted
as S, so that for a given classifier h and a set of training
environments Etr,

Qmax(h, {(Ge,Ye)}e∈Etr ) =

argmaxQw

1
|Etr |

∑
e∈Etr

ES∼Qw [le(h,S(Ge),Ye)] (4)

The purpose of the argmax in Definition 4.1 is to skew the
distribution on the pushforward distributions (S′)#(Ptr) :=
Ptr◦S′−1, S′ ∼ Qmax towards the hardest data augmentations.
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Dataset (acc) CMNIST ↑ SST2↑ Motif ↑ AMotif↑ Synth ↑

covariate color length basis size basis size basis+std, r = 1

ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD

RIA-RICE 61.7±1.6 48.1 ± 0.8 89.4±0.6 81.9 ± 0.2 92.4 ± 0.2 65.1±5.9 92.4 ± 0.2 55.3 ± 0.4 79.3±1.6 36.8±4.2 67.4±1.5 33.4±1.3 48.0±9.0 58.5±1.5

RIA-IRM 65.5 ± 2.8 41.6 ± 0.6 89.7 ± 0.6 81.7 ± 0.5 33.7 ± 0.8 33.9 ± 0.7 33.5 ± 0.8 34 ± 2.9 89.6 ± 0.8 40.5 ± 3.8 48.6 ± 0.4 48.6 ± 2 51 ± 0.6 54 ± 0.8

RIA-VREx 79.3 ± 0.7 38.7 ± 0.7 89.8 ± 2 80.2 ± 4 32.2 ± 2.3 34 ± 1.7 33.5 ± 0.5 34 ± 1.0 90.5 ± 4.5 42.4 ± 0.6 90.3 ± 0.9 47 ± 0.87 40 ± 0.8 60 ± 1.9

ERM 77.5±0.5 28.3±0.3 89.4±0.4 81.2±0.2 92.3±0.3 68.3±0.3 92.1±0.1 51.4±0.4 80.8±1.1 33.2±1.0 67.9±2.2 33.2±1.0 53.5±1.5 53.5±1.5

DIR 39 ± 2.9 28.1 ± 10 83.6 ± 4.6 81.1 ± 4.9 82.2 ± 5.2 73.6 ± 5.8 75.6 ± 3.9 39.3 ± 1 34.7 ± 2.5 35 ± 2.9 36.3 ± 5.2 33.1 ± 3.3 48 ± 1.2 61 ± 1.4

RICE 68.2±0.9 26.3±0.5 90.0 ± 0.2 80.7±0.7 92.4±0.2 65.1±5.9 92.2±0.0 55.1±0.2 69.3±9.8 36.2±1.7 50.5±9.2 33.5±1.2 54.5±2.5 54.0±1.0

Coral 78.3 ± 0.3 29.0±0.0 89.3±0.3 79.4±0.4 92.3±0.3 68.4±0.4 92.1±0.1 50.5±0.5 81.0±0.2 33.9±1.3 67.9±0.6 32.9±0.8 54.0±2.0 51.5±2.5

DANN 77.5±0.5 29.1±0.6 89.3±0.8 79.4±0.9 92.3±0.8 65.2±0.7 92.1±0.6 51.2±0.7 81.1±0.2 38.1±1.4 69.2±1.1 33.1±0.5 54.5±1.8 52.0±0.5

GroupDRO 77.0±1.0 28.5±0.5 88.8±0.8 80.7±0.7 91.8±0.8 67.6±0.6 91.6±0.6 51.0±1.0 74.0±1.0 38.6±0.6 83.9±0.8 35.8±0.8 50.5±0.5 52.5±0.5

GSAT 67.0±2.6 39.9±0.6 89.0±0.1 80.6±1.1 92.5 ± 0.0 57.1±6.8 92.1±0.1 53.3±0.3 69.3±9.8 36.2±1.7 50.5±9.2 33.5±1.2 58.5±7.5 50.5±6.5

IRM 77.0±1.0 26.9±0.9 88.7±0.7 79.0±1.0 91.8±0.8 69.8±0.8 91.6±0.6 50.9±0.9 79.0±1.0 37.9±0.9 79.6±0.6 33.6±0.6 62.5 ± 0.5 48.5±0.5

Mixup 76.7±0.7 25.7±0.7 88.9±0.9 79.9±0.9 91.8±0.8 69.5±0.5 91.5±0.5 50.7±0.7 70.9±0.9 36.7±0.7 68.7±0.7 33.0±1.0 41.5±0.5 58.5±0.5

VREx 77.0±1.0 27.7±0.7 88.8±0.8 79.8±0.8 91.8±0.8 70.7 ± 0.7 91.6±0.6 51.8±0.8 78.6±0.6 33.9±0.9 65.6±0.6 34.0±1.0 50.5±0.5 52.5±0.5

DropEdge 56.9±0.9 19.7±0.7 88.8±0.8 81.7±0.7 34.7±0.7 31.5±0.5 34.8±0.8 31.6±0.6 37.9±0.9 33.9±0.9 33.8±0.8 33.0±1.0 59.5 ± 0.5 43.5±0.5

Table 1. Accuracy of all baseline approaches as well as RIA-RICE, RIA-IRM, RIA-VREx on all datasets under different covariate shifts.
For each covariate shift, the columns labeled ID refer to the in-distribution test accuracies while the columns labeled OOD refer to the
out-of-distribution test scores. Red and gray entries are the max and second max test accuracies, respectively, for each column.

Hardest refers to data augmentations that are farthest from
allowing collapse to an ERM solution.

Our minimax optimization problem can then be formulated
as follows:

minh
1
|Etr |

∑
e∈Etr

EPAug
tr (h)[OoD-Reg•(h((Ge)′),Y)+

le(h, (Ge)′,Ye)]

(5)

where PAug
tr (h) = P[(Ge)′ = S(Ge),Ye)] satisfies S ∼

Qmax(h, {(Ge,Ye)}e∈Etr ).

The minimization of the regularization OoD-Reg•(h) pro-
vided by existing OoD generalization methods allows for
stabilization across environments and extrapolation to an
OoD test dataset. This cannot occur if there is ERM collapse.
The adversarially trained data augmentations help push the
data away from ERM collapse. Intuitively, equation (5)
aims to find the optimal OoD generalization classifier that
minimizes the worst-case ERM loss, achieved via data aug-
mentation. See Appendix Figure 3 for how this loss behaves
during training and testing.

4.1. Algorithm

To solve the minimax optimization equation posed in Equa-
tion (5), we propose an alternating gradient descent-ascent
algorithm, which is shown in Algorithm 1. In the algorithm,
the GNN fw, with neural weights w, determines a tensor of
Bernoulli probabilities for which an adversarial data aug-
mentation with k entries is sampled. The GNN hθ is some
graph representation learner.

A geometric view of the optimization algorithm is shown in
Figure 1. In our implementation, we learn a distribution of
node attribute masking data augmentations to prevent ERM
collapse.

Algorithm 1 RIA by Alternating SGD with Adversarial
Data Augmentation for OoD Generalization on Graphs
Require: Training graph data (Ge

i = (Xe
i , A

e
i ),Y

e
i ), Ge

i ∈

Pe
ne
∼ (Pe)ne , e ∈ Etr, i = 1..ne; ne the number of training

data for environment e. Parameters of minimizing/maxi-
mizing GNN: θ/w, Learning rates lrθ, lrw, k: Number of
entries of Xe

i to keep, OoD-Reg• is an OoD generaliza-
tion regularizer from some existing method. T is the ratio
of num. maximization to num. minimization steps
while not converged or max epochs not reached do

for t = 1...T do
for e = 1...|Etr | do

Me,i
w ← s(σ(( fw(Xe

i , A
e
i ))); for i = 1...ne // fw is a

GNN; s is a 0-1 sampler from a tensor of Bernoulli
probs., sampling k times to update a tensor of 0’s.
Ge,i

w ← (Me,i
w ⊙ Xe

i , A
e
i )

end for
E(w, θ)← 1

|Etr |

∑|Etr |

e=1
1
ne

∑ne
i=1[le(hθ,Ge,i

w ,Ye
i )]

J(w, θ)← 1
|Etr |

∑|Etr |

e=1
1
ne

∑ne
i=1[OoD-Reg•(hθ,G

e,i
w ,Ye

i )]+
E(w, θ)
Update w← w + lrw · ∇wE(w, θ)
if t==T then

Update θ ← θ − lrθ · ∇θJ(w, θ) ;
end if

end for
end while

5. Experiments
We ran all our experiments on a 64 core Intel(R) Xeon(R)
CPUs @2.40 GHz with 128 GB DRAM equipped with
one 40 GB DRAM Ampere A100 GPU. The corresponding
test scores for the best in-distribution validation score are
averaged across 3 runs for both real world and synthetic
datasets. Hyperparameters follow the defaults of the GOOD
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benchmark (Gui et al., 2022), see the Appendix.

We implement Algorithm 1 (referred to as RIA in Ta-
ble 1) using the regularizations of RICE, IRM, VREx. We
compare our approach with the baselines of Coral (Sun
& Saenko, 2016), DANN (Ganin et al., 2016), DIR (Wu
et al., 2022b), ERM (Vapnik, 1999), GSAT (Miao et al.,
2022), GroupDRO (Sagawa et al., 2019), IRM (Arjovsky
et al., 2019), Mixup (Wang et al., 2021b), RICE (Wang
et al., 2022), VREx (Krueger et al., 2021), EdgeDrop (Rong
et al., 2020) all implemented in the GOOD (Gui et al., 2022)
benchmark.

Additive Spurious Attributes Synthetic Dataset: We de-
velop a synthetic binary classification dataset that models a
noisy data generation process as in the SCM in Appendix
Figure 2. For more information on the dataset, see Ap-
pendix, section C. It is designed to model attribute shifts
instead of just shifts in the graph topologies as in Motif.

Real World Graph Classification Experiments: We also
perform experiments on real world benchmarks. For all the
scores, see Table 1. We use the datasets of CMNIST (Ar-
jovsky et al., 2019), SST2 (Liu et al., 2021b), and Motif (Wu
et al., 2022b) from the GOOD framework as well as AMotif,
a modification of Motif. Each of these datasets follows the
causal model as shown in Appendix Figure 2. Accuracy is
used to measure the performance on all the datasets, as is
standard. Each dataset involves different kinds of covariate
shift. For more details about each dataset and the kind of
covariate shift imposed on them, see the Appendix.

As shown in Table 1, our method, RIA, performs well both
in the in-distribution ID and out-of-distribution OoD set-
tings. For the ID case, RIA performs the highest or second
highest on all datasets in at least one method except for the
synthetic dataset. This suggests that even in the ID setting,
the data is never truly in-distribution. There is always some
benefit to pushing away from the ERM solution. For the
OoD case, the adversarial data augmentations seem able
to counterfactually generate environments similar to the
testing input data. This is the benefit to minimax optimiza-
tion. Of course there is no guarantee that RIA is converting
the training distribution into the testing distribution exactly.
However, the training distribution is no longer the same
thing. RIA obtains the highest or second highest score for
every dataset except Motif by at least one method. The per-
formance on Motif is not high since Motif has very simple
attributes. The ablation comparison between each existing
method: IRM, RICE, VREx, and RIA applied to it are in-
cluded in Table 1. We see that RIA not only improves upon
the existing method, but oftentimes outperforms many other
baselines.

6. Discussion
We observe widespread ERM collapse in existing methods
in our experiments. Many of the methods such as IRM,
VREx, Mixup and DropEdge behave very similar to ERM.
We believe that these particular methods do not veer from
ERM aggressively enough. IRM and VREx, may not have
enough training environments. Mixup and DropEdge, as
static data augmentations, are not actually changing the
training distribution or achieving any kind of invariance
across environments. RIA prevents ERM collapse and due
to the adversarial generation of environments against the
ERM loss the learner has enhanced robustness.

Although we only did experiments on graph data, we be-
lieve RIA can easily be implemented for images and other
data modalities. One caveat we have observed empirically
is that the data augmentations should be diverse and only
slightly affect the training distribution. Sudden changes to
the training distribution can over-correct the learner.

7. Conclusion
We have introduced adversarial data augmentations to pro-
vide a search for a robust OoD solution. We formulate
and motivate the OoD problem as a minimax optimization
problem over a set of environments. To address the lack of
training environments and to prevent an early collapse of
the classifier onto an ERM solution on the training distribu-
tion during OoD training, we propose RIA: Regularization
for invariance with adversarial training. We compare our
approach, RIA, with state of the art OoD generalization ap-
proaches including DIR(Wu et al., 2022b) and RICE (Wang
et al., 2022) as well as the classical ERM on graphs. This
shows that for graph classification, preventing ERM collapse
in the OoD setting improves existing OoD generalization
methods.
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Figure 2. (a): A common casual graph for the data generation process. The variable Ee determines the number of nodes for environment e.
(b) A labeled attributed graph instance with the joining operation for causal/spurious attributes and edges shown. In the figure, the joining
operation JX is shown as the concatenation of causal and spurious attribute tensors. The joining operation JA shown in the figure provides
the sum of AC and AS where AC ⊙ AS = 0. The half grey color on nodes represents the XS while the half blue color represents the XC .

A. A Causal Model for Graph Data
In the formulation of our approach, there is no dependency on a particular OoD loss besides that it can be decomposed into
the form ERM(h) +OoD-Reg•(h) on learner h. Many existing methods require causal assumptions on the data generation
process. We discuss here a particular causal model that satisfies many of these existing data generation processes. It is
based on the causal model presented in (Arjovsky et al., 2019). RIA can address when these causal assumptions fail by
adversarially augmenting the data so that there are diverse counterfactually generated OoD environments. To actually
extrapolate to OoD data as intended by existing methods, RIA would have to learn a distribution shift that can push the data
towards these causal assumptions. Empirically, we find that preventing ERM collapse allows for OoD generalization even
without a guarantee that the intended causal assumptions are satisfied.

Definition A.1. For every environment index e define the following random variables:

1. Let there be an environment random variable Ee which determines the causal and spurious graph random variables
Xe

C ,X
e
S ,A

e
C ,A

e
S

2. Ae = JA(Ae
C ,A

e
S ); Xe = JX(Xe

S ,X
e
C) as in Figure 2 where JX and JA are called the joining maps. They are permutation

equivariant maps on each component, respectively,
This means: ∀π ∈ S ym([n]) JA(π · Ae

C , π · A
e
S ) = π · Ae and JX(π · Xe

C , π · X
e
S ) = π · Xe where π · A, for A an n × n matrix, is

the map A 7→ PAPT for P the matrix representation of π ∈ S ym([n]) and π · X is the map X 7→ PX for X a n × d matrix
3. He = rL(He = (Xe

C ,A
e
C), ϵ) where r is some recursive message passing function, see Equation (6) on the causal subgraph

and ϵ is a random noise variable with He y ϵ.
4. Ye = AGG(He), AGG is permutation invariant, meaning ∀π ∈ S ym([n]) Ye = AGG(π ·He)
Let Pe = P(Ge = (Xe,Ae),Ye) satisfy 1 and 2 above, it is called the data environment distribution.

Definition A.2. P = {Pe|Pe satisfies Definition A.1}

Examples of message passing functions on graphs include GNN-like recursive functions such as:

X0
u = Xe

C,u with r(Xl
u, AC) = Γ({Xl−1

u + ϵ, Xl−1
v |v ∈ NbrAC (u)}) for l = 1...L (6)

Γ is a permutation invariant function on a set and ϵ is the random noise variable and
NbrAC (u) is the set of neighbors of u using edges of AC

An example of a map m could be a set representation map on the set of attributes of He

We further assume that there is a map c∗ from (X,A) to (XC ,AC) for the SCM of Definition A.1.
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A.1. Illustrating ERM Collapse

In Figure 3, we show the training and OoD testing losses across 150 epochs of training for ERM, IRM and VREx as well as
RIA applied to IRM and VREx. We can see the ERM collapse phenomenon. SST2 does not have as much of a distribution
shift so it is harder to observe ERM collapse. CMNIST has a synthetic distribution shift attached to a natural data distribution
and only two very similar training environments so it is easier to observe ERM collapse. On CMNIST, VREx and IRM both
follow the training loss curve of ERM since they must converge to zero training loss. RIA-VREx and RIA-IRM, on the
other hand, are prevented from converging to zero loss. For OoD generalization for both SST2 and CMNIST, we see that by
preventing ERM collapse, we can in fact maintain low OoD loss and prevent mimicking the behavior of ERM. The other
methods, IRM and VREx, on the other hand, diverge like ERM.
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Figure 3. Illustration of ERM Collapse on the CMNIST (above) and SST2 (below) dataset. Left: Training loss where ERM collapse is
happening to traditional constrained optimization OoD generalization methods. Red and Green are RIA on IRM and VRex, respectively.
Right: Test OoD loss. The consequences of ERM collapse are prevented.
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B. Constrained Optimization Problems
Many common problems in machine learning can be formulated as constrained optimization problems. For example, the
optimal transport problem can be formulated as:

min
γ∈Γ(µ,ν)

[E(x,y)∈γd(x, y)]

s.t.
∫

X×X
γ(x, y) · dy = µ(x)∫

X×X
γ(x, y) · dx = ν(y)

γ ≥ 0

(7)

In (Dey & Zhang, 2021) the Wasserstein distance is defined on X = S2 ∪ {z}, the pointed sphere. This requires further
constraints for the metric on the sphere. Pointed spaces as constraints have also been used for ”coning” a graph (Zhang
et al., 2022). Coning means that: 1. every node in a graph is connected by an edge to a special node z and 2. all 3-cycles
containing z are filled with a triangle. Adding these constraints affects a graph’s homology, viewed as a simplicial complex.
When learning the construction of the graph node by node, this can in fact improve the expressivity of graph representation
learning. Graphs or spheres are all examples of finite metric space data. Persistent homology is a way to measure the change
in homology of a simplicial complex constructed on the data. In computing persistent homology on finite metric space
data, it is common to place constraints on how the simplicial complex is constructed from the data. One very natural and
computationally efficient (Zhang et al., 2020) constraint is to assume a k-clique, when constructed, must be filled in by
a k + 1 simplex during construction. This constraint on the construction of the simplicial complex makes the simplicial
complex a Vietoris-Rips complex.

For deep learning, in general, ERM (Vapnik, 1991b), a well known optimization method that forms the backbone of deep
learning. Constraints have been imposed on ERM to induce fairness (Donini et al., 2018) and symmetry invariance, such as
in this early work (Wood & Shawe-Taylor, 1996), amongst many things.

When the constraints imposed on a constrained optimization problem are not effective such as in ERM collapse, then the
optimization problem becomes am optimization problem over the training data which is agnostic to distribution shift. This
results in learning spurious correlations from the training data.

B.1. Invariance in OoD Generalization as Constrained Optimization

We have identified three OoD generalization methods that are formulated as constrained optimization problems: IRM,
VREx, and RICE. We go over each method and how they can be rewritten as regularized ERM methods. Regularized ERM
methods risk the possiblity of ERM collapse since their constraints may fail to be effective.

Let Re denote the risk function over a given environment e.

IRM: IRM is the following optimization problem:

min
Φ:X→H,w:H→Y

∑
e∈Etr

Re(w ◦ Φ)

s.t. w ∈ argminw:H→YRe(w ◦ Φ),∀e ∈ Etr

(8)

This can be written as the following regularized ERM problem called IRMv1 whose minimization implies the IRM
constrained optimization problem:

min
Φ:X→Y

∑
e∈Etr

Re(Φ) + λ · |∇w|w=1.0Re(w · Φ)|2 (9)

For graph learning, the map Φ can be implemented as a graph representation learner such as a GNN. The w learnable scalar
parameter just multiplies the representation before taking the cross entropy loss.

One can check that the causal model of Section A is still compatible with IRM.

VREx: VREx is the following optimization problem:



RIA: Regularization for Invariance with Adversarial Training

RMM−REx(h) = max∑
e∈Etr λe=1,λe≥λmin

∑
e∈Etr

λe · Re(h) =

(1 − m · λmin) ·max
e

Re(h) + λmin ·
∑
e∈Etr

Re(h)
(10)

This can be approximated as the following regularized ERM problem called VREx whose minimization gives a smoother
version of the MM-REx constrained optimization problem:

RV−REx(h) = β · Var({R1(h), ...,Rm(h)}) +
∑
e∈Etr

Re(h) (11)

The implementation for VREx on graphs should be straight forward since it is just a new regularized loss for a graph
representation learner.

RICE: We describe here in full detail the implementation of RIA using the RICE regularizer and how RICE still fits the
causal model we define in Section A.

Let the the support of a distribution be the subset of its domain where it has nonzero measure. This is denoted supp(P) =
{x ∈ dom(P)|P(x) > 0}
Definition B.1. Ptr :=

∑
e∈Etr :

∑
e∈Etr λe=1,λe≥0

λe · Pe is the mixture of the training distributions with some λe from which it is

possible to sample the training datasets Dtr := ⊔e∈Etr D
e, De ⊂ supp(Pe) for e ∈ Etr. Ptr is conditional on Dtr.

RICE assumes a causal model. The causal model we define in Section A is compatible with the causal model of RICE.
The causal model of RICE assumes that, given the data, the label is generated by the map Y = m(c∗(X, A), η) where η is
an exogenous variable, c∗ coincides with the map we defined in Section A and m is any label producing map. RICE is
formulated as a constrained optimization problem:

min
θ
E(G,Y)∼Ptr [l(hθ(G),Y)] (12a)

s.t. hθ ◦ T = hθ∀T ∈ Ic∗ (supp(Ptr) (12b)

where Ic∗ (supp(Ptr)) is defined below:
Definition B.2. (Causal Essential Invariant Transformations) (Wang et al., 2022)

Ic∗ (S ) = {Ti|c∗(X1, A1) = c∗(X2, A2)⇒
∃T1...Tk with c∗ ◦ Ti = c∗∀i, s.t.

T1 ◦ ... ◦ Tk(X1, A1) = (X2, A2)
and ∀(X1, A1), (X2, A2) ∈ S }

(13)

We notice that a subset of the causal essential invariant transformations are just the invertible data augmentations which
satisfy c∗ ◦ T = c∗. Implementing these data augmentations, such as edge addition and deletion on graphs, to approximate
Ic∗ (S ) is simple and effective for graphs. We can thus narrow down the number of hyper parameters.
Proposition B.3. The Ic∗ (S ) of Definition B.2 contains the set Iinv

c∗ (S ) of invertible transformations on data support S that
satisfy c∗ ◦ T = c∗.

Proof. We show that if T is invertible and satisfies c∗ ◦ T = c∗, then T ∈ Ic∗ (S).

We first show that the identities {In0 }n0≤N , which depend on the number of graph nodes n0, is in Ic∗ (S ). Let (X1, A1) = (X2, A2)
represent a graph of n0 nodes, then we have that c∗(X1, A1) = c∗(X2, A2) and that In0 (X1, A1) = (X2, A2) for In0 the identity
on (X1, A1).

For any (X1, A1), (X2, A2) ∈ S , c∗(X1, A1) = c∗(X2, A2) then there exists T ′ ∈ Ic∗(P) s.t. In0 ◦ T ′(X1, A1) = T−1 ◦ T ◦
T ′(X1, A1) = (X2, A2). This shows that both T and T−1 are in Ig(S ) for all T invertible over all graph sizes in the data
support S .

□
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Proposition B.3, tells us that we may use the invertible transformations on graphs such as edge deletion/addition in the
regularization term of RICE. This means we can implement a regularizer for an OoD loss by the following OoD regularization
term:

OoD-RegRICE(hθ, {(Ge
w,Y

e)}e∈Etr ) =
α

n

n∑
e=1

E[ max
T∈Iinv

edge(GX,A)
|(hθ ◦ T (Ge

w) − hθ(Ge
w)|2] (14)

where Ye is a set of labels for environment e, Ge
w is a set of adversarially augmented graphs for environment e and hθ is a

graph representation learner.
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C. Hyperparameters and Dataset Information

Hyperparameters

acc CMNIST SST2 Motif AMotif Synth

covariate color length basis size basis size basis

lr 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3

lradv 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4

epochs 500 200 200 200 200 200 100

num. edge augs. 10 10 10 10 10 10 10

k 1 1 0 0 5 5 20

arch GIN GIN GIN GIN GIN GIN GIN

num layers 5 5 3 3 3 3 2

padd
edge 0.1 0.1 0.01 0.01 0.01 0.01 0.01

pdel
edge 0.1 0.1 0.01 0.01 0.01 0.01 0.01

Table 2. Superset of all hyper parameters shared across all datasets and shifts for all experiments.

We describe here some more information about each dataset we use in our experiments:

• CMNIST (Arjovsky et al., 2019) Dataset is derived from the MNIST dataset from computer vision. It is curated by
(Gui et al., 2022). Digits are colored according to their domains. Specifically, in covariate shift split, we color digits
with 7 different colors, and digits with the first 5 colors, the 6th color, and the 7th color are categorized into training,
validation, and test sets.

• SST2 (Socher et al., 2013) Derived from a natural language sentiment classification dataset. Each sentence is
transformed into a grammar tree graph, where each node represents a word with corresponding word embeddings as
node features. The dataset forms a binary classification task to predict the sentiment polarity of a sentence. We select
sentence lengths as domains since the length of a sentence should not affect the sentimental polarity.

• Motif (Wu et al., 2022b) Each graph in the dataset is generated by connecting a base graph and a motif, and the label
is determined by the motif solely. Instead of combining the base-label spurious correlations and size covariate shift
together as in (Wu et al., 2022b), the size and basis shifts are separated. Specifically, we generate graphs using five
label irrelevant base graphs (wheel, tree, ladder, star, and path) and three label determining motifs (house, cycle, and
crane). To create covariate splits, we select the base graph type and the size as domain features. There are no node
attributes in this dataset.

• AMotif (a modification of Motif to have attributes) Taking the same graph structures from Motif, we use node
attributes of dimension 256 all sampled from a N(0, (e + 1)2), where e is the environment index. Covariate shifts are
achieved by changing the basis or size as in Motif each shift indexed by some e.

• SynthWe construct a synthetic dataset as described in Section 5. The dataset is a modification of Motif, which generates
data by a joining operation between causal and spurious graphs. In our construction, we construct (XC , A), (XS , A) as in
AMotif. We let the joining operation be the map (JX(XC , XS ), JA(XC , XS )) = c−1

ξ (XC+XS , A) = (X, A) where ξ are neural
weights. We assume that the map cξ is invertible and has an inverse c−1

ξ defined by a GIN neural network that maps
from the graph (XC + XS , A) to the graph G = (X, A). GIN is not guaranteed to be injective, however it is a good enough
approximation to one in practice. The label is defined by Y = m(XC , A)+η where m is a MLP and η ∼ N(0, σ(MLP(ẽ)))
where ẽ is a one-hot encoding of the environment index and σ ◦ MLP is a fixed neural mapping to a tensor of numbers
in (0, 1). We can further assume that c∗, the causal map, can be obtained by c∗(X, A) = cξ(X, A) − sξ(X, A) where c∗ is
deterministic and ξ is initialized by ξ ∼ N(0,MLP(ẽ). For the RIA-RICE implementation c∗ is assumed to exist and
allows us to obtain a solution of the form ϕ ◦ c∗. For RIA-IRM and RIA-VREx, so long as our data generation process
coincides with the model of (Arjovsky et al., 2019) is satisfied, The distribution shifts are induced by varying ẽ and
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thus affeting η and α simultaneously. There are 4 environments in E. Two environments are combined together for
training, the third for validation, and the remaining environments are for testing.

We list in Appendix-Table 2 the hyperparameters of our approachs on all datasets experimented with.


