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Abstract
Accurate prediction of the out-of-distribution data
is desired for a learning algorithm. In domain
generalization, training data from source domains
tend to have different distributions from that of the
target domain, while the target data are absence
in the training process. We propose a Distribution
Free Domain Generalization (DFDG) procedure
for classification by conducting standardization
to avoid the dominance of a few domains in the
training process. The essence of the DFDG is
its reformulating the cross domain/class discrep-
ancy by pairwise two sample test statistics, and
equally weights their importance or the covari-
ance structures to avoid dominant domain/class.
A theoretical generalization bound is established
for the multi-class classification problem. The
DFDG is shown to offer a superior performance
in empirical studies with fewer hyperparameters,
which means faster and easier implementation.

1. Introduction
Domain generalization (DG) aims at transferring knowledge
from the source domains to the target domains without the
target data in the training process (Blanchard et al., 2011).
A major challenge of DG is that the source and target data
are not identically distributed. An algorithm trained from
the source domains tends to be less performing in the target
domain. DG is designed to attain robust performance in the
target domain.

Compared with the domain adaptation where the target data
are accessible in training to obtain a target specific predictor
(Long et al., 2015; Li et al., 2021), DG is designed for a
single global predictor or classifier that performs well in
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both the source and target domains (Blanchard et al., 2021).
Studies have been proposed for the DG (Zhou et al., 2021;
Fan et al., 2021; Shu et al., 2021), such as the kernel based
domain invariant feature representation (Hu et al., 2020),
the meta learning framework (Balaji et al., 2018) and the
model selection or model average (Ye et al., 2021). See
Wang et al. (2022) and Zhou et al. (2022) for a review.

Among the existed DG methods, we follow the kernel DG
methods (Muandet et al., 2013; Ghifary et al., 2017; Li
et al., 2018; Hu et al., 2020) for new development. These
methods first map data to a high dimensional reproducing
kernel Hilbert space (RKHS), and then construct metrics to
measure the cross domain and class discrepancy, followed
by a low dimensional feature representation that minimizes
the cross domain dissimilarity while keeping new features
with different classes well separated. The metrics are usually
constructed as variants of the maximum mean discrepancy
(MMD) (Gretton et al., 2012).

A common challenge with the DG is to counter the different
mean levels and the variation among the discrepancy mea-
sures of different domains in the training stage. A robust
DG procedure has to avoid domains with higher mean levels
or variations to dictate the feature selection as features much
influenced by the outlaying domains are doom to be weak in
domain generalization. Existing kernel DG methods have to
use more hyperparameters to balance the between-domain
discrepancy measures, which may reduce the generalization
ability of the methods.

We propose two standardization procedures which are de-
signed to reduce the heterogeneity in the kernel DG discrep-
ancy statistics among the domains by conducting mean and
variance adjustments. These standardizations are based on
asymptotic analysis ((12) and Proposition 1) on the pairwise
MMD statistics, which reduces the number of hyperparam-
eters and speeds up the training process, and hence allows
more computation intensive classifier in the DG procedure.

Specifically, we put forward a distribution-free DG (DFDG)
approach that provides a superior performance using fewer
hyperparameters, which is well suited for DG. We unify
the kernel DG methods as an optimization problem based
on pairwise two-sample test statistics with concise matrix
form in terms of the sandwich structure. Two distribution-
free standardized metrics are proposed, one reweights the
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weighting matrix by the means of the null distributions, and
the other de-correlates the averaged Gram matrix. A gener-
alization bound for the multi-class classification based on
the DFDG is derived, which provides theoretical guarantee
for the proposed DFDG approach.

The paper is organized as follows. Section 2 gives the uni-
fied framework of the DG problem for classification. Sec-
tion 3 proposes two distribution free metrics. Section 4 is for
the generalization bound. Simulation and case studies are
provided in Section 5, followed by a conclusion in Section
6. Some technical and numerical details are relegated to the
supplementary material (SM).

2. Unified framework of DG problem
Throughout the paper, we use bold lowercase letters for
column vectors, and bold uppercase letters for matrices.

We consider a classification task. Let X ⊂ Rp denote
the observation space and Y ⊂ R be the set of class la-
bels. Let PX×Y denote the set of joint distributions on
X × Y . It is assumed that there exists a unimodal super
distribution P with finite variance over PX×Y , such that
P

(1)
XY , . . . , P

(m)
XY are independent and identically distributed

(IID) realizations from P in PX×Y . For a domain s, there
is a sample {(xs

i , y
s
i )}

ns
i=1 of ns IID realizations of (x, y) ac-

cording to the distribution P
(s)
XY . In general, for any s ̸= s′,

P
(s)
XY ̸= P

(s′)
XY , implying no-identical distribution cross the

domains.

Consider a target distribution P
(t)
XY ∼P and target sample

{(xt
i, y

t
i)}

nt
i=1, where the class labels {yti} are not available,

and {xt
i} are not used in the training. This forces us to estab-

lish a global model without retraining the model for a spe-
cific target domain. Our goal is to extract domain-invariant
features that have minimum cross domain discrepancy and
maximum cross class discrepancy simultaneously.

The kernel method is founded on a RKHS H associated
with a kernel k and inner product ⟨·, ·⟩H having the re-
producing property that for any function f : X → R,
⟨f(·), k(x, ·)⟩H = f(x). The canonical map ϕ(x) :
X → H can be denoted as ϕ(x) := k(x, ·) satisfying
k(x,x′) = ϕ(x)Tϕ(x′).

To map a probability distribution to the RKHS, we define
the kernel mean embedding µ : PX → H induced by k

µPX
:= EX [ϕ(X)] =

∫
X
ϕ(x)dPX .

If k is a bounded and characteristic kernel, the mapping is
injective so that ||µPX

− µP ′
X
||H = 0 if and only if (iff)

PX = P ′
X . The sample estimator µ̂PX

= 1
n

∑n
i=1 ϕ(xi).

Denote the kernel mean embedding of P (s)
X and P

(s)
X|Y=j by

µs and µs
j , respectively. These mean maps are all high

dimensional and we assume that µP ∈ RN for a large
integer N , where N can be infinity.

2.1. Cross domain discrepancy

The cross domain discrepancy can be regarded as the sum
of pairwise distances at each domain condition over every
class, as follows.

Definition 1 (pairwise cross domain discrepancy (PDD)).
Given the class-conditional distributions {P (s)

X|Y=j} for s ∈
{1, . . . ,m} and j ∈ {1, . . . , c}, the PDD

Ψpdd :=
1

c
(
m
2

) c∑
j=1

∑
1≤s<s′≤m

||µs
j − µs′

j ||2H, (1)

where
(
m
2

)
is the number of combination.

Each term in (1) is a squared MMD , which describes the
distance between two distributions. It is also similar to the
traditional Hotelling’s T-test but without weighting via a
covariance matrix.

To reformulate (1) as a concise matrix form, for a class j,
denote Mj = [µ1

j , . . . ,µ
m
j ] ∈ RN×m and Γ1 = mIm −

1m1T
m, we have Ψpdd = c−1

(
m
2

)−1 ∑c
j=1 tr(MjΓ1M

T
j ),

where Im is a m×m identity matrix and 1m is a vector in
Rm whose elements are all ones. Moreover, denote M =
[M1, . . . ,Mc] and let Γpdd = Ic ⊗ Γ1 where “⊗" denotes
the Kronecker product. Then, it is readily shown that

Ψpdd = c−1
(
m
2

)−1
tr(MΓpddMT ). (2)

The above formulation introduces a matrix sandwich form
with the block diagonal Γpdd as the weighting matrix.

2.2. Cross class discrepancy

While the PDD metric (1) has been considered by Li et al.
(2018) and Hu et al. (2020), to measure the class dissimilar-
ity, now we propose a cross class discrepancy measure.

Definition 2 (pairwise cross class discrepancy (PCD)). Do-
main specified cross class discrepancy is defined as

Ψpcd :=
1

m
(
c
2

) m∑
s=1

∑
1≤j<j′≤c

||µs
j − µs

j′ ||2H, (3)

the average class dissimilarity among the domains.

Compared with Ψpdd, Ψpcd exchanges the order of the do-
main and class indexes. Let Us = [µs

1, . . . ,µ
s
c] ∈ RN×c,

and Γ2 = cIc − 1c1
T
c , (3) becomes

Ψpcd = m−1
(
c
2

)−1
tr(UΓpcdUT ), (4)
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where U = [U1, . . . ,Um] and Γpcd = Im ⊗ Γ2.

It is noted that the existing kernel DG methods, e.g. in
Ghifary et al. (2017) and Hu et al. (2020), had two metrics
for the domain discrepancy and two metrics for the class
mismatch, respectively. Our proposal has only one metric
for each measure, which means fewer hyperparameters than
the existing DG methods, which leads to more efficient DG
methods as shown later.

2.3. Feasible optimization framework

The metrics Ψpdd and Ψpcd depend on the distribution
PXY and the kernel k. The goal of the DG is to find a
q-dimensional invariant feature via a transformation W ∈
RN×q : H → Rq, such that the new features MTW and
UTW have minimum cross domain discrepancy and maxi-
mum cross class discrepancy simultaneously.

As the dimension of RKHS H is high for finite sam-
ples, we need a practically calculable form of W . Let
n = n1 + · · · + nm be the total training data size, and
Φ = [ϕ(x1) . . . , ϕ(xn)]

T ∈ Rn×N be the high dimen-
sional feature matrix. Since Φ has rank no more than n, W
can be expressed as a linear combination of Φ such as

W = ΦTB, (5)

where B ∈ Rn×q is a feasible mixing matrix.

We construct PDD and PCD metrics based on lower dimen-
sional features MTW and UTW . By (2), for the low
dimensional feature MTW ,

Ψpdd =c−1
(
m
2

)−1
tr(W TMΓpddMTW )

=c−1
(
m
2

)−1
tr(BTΦMΓpddMTΦTB)

:=tr(BTQBT ),

where

Q = c−1
(
m
2

)−1
KpddΓpddKpddT

and Kpdd := ΦM .
(6)

Similarly, we can update Ψpcd = tr(BTFBT ) with

F = m−1
(
c
2

)−1
KpcdΓpcdKpcdT

and Kpcd := ΦU . (7)

We note that both the N × cm matrices M and U are
consisted with column vectors µs

j . After applying the kernel
trick, the column vectors of Kpdd and Kpcd have the form

K̄s
j := Φµs

j =
1

ns
j

ns
j∑

i=1

Φϕ(xs
j,i) =

1

ns
j

ns
j∑

i=1

Ks
j,i,

where Ks
j,i = (k(x1,x

s
j,i), . . . , k(xn,x

s
j,i))

T ∈ Rn is the
i-th column vector of the Gram matrix

K = ΦΦT = [k(xi,xj)]ij ∈ Rn×n, (8)

and we use xs
j,i to emphasize the corresponding class and

domain indexes of xi. Since M and Q only differ from the
order of columns, Kpdd and Kpcd share the same property,
see Figure S1 for a graphical illustration.

As one cannot optimize Ψpcd = tr(BTFB) and Ψpdd =
tr(BTQB) simultaneously, we maximize Ψpcd while keep-
ing Ψpdd fixed, namely

argmax
B

tr(BTFB) s.t. tr(BT (Q+ γK)B) = 1, (9)

where the first term in the trace constraint is to limit Ψpdd

while the second term BTKB = BTΦΦTB = W TW
is to control the magnitude of W . The first order condition
yields the generalized eigenvalue problem

FB = (Q+ γK)BΓ,

where Γ = diag(λ1, . . . , λq) is a diagonal matrix collecting
q leading eigenvalues, B is the corresponding eigenvectors.
In practice, one may add εI with ε = 10−5 for numerically
stable performance so that

FB = (Q+ γK + εI)BΓ. (10)

Compared with the existing kernel DG methods which in-
volve more metrics and more hyperparameters as shown in
Table 2, there is only one hyperparameter γ in (10).

3. Distribution free metrics
In this section, we propose two sets of empirical estimates
of matrices F and Q used in the generalized eigenvalue
problem (10) based on two ways of standardization that
reweight the domain/class discrepancy measures. The first
approach mainly focuses on the first moment difference
of the features, while the second approach focuses on the
second moment and adjusts for the empirical covariance
matrix of the averaged Gram matrix.

3.1. Eigenvalue adjustment

The first set of F and Q estimates comes from standardizing
the maximum mean discrepancy (MMD) statistic (Gretton
et al., 2012) based on an asymptotic analysis. The MMD
used in both (1) and (3) is a distance between two domain
distributions,

MMD2(P
(s)
X , P

(s′)
X ) := ||µs − µs′ ||2H = Exs

i ,x
s
j
[k(xs

i ,x
s
j)]−

2Exs
i ,x

s′
j
[k(xs

i ,x
s′

j )] + Exs′
i ,xs′

j
[k(xs′

i ,x
s′

j )]. (11)

Estimates of MMD2 can be made via the U- or the V-
statistics. We consider the V-statistic formulation since
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it leads to positive semidefinite estimates for F and Q:

M̂MD
2

b(P
(s)
X , P

(s′)
X ) =

1

(ns)2

ns∑
i,j=1

k(xs
i ,x

s
j)−

2

nsns′

ns∑
i=1

ns′∑
j=1

k(xs
i ,x

s′

j ) +
1

(ns′)2

ns′∑
i,j=1

k(xs′

i ,x
s′

j ).

Under the null hypothesis that P (s)
X = P

(s′)
X , the MMD

statistic is equivalent to the one based on a centered kernel
k′ (Sejdinovic et al., 2013)

k′(xi,xj) =k(xi,xj)− Exk(xi,x)− Exk(x,xi)+

Ex,x′k(x,x′).

The null distribution of M̂MD
2

b (Gretton et al., 2012) under
limns,ns′→∞

ns

ns+ns′
= ρs,s

′
is

M̂MD
2

b(P
(s)
X , P

(s)
X )

ns + ns′

d−→ 1

ρs,s′(1− ρs,s′)

∞∑
l=1

λs
l z

2
l , (12)

where z2l are IID χ2
1 distributed, and {λs

l } are the solutions
to the eigenvalue equations∫

X

k′(x,xj)ϕl(x)dP
(s)
X (x) = λs

lϕl(xj).

Note that the expectation of the limiting distribution in
(12) is 1

ρs,s′ (1−ρs,s′ )

∑∞
l=1 λ

s
l , which can be estimated by

tr(K ′) (Shawe-Taylor et al., 2005) or the nuclear norm
||K ′||∗, where K ′ = K − 1

n1n1
T
nK − 1

nK1n1
T
n +

1
n21n1

T
nK1n1

T
n . This leads to an eigenvalue adjusted Ψpdd

and Ψpcd by dividing each pair of MMD2 by its expectation.
Such that for each domain and class, the expectation of the
scaled MMD2 are asymptotically equal to one under the
null hypothesis.

Definition 3 (scaled pairwise cross domain discrepancy
(SPDD)). Given the set of class-conditional distributions
{P (s)

X|Y=j}, the empirical SPDD measure is

Ψ̂spdd :=
1

c
(
m
2

) c∑
j=1

∑
1≤s<s′≤m

{ ns
jn

s′

j

ns
j + ns′

j

||K ′j,s,s′ ||−1
∗ ×

M̂MD
2

b(P
(s)
X|Y=j , P

(s′)
X|Y=j)

}
. (13)

Definition 4 (scaled pairwise cross class discrepancy
(SPCD)). Given the set of domain-conditional distributions
{P (s)

X|Y=j}, the empirical SPCD metric

Ψ̂spcd :=
1

m
(
c
2

) m∑
s=1

∑
1≤j<j′≤c

{ ns
jn

s
j′

ns
j + ns

j′
||K ′s,j,j′ ||−1

∗ ×

M̂MD
2

b(P
(s)
X|Y=j , P

(s)
X|Y=j′)

}
. (14)

In (13) and (14), K ′s,j,j′ ∈ Rns
j×ns

j′ is a submatrix of K ′,
whose (i, l)-th element is k′(xs

j,i,x
s
j′,l).

Mimic a similar dimension reduction as in Section 2.3, we
work on the optimization problem (9) leading to the gener-
alized eigenvalue problem (10) by replacing F and Q with
their empirical estimates

F̂ =
1

m
(
c
2

) m∑
s=1

∑
1≤j<j′≤c

{ ns
jn

s
j′

ns
j + ns

j′
||K ′s,j,j′ ||−1

∗ ×

(K̄ ′s
j − K̄ ′s

j′)(K̄
′s
j − K̄ ′s

j′)
T
}
, (15)

Q̂ =
1

c
(
m
2

) c∑
j=1

∑
1≤s<s′≤m

{ ns
jn

s′

j

ns
j + ns′

j

||K ′j,s,s′ ||−1
∗ ×

(K̄ ′s
j − K̄ ′s

′

j )(K̄
′s
j − K̄ ′s

′

j )
T
}
. (16)

Solving (10) with the F̂ and Q̂ leads to the estimated eigen-
vectors B̂ whose i-th column B̂i ∈ Rn associated with the
nonzero eigenvalues, which needs to be standardized so that
||Ŵi||H = B̂T

i KB̂i = 1, which means we let

B̂i ← B̂i/

√
B̂T

i KB̂i. (17)

Compared with the existed kernel DG methods that stan-
dardizes B̂ by B̂Γ̂− 1

2 where Γ̂ is the estimated eigenvalue
matrix in (10), (17) is more robust for a large feature dimen-
sion q by avoiding dividing near zero eigenvalues.

The scaling conducted in (13) and (14) is designed to remove
the mean differences among the pairwise MMD-statistics
by reweighting the statistics by their asymptotic means ac-
cording to (12). The scaling allows the pairwise discrepancy
measures between domains and classes being treated more
equally. Thus, for the extracted invariant features in the DG,
all the domains have a similar and balanced contribution,
so that the features reflect the collective information of all
participants, avoiding a few domains or classes dominate
the selected features.

3.2. One side covariance filter

This subsection considers another standardization on the F
and Q estimates in (6) and (7) by rotating Kpcd and Kpdd

via their covariance matrices, namely

K̃pcd = Kpcd(Γ̃pcd)−
1
2 , where (18)

Γ̃pcd =
1

cm

m∑
s=1

c∑
j=1

1

ns
j

ns
j∑

i=1

(Kpcd
i,j,s − K̄pcd

j,s )(Kpcd
i,j,s − K̄pcd

j,s )T ,

K̄pcd
j,s =

1

ns
j

ns
j∑

i=1

Kpcd
i,j,s.

The standardization of Kpdd, denoted by K̃pdd, can be ob-
tained similarly by replacing Kpcd with Kpdd in the above
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formulation. In the above equations, (Kpcd
i,j,s)

T ∈ R1×cm

is the i-th row vector of Kpcd corresponding to domain s
and class j, whose explicit form is left in Supplementary
Materials (SM).

One may wonder why we can treat Kpcd like the data ma-
trix X = [x1, . . . ,xn]

T , and the covariance matrix is calcu-
lated like Kpcd contains n independent observations whose
underlying distribution are the same under the same do-
main and class. Proposition 1 shows that although there
exist correlations among the rows and columns of Kpcd,
the column-wise covariances are of the order O(1) and the
row-wise covariances are O((ns

j)
−1). The latter means that

the column-wise covariances can be ignored in large sam-
ples. We use the averaged covariance matrix Γ̃pcd in the
Euclidean space for the standardization (rotation), and one
may consider the averaged version in Riemannian space
(Barachant et al., 2012).

We call the rotation in K̃pcd and K̃pdd the one side covari-
ance filter and redefine F and Q in (10) by the rotated K̃pcd

and K̃pdd as

F̂ = m−1
(
c
2

)−1
K̃pcdΓpcdK̃pcdT

, (19)

Q̂ = c−1
(
m
2

)−1
K̃pddΓpddK̃pddT

, (20)

where Γpcd and Γpdd are similarly defined as those in (2)
and (4). The algorithm is summarized in Algorithm 1.

The rest of the subsection provides the theoretical justifi-
cation for the rotations, which is based on the correlation
structures of Kpcd and Kpdd. For notation simplicity, we
first omit the class index j and consider a generic K̄ =
[ 1
ns′

∑ns′
l=1 k

ss′

il ]is′ ∈ Rn×m for either Kpcd and Kpdd for

i = 1, . . . , n and s′ = 1, . . . ,m, and kss
′

ij := k(xs
i ,x

s′

j )
is a simplified notation for elements of the Gram matrix
K. We note that K̄ can be obtained by merging Kpdd or
Kpcd over the class lever. The results provided in Proposi-
tion 1 can be easily extended to cover both domain s and
class j by merging s and j in a new defined single index
s∗ : (s, j) 7→ {1, . . . , cm}.

For a general kernel function k(x,y) = f(||x − y||22/h),
where h is the bandwidth, we want to derive its first two
moments. We begin with the following assumptions.
Assumption 1. 1. For each domain s, the covariates

{xs
1, . . . ,x

s
ns
} are generated according to

xs
i = Γsus

i + ηs, i = 1, . . . , ns, (21)

where us
i ∈ Rp′

are IID random variables satisfying
E(us

i ) = 0, var(us
i ) = Iq. For the j-th element us

i (j)

of us
i , E(us

i (j)
8) < ∞. The parameters Γs ∈ Rp×p′

,
the mean ηs ∈ Rp, and ΓsΓsT = Σs.

2. For each domain s, tr(Σs) = O(p), the operator norms
of Σs are bounded from above and ||ηs||22 = O(p).

Algorithm 1: Distribution free domain generalization
Input: Source data: {(xs

i , y
s
i )}

ns
i=1, s = 1, . . . ,m;

Hyperparameter γ and kernel function k(·, ·);
Number of subspace features q.

Output: Mixing matrix B, Gram matrix K, new
features Z and Zt.

1 Calculate Gram matrix K via (8);
2 if use eigenvalue adjustment then
3 Obtain the centered K ′ =

K − 1
n1n1

T
nK − 1

nK1n1
T
n + 1

n21n1
T
nK1n1

T
n ;

4 Calculate F̂ and Q̂ via (15) and (16);
5 else if use one side covariance filter then
6 Calculate F̂ and Q̂ via (19) and (20);
7 Solve eigenvalues Γ and corresponding eigenvectors B

from the generalized eigenvalue problem (10), select the
q leading eigenvectors;

8 Standardize B by letting Bi ← Bi/
√
BT

i KBi;
9 Construct Gram matrix at test set as [Kt]ij = k(xt

i,xj).
The extracted features at training/testing set are
Z = KB and Zt = KtB, respectively.

3. The domain sample sizes are balanced so that
limn→∞ ns/n = κs ∈ (0, 1) where n =

∑m
s=1 ns.

Let g(x) = f(x2). Then, g ∈ C3[0,∞) and
sup1≤s≤3 supx≥0 |g(s)(x)| <∞.

The following proposition gives the covariance structures
of K̄, whose proof follows the Taylor expansions in Yan &
Zhang (2022) as showed in the SM.

Proposition 1. Given Assumption 1,

E
( 1

ns′

ns′∑
j=1

kss
′

ij

)
= µ(s,s′) +O(p3/2h−3),

var
( 1

ns′

ns′∑
j=1

kss
′

ij

)
= σ(s,s′) +O(p2h−4),

where the specific forms of µ(s,s′) and σ(s,s′) are given in
(B.3) and (B.4) of the SM. For the covariances, if there is a
common row

cov
( 1

ns′

ns′∑
j=1

kss
′

ij ,
1

ns′′

ns′′∑
j=1

kss
′′

ij

)
= O(p2h−2), (22)

and if they is a common column domain

cov
( 1

ns

ns∑
j=1

ks
′s

ij ,
1

ns

ns∑
j=1

ks
′′s

lj

)
= O(p2n−1

s h−2) (23)

and the covariance is 0 if there is no common row or column
domain.
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Proposition 1 suggests that the leading variance of
1

ns′

∑ns′
l=1 k

ss′

il = 1
ns′

∑ns′
l=1 k(x

s
i , x

s′

l ) is σ(s,s′), which is
O(p2h−2) as shown in the SM. This is due to all the
ns′ terms in the summation have a common xs

i , which
leads to all cov(kss

′

il , kss
′

il′ ) being a constant. If the two
elements of K̄ are in the same row, their covariance is
also O(p2h−2). But if they are in the same column, the
covariance is O(p2n−1

s h−2), which is a smaller order of
O(p2h−2). Moreover, row vectors of K̄ belong to the
same domain have the same mean and covariance struc-
tures. When the sample size goes to infinity, the correlation
between different rows vanishes, and we treat them like
independent variables. The results of Proposition 1 justifies
the form of the Γ̃ used in the rotation after (18).

Since the distribution of X and the kernel f in Assumption
1 are very general without much restriction, the one side
covariance filter is generally applicable, for instance for
non-Gaussian data and a general kernel.

4. Generalization bound
In this section, we analyze the generalization bound of the
multi-class classification problem after applying the pro-
posed DFDG algorithm (10). After providing the classifier,
the loss function and the kernel. the generalization bound
for the DFDG based classification is established.

The classifier f is of the form f : PX × X 7→ R. Let
X̃ = (PX , X) be the extended covariate. In the training
procedure, one has ns labeled data {(P̂ (s)

X ,xs
i , y

s
i )}

ns
i=1 =

{(x̃s
i , y

s
i )}

ns
i=1 ∈ (X̃ × Y)ns for each domain s, where

Y = {1, . . . , c} is the set of c classes. For the multi-class
classification, a classifier f is defined via a scoring function
g : X̃ × Y → R as

f : x̃ 7→ argmax
y∈Y

g(x̃, y),

where we consider a linear scoring function g such
that for class j, g(x̃, j) = aT

j W
Tϕk(x̃), and A =

[a1, . . . ,ac]
T ∈ Rc×q is bounded, namely ||A|| ≤ Λ.

Since W has been standardized to have column norm one,

||AW T ||Hk
≤ ||A|| × ||W ||Hk

≤ qΛ,

where q is the feature dimension of W = ΦTB. We have
reused the notation f and g, different from those in Assump-
tion 1.

The loss function is established by the margin theory. A
margin rg(x̃, y) of the function g at a labeled observation
(x̃, y) can be defined as

rg(x̃, y) = g(x̃, y)−max
y′ ̸=y

g(x̃, y′).

Hence, f gives the wrong classification iff rg(x̃, y) ≤ 0.

The empirical ρ-margin loss given g and ρ > 0 is

R̂n,ρ(g) =
1

cm

m∑
s=1

c∑
j=1

1

ns
j

ns
j∑

i=1

lρ(rg(x̃
s
j,i, j)),

where x̃s
j,i = (P̂

(s)
X|Y=j ,x

s
j,i), lρ(x) = min(1,max(0, 1 −

x/ρ)) is a ρ-margin loss function, ρ−1-Lipschitz. The ex-
pected loss (risk) of the classification

R(g) = E(x̃,y)I(rg(x̃i, yi) ≤ 0),

where I(·) is the indicator function. Since I(x ≤ 0) ≤
lρ(x), the expected loss R(g) ≤ E(x̃,y)R̂n,ρ(g) for any g.

For the DG problem, the widely used product kernel k̄ is

k̄((P
(s)
X ,xs

i ), (P
(s′)
X ,xs′

j )) = kP (P
(s)
X , P

(s′)
X )k1(x

s
i ,x

s′

j )
(24)

with a RKHS Hk̄ (Blanchard et al., 2011). For the choice
of kP , let k2 denote a kernel on X with RKHS Hk2 and
feature map ϕk2

, we define the k2 induced kernel mean
embedding µ : PX → Hk2

as µPX
:=

∫
X ϕk2

(x)dPX(x),
and introduce another kernel K onHk2

such that

kP

(
P

(s)
X , P

(s′)
X

)
= K

(
µ

P
(s)
X

,µ
P

(s′)
X

)
.

Combining the classifier and the kernel k̄, a family of the
DG based score functions can be denoted as

Gk̄ = {(x̃, y) ∈ X̃ × {1, . . . , c} 7→ aT
y W

Tϕk̄(x̃) :

A = (a1, . . . ,ac)
T , ||AW T ||Hk̄

≤ qΛ}.

The following assumption makes k̄ a bounded universal
kernel.

Assumption 2. (i) The kernel k1 is universal on X , and
k2 is universal and continuous on X , K is universal on
any compact subset of Hk2 . The kernels k1, k2 and K are
bounded by U2

1 , U2
2 and U2

K, respectively. (ii) The canonical
feature map ϕK associated with K is LK-Lipschitz. The
observation space X is a compact metric space.

We have the following theorem regarding the multi-class
generalization bound.

Theorem 1. Given Assumption 2, and assume that ns
j = n̄

for balanced sample size. Then, for a ρ > 0 and any δ > 0,
with probability at least 1 − δ, the following multi-class
classification generalization bound holds for all g ∈ Gk̄:

R(g) ≤ R̂n,ρ(g) +
1

ρ
qΛU1U2LK

(
6

√
log 2cmδ−1

n̄
+

4

√
c

mn̄
+ 4

√
c

m

)
+

√
log δ−1

2cmn̄
+

√
log δ−1

2cm
. (25)
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(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4 (e) Case 5 (f) Case 6

Figure 1. The prior distributions and the variances of the 6 data generalization cases. The bars show the prior probabilities of the different
classes within each domain, where the center indexes indicate the domains. The light color indicates that the data are generated with
variance one while the darker color (see Cases 5 and 6) means the variance is four.

Table 1. Center points and sample sizes for the synthetic data.

Domain Domain 1 Domain 2 Domain 3 Domain 4

Class 1 2 3 1 2 3 1 2 3 1 2 3

X1 1 4 4 0.5 3.5 3.5 1 4 4 0.5 3.5 3.5
X2 2 2 -2 1.5 1.5 -2.5-1.5-1.5-5.5-1.5-1.5-5.5

instances 600 600 600 600

Theorem 1 generalizes the results in Hu et al. (2020) by
quantifying the effects of class number c and the feature
dimension q introduced by the proposed standardization
methods. Indeed, it shows that a larger c or q leads to a
weaker guarantee. Given the confidence level 1 − δ, the
excess risk converges to zero if n̄

log cm and m
c →∞.

5. Empirical results
We compare the proposed DFDG with the existing DG meth-
ods on a synthetic dataset and two real image classification
tasks. The two proposed DFDG metrics DFDG-Eig (Sec-
tion 3.1) and DFDG-Cov (Section 3.2) associated with two
classifiers, the 1-nearest neighbor (1-NN) and the support
vector machine (SVM), are used for comparison.

The proposed DFDG is compared with the conventional k-
NN and SVM without dimension reduction, the Kernel DG
methods, namely the domain invariant component analysis
(DICA, Muandet et al. 2013), the scatter component analysis
(SCA, Ghifary et al. 2017), the conditional invariant DG
(CIDG, Li et al. 2018) and the multi-domain discriminant
analysis (MDA, Hu et al. 2020), where 1-NN was used for
these kernel DG methods. The product kernel (24) was used
for all the kernel-based DG methods, where k1, k2 and K are
Gaussian kernels with bandwidth h, h and one, respectively.
The bandwidth h is chosen by the median heuristic unless
specified otherwise.

Even with the 1-NN classifier, the existing kernel based
DG methods typically have three hyperparameters as listed
in Table 2. In contrast, the proposed DFDG with 1-NN

classifier has one hyperparameter while those with SVM
have 3 hyperparameters including a penalty parameter and
the kernel bandwidth. The tuning for the kernel bandwidths
has been ignored in the existing DG methods (Ramdas et al.,
2015). For both the existing and the proposed methods,
the hyperparameters were selected by the grid search in
the validation set, where 30% of each source domain was
chosen as the validation set in the training, the so-called the
training-domain validation method (Gulrajani & Lopez-Paz,
2021). The candidate hyperparameters are listed in the SM.
After selecting the best hyperparameters in the validation set,
the classification accuracy was calculated on the target. We
randomly split the source domains as training and validation
sets 5 times to calculate the mean and standard deviation of
classification accuracy in the target domain.

5.1. Synthetic Data

A two-dimensional dataset with 4 domains and 3 classes
was drawn from different Gaussian distributions N (µ, σ2)
with mean µ (Table 1) and variance σ2. To investigate the
influence of the prior distribution on the classes on different
DG methods, the class size may be imbalanced as displayed
in Figure 1, while the sample size of each domain was kept
600. The first three domains were the source domains, while
the last one was the target domain. All the data were fed
into the DG methods without any data preprocessing.

As shown in Table 2, the proposed DFDG outperformed all
the kernel DG methods even using only one hyperparameter
with the 1-NN classifier. The performance was further lifted
by using the SVM classifier with more hyperparameters for
the kernel bandwidths and the SVM penalty. See Figure
S2 in the SM for the Extracted features by the proposed
DFDG methods. The sensitivity analysis provided in SM
demonstrated a superior sensitivity performance.

5.2. Case study

We considered three datasets, the Office+Caltech, VLCS and
Terra Incognita in case study. The Office+Caltech dataset

7
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Table 2. Mean and standard deviation of the classification accuracy of the synthetic experiments on 6 cases for different methods, where
bold red and bold black indicate the best and second best respectively. And #hp denotes the number of hyperparameters.

Method #hp Case1 Case2 Case3 Case4 Case5 Case6

k-NN 1 77.31±0.55 78.14±0.64 76.17±0.46 83.42±1.30 71.17±0.49 51.44±1.48
SVM 2 73.86±1.27 74.86±0.99 73.11±0.89 84.56±0.80 67.28±0.87 44.83±1.04

DICA 1-NN 2 87.25±2.05 84.67±3.36 84.08±1.39 87.03±1.31 78.53±5.18 66.28±1.11
SCA 1-NN 2 87.31±1.17 83.61±0.89 84.69±1.18 86.81±1.12 80.89±1.12 66.58±1.74
MDA 1-NN 3 88.47±1.01 81.00±1.41 82.00±0.51 87.64±1.25 81.14±0.82 64.89±1.41
CIDG 1-NN 4 91.03±0.52 86.58±0.69 84.56±0.81 90.36±0.68 84.52±1.71 69.06±5.79

SVM 3 93.90±0.48 87.57±1.73 90.03±1.85 93.40±0.63 87.53±0.77 79.30±1.84DFDG-Eig 1-NN 1 91.13±0.83 86.87±1.83 90.23±0.30 90.57±1.22 84.57±1.63 75.77±0.67
SVM 3 92.97±0.61 89.43±1.18 92.50±0.35 93.57±0.52 86.37±0.84 71.23±1.45DFDG-Cov 1-NN 1 89.20±1.20 85.83±1.46 88.83±2.00 90.83±1.13 82.33±0.73 69.60±3.39

Table 3. Accuracy in Office+Caltech and VLCS datasets where bold red and bold black indicate the best and second best, respectively.
Office+Caltech VLCS

Source C,D,WA,D,W D,W A,C A,D A,W L,C,S V,C,S V,L,S V,L,C C,S L,S L,C V,S V,C V,L
Target A C A,C W,D W,C D,C V L C S V,L V,C V,S L,C L,S C,S

k-NN 79.7 68.6 48.8 61.2 71.5 70.6 46.8 49.5 72.9 48.9 52.5 50.7 42.1 57.5 49.6 56.3
SVM 92.2 82.8 68.7 80.5 84.9 84.4 64.7 58.6 84.9 63.9 59.5 63.3 53.6 66.8 64.9 70.3

DICA 1-NN 91.8 83.2 61.7 80.2 84.9 85.4 61.7 56.8 87.5 58.7 57.3 55.1 53.7 68.8 60.0 70.0
SCA 1-NN 92.2 82.3 65.0 81.2 85.2 83.8 65.3 58.0 89.4 60.7 58.4 56.8 54.8 69.8 61.1 70.9
MDA 1-NN 90.3 75.1 56.7 75.9 80.9 78.5 64.4 57.8 90.1 61.0 57.1 61.6 54.4 70.6 59.1 69.3
CIDG 1-NN 92.5 82.4 68.6 79.5 82.0 83.4 59.6 55.3 88.9 59.5 56.4 56.7 52.0 68.7 58.3 70.4

SVM 92.3 83.2 72.3 81.2 83.8 85.0 60.8 58.4 90.2 66.2 58.4 64.2 56.4 70.8 63.4 71.2DFDG-Eig 1-NN 91.9 82.6 66.2 82.7 82.3 84.9 61.4 57.2 91.6 64.5 57.0 63.8 51.2 68.8 63.7 68.9
SVM 92.5 83.9 73.1 81.6 83.8 84.9 64.6 59.5 91.4 65.0 57.6 63.4 56.5 70.2 64.5 72.4DFDG-Cov1-NN 90.5 82.3 68.2 81.2 81.5 84.3 62.6 56.0 93.0 62.9 56.1 62.0 51.5 68.3 61.6 72.0

(Gong et al., 2012) consists of 2533 images from ten classes
over four domains: AMAZON (A), Caltech-256 (C), DSLR
(D), and WEBCAM (W). The VLCS dataset (Fang et al.,
2013) consists of four domains: PASCAL VOC (V), La-
belMe (L), Caltech101 (C) and SUN09 (S), and has 10729
images and five categories. The Terra Incognita data (Beery
et al., 2018) were acquired from the DomainBed dataset
(Gulrajani & Lopez-Paz, 2021), which contains four loca-
tions (domains), 24788 examples and 10 classes. All the
images from Office+Caltech and VLCS were preprocessed
by feeding into the DeCAF network to extract 4096 dimen-
sional DeCAF features (Donahue et al., 2014). We obtained
features for Terra Incognita by training the Empirical Risk
Minimization (ERM, Vapnik 1998)-adjusted ResNet 50 and
extracting 2048-dimensional features from the last hidden
layer. Six cases (domains or combinations of domains) were
considered as the target domains for Office+Caltech data,
and ten cases were considered for the VLCS data as the tar-
get domains as shown in Table 3. To be consistent with the
existing studies, we did not consider the four target domains
of D, W, A&D and A&W for Office+Caltech, since they all
had more than 80% accuracy with the k-NN classifier. For
the Terra Incognita dataset, we only considered four single
target cases to make them comparable with the results in
Gulrajani & Lopez-Paz (2021).

As shown in Table 3, the DFDG with 1-NN classifier
achieved a similar performance as the other DG methods
but with fewer hyperparameters. While the DFDG with the
SVM classifier outperformed others in 9 of the 16 cases.
Collectively, the proposed DFDG methods achieved the best
performance in 11 out of 16 cases, and the second best in
12 out of 16 cases. The DFDG with SVM classifier signifi-
cantly outperformed others with a p-value less than 0.002
as shown in Table S4 of the SM. The full results with mean
and standard deviation of classification accuracy were given
in Tables S5 and S6. We note that since the SVM classifier
requires two more hyperparameters, it is hard to implement
the SVM for the existing kernel DG methods as the time
complexity is exponential with respect to the number of hy-
perparameters. In contrast, the proposed method can handle
the extra computing need with the SVM, as there is only
one hyperparameter in the feature selection.

Table 4 demonstrated quite outstanding performance using
the proposed methods compared with the ERM baseline
and the existing kernel DG methods. This lends support
for the suitability of the proposed approach, and provides
a way to couple with any deep learning based DG method.
Our results showed that the DFDG method with a 1-NN
classifier achieved approximately 0.8% performance gain
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Table 4. Accuracy in the Terra Incognita dataset, where bold red
and bold black indicate the best and second best, respectively.

method L100 L38 L43 L46

ERM baseline 53.12 41.07 54.66 36.13
DICA 1-NN 43.81 32.76 48.88 32.51
SCA 1-NN 44.57 39.21 49.00 30.14
MDA 1-NN 39.74 35.44 47.77 26.04
CIDG 1-NN 45.88 38.04 50.43 33.83
DFDG-Eig SVM 55.28 42.71 56.60 38.31
DFDG-Eig 1-NN 53.49 41.59 55.68 36.88
DFDG-Cov SVM 55.45 41.58 55.92 37.66
DFDG-Cov 1-NN 53.66 41.59 54.97 38.36

compared to the ERM baseline, while equipping the DFDG
method with the SVM classifier increased the classification
accuracy by 1.7%. Notably, all the best performances were
achieved by the DFDG-based methods. In contrast, the
existing kernel DG methods failed to outperform the ERM
baseline. A possible reason for this outcome could be the
highly imbalanced classes in the Terra Incognita dataset.
The class with the smallest number of instances in L38
had only three observations, while the one with the largest
number of instances contained 4,485 examples. In such
situation, standardization is crucial in handling domain/class
dominance issues.

6. Conclusion
This paper proposes a kernel DG algorithm that addresses
the fundamental problem of universal generality of a learn-
ing approach by proposing two standardization procedures
in a unified DG problem framework, which contains fewer
hyperparameters. The standardized distribution free met-
rics can balance the importance of each domain, equally
treat each domain and class, and thus is applicable to imbal-
anced data. We also derive a generalization bound on the
multi-class classification problem for the kernel DG meth-
ods, and show that the proposed DFDG algorithm produces
superior performance in synthetic data and two real image
classification experiments.

The proposed framework can be extended to incorporate
weighted coefficients towards domains and classes, which
enables us to assign a higher weight to the interested domain
or the minor class. By reducing the number of hyperparame-
ters, one attains a more efficient invariant feature extraction
procedure, that allows for more powerful classifiers with
increased generalization ability. One limitation of our work
is lack of connections between the number of hyperparame-
ters and the generalization bound, as fewer hyperparameters
would reduce the model complexity and tighten the general-
ization bound. We leave this to future work.

Supplementary Materials
Further technical details, proofs and the example codes are
available with this paper at https://github.com/t
ongpf/Distribution-Free-Domain-General
ization.
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