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Abstract: Recent works have shown that visual pretraining on egocentric datasets
using masked autoencoders (MAE) can improve generalization for downstream
robotics tasks [1, 2]. However, these approaches pretrain only on 2D images,
while many robotics applications require 3D scene understanding. In this work,
we propose 3D-MVP, a novel approach for 3D multi-view pretraining using
masked autoencoders. We leverage Robotic View Transformer (RVT), which uses
a multi-view transformer to understand the 3D scene and predict gripper pose
actions. We split RVT’s multi-view transformer into visual encoder and action
decoder, and pretrain its visual encoder using masked autoencoding on large-scale
3D datasets such as Objaverse. We evaluate 3D-MVP on a suite of virtual robot
manipulation tasks and demonstrate improved performance over baselines. We
also show promising results on a real robot platform with minimal finetuning.
Our results suggest that 3D-aware pretraining is a promising approach to improve
sample efficiency and generalization of vision-based robotic manipulation poli-
cies. We will release code and pretrained models to facilitate future research.
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1 Introduction

Building learning-based manipulation systems is challenging due to the unavailability of diverse
large-scale robotics data. To address this, there has been significant interest in using computer vision
techniques to learn generalizable visual representations without robotics focused data, for example
by self-supervised pre-training on image datasets. In particular, inspired by the success of masked
language modeling in NLP, several recent works have explored masked autoencoding (MAE) for
visual representation learning [3]. MAE learns to reconstruct randomly masked patches in an input
image, encouraging the model to learn high-level semantic features. When applied to egocentric
videos from human demonstrations, MAE has been shown to learn representations that generalize
well to downstream robotics tasks such as object manipulation [1, 4, 5].

However, current MAE approaches for robotics pretrain only on 2D images, ignoring the 3D struc-
ture of the scene. Prior works in robotics have shown that methods that build an explicit 3D visual
representation of the environment are more sample efficient and generalize better than those with
only 2D visual representations [6, 7, 8]. Hence, in this work, we explore how we can bring the bene-
fits of visual pretraining to robot manipulation methods that reason with explicit 3D representations.

We propose 3D-MVP, a method for 3D Multi-View Pretraining for robot manipulation. Our ap-
proach builds upon recent advances in robot manipulation. Specifically, we use the Robotic View
Transformer (RVT) [6], a state-of-the-art 3D manipulation method [6]. RVT takes as input a point
cloud of the scene and builds a 3D representation of the scene, using a set of fixed orthogonal
“virtual” RGBD images. These RGBD images are fed through a transformer model that fuses infor-
mation across views and predicts robot actions in the form of future gripper poses.

We choose RVT over other methods for manipulation that build a 3D representation of the scene
(e.g. PerAct [7] and Act3D [9]), because other methods use either voxels or point clouds as input
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a transformer model, while RVT uses orthogonal RGBD images. The view-based representation
makes RVT a suitable candidate for MAE pretraining.

We pretrain the multi-view representation in RVT by attaching it to a lightweight MAE decoder. We
then randomly mask out a subset of the visual tokens for each view and train the model to reconstruct
the multiview RGB-D images. After the pre-training, we discard the decoder. We then fine-tune the
visual encoder along with RVT’s action decoder on various manipulation tasks.

In order to learn generalizable and robust visual features, we use the recent works that have led
to the creation of large-scale datasets of 3D scenes, such as Objaverse and 3D-FRONT [10, 11,
12, 13]. These datasets contain high-quality 3D scans of indoor environments along with realistic
textures and materials. We use these datasets to create sets of orthogonal views that are similar to
the 3D representation used in RVT. These sets of orthogonal views are then used for pretraining
the visual encoder in RVT. We conduct experiments to ablate various different choices available for
pre-training. Specifically, we study how masking strategies, dataset choice and dataset sizes affect
the downstream manipulation performance.

Finally, we evaluate 3D-MVP on the RLBench benchmark [14], a suite of manipulation tasks in a
simulated environment. We find that pretraining the RVT encoder with 3D-MVP leads to significant
improvements over training from scratch or pretraining with 2D MAE. These results inform how
we can advance the state-of-the-art in robotic manipulation with the help of pretraining. We further
evaluate 3D-MVP on the Colosseum benchmark [8], which tests a system’s generalization across
various unseen variations of manipulation tasks like object size change, color change, and lighting
changes. We find that the proposed 3D-MVP method is more robust across various variations than
RVT trained from scratch.

In summary, our contributions are three-fold.

• We propose 3D-MVP, a novel approach for 3D multi-view pretraining using masked autoencoding
on large-scale 3D datasets.

• We study how various design choices in pretraining, like masking strategy, dataset combination
and sizes, affect downstream object manipulation performance.

• We demonstrate that pretraining with 3D-MVP leads to significant improvements on object manip-
ulation tasks. We also show that 3D-MVP enables training policies that are more robust to variations
such as size, texture, and lightning, on the COLOSSEUM benchmark.

2 Related Work

Our work builds upon several active areas of research, including self-supervised learning, visual
pretraining for robotics, and learning robotic manipulation from demonstrations.

Self-supervised learning. Self-supervised learning aims to learn useful representations from unla-
beled data by solving pretext tasks that do not require manual annotation. Early work in this area
focused on designing pretext tasks for 2D images, such as solving jagsaw puzzles [15], constrastive
learning [16, 17] or joint embedding approaches [18, 19, 20, 21, 22, 23]. Most related to our work
is the masked autoencoder (MAE) approach proposed by He et al. [3], which learns to reconstruct
randomly masked patches in an image. MAE has been shown to learn transferable representations
for object detection and segmentation tasks. Furthermore, Bachmann et al demonstrates MAE pre-
training can be extended to different modalities such as semantics and depth [24]. In this work, we
extend the MAE approach to multi-view 3D scenes, enabling us to learn 3D-aware representations
that are useful for robotic manipulation tasks.

Visual pretraining for Robotics. Visual pretraining has demonstrated impressive generalization
ability on computer vision tasks. Therefore, prior works have explored whether it works for robotics
tasks as well. Specifically, the robotics community has trended towards learning representations
using state-of-the-art self-supervised vision algorithms on diverse interaction datasets [25, 26, 27],
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and finetune the network on robotics tasks [28, 2, 1, 4, 29, 5]. 3D-MVP follows the same proce-
dure. However, existing robotics pretraining approaches typically learn a 2D visual encoder (e.g.
ResNet [30] or ViT [31]), we find they are inferior than manipulation policies which do explicit 3D
modeling (e.g. RVT [6], Act3D [9]). Migrating a pretrained ViT to 3D manipulation policies is
nontrivial since they do not have a 2D visual encoder. In this paper, we propose 3D-MVP, which
does 3D-aware pretraining on 3D manipulation policies, to fill the gap.

Learning manipulation from demonstrations. Recent work has explored using transformers for
multi-task manipulation policies that predict robot actions from visual and language inputs [7, 32,
33, 34, 35]. End-to-end models like RT-1 [36], GATO [37], and InstructRL [33] directly predict
6-DoF end-effector poses but require many demonstrations to learn spatial reasoning and generalize
to new scenes. To better handle 3D scenes, PerAct [7] and C2F-ARM [38] voxelize the workspace
and detect the 3D voxel containing the next end-effector pose. However, precise pose prediction
requires high-resolution voxels which are computationally expensive. Recently, RVT [6] proposes a
multi-view transformer that attends over point cloud features from multiple camera views to predict
actions. This avoids explicit voxelization and enables faster training and inference than PerAct.
Act3D [9] represents the scene as a continuous 3D feature field and samples points to featurize
with attention, allowing adaptive resolution. GNFactor [39] jointly optimizes a generalizable neural
field for reconstruction and a Perceiver for decision-making. In contrast, our proposed 3D-MVP
learns 3D scene representations through masked autoencoding pretraining on a large dataset of 3D
object models. This pretraining enables 3D-MVP to build a rich understanding of 3D geometry and
semantics prior to finetuning on downstream manipulation tasks.

3 Approach

In this section we first provide essential background on RVT, then define our method 3D-MVP that
learns 3D-aware representations for robotic manipulation using masked autoencoding on multi-view
3D scenes, and finally describe how we finetune the method on downstream manipulation tasks.
Figure 1 gives an overview of our approach.

3.1 Background on Robotic View Transformer (RVT).

It is a state-of-the-art object manipulation method [6]. It creates an explicit 3D representation of
the scene by using orthogonal virtual views of a scene. Please refer to Goyal et al. [6] for a full
explanation. Here, we provide a brief overview and define the notation.

RVT takes a point cloud of the robot workspace as input (Fig. 1). RVT is agnostic to the poses of
the RGBD cameras used to construct the input point cloud. For example, it can be obtained from a
combination of third-person cameras around the workspace, head cameras, or wrist cameras. RVT
then renders this point cloud using a set of five “virtual” cameras placed at orthogonal locations
around the robot. The virtual cameras are placed at the top, left, right, front, and back of the robot
workspace with respect to the robot. Each virtual image has 10 channels: RGB (3 channels), Depth
(1 channel), 3D point coordinate in world frame (3 channels), and 3D point coordinate in camera
sensor frame (3 channels). We denote the virtual images captured from different virtual camera
poses {p1, . . . , p5} as {I1, . . . , I5}.

These virtual images are then tokenized into N patch embeddings [31], flattened into a sequence of
5N tokens spanning all images, and fed to a multi-view transformer. The goal of RVT’s multi-view
transformer is to learn a function fθ that maps the virtual images as well as language instructions L
to the 6-DoF end-effector pose and the gripper’s binary open or close state:

apos, arot, aopen = fθ(L, I1, p1, . . . , I5, p5) (1)

RVT is trained end-to-end from scratch on sampled trajectories from simulator or real robots. While
RVT has shown state-of-the-art results on 3D manipulation, it does not generalize to novel objects
and scenes. In the next section, we describe our novel approach 3D-MVP, and how we modify and
pretrain the RVT encoder using 3D-MVP.
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Figure 1: Overview of 3D-MVP. (a) We first pretrain a Multiview 3D Transformer using masked
autoencoder on multiview RGB-D images. (b) We then finetune the pretrained Multiview 3D Trans-
former on manipulation tasks. Since the MVT is pretrained, the learned manipulation policy gener-
alizes better. For example, it is more robust to changes of texture, size and lighting.

3.2 3D Multi-View Pretraining (3D-MVP)

Architecture change to RVT. The key idea is to pretrain the RVT visual encoder fθ using masked
autoencoding on large-scale 3D scene datasets. However, RVT’s multiview transformer fθ is an
end-to-end model that takes language instructions as input, and produces robot actions. Existing
robotics data with language and actions is limited in terms of diversity of 3D scenes, and 3D scene
datasets do not typically contain robotics annotations.

To enable pre-training on 3D scene datasets, we first split the multiview transformer fθ into an input
renderer R, an encoder network E and an action decoder network D. The renderer R maps the
posed input images into the five virtual images, by constructing a point cloud and rendering it from
the five views:

{I1, . . . , I5} = R(I1, p1, . . . , I5, p5) (2)
The encoder E maps the virtual images into a latent embedding z ∈ R5N×H (where H is the hidden
size) and the action decoder D maps z to the robotic action space, i.e.,

apos, arot, aopen = D(L, z), z = E(I1, . . . , I5) , (3)

where tokenization of the virtual images into 5N patch embeddings is subsumed into E . Both
encoder E and decoder D are multiview transformers. We keep the decoder lightweight to focus on
pretraining of the encoder.

Pretraining encoder E . Our visual pretraining focuses on learning a generalizable representation
for the encoder E . We extract point clouds from Objaverse and render the point cloud using the same
five “virtual” cameras. Given 5 virtual images {I1, . . . , I5}, we randomly mask out a subset of the
visual tokens for each view, and denote the masked inputs as {I ′1, . . . , I ′5}. We use the encoder to
extract the embedding z from the masked inputs,

z = E({I ′1, . . . , I ′5}) (4)

We use a separate, lightweight MAE decoder DMAE to reconstruct the original image {I1, . . . , I5}
from the embedding z.

{Ĩ1, . . . , Ĩ5} = DMAE(z) (5)
The encoder E and decoder DMAE are trained end-to-end using a pixel-wise reconstruction loss:

Lrecon =
1

5WH

5∑
i=1

W ·H∑
p=1

∥[Ii](p) − [Ĩi](p)∥22 , (6)
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Figure 2: MAE Reconstruction results on Objaverse. Our pretrained multi-view transformer gener-
alizes to unseen object instances and reconstructs multi-view images from their masked versions.

where [I](p) indexes the image I ∈ RW×H×C at pixel p. By jointly learning to reconstruct all five
images and varying the masking patterns during training, we hypothesize that the encoder will learn
to reason across the multiple views and extract 3D-aware features that are robust to occlusions and
viewpoint changes. In order to inform future works, we study how various masking strategies and
dataset combinations affect the final downstream performance (See Tab. 2).

Implementation details. We implement the pretraining using the PyTorch library and train it on 8
NVIDIA V100s. We sample 200K high-quality 3D models with realistic textures and materials from
Objaverse [10] for pretraining. We use a patch size of 10x10 to tokenize images. For the encoder
E , we use a multiview transformer with 8 layers, 8 attention heads and a hidden dimension of 1024.
For the decoder, we use a multiview transformer with 2 layers and 8 attention heads. We train the
model for 15 epochs using the AdamW optimizer with a learning rate of 0.0001 and a weight decay
of 0.01. We use a batch size of 3 and a masking probability of 0.75.

3.3 Finetuning on Downstream Manipulation Tasks

To adapt the pretrained encoder E for a specific manipulation task, we finetune it along with the
action decoder D on a dataset of manipulation demonstrations. Assume a demonstration consists of
tuples of virtual images, language goals and actions. During training, we randomly sample a tuple
and supervise the network to predict the action given the virtual images and the language goal.

Implementation details. For finetuning on manipulation demonstrations, we follow the standard
practice [6, 8]. We use 8 NVIDIA V100 (32GB) for finetuning and a single V100 for evaluation.
The learning rate is 1e-4 with warmup. We use Lamb [40] as the optimizer and the batch size is 3.

4 Experiments

In this section, we evaluate the effectiveness of 3D-MVP for robotic manipulation tasks, and aim
to answer the following questions: (1) Does 3D-aware pretraining improve manipulation perfor-
mance compared to training from scratch or 2D pretraining? (2) Does 3D-aware pretraining im-
prove robustness to environmental variations encountered in manipulation tasks? (3) How do vari-
ous design choices while pretraining affect the downstream manipulation performance? To answer
these questions, we evaluate 3D-MVP on two benchmarks: RLBench [14] for general manipula-
tion performance and COLOSSEUM [8] for systematic evaluation of robustness to environmental
perturbations.

4.1 Validating 3D Masked Autoencoding

We validate whether masked autoencoder works in our setup with multi-view images from 3D as-
sets. Specifically, we check whether the pretrained multi-view transformer generalizes to unseen 3D
assets from Objaverse [10]. We validate it qualitatively in Figure 2. We find that the pretrained 3D-
MVP network achieves high-fidelity reconstructions despite 75% of the input points being masked,
suggesting that 3D-MVP learns meaningful 3D representations through this pretext task.
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Average Close Drag Insert Meat off Open Place Place Push
Models Success Jar Stick Peg Grill Drawer Cups Wine Buttons
Image-BC (CNN) [42, 7] 1.3 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0
Image-BC (ViT) [42, 7] 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C2F-ARM-BC [38, 7] 20.1 24.0 24.0 4.0 20.0 20.0 0.0 8.0 72.0
PerAct [7] 49.4 55.2 89.6 5.6 70.4 88.0 2.4 44.8 92.8
RVT [6] 62.9 52.0 99.2 11.2 88.0 71.2 4.0 91.0 100
3D-MVP (Ours) 67.5 76.0 100 20.0 96.0 84.0 4.0 100 96.0

Put in Put in Put in Screw Slide Sort Stack Stack Sweep to Turn
Models Cupboard Drawer Safe Bulb Block Shape Blocks Cups Dustpan Tap
Image-BC (CNN) [42, 7] 0.0 8.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0
Image-BC (ViT) [42, 7] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.0
C2F-ARM-BC [38, 7] 0.0 4.0 12.0 8.0 16.0 8.0 0.0 0.0 0.0 68.0
PerAct [7] 28.0 51.2 84.0 17.6 74.0 16.8 26.4 2.4 52.0 88.0
RVT [6] 49.6 88.0 91.2 48.0 81.6 36.0 28.8 26.4 72.0 93.6
3D-MVP (Ours) 60.0 100.0 92.0 60.0 48.0 28.0 40.0 36.0 80.0 96.0

Table 1: Results on RLBench [14]. We report the task completion success rate for 18 RLBench
tasks, as well as the average success rate. 3D-MVP reaches the state-of-the-art performance on the
benchmark. The pretraining is mainly helpful for tasks with medium difficulty.

4.2 Results on RLBench

Setup. RLBench [14] is a popular simulation benchmark for learning manipulation policies. Each
task requires the robot to perform a specific action, such as picking up an object, opening a drawer,
or stacking blocks. We follow the simulation setup of PerAct [7] and RVT [6] and use Copp-
pelaSim [41] to simulate 18 RLBench tasks. A Franka Panda robot with a parallel gripper is con-
trolled to complete the tasks. The 18 RLBench tasks are the same as PerAct and RVT. The visual
observations are captured from four noiseless RGB-D cameras positioned at the front, left shoulder,
right shoulder, and wrist with a resolution of 128×128.

Baselines. We compare 3D-MVP with the following baselines on RLBench: (1) Image-BC [42]
is an image-to-action behavior cloning approach which takes the visual observation and predict the
corresponding action. We compare with two variants which use CNN and ViT as the visual en-
coders, and call them Image-BC (CNN) and Image-BC (ViT), respectively; (2) C2F-ARM-BC [38]
is another behavior cloning approach which converts RGB-D obversations to multi-resolution vox-
els and predicts the next key-frame action. (3) PerAct [7]: a multi-task a Perceiver transformer for
robotic manipulation. The inputs are point clouds with color features and PerAct uses a Perceiver
IO network to compress them to a fixed dimension [43]. (4) RVT [6]: The same Robotic View
Transformer architecture as 3D-MVP but trained from scratch on the downstream tasks. We do not
compare with 2D pretraining methods since they do not work well on RLBench [8].

Metrics. We report the task success rate for each individual tasks, and the average success rate.

Results. We show quantitative results on Table 1. For the average success rate, 3D-MVP outper-
forms existing state-of-the-art methods, PerAct [7] and RVT [6], by a large margin. It demonstrates
the effectiveness of bringing visual pretraining for manipulation policy which has explicit 3D mod-
eling. We find the improvement of 3D-MVP mainly comes from tasks which has medium difficulty,
such as “insert peg”, “put in cupboard”, and “stack blocks”. If the task is too hard and PerAct/RVT
is not able to solve any of them, the pretraining does not help. If the task is too easy and PerAct/RVT
has already reached >90 success rate, the pretraining has limited space of improvement.

4.3 Results on COLOSSEUM

We further evaluate its generalization ability and robustness to environmental variations.

Benchmark. COLOSSEUM [8] is a benchmark for evaluating generalization for robotic manip-
ulation. It contains 20 different tasks such as hockey, empty dishwasher. For each task, it has 12
environmental perturbations, including changes in color, texture, size of objects and backgrounds,
and lightnings. The objects which can be changed include Manipulation object (MO), Receiver Object
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(RO) and the table. Therefore, it is well-suited for evaluating the generalization ability of manipula-
tion approaches with pretraining.

Figure 3: Results on COLOSSEUM [8]. We report the average
task completion success rate for 12 environmental perturbations
and no perturbation. Manipulation policies which do explicit 3D
reasoning (RVT [6] works significantly better and 2D pretraining
approaches (MVP [1] and R3M [2]). 3D-MVP is more robust
than RVT on most perturbations. MO = manipulation object. RO
= receiver object.

Simulation setup. For simu-
lation, we follow the original
COLOSSEUM setup. We use
CopppelaSim [41] to simulate all
tasks. In training, we do not
add any environmental perturba-
tions and generate 100 demon-
strations for each task. During
test time, we generate 12 envi-
ronmental perturbations for each
task and 25 demonstrations for
each perturbation. In some cases,
it is not possible to generate a
plausible perturbation for some
scenarios. For instance, it is hard
to perturb the environment cor-
rectly for “empty dishwashers”.
Therefore, we only report results
on settings we are able to gen-
erate. We report baselines on
exactly the same setting for fair
comparison.

Metrics. We also report the task completion success rate on COLOSSEUM. Instead of averaging
for each task, we report the average success rate for each environmental perturbation.

Baselines. We compare 3D-MVP with state-of-the-art baselines reported on COLOSSEUM, which
includes RVT and two 2D pretraining approaches: (1) MVP [1, 4]: a 2D pretraining approach
using MAE reconstruction losses. It is pretrained on a collection of interaction datasets, such as
Ego4D [25], EpicKitchen [27], and 100DOH [26]. The pretrained encoder is then finetuned and
evaluated on COLOSSEUM. (2) R3M [2]: a 2D pretraining approach using a combination of re-
construction and contrastive losses. It is pretrained on Ego4D [25]. The pretrained encoder is then
finetuned and evaluated on COLOSSEUM. (3) RVT [6]: Trained on COLOSSEUM from scratch.

Results. We show results in Figure 3. First, our method outperforms existing 2D pretraining
(MVP [1], and R3M) significantly. It indicates existing 2D pretrainig methods are not ready for
complicated robotic manipulation. Compared with RVT which is trained from scratch, our method
is more robust to most perturbations. It is especially robust to the change of texture and size of
Receiver Object (RO), size of the manipulation object (MO), Light color and Table color. We believe
it is because the pretraining stage enables our approach to see diverse 3D objects.

4.4 Ablation Studies

To analyze the impact of different design choices in 3D-MVP, we conduct ablation studies on the
RLBench benchmark. Table 2 shows the average success rates of 3D-MVP with different network
architecture, masking strategies and pretraining datasets. And we discuss results as follows.

Network architecture change. We validate whether the performance boost comes from architecture
change in Sec. 3.2 or the pretraining. we finetune our approach without pretraining and find the
performance is 62.9, similar to the original RVT [6].

Should we pretrain on object or room-level data? The choice of pretraining datasets are typically
critical for self-supervised learning. In our experiments, we mainly use Objaverse [10], which is
a object-centric 3D datasets. Since we are mainly evaluated on tabletop manipulation, we also try
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Network Architecture Pretraining Datasets Masking Strategy Success Rate

3D-MVP Objaverse (full) [10] RGB 67.6
3D-MVP Objaverse (small) [10] RGB 65.3
3D-MVP Objaverse (full) [10] All 64.4
3D-MVP 3D-FRONT [11] RGB 63.6
3D-MVP RLBench [14] RGB 67.5
3D-MVP RLBench [14] All 64.7
3D-MVP None None 62.9
RVT [6] None None 62.9

Table 2: Ablation studies on the RLBench benchmark. We analyze the contribution of our network
architecture, pretraining datasets, and the masking stretegy. For each variant, we report the average
task completion success rate on RLBench [14].

Input

GT

Pred

Figure 4: Pretraining MAE on RLBench scenes leads poor generalization performance. (Left):
MAE reconstruction results on unseen RLBench renderings. (Right): MAE reconstruction results
on Objaverse renderings. While the reconstruction is reasonable on RLBench unseen renderings, it
overfits to RLBench and does not learn a general representation.

room-level 3D datasets such as 3D-FRONT [11]. We conduct the experiments on RLBench, and
observe pretraining on 3D-FRONT only boosts the performance mildly from 62.9 to 63.6. In com-
parison, pretraining on Objaverse boosts the performance to 67.6. This suggests that the diversity
and scale of the pretraining data are important for learning generalizable representations.

Does more pretraining data help? We sampled 18K objects from Objaverse and called it Objaverse
(small). The full Objaverse dataset we use has 200K objects. When we pretrain the encoder with
Objaverse (small), we get a 65.3 mean success rate, which is worse than using Objaverse (full). This
suggests that a larger dataset of pretraining helps performance in the downstream task.

Can we pretrain on RLBench? Instead of pretraining on Objaverse, we investigate whether we
can just pretrain on RLBench point clouds. We find it can achieve an average success rate of 67.5
on RLBench test set, which is comparable to Objaverse. However, the pretrained model does not
generalize as shown in Figure 4.

Masking strategy. We also observe that masking RGB channels performs better than masking all
channels. We hypothesize that the network finds it very challenging to reconstruct all the channels
and is unable to learn better visual representations. We view our findings as similar to He et al. [3],
who find that the benefits of pretraining diminish if the pretraining task becomes too difficult, like
when the masking ratio becomes very high (>80%).

5 Conclusion

In this work, we introduced 3D-MVP, a novel approach for 3D multi-view pretraining using masked
autoencoders to improve the performance and generalization of manipulation policies. Future works
include extending 3D-MVP to generalize to novel manipulation tasks.

Acknowledgment. We thank Ishika Singh and Jiafei Duan for their help with the COLOSSEUM
benchmark.
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