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Abstract

Decentralized Actor-Critic (AC) algorithms have been widely utilized for multi-1

agent reinforcement learning (MARL) and have achieved remarkable success.2

Apart from its empirical success, the theoretical convergence property of decen-3

tralized AC algorithms is largely unexplored. The existing finite-time convergence4

results are derived based on either double-loop update or two-timescale step sizes5

rule, which is not often adopted in real implementation. In this work, we introduce6

a fully decentralized AC algorithm, where actor, critic, and global reward estimator7

are updated in an alternating manner with step sizes being of the same order, namely,8

we adopt the single-timescale update. Theoretically, using linear approximation for9

value and reward estimation, we show that our algorithm has sample complexity of10

Õ(ϵ−2) under Markovian sampling, which matches the optimal complexity with11

double-loop implementation (here, Õ hides a log term). The sample complexity12

can be improved to O(ϵ−2) under the i.i.d. sampling scheme. The central to13

establishing our complexity results is the hidden smoothness of the optimal critic14

variable we revealed. We also provide a local action privacy-preserving version15

of our algorithm and its analysis. Finally, we conduct experiments to show the16

superiority of our algorithm over the existing decentralized AC algorithms.17

1 Introduction18

Multi-agent reinforcement learning (MARL) [16, 30] has been very successful in various models of19

multi-agent systems, such as robotics [14], autonomous driving [37], Go [25], etc. MARL has been20

extensively explored in the past decades; see, e.g., [18, 20, 41, 26, 8, 22]. These works either focus21

on the setting where an central controller is available, or assuming a common reward function for all22

agents. Among the many cooperative MARL settings, the work [42] proposes the fully decentralized23

MARL with networked agents. In this setting, each agent maintains a private heterogeneous reward24

function, and agents can only access local/neighboring information through communicating with its25

neighboring agents on the network. Then, the objective of all agents is to jointly maximize the average26

long-term reward through interacting with environment modeled by multi-agent Markov decision27

process (MDP). They proposed the decentralized Actor-Critic (AC) algorithm to solve this MARL28

problem, and showed its impressive performance. However, the theoretical convergence properties29

of such class of decentralized AC algorithms are largely unexplored; see [41] for a comprehensive30

survey. In this work, our goal is to establish the strong finite-time convergence results under this fully31

decentralized MARL setting. We first review some recent progresses on this line of research below.32

Related works and motivations. The first fully decentralized AC algorithm with provable con-33

vergence guarantee was proposed by [42], and they achieved asymptotic convergence results under34

two-time scale step sizes, which requires actor’s step sizes to diminish in a faster scale than the critic’s35

step sizes. The sample complexities of decentralized AC were established recently. In particular, [6]36
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and [11] independently propose two communication efficient decentralized AC algorithms with opti-37

mal sample complexity of O(ε−2 log(ε−1)) under Markovian sampling scheme. Their analysis are38

based on double-loop implementation, where each policy optimization step follows a nearly accurate39

critic optimization step (a.k.a. policy evaluation), i.e., solving the critic optimization subproblem to40

ε-accuracy. Such a double-loop scheme requires careful tuning of two additional hyper-parameters,41

which are the batch size and inner loop size. In particular, the batch size and inner loop size need to be42

of order O(ε−1) and O(log(ε−1)) in order to achieve their sample complexity results, respectively.43

In practice, single-loop algorithmic framework is often utilized, where one updates the actor and44

critic in an alternating manner by performing only one algorithmic iteration for both of the two45

subproblems; see, e.g., [23, 18, 15, 39]. The work [38] proposes a new decentralized AC algorithm46

based on such a single-loop alternative update. Nevertheless, they have to adopt two-timescale step47

sizes rule to ensure convergence, which requires actor’s step sizes to diminish in a faster scale than48

the critic’s step sizes. Due to the separation of the step sizes, the critic optimization sub-problem49

is solved exactly when the number of iterations tends to ∞. Such a restriction on the step size will50

slow down the convergence speed of the algorithm. As a consequence, they only obtain sub-optimal51

sample complexity of O(ε−
5
2 ). In practice, most algorithms are implemented with single-timescale52

step size rule, where the step sizes for actor and critic updates are of the same order. Though there53

are some theoretical achievements for single-timescale update in other areas such as TDC [31] and54

bi-level optimization [4], similar theoretical understanding under AC setting is largely unexplored.55

Indeed, even when reducing to single-agent setting, the convergence property of single-timescale56

AC algorithm is not well established. The works [9, 10] establish the finite-time convergence result57

under a special single-timescale implementation, where they attain the sample complexity of O(ε−2).58

However, their analysis is based on an algorithm where the critic optimization step is formulated as a59

least-square temporal difference (LSTD) at each iteration, where they need to sample the transition60

tuples for Õ(ε−1) times to form the data matrix in the LSTD problem. Then, they solve the LSTD61

problem in a closed-form fashion, which requires to invert a matrix of large size. Later, [4] obtains the62

same sample complexity using TD(0) update for critic variables under i.i.d. sampling. Nonetheless,63

their analysis highly relies on the assumption that the Jacobian of the stationary distribution is64

Lipschitz continuous, which is not justified in their work.65

The above observations motivate us to ask the following question:66

Can we establish finite-time convergence result for decentralized AC algorithm with single-timescale67

step sizes rule?168

Main contributions. By answering this question positively, we have the following contributions:69

• We design a fully decentralized AC algorithm, which employs a single-timescale step sizes70

rule and adopts Markovian sampling scheme. The proposed algorithm allows communication71

between agents for every Kc iterations with Kc being any integer lies in [1,O(ε−
1
2 )], rather72

than communicating at each iteration as adopted by previous single-loop decentralized AC73

algorithms [38, 42].74

• Using linear approximation for value and reward estimation, we establish the finite-time75

convergence result for such an algorithm under the standard assumptions. In particular, we76

show that the algorithm has the sample complexity of Õ(ε−2), which matches the optimal77

complexity up to a logarithmic term. In addition, we show that the logarithmic term can be78

removed under the i.i.d. sampling scheme. Note that these convergence results are valid for79

all the above mentioned choices for Kc.80

• To preserve the privacy of local actions, we propose a variant of our algorithm which utilizes81

noisy local rewards for estimating global rewards. We show that such an algorithm will82

maintain the optimal sample complexity at the expense of communicating at each iteration.83

The underlying principle for obtaining the above convergence results is that we reveal the hidden84

smoothness of the optimal critic variable, so that we can derive an approximate descent on the85

averaged critic’s optimal gap at each iteration. Consequently, we can resort to the classic convergence86

analysis for alternating optimization algorithms to establish the approximate ascent property of the87

overall optimization process, which leads to the final sample complexity results.88

1As convention [9], when we use "single-timescale", it means we utilize a single-loop algorithmic framework
with single-timescale step sizes rule.
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Another technical highlight is the Lyapunov function we construct for measuring the progress of our89

algorithm. Such a construction is motivated by [4], which analyzes bi-level optimization algorithm.90

However, our Lyapunov function is different from theirs as it involves the additional optimal gap of91

averaged critic and reward estimator, which is necessary for dealing with the decentralized setting.92

We finish this section by remarking that our convergence results are even new for single agent AC93

algorithms under the setting of single-timescale step sizes rule.94

2 Preliminary95

In this section, we introduce the problem formulation and the policy gradient theorem, which serves96

as the preliminary for the analyzed decentralzed AC algorithm.97

Suppose there are multiple agents aiming to independently optimize a common global objective, and98

each agent can communicate with its neighbors through a network. To model the topology, we define99

the graph as G = (N , E), where N is the set of nodes with |N | = N and E is the set of edges with100

|E| = E. In the graph, each node represents an agent, and each edge represents a communication101

link. The interaction between agents follows the networked multi-agent MDP.102

2.1 Markov decision process103

A networked multi-agent MDP is defined by a tuple (G,S, {Ai}i∈N ,P, {ri}i∈[N ], γ). G denotes the104

communication topology (the graph), S is the finite state space observed by all agents, Ai represents105

the finite action space of agent i. Let A := A1 × · · · × AN denote the joint action space and106

P(s′|s, a) : S ×A× S → [0, 1] denote the transition probability from any state s ∈ S to any state107

s′ ∈ S for any joint action a ∈ A. ri : S ×A → R is the local reward function that determines the108

reward received by agent i given transition (s, a); γ ∈ [0, 1] is the discount factor.109

For simplicity, we will use a := [a1, · · · , aN ] to denote the joint action, and θ := [θ1, · · · , θN ] ∈110

Rdθ×N to denote joint parameters of all actors, with θi ∈ Rdθ . Note that different actors may have111

different number of parameters, which is assumed to be the same for our paper without loss of112

generality. The MDP goes as follows: For a given state s, each agent make its decision ai based113

on its policy ai ∼ πθi(·|s). The state transits to the next state s′ based on the joint action of all the114

agents: s′ ∼ P(·|s, a). Then, each agent will receive its own reward ri(s, a). For the notation brevity,115

we assume that the reward function mapping is deterministic and does not depend on the next state116

without loss of generality. The stationary distribution induced by the policy πθ and the transition117

kernel is denoted by µπθ
(s).118

Our objective is to find a set of policies that maximize the accumulated discounted mean reward119

received by agents120

θ∗ = argmax
θ

J(θ) := E

[ ∞∑

k=0

γkr̄(sk, ak)

]
. (1)

Here, k represents the time step. r̄(sk, ak) := 1
N

∑N
i=1 r

i(sk, ak) is the mean reward among agents121

at time step k. The randomness of the expectation comes from the initial state distribution µ0(s), the122

transition kernel P , and the stochastic policy πθi(·|s).123

2.2 Policy gradient Theorem124

Under the discounted reward setting, the global state-value function, action-value function, and125

advantage function for policy set θ, state s, and action a, are defined as126

Vπθ
(s) := E

[ ∞∑

k=0

γkr̄(sk, ak)|s0 = s

]
(2)

Qπθ
(s, a) := E

[ ∞∑

k=0

γkr̄(sk, ak)|s0 = s, a0 = a

]

Aπθ
(s, a) := Qπθ

(s, a)− Vπθ
(s).
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To maximize the objective function defined in (1), the policy gradient [28] can be computed as follow127

∇θJ(θ) = Es∼dπθ
,a∼πθ

[
1

1− γ
Aπθ

(s, a)ψπθ
(s, a)

]
,

where dπθ
(s) := (1 − γ)

∑∞
k=0 γ

kP(sk = s) is the discounted state visitation distribution under128

policy πθ, and ψπθ
(s, a) := ∇ log πθ(s, a) is the score function.129

Following the derivation of [42], the policy gradient for each agent under discounted reward setting130

can be expressed as131

∇θiJ(θ) = Es∼dπθ
,a∼πθ

[
1

1− γ
Aπθ

(s, a)ψπθi
(s, ai)

]
. (3)

3 Decentralized single-timescale actor-critic132

Algorithm 1: Decentralized single-timescale AC (reward estimator version)

1: Initialize: Actor parameter θ0, critic parameter ω0, reward estimator parameter λ0, initial state s0.
2: for k = 0, · · · ,K − 1 do
3: Option 1: i.i.d. sampling:
4: sk ∼ µθk (·), ak ∼ πθk (·|sk), sk+1 ∼ P(·|sk, ak).
5: Option 2: Markovian sampling:
6: ak ∼ πθk (·|sk), sk+1 ∼ P(·|sk, ak).
7:
8: Periodical consensus: Compute ω̃i

k and λ̃i
k by (4) and (7).

9:
10: for i = 0, · · · , N in parallel do
11: Reward estimator update: Update λi

k+1 by (8).
12: Critic update: Update ωi

k+1 by (5).
13: Actor update: Update θik+1 by (6).
14: end for
15: end for

We introduce the decentralized single-timescale AC algorithm; see Algorithm 1. In the remaining133

parts of this section, we will explain the updates in the algorithm in details.134

In fully-decentralized MARL, each agent can only observe its local reward and action, while trying135

to maximize the global reward (mean reward) defined in (1). The decentralized AC algorithm solves136

the problem by performing online updates in an alternative fashion. Specifically, we have N pairs of137

actor and critic. In order to maximize J(θ), each critic tries to estimate the global state-value function138

Vπθ
(s) defined in (2), and each actor then updates its policy parameter based on approximated policy139

gradient. We now provide more details about the algorithm.140

Critics’ update. We will use ωi ∈ Rdω to denote the ith critic’s parameter and ω̄ := 1
N

∑N
i=1 ω

i to141

represent the averaged parameter of critic. The ith critic approximates the global value function as142

Vπθ
(s) ≈ V̂ωi(s).143

As we will see, the critic’s approximation error can be categorized into two parts, namely, the144

consensus error 1
N

∑N
i=1 ∥ωi − ω̄∥, which measures how close the critics’ parameters are; and the145

approximation error ∥ω̄ − ω∗(θ)∥, which measures the approximation quality of averaged critic.146

In order for critics to reach consensus, we perform the following update for all critics147

ω̃ik =

{∑N
j=1W

ijωjk if k mod Kc = 0

ωik otherwise.
(4)

where W ∈ Rn×n is a weight matrix for communication among agents, whose property will be148

specified in Assumption 5; Kc denotes the consensus frequency.149

To reduce the approximation error, we will perform the local TD(0) update [29] as150

ωik+1 =
∏

Rω

(ω̃ik + βkg
i
c(ξk, ω

i
k)), (5)
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where ξ := (s, a, s′) represents a transition tuple, gic(ξ, ω) := δi(ξ, ω)∇V̂ω(s) is the update direction,151

δi(ξ, ω) := ri(s, a) + γV̂ω(s
′)− V̂ω(s) is the local temporal difference error (TD-error). βk is the152

step size for critic at iteration k.
∏
Rω

projects the parameter into a ball of radius of Rω containing153

the optimal solution, which will be explained when discussing Assumption 1 and 2.154

Actors’ update. We will use stochastic gradient ascent to update the policy’s parameter, and the155

stochastic gradient is calculated based on policy gradient theorem in (3). The advantage function156

Aπθ
(s, a) can be estimated by157

δ(ξ, θ) := r̄(s, a) + γV (s′)− V (s),

with a sampled from πθ(·|s). However, to preserve the privacy of each agents, the local reward158

cannot be shared to other agents under the fully decentralized setting. Thus, the averaged reward159

r̄(sk, ak) is not directly attainable. Consequently, we need a strategy to approximate the averaged160

reward. In this paper, we will adopt the strategy proposed in [42]. In particular, each agent i will have161

a local reward estimator with parameter λi ∈ Rdλ , which estimates the global averaged reward as162

r̄(sk, ak) ≈ r̂λi(sk, ak).163

Thus, the update of the ith actor is given by164

θik+1 = θik + αk δ̂(ξk, ω
i
k+1, λ

i
k+1)ψπθi

k

(sk, a
i
k), (6)

where δ̂(ξ, ω, λ) := r̂λ(s, a) + γV̂ω(s
′)− V̂ω(s) is the approximated advantage function. αk is the165

step size for actor’s update at iteration k.166

Reward estimators’ update. Similar to critic, each reward estimator’s approximation error can be167

decomposed into consensus error and the approximation error.168

For each local reward estimator, we perform the consensus step to minimize the consensus error as169

λ̃ik =

{∑N
j=1W

ijλjk if k mod Kc = 0

λik otherwise.
(7)

To reduce the approximation error, we perform a local update of stochastic gradient descent.170

λik+1 =
∏

Rλ

(λ̃ik + ηkg
i
r(ξk, λ

i
k)), (8)

where gir(ξ, λ) := (ri(s, a) − r̂λ(s, a))∇r̂λ(s, a) is the update direction. ηk is the step size for171

reward estimator at iteration k. Note the calculation of gir(ξ, λ) does not require the knowledge of s′;172

we use ξ in (8) just for notation brevity. Similar to critic’s update,
∏
Rλ

projects the parameter into a173

ball of radius of Rλ containing the optimal solution.174

In our Algorithm 1, we will use the same order for αk, βk, and ηk and hence, our algorithm is in175

single-timescale.176

Linear approximation for analysis. In our analysis, we will use linear approximation for both critic177

and reward estimator variables, i.e. V̂ω(s) := ϕ(s)Tω; r̂λ(s, a) := φ(s, a)Tλ, where ϕ(s) : S →178

Rdω and φ(s, a) : S ×A → Rdλ are two feature mappings, whose property will be specified in the179

discussion of Assumption 1.180

Algorithm for preserving the local action. Note that in Algorithm 1, the reward estimators need181

the knowledge of joint actions in order to estimate the global rewards. To preserve the privacy of182

local actions, we further propose a variant of Algorithm 1, which estimates the global rewards by183

communicating noisy local rewards; see [6] for the original idea. However, to maintain the optimal184

sample complexity, such an approach requires O(log(ε−1)) communication rounds for each iteration.185

We postpone the detailed design and analysis of such an algorithm scheme into Appendix B.186

Remarks on sampling scheme. The unbiased update for critic and actor variables requires sampling187

from µπθ
and dπθ

, respectively. However, in practical implementations, states are usually collected188

from an online trajectory (Markovian sampling), whose distribution is generally different for µπθ
189

and dπθ
. Such a distribution mismatch will inevitably cause biases during the update of critic and190

actor variables. One has to bound the corresponding error terms when analyzing the algorithm. In191

this work, we will provide the analysis for both sampling schemes.192
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4 Main Results193

In this section, we first introduce the technical assumptions used for our analysis, which are standard194

in the literature. Then, we present the convergence results for both actor and critic variables under195

i.i.d. sampling and Markovian sampling.196

4.1 Assumptions197

Assumption 1 (bounded rewards and feature vectors). All the local rewards are uniformly bounded,198

i.e., there exists a positive constants rmax such that | ri(s, a) | ≤ rmax, for all feasible (s, a) and199

i ∈ [N ]. The norm of feature vectors are bounded such that for all s ∈ S, a ∈ A, ∥ϕ(s)∥ ≤200

1, ∥φ(s, a)∥ ≤ 1.201

Assumption 1 is standard and commonly adopted; see, e.g., [3, 35, 38, 24, 21]. This assumption can202

be achieved via normalizing the feature vectors.203

Assumption 2 (negative definiteness of Aθ,ϕ and Aθ,φ). There exists two positive constants λϕ, λφ204

such that for all policy θ, the following two matrices are negative definite205

Aθ,ϕ := Es∼µθ(s)[ϕ(s)(γϕ(s
′)T − ϕ(s)T )]

Aθ,φ := Es∼µθ(s),a∼πθ(·|s)[−φ(s, a)φ(s, a)T ],
with λmax(Aθ,ϕ) ≤ λϕ, λmax(Aθ,φ) ≤ λφ, where λmax(·) represents the largest eigenvalue.206

Assumption 2 can be achieved when the matrices Φϕ := [ϕ(s1), · · · , ϕ(s|S|)] and Φφ :=207

[φ(s1, a1), · · · , φ(s|S|, a|A|)] have full row rank, which ensures that the optimal critic and reward208

estimator are unique; see also [24, 34]. Together with Assumption 1, we can show that the norm of209

ω∗(θ) and λ∗(θ) are bounded by some positive constant, which justifies the projection steps.210

Assumption 3 (Lipschitz properties of policy). There exists constants Cψ, Lψ, Lπ such that for211

all θ, θ′, s ∈ S and a ∈ A, we have (1). |πθ(a|s) − πθ′(a|s)| ≤ Lπ∥θ − θ′∥; (2). ∥ψθ(s, a) −212

ψθ′(s, a)∥ ≤ Lψ∥θ − θ′∥; (3). ∥ψθ(s, a)∥ ≤ Cψ .213

Assumption 3 is common for analyzing policy-based algorithms; see, e.g., [33, 32, 11]. The assump-214

tion ensures the smoothness of objective function J(θ). It holds for a large range of policy classes215

such as tabular softmax policy [1], Gaussian policy [7], and Boltzman policy [13].216

Assumption 4 (irreducible and aperiodic Markov chain). The Markov chain under πθ and transition217

kernel P(·|s, a) is irreducible and aperiodic for any θ.218

Assumption 4 is a standard assumption, which holds for any uniformly ergodic Markov chains and219

any time-homogeneous Markov chains with finite-state space. It ensures that there exists constants220

κ > 0 and ρ ∈ (0, 1) such that221

sup
s∈S

dTV (P(sk ∈ ·|s0 = s, πθ), µθ) ≤ κρk, ∀k.

Assumption 5 (doubly stochastic weight matrix). The communication matrix W is doubly stochastic,222

i.e. each column/row sum up to 1. Moreover, the second largest singular value ν is smaller than 1.223

Assumption 5 is a common assumption in decentralized optimization and multi-agent reinforcement224

learning; see, e.g., [27, 5, 6]. It ensures the convergence of consensus error for critic and reward225

estimator variables.226

4.2 Sample complexity under i.i.d. sampling227

Theorem 1 (sample complexity under i.i.d. sampling). Suppose Assumptions 1-5 hold. Consider228

the update of Algorithm 1 under i.i.d. sampling. Let αk = ᾱ√
K

for some positive constant ᾱ,229

βk = C9

2λϕ
αk, and ηk = C10

2λφ
αk, Kc ≤ O(α

− 1
2

k ), where K denotes the total number of iterations.230

Then, we have231

1

K

K∑

k=1

N∑

i=1

E
[
∥ωik − ω∗(θk)∥2

]
≤ O

(
1√
K

)

1

K

K∑

k=1

N∑

i=1

E
[
∥∇θiF (θk)∥2

]
≤ O

(
1√
K

)
+O(εapp + εsp), (9)
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where C9, C10 are positive constants defined in the proof.232

The proof of Theorem 1 can found in Appendix E.1. It establishes the iteration complexity of233

O(1/
√
K), or equivalently, sample complexity of O(ε−2) for Algorithm 1. Note that actors, critics,234

and reward estimators use the step sizes of the same order. The sample complexity matches the235

optimal rate of SGD for general non-convex optimization problem. To explain the errors in (9), let us236

define the approximation error as the following:237

εapp := max
θ,a

√
Es∼µθ

[
|Vπθ

(s)− V̂ω∗(θ)(s)|2 + |r̄(s, a)− r̂λ∗(θ)(s, a)|2
]
.

The error εapp captures the approximation power of critic and reward estimator. Similar terms238

also appear in the literature (see e.g., [35, 1, 21]). Such an approximation error becomes zero in239

tabular case. The error εsp is inevitably caused by the mismatch between discounted state visitation240

distribution dπθ
and stationary distribution µπθ

; see, e.g., [38, 24]. It is defined as241

εsp := 2Cθ(logρ κ
−1 +

1

ρ
)(1− γ).

When γ is close to 1, the error becomes small. This is because dπθ
approaches to µπθ

when γ goes to242

1. In the literature, some works assume that sampling from dπθ
is permitted, thus eliminate this error;243

see, e.g., [4].244

4.3 Sample complexity under markovian sampling245

Theorem 2 (sample complexity under Markovian sampling). Suppose Assumptions 1-5 hold. Con-246

sider the update of Algorithm 1 under Markovian sampling. Let αk = ᾱ√
K

for some positive constant247

ᾱ, βk = C9

2λϕ
αk, and ηk = C10

2λφ
αk, Kc ≤ O(α

− 1
2

k ), where K is the total number of iterations. Then,248

we have249

1

K

K∑

k=1

N∑

i=1

E
[
∥ωik − ω∗(θk)∥2

]
≤ O

(
log2K√

K

)

1

K

K∑

k=1

N∑

i=1

E
[
∥∇θiF (θk)∥2

]
≤ O

(
log2K√

K

)
+O(εapp + εsp), (10)

where C9, C10 are positive constants defined in proof.250

We put the proof of Theorem 2 in Appendix E.2. In Markovian sampling, the updates are biased for251

critics, actors, and reward estimators. The error will decrease as the Markov chain mixes, and the252

logarithmic term is due to the cost for mixing.253

Theorem 2 establishes the iteration complexity of O(log2K/
√
K), or equivalently, sample complex-254

ity of Õ(ε−2) for Algorithm 1. It matches the state-of-the-art sample complexity of decentralized AC255

algorithms, which are implemented in double-loop fashion [11, 6].256

4.4 Proof sketch257

We present the main elements for the proof of Theorem 2, which helps in understanding the difference258

between classical two-timescale/double-loop analysis and our single-timescale analysis. The proof of259

Theorem 1 follows the same framework with simpler sampling scheme.260

Under Markovian sampling, it is possible to show the following inequality, which characterizes the261

ascent of the objective.262

E[J(θk+1)]− J(θk) ≥
N∑

i=1

[αk
2
E∥∇θiJ(θk)∥2 +

αk
2
E∥gia(ξk, ωik+1, λ

i
k+1)∥2

− 8C2
ψαkE∥ω∗(θk)− ωik+1∥2 − 4C2

ψαkE∥λ∗(θk)− λik+1∥2
]

−O(log2(K)α2
k)−O((εapp + εsp)αk). (11)
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To analyze the errors of critic ∥ω∗(θk)− ωik+1∥2 and reward estimator ∥λ∗(θk)− λik+1∥2, the two-263

timescale analysis requires O(αk) < min{O(βk),O(ηk)} in order for these two errors to converge.264

The double-loop approach runs lower-level update for O(log(ε−1)) times with batch size O(ε−1)265

to drive these errors below ε and hence, they cannot allow inner loop size and bath size to be O(1)266

simultaneously. To obtain the convergence result for single-timescale update, the idea is to further267

upper bound these two lower-level errors by the quantity O(αkE∥gia(ξk, ωik+1, λ
i
k+1)∥2) (through a268

series of derivations), and then eliminate these errors by the ascent term αk

2 E∥gia(ξk, ωik+1, λ
i
k+1)∥2.269

We mainly focus on the analysis of critic’s error through the proof sketch. The analysis for reward270

estimator’s error follows similar procedure. We start by decomposing the error of critic as271

N∑

i=1

∥ωik+1 − ω∗(θk)∥2 =
N∑

i=1

(∥ωik+1 − ω̄k+1∥2 + ∥ω̄k+1 − ω∗(θk)∥2). (12)

The first term represents the consensus error, which can be bounded by the next lemma.272

Lemma 1. Suppose Assumptions 1 and 5 hold. Consider the sequence {ωik} generated by Algorithm 1,273

then the following holds274

∥Qωk+1∥ ≤ ν
k′
Kc ∥ω0∥+ 4

k∑

t=0

ν⌈
k′−1−t

Kc
⌉βt

√
NCδ,

where ω0 := [ω1, · · · , ωN ]T , Q := I − 1
N 11T , k′ := ⌊ k

Kc
⌋ ∗ Kc. The constant ν ∈ (0, 1) is the275

second largest singular value of W .276

Based on Lemma 1 and follow the step size rule of Theorem 2, it is possible to show ∥Qωk+1∥2F =277
∑N
i=1 ∥ωik+1 − ω̄k+1∥2 = O(K2

cβ
2
k). Let Kc = O(β

− 1
2

k ), we have ∥Qωk+1∥2F = O(βk), which278

maintains the optimal rate.279

To analyze the second term in (12), we first construct the following Lyapunov function280

Vk := −J(θk) + ∥ω̄k − ω∗(θk)∥2 + ∥λ̄k − λ∗(θk)∥2. (13)

Then, it remains to derive an approximate descent property of the term ∥ω̄k − ω∗(θk)∥2 in (13).281

Towards that end, our key step lies in establishing the smoothness of the optimal critic variables282

shown in the next lemma.283

Lemma 2 (smoothness of optimal critic). Suppose Assumptions 1-3 hold, under the update of284

Algorithm 1, there exists a positive constant Lµ,1 such that for all θ, θ′, it holds that285

∥∇ω∗(θ)−∇ω∗(θ′)∥ ≤ Lµ,1∥θ − θ′∥,
where ∇ω∗(θ) denotes the Jacobian of ω∗(θ) with respect to θ.286

This smoothness property is essential for achieving our Õ(1/
√
K) convergence rate.287

To the best of our knowledge, the smoothness of ω∗(θ) has not been justified in the literature.288

Equipped with Lemma 2, we are able to establish the following lemma.289

Lemma 3 (Error of critic). Under Assumptions 1-5, consider the update of Algorithm 1. Then, it290

holds that291

E[∥ω̄k+1 − ω∗(θk+1)∥2] ≤ (1 + C9αk)∥ω̄k+1 − ω∗(θk)∥2

+
αk
4

N∑

i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 +O(α2

k). (14)

E[∥ω̄k+1 − ω∗(θk)∥2] ≤ (1− 2λϕβk)∥ω̄k − ω∗(θk)∥2
+ CK1

βkβk−ZK
+ CK2

αk−ZK
βk. (15)

Here, ZK := min{z ∈ N+|κρz−1 ≤ min{αk, βk, ηk}}, C9, λϕ are constants specified in appendix,292

and CK1
and CK2

are of order O(log(K)) and O(log2(K))d respectively.293
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Figure 1: Averaged reward versus sample complexity and communication complexity. The vertical
axis is the averaged reward over all the agents.

Plug (15) into (14), we can establish the approximate descent property of ∥ω̄k − ω∗(θk)∥2 in (13):294

E[∥ω̄k+1 − ω∗(θk+1)∥2] ≤ (1 + C9αk)(1− 2λϕβk)∥ω̄k − ω∗(θk)∥2

+
αk
4

N∑

i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2

+O(CK1βkβk−ZK
+ CK2αk−ZK

βk). (16)

Finally, plugging (11), (14), and (16) into (13) gives the ascent of the Lyapunov function, which leads295

to our convergence result through steps of standard arguments.296

5 Numerical results297

In this section, our objective is to illustrate the empirical sample complexity and communication298

complexity of the proposed algorithms. We also implement the algorithm in [6] to serve as a baseline,299

which employs double-loop algorithmic framework. Our simulation is based on the grounded300

communication environment proposed in [19]; see Appendix A for detailed set up. Through the301

discussion, we refer the algorithm in [6] as "DLDAC", the Algorithm 1 as "SDAC-re", the Algorithm 2302

as "SDAC-noisy" (see Appendix B). We also provide the result which assumes full reward is available303

to serve as baseline, which we refer as "SDAC-full". We set Kr = 5 for "SDAC-noisy"; Kc = 1304

for "SDAC-re", "SDAC-noisy", and "SDAC-full". We choose Tc = 5 (loop size), T ′
c = 1 (critic305

consensus number every iteration), T ′ = 5 (reward consensus number every iteration) for "DLDAC".306

The sample complexity and communication complexity are shown in Figure 1. The results are307

averaged over 10 Monte Carlo runs. As we can see, the proposed two algorithms achieve significantly308

higher reward than "DLDAC" in terms of both sample complexity and communication complexity.309

Moreover, their performances approach the baseline “SDAC-full", where the global reward is assumed310

to be available, indicating that the reward approximation is nearly accurate. Due to space limit, we311

will put additional experiments on the comparison with existing decentralized AC algorithms and the312

ablation study of hyper-parameters to Appendix A.313

6 Conclusion and future direction314

In this paper, we studied the convergence of fully decentralized AC algorithm under practical single-315

timescale update for the first time. We designed such an algorithm which maintains the optimal316

sample complexity of Õ(ε−2) under less communications. We also proposed a variant to preserve the317

privacy of local actions by communicating noisy rewards. Extensive simulation results demonstrate318

the superiority of our algorithms’ empirical performance over existing decentralized AC algorithms.319

One limitation of our work is that we only study the convergence to stationary point. Thus, we leave320

the research on the avoidance of saddle points and convergence to global optimum as promising321

future directions.322
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