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Abstract

In this paper, we investigate the question of whether no-swap-regret dynamics have
stronger convergence properties in repeated games than regular no-external-regret
dynamics. We prove that in almost all symmetric zero-sum games under symmetric
initializations of the agents, no-swap-regret dynamics in self-play are guaranteed
to converge in a strong “frequent-iterate” sense to the Nash equilibrium: in all but a
vanishing fraction of the rounds, the players must play a strategy profile close to a
symmetric Nash equilibrium. Remarkably, relaxing any of these three constraints,
i.e. by allowing either i) asymmetric initial conditions, or ii) an asymmetric game
or iii) no-external regret dynamics suffices to destroy this result and lead to complex
non-equilibrating or even chaotic behavior.
In a dual type of result, we show that the power of no-swap-regret dynamics comes
at a cost of imposing a time-asymmetry on its inputs. While no-external-regret
dynamics can be completely determined by the cumulative reward vector received
by each player, we show there does not exist any general no-swap-regret dynamics
defined on the same state space. In fact, we prove that any no-swap-regret learning
algorithm must play a time-asymmetric function over the set of previously observed
rewards, ruling out any dynamics based on a symmetric function of the current set
of rewards.

1 Introduction

The analysis of learning dynamics in games is a well-established problem situated at the intersection
of game theory, online optimization and evolutionary game theory [16, 47, 54]. The significance
of this area has been amplified by the emergence of prominent machine learning architectures
and applications relying on multi-agent, typically zero-sum, games [42, 32, 46, 52, 14, 49, 10].
Symmetric zero-sum games and their dynamics are actually of particular interest both from a
traditional evolutionary perspective [54, 13] as well as from a modern Machine Learning perspective
as creating a population of agents that compete against each other in a heads-up fashion to outperform
each other (“self-play”) has been shown to be a reliable recipe for creating super-humanly capable
agents for a wide range of tasks [9, 38].

Despite growing interest in understanding and predicting the long-term behavior of such systems,
recent studies have revealed a wide array of negative results, demonstrating the elusiveness of
game dynamics. These range from non-convergence results to the establishment of chaotic or
even essentially arbitrary behavior [44, 28, 30, 40, 3, 4, 55, 26, 45]. Notably, these instability and
chaotic behaviors persist even in the analysis of well-known online optimization algorithms, such as
Multiplicative Weights Updates (MWU/Hedge), Online Gradient Descent, Follow-the-Regularized-
Leader a.o., even within the narrow but seminal class of (symmetric) zero-sum games [7, 18, 19, 20].

Although it is possible to stabilize learning dynamics in zero-sum games using e.g., optimistic variants
of MWU [22, 43, 23], such results leave something to be desired as they presuppose that the agents
coordinate to use a specific instantiation of a learning algorithm. Ideally, we would like instead to be
able to prove such strong convergence results based on more abstract properties of the dynamics.
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Swap (internal) regret is once such abstract property of online learning dynamics. Unlike the more
permissive case of no-(external) regret, where the algorithm’s performance needs to compete against
the best fixed action with hindsight, no-swap-regret algorithms need to compete against the best
adaptive deviation policy with hindsight (i.e., for each occurrence of action i we consider to the best
possible deviating action j with hindsight). Somewhat surprisingly, it is possible to adapt no-regret
algorithms to no-internal-regret algorithms efficiently [11, 53] with very recent work providing
further efficient such reductions [21, 48]. The stronger nature of swap regret results into numerous
applications, such as (multi)-calibration [31, 37, 51, 35, 33], robustness against dynamic strategic
behavior [24, 41, 15, 5] and AI Safety [17]. Arguably, however, its most important application is due
to its tight connection to correlated equilibria, introduced by Aumann [6], as it is well known that
the time-average empirical distribution of play resulting from no-internal/swap regret algorithms is
guaranteed to converge to the set of correlated equilibria (CE)1, a (typically strict) relaxation of the
predominant game theoretic solution concept of Nash equilibria. In contrast, no-regret algorithms only
guarantee time-average convergence to the even more relaxed solution concept of coarse correlated
equilibria (CCE) (see preliminary section for precise definitions). Interestingly, in the special case of
zero-sum games, for almost all but pathological zero-measure instances of them, the notions of Nash
equilibria and correlated equilibria coincide and are in fact unique (whereas CCE do not). This opens
the following tantalizing possibility:

Does no-swap-regret minimization suffice for Nash convergence in (almost) all zero-sum games?

The answer to above question is strongly negative. Even in trivial two strategy zero-sum games,
such as Matching Pennies, swap regret minimization does not suffice for convergence. Interestingly,
however, a sweeping positive result holds for the case of symmetric zero-sum games.

Informal theorem: In almost all symmetric zero-sum games, under arbitrary symmetric initializations
for both agents, any no-swap-regret algorithm in self-play is guaranteed to converge to the Nash
equilibrium, except2 for a vanishingly small fraction of iterates.

At a technical level, the result depends on two different arguments. First, even in the case of symmetric
zero-sum games it is still possible to show that generically the correlated equilibria remain unique,
however, the argument does not follow the analysis of general zero-sum games as symmetric cases are
themselves non-generic within the larger class. Secondly, we leverage the symmetry of the trajectories
to show that time-averaged convergence of symmetric action profiles to a product distribution implies
the desired convergent behavior.

This unexpected connection between swap regret minimization and symmetry in games inspires
the investigation of other ways that symmetry can insert itself in the study of online learning itself.
For example, it is well understood that most standard no-regret algorithms such as MWU, can be
completely determined by the vector of cumulative rewards and thus their outputs remain invariant to
any permutation of their history, i.e. they exhibit a strong type of time-symmetry. Interestingly, we
show that such time-symmetry is provably at odds with swap regret minimization. At a technical level,
this argument is based on a construction that couples the behavior of online learning dynamics to
particular classes of card guessing games (e.g., [25]) that enable precise control over the algorithm’s
optimal expected utility (in particular, showing that the play of any such algorithm must be very close
to the Follow-The-Leader algorithm, at least when averaged over certain segments of time).

2 Model and Preliminaries

2.1 Games and learning

We consider a setting where two learners (Alice and Bob) are repeatedly playing a game G for T
rounds. We assume the game G has N actions for both Alice and Bob, and Alice and Bob will play
mixed strategies belonging to the N -dimensional simplex ∆N . The game G can be thought of as a
pair of bilinear functions (GA,GB) describing the payoffs for Alice and Bob: in round t, if Alice
plays action at ∈∆N and Bob plays action bt ∈∆N , then Alice receives payoff GA(at, bt) and Bob
receives utility GB(at, bt). One specific class of games we consider are zero-sum games, where

1Due to their connections to equilibria, establishing fast swap regret minimization (and variations thereof)
for different classes of games is a subject of a lot of recent work (e.g., [1, 2, 50, 56, 27]).

2This minor disclaimer is necessary as it is always possible to inject such vanishingly small "noise" in any
trajectory without affecting its time-average regret.
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GB(at, bt) = −GA(at, bt); for such games we will omit the subscript and write G(at, bt) to denote
GA(at, bt).
For our purposes, a learning algorithm for Alice in this repeated game is a function which maps the
history of played mixed strategies (e.g., a1, b1, a2, b2, . . . , at−1, bt−1) to the mixed strategy that Alice
will play next (at). Learning algorithms for Bob are defined symmetrically. Note that we operate in
the deterministic full-information setting where both Alice and Bob know the game G and can see
each other’s mixed strategy after each round3.

We consider two classes of learning algorithms, no-regret algorithms and no-swap-regret algorithms.
Alice’s (external) regret is defined via

RegA =
T

∑
t=1

GA(at, bt) − max
a∗∈∆N

T

∑
t=1

GA(a∗, bt) (1)

(with Bob’s external regret RegB defined similarly). Alice’s swap regret is defined via

SwapRegA =
T

∑
t=1

GA(at, bt) − max
πA∶[N]→[N]

T

∑
t=1

GA(πA(at), bt). (2)

In (2), the maximum is over all “swap functions” π mapping the set of N actions to itself. We extend
π to act on mixed strategies (elements of ∆N ) in the natural way (i.e., π(x)i = ∑j xj ⋅ 1(π(j) = i)).
We say Alice’s learning algorithm is no-regret if it is guaranteed that RegA = o(T ). Similarly, we
say it is no-swap-regret if it is guaranteed that SwapRegA = o(T ). It is known that both efficient
no-regret and no-swap-regret algorithms exist, with regret scaling as Õ(

√
T ) [11] .

2.1.1 Symmetric games and symmetric learners

In this note we primarily consider symmetric learning dynamics in symmetric games. A game G is
symmetric if GA(at, bt) = GB(bt, at). As with zero-sum games, for symmetric games we will omit
subscripts and use G(at, bt) to refer to GA(at, bt). Some games are both symmetric and zero-sum
(e.g., the Rock-Paper-Scissors example we introduce later in Example 1).

In a symmetric game, it’s natural to consider the setting where Alice and Bob play identical learning
algorithms with identical initialization. This results in completely symmetric learning dynamics for
Alice and Bob (i.e., at = bt for all rounds t). We write xt ∈∆N to denote the common strategy that
Alice and Bob play at time t.

2.2 Equilibria in games

We are interested in the convergence of various types of learning algorithms to specific equilibria of
G. We begin by defining the equilibria of interest.

For a game G, a (not necessarily symmetric) joint strategy profile σ is a distribution over all N2 pairs
of pure strategies for Alice and Bob. Note that this is not necessarily a product distribution, and in
particular allows for Alice’s mixed strategy and Bob’s mixed strategy to be correlated. It is convenient
to identify the set of joint distributions ∆N2 with the convex subset S of the tensor product space
RN ⊗RN defined as the convex hull of all elements of the form a⊗ b where a, b ∈∆N . In particular,
given a, b ∈∆N , the element a⊗ b corresponds to the joint strategy profile where Alice plays mixed
strategy a and Bob independently plays mixed strategy b. In other words, the pair (i, j) is played
with probability aibj .

We consider three different types of equilibria, which are (in increasing order of fineness) coarse-
correlated equilibria, correlated equilibria, and Nash equilibria. We define these below:

• A coarse-correlated equilibrium is a joint strategy profile where neither Alice nor Bob has
an incentive to unilaterally deviate to a single pure action. Formally, σ is a coarse-correlated
equilibrium if both

3Alternatively, everything we describe also holds in a slightly weaker setting, where the players do not know
the game G but instead after each round each player sees the counterfactual payoffs they would have received
for each of their possible N actions.
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E
(i,j)∼σ

[GA(i, j)] ≥ E
(i,j)∼σ

[GA(i∗, j)],∀i∗ ∈ [N]

E
(i,j)∼σ

[GB(i, j)] ≥ E
(i,j)∼σ

[GB(i, j∗)],∀j∗ ∈ [N]

• A correlated equilibrium is a joint strategy profile where neither Alice nor Bob has an
incentive to deviate from their assigned action, where their deviation may depend on their
original action. Formally, σ is a correlated equilibrium if both

E
(i,j)∼σ

[GA(i, j)] ≥ E
(i,j)∼σ

[GA(πA(i), j)],∀πA ∶ [N] → [N]

E
(i,j)∼σ

[GB(i, j)] ≥ E
(i,j)∼σ

[GB(i, πB(j))],∀πB ∶ [N] → [N]

• Finally, σ is a Nash equilibrium if σ is a product distribution σ = a⊗ b and neither Alice nor
Bob has an incentive to deviate (GA(a, b) ≥ GA(a′, b) and GB(a, b) ≥ GB(a, b′)). Note
that we can alternatively think of Nash equilibria as the intersection of coarse-correlated (or
correlated) equilibria with the set of product distributions.

Example 1. Consider the Rock-Paper-Scissors zero-sum game, defined via:

G(i, i) = 0,G(i, (i + 1)mod 3) = 1,G(i, (i − 1)mod 3) = −1.
The unique correlated equilibrium (and hence unique Nash equilibrium) in this game is the product
distribution ( e1+e2+e3

3
)⊗( e1+e2+e3

3
). However, the set of coarse correlated equilibria is much larger –

it contains, for example, the element 1
3
(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3). Here there is no incentive to

unilaterally deviate, but there is an incentive to deviate based on your choice of action (e.g., whenever
you play e1, you can improve your utility by instead playing e3).

2.3 Convergence to equilibria

When players run learning algorithms in repeated games, they may over time converge to an equilib-
rium. There are three senses in which this may happen (that we discuss here). We say that Alice and
Bob’s strategies have time-averaged convergence to a joint strategy profile σ if

lim
T→∞

∥( 1
T

T

∑
t=1

at ⊗ bt) − σ∥ = 0.

In other words, time-averaged convergence means that the average of the joint strategy profiles Alice
and Bob play converges over time to σ.

Likewise, we say that Alice and Bob’s strategies have frequent-iterate convergence to σ if for any
ε > 0,

lim
T→∞

Pr
t≤T
[∥(at ⊗ bt) − σ∥ > ε] = 0.

Here the probability is taken over t being drawn uniformly at random from all rounds between 1
and T . In other words, frequent-iterate convergence means that, as time goes on, almost all joint
strategies profiles Alice and Bob play will be arbitrarily close to σ.

Finally, we say that Alice and Bob’s strategies have last-iterate convergence to σ if

lim
T→∞

∥(aT ⊗ bT ) − σ∥ = 0.

Last-iterate convergence means that the sequence of joint action profiles played by Alice and Bob
directly converge to σ. Note that last-iterate convergence is a stronger property than frequent-iterate
convergence, which in turn is a stronger property than time-averaged convergence.

It is known that if Alice and Bob run certain types of learning algorithms, they will have time-averaged
convergence to a certain type of equilibrium. Here are some known facts about learning dynamics []:
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Figure 1: Trajectories of two learning algorithms (Multiplicative Weights and Blum-Mansour) playing
Rock-Paper-Scissors. The axis corresponds to the probability of playing Rock and Paper. The blue
dot corresponds to the probabilities at Nash equilibrium while the red dot is the last iterate after
10000 steps with learning rate η = 0.001.

Figure 2: Trajectories of Multiplicative Weights and Blum-Mansour for Rock-Paper-Scissors-Lizard-
Spock (a the 5-strategy generalization of Rock-Paper-Scissors).

• If Alice and Bob are running no-regret algorithms in a general game G, their strategies will
have time-averaged convergence to a coarse correlated equilibrium of G.

• If Alice and Bob are running no-swap-regret algorithms in a general game G, their strategies
will have time-averaged convergence to a correlated equilibrium of G.

• There exist zero-sum games G (including Rock-Paper-Scissors of Example 1) where if Alice
and Bob run certain no-regret algorithms (e.g. Multiplicative Weights) Alice and Bob’s
strategies will not have last-iterate convergence to a coarse correlated equilibrium.
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3 Convergence of Symmetric Swap Regret in Symmetric Zero Sum Games

There exist zero-sum games G (including Rock-Paper-Scissors of Example 1) where if Alice and
Bob run certain no-regret algorithms (e.g. Multiplicative Weights) Alice and Bob’s strategies will
not have last-iterate convergence to a equilibrium. In the left side of Figure 1 plot the trajectory of
Multiplicative Weights when Alice and Bob have the same initialization. The blue dot in the middle
corresponds to the Nash equilibrium. While the strategies played average to the equilibrium, they
never converge there.

In this section, we will show that for almost all symmetric, zero-sum games G, if Alice and Bob
employ the same no-swap-regret learning algorithms with symmetric initializations they will have
frequent-iterate convergence to a Nash equilibrium of G. In the right side of the same figure, we
show the Blum-Mansour trajectory converging to equilibrium. In Appendix A, we show via a simple
counter-example that symmetric initializations are necessary to achieve such strong convergence
guarantees.

Our main tool is the following technical lemma, which shows that time-averaged convergence of
symmetric action profiles to a product distribution implies frequent-iterate convergence to the same
distribution.
Lemma 1. Let x1, x2, . . . be a sequence of elements in ∆N such that

lim
T→∞

∥( 1
T

T

∑
t=1

xt ⊗ xt) − (y ⊗ y)∥ = 0

for some element y of ∆N (i.e., the profiles xt ⊗ xt time-averaged converge to y ⊗ y). Then it is the
case that for any ε > 0,

lim
T→∞

Pr
t≤T
[∥(xt ⊗ xt) − (y ⊗ y)∥ > ε] = 0.

(i.e., the profiles xt ⊗ xt frequent-iterate converge to y ⊗ y).

Proof. For any y ∈∆N , we will show that there exists a linear functional Ly ∶ RN ⊗RN → R with
the property that, among all elements of the form x⊗ x with x ∈∆N , Ly is uniquely minimized at
y ⊗ y. As a consequence, this implies that that there exists a δ > 0 such that if

∥(x⊗ x) − (y ⊗ y)∥ > ε,

for some element x ∈∆N , then Ly(x⊗ x) −Ly(y ⊗ y) > δ. In particular, if for some T we have that

Pr
t≤T
[∥(xt ⊗ xt) − (y ⊗ y)∥ > ε] ≥ γ,

then we consequently have that

1

T

T

∑
t=1

(Ly(xt ⊗ xt) −Ly(y ⊗ y)) ≥ γδ,

and in turn that

∥( 1
T

T

∑
t=1

(xt ⊗ xt)) − (y ⊗ y)∥ ≥ γδ∣∣Ly ∣∣∗,

(where ∣∣Ly ∣∣∗ is the dual norm of the linear functional Ly and is bounded below by some constant).
This directly implies the lemma statement (it is impossible for the second quantity to approach zero
as T goes to infinity without the first quantity approaching zero).

We now describe the linear functional Ly. Let y = (y1, y2, . . . , yN) (and for a general x ∈ ∆N ,
let x = (x1, x2, . . . , xN)). Note that for any linear functional Ly ∶ RN ⊗ RN → R, the value of
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Ly(x⊗x) will be a homogeneous quadratic polynomial over the xi; conversely, any such polynomial
can be implemented as a linear functional over RN ⊗RN . Moreover, since ∑xi = 1, we can convert
any (non-homogeneous) quadratic polynomial to a homogeneous one (e.g. transforming x2

1 + x1 + 1
to x2

1 + x1∑xi + (∑xi)2). It therefore suffices to find a quadratic polynomial over the xi that is
minimized when x = y.

We begin with the case where all yi > 0. In this case, we claim that the polynomial

Ly(x⊗ x) =
N

∑
i=1

1

yi
x2
i

satisfies these constraints. To see this, note that by Cauchy-Schwartz,

N

∑
i=1

1

yi
x2
i = (

N

∑
i=1

x2
i

yi
)(

N

∑
i=1

yi) ≥ (
N

∑
i=1

xi)
2

= 1,

with equality only holding when x2
i /yi = λyi for some fixed λ. Since x and y both belong to ∆N ,

this is only possible when λ = 1 and x = y.

What if some of the yi equal zero? Without loss of generality, assume yi > 0 for 1 ≤ i ≤ n and yi = 0
for n + 1 ≤ i ≤ N . Now, consider the polynomial

Ly(x⊗ x) = (
n

∑
i=1

1

yi
x2
i) − 2(

n

∑
i=1

xi) .

We begin by minimizing this expression subject to ∑n
i=1 xi = s, for some 0 ≤ s ≤ 1. In this case,

the second term in the above polynomial is identically −2s, so it suffices to minimize the first term.
Again applying Cauchy-Schwartz, we find the minimum of the first term occurs only when xi = syi,
where it equals s2. The overall minimum of Ly (subject to this constraint) is therefore s2 − 2s. This
is in turn uniquely minimized when s = 1 (and xi = 0 for all i > n), and therefore this Ly is uniquely
minimized at x = y.

Next we show a ‘generic’ symmetric zero-sum game has a unique correlated equilibrium and hence
coincides with the Nash equilibrium of this game. First, we define what we mean by generic. We can
identify the set of zero-sum games with RN×N , where each element corresponds to an N ×N payoff
matrix for Alice. We say that a property P holds for a generic zero-sum game, if the set of points in
RN×N for which P doesn’t holds form a measure zero subset of RN×N .

By this definition, the set of symmetric zero-sum games forms a measure zero subset of the set of
zero-sum games, so we need a refined definition to describe a generic symmetric zero-sum game.
We can identify the set of symmetric zero-sum games with with RN(N−1)/2 where each element
corresponds to a skew-symmetric N ×N payoff matrix for Alice. We say that a property P holds for
a generic symmetric zero-sum game, if the set of points in RN×N for which P doesn’t holds form a
measure zero subset of RN(N−1)/2.

The uniqueness of a correlated equilibrium for zero-sum games is known for generic zero-sum games
by combining results by Forges [29] and Bohnenblust, Karlin and Shapley [12]. But since symmetric
zero-sum games are a measure zero subset of zero-sum games, this result does not directly extend.
Below, we extend it to symmetric zero-sum games.

Finally, to complete the picture, we further establish that this generic uniqueness of correlated
equilibria strongly does not extend to the case of coarse correlated equilibria, which are the limit
points of (external) regret-minimizing algorithms.
Lemma 2. Almost all (i.e., all but a measure zero set of) two-player symmetric zero-sum games have
a unique correlated/Nash equilibrium.

Proof. By [29] a zero-sum game has a unique correlated equilibrium if and only if it has a unique
Nash equilibrium, thus it suffices to prove the generic uniqueness of Nash equilibria. Let A be the
skew-symmetric (A⊺ = −A) payoff matrix corresponding to the symmetric zero-sum game. A Nash
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equilibrium is called quasi-strict (sometimes also referred to as regular or quasi-strong [34]) if for
all agents deviations to strategies outside their support result in a strict decrease of their payoff. By
Corollary 3.4 in [36] we have that in any two agent game if all equilibria are quasi-strict then the
number of equilibria is finite. Thus, if a symmetric zero-sum game has multiple equilibria, this
implies the existence of a non-quasi-strict equilibrium/optimal strategy. Let x be that non-quasi-strict
mixed strategy and let Sx denote its support, i.e., the set of strategies played in x with positive
probability and let i be the index of the strategy not in Sx such that deviating to that strategy from
the symmetric (x,x) Nash equilibrium still results into payoff of zero (since the game value of any
zero-sum symmetric game is zero). This implies that both antisymmetric sub-matrices of A defined by
its restrictions to the sets Sx and Sx ∪ i respectively have a zero eigenvalue where the corresponding
eigenvector is the analogously restricted subvector of x. Thus, both of their determinants are equal
to zero. However, at least one of them has even dimension. It is well known that the determinant
of an even dimension skew-symmetric matrix is a non-trivial polynomial (and in fact is the square
of a polynomial in its coefficients, see e.g. [39]). The entries of this submatrix correspond to the
vanishing set of a non-trivial polynomial and therefore have Lebesgue measure zero. Thus, the set of
all symmetric zero-sum games with unique Nash/correlated equilibrium has zero measure.

Combining Lemma 1 and Theorem 2, we arrive at the result mentioned at the beginning of this
section.
Theorem 3. In a generic symmetric zero-sum game G, if Alice and Bob run identical no-swap-regret
algorithms with the same initialization to play G repeatedly, their joint strategy profiles will have
frequent-iterate convergence to a Nash equilibrium of G. Furthermore, this result is tight, i.e., it is
not possible to prove (last-iterate) convergence to Nash equilibrium.

Proof. Since Alice and Bob are both running the same no-swap-regret algorithm, their strategy
profiles stay identical and hence their joint strategy profile is of the form xt ⊗ xt. Since no-swap-
regret algorithms have time average convergence to correlated equilibrium, then there is a correlated
equilibrium σ of G such that ∥ 1

T ∑
T
t=1 xt ⊗ xt − σ∥ → 0. By Lemma 2, σ is a Nash equilibrium, so

we can write σ = y ⊗ y. Now, we can apply Lemma 1 to obtain frequent iterated convergence to σ.

It is not possible to prove anything stronger, i.e., convergence to Nash, based on (symmetric) no-swap-
regret learning because we can take any such no-swap-regret dynamics and interject for a vanishing
fraction of the history some arbitrary symmetric play where those payoff inputs are ignored by the
learning dynamics (e.g. the Blum-Mansour algorithm does not see these fictitious entries). This rare
interleaving of the trajectory with noise does not significantly affect the swap regret analysis which
will remain sublinear if the original dynamic is no-swap-regret but at the same time it suffices to
destroy any hope of true last iterate convergence.

3.1 Differences with respect to External Regret

It is useful to consider which parts of the proof break when we move from swap to external regret.
Both Lemma 1 and Lemma 2 no longer hold.

Consider for example the executions of MWU and BM in Figure 1. In both cases we have that
1
T
(∑t xt) → xNash ∶= ( 13 ,

1
3
, 1
3
). If we look at the empirical joint distribution σ̄T = 1

T
(∑t xt ⊗ xt) we

obtain the following:

σ̄BM
T =

⎡⎢⎢⎢⎢⎣

0.111 0.111 0.111
0.111 0.111 0.111
0.111 0.111 0.111

⎤⎥⎥⎥⎥⎦
σ̄MWU
T =

⎡⎢⎢⎢⎢⎣

0.120 0.105 0.105
0.105 0.120 0.105
0.105 0.105 0.120

⎤⎥⎥⎥⎥⎦
Only in the swap regret algorithm we have σ̄ → xNash ⊗ xNash. Lemma 1 crucially relies on
1
T
(∑t xt ⊗ xt) converging a product distribution.

Lemma 2 also breaks when we replace CE (achieved by swap regret minimization) with CCE
(achieved by external regret minimization):
Lemma 4. Given any symmetric zero-sum game as long as its set of optimal strategies does not
consist of a single pure (i.e., deterministic) strategy then it has a continuum of coarse correlated
equilibria.
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Proof. In any such game there exists an optimal (Nash) strategy that is randomizing amongst at
least two strategies. We will define the correlated distribution that applies positive probability only
symmetric outcomes of the game (e.g, such as (Rock, Rock) (Paper, Paper) and (Scissors, Scissors)
in the RPS game) such as its resulting marginal distribution corresponds to the Nash equilibrium
strategy. The expected payoff of each agent in this distribution is equal to zero. Furthermore, any
deviating strategy cannot result in positive payoff since the marginal distribution encodes a Nash
equilibrium. Thus, the original distribution is a CCE. By taking convex combinations of these CCE
and the Nash equilibrium we have that each such game has a continuum of CCE.

An immediate corollary of Lemma 4 is that the rich, non-equilibrating behavior of MWU and
other no-regret dynamics, even under symmetric initializations, shown for Rock-Paper-Scissors
and Rock-Paper-Scissors-Lizard-Spock shown in Figures 1,2 should be common for many other
symmetric games and regret-minimizing dynamics as well.

3.2 Asymmetric Zero Sum Games

We remark that the results don’t generalize to asymmetric zero sum games. One example of such
games is matching pennies where no-external regret dynamics like MWU are known not to exhibit last-
iterate convergence and in fact diverge chaotically towards the boundary for all interior initializations,
including all symmetric (non-Nash) initial conditions [8, 18]. For games with 2 actions per player,
any no-external-regret algorithm is also no-swap-regret as we show in the following lemma.
Lemma 5. For a game with 2 actions per player, SwapReg ≤ 2Reg.

Proof. Let {0,1} be Alice’s actions in let at, bt ∈∆2 be a sequence of strategies played by Alice and
Bob. There are 3 non-trivial swap strategies π ∶ [2] → [2] for Alice: s ↦ 0, s ↦ 1, s ↦ 1 − s. The
regret of using the first two swap strategies is bounded by Reg since they map to a constant action.
Let at[s] be the s-th component of at ∈∆2. Then, the regret of the third strategy π is bounded by:

∑
t

GA(at, bt) −GA(π(at), bt) = ∑
t

at[0](GA(0, bt) −GA(1, bt)) +∑
t

at[1](GA(1, bt) −GA(0, bt))

= [∑
t

GA(at, bt) −GA(1, bt)] + [∑
t

GA(at, bt) −GA(0, bt)] ≤ 2Reg

4 No-Swap-Regret Algorithms are Time-Asymmetric

One interesting feature of no(-external)-regret algorithms in two-player games is that the action they
select at time t can depend entirely on the average historical strategy played by the other player up to
time t − 1, and not on any other information about how this strategy (or the player’s own strategy)
evolved over time.

In this section we show that it is impossible for a no-swap-regret learning algorithm to have this
property. In fact, we prove the following more general statement.
Theorem 6. Consider any learning algorithmA which decides what action to take on behalf of Alice
in a game G at round t via a symmetric function At(b1, b2, . . . , bt−1) of Bob’s mixed strategies up
until t − 1 (here symmetric means that the function is unchanged for any permutation of the inputs).
Then there exists a game G and a sequence of play for Bob where Alice incurs Ω(T ) swap regret.

As mentioned, many no-external-regret algorithms (such as multiplicative weights, and follow-
the-regularized leader) have the property that each At can be written as a function of the average
1

t−1 ∑
t−1
s=1 bs, and hence are symmetric.

We provide a sketch of the proof of Theorem 6, deferring all details and proofs of lemmas to
Appendix B. We will consider the game G given by the three-action generalization of Matching
Pennies. Specifically, Alice and Bob will both have 3 actions, and GA(i, j) equals 1 if i = j and 0
otherwise (since we will specify Bob’s sequence of actions adversarially, his payoff GB is irrelevant).

We will construct an adversarial sequence of actions for Bob where in each round Bob plays one
of the three pure actions in ∆3 (i.e., bt ∈ {e1, e2, e3}). For each i ∈ [3], let nt,i equal the number
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of rounds s ≤ t − 1 where Bob played action i. Since At is a symmetric function of the bs for
1 ≤ s ≤ t − 1, we can write At as a function At(nt,1, nt,2, nt,3). Moreover, since we must have
nt,1 + nt,2 + nt,3 = t − 1, we can summarize the entire learning algorithm with a single 3-variable
function A(n1, n2, n3) ∶ Z3

≥0 →∆3 satisfying

A(n1, n2, n3) = An1+n2+n3+1(n1, n2, n3).

Our main strategy will be to show that if A has no swap regret (or even no external regret), on average
A must be very close to the “follow the leader” strategy, which puts all the weight on action i if ni is
significantly larger than the other nj . We formalize this in the following lemma (which employs a
result of [25] on the number of mistakes necessary in certain card guessing games):

Lemma 7. Assume that the algorithm A guarantees that Alice incurs at most sublinear external
regret, i.e., RegA = o(T ). Then for any L ≥ T /100 and n1, n2 ≤ n3 ≤ T −L, we have that

1

L

n3+L

∑
m=n3+1

A(n1, n2,m)3 = 1 − o(1).

Lemma 7 shows that A mostly plays the leader (i.e., highest-utility) action in any sufficiently long
segment of rounds where Bob is playing the leader action. We would also like to show that A mostly
plays the leader action in stretches where Bob is playing some other fixed action. The following
lemma gives a weak form of this claim (but that will be sufficient for proving Theorem 6).

Lemma 8. Fix any L,L′ ≥ T /100 and let n2 ≥min(n1, L
′). Then there exists an n3 ∈ [n2, n2 +L]

such that

1

L′

n2−1

∑
m′=n2−L′

A(n1,m
′, n3)3 = 1 − o(1).

With Lemmas 7 and 8 (and their symmetric counterparts), we can construct a sequence of play for
Bob where Alice incurs high swap regret. Roughly, this sequence of play proceeds as follows.

• First Bob plays action 1 for approximately T /3 rounds. By Lemma 7, we can guarantee that
Alice plays action 1 for most of these rounds.

• Bob then plays action 2 for approximately T /3 rounds. By the guarantee of Lemma 8, Alice
will still play action 1 for most of these rounds.

• Bob then plays action 3 for the remaining rounds. Again by applying Lemma 8, we can
guarantee that Alice will play action 2 for most of these rounds.

It is straightforward to check that Alice incurs linear swap regret in the above trajectory – Alice
would improve her expected utility by Ω(T ) if she played action 3 every time she played action 2.
The details of this proof are deferred to Appendix B.

5 Conclusion

In this paper, we study the role of symmetry in the behavior of no-swap regret dynamics. In our
first result, we show that no-swap-regret dynamics in self-play in symmetric zero-sum games lead
to converge in a strong “frequent-iterate” sense to the Nash equilibrium. Specifically, in all but a
vanishing fraction of the rounds, the players must play a strategy profile close to a symmetric Nash
equilibrium. Furthermore, we show that the power of no-swap-regret dynamics comes at a cost of
imposing a time-asymmetry on its inputs. Specifically, any such algorithm, unlike no-external regret
dynamics, must apply a time-asymmetric function over the set of previously observed rewards.

The interplay between symmetry, (external/swap) regret and learning in games emerges as as in-
teresting direction for future work. One particularly interesting such direction would be to explore
generalizations of our results beyond two player games.
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M. Johanson, and M. Bowling. Deepstack: Expert-level artificial intelligence in heads-up
no-limit poker. Science, 356(6337):508–513, 2017.

[47] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game Theory. Cambridge
University Press, New York, NY, USA, 2007.

[48] B. Peng and A. Rubinstein. Fast swap regret minimization and applications to approximate
correlated equilibria. arXiv preprint arXiv:2310.19647, 2023.

[49] J. Perolat, B. De Vylder, D. Hennes, E. Tarassov, F. Strub, V. de Boer, P. Muller, J. T. Connor,
N. Burch, T. Anthony, et al. Mastering the game of stratego with model-free multiagent
reinforcement learning. Science, 378(6623):990–996, 2022.

[50] G. Piliouras, M. Rowland, S. Omidshafiei, R. Elie, D. Hennes, J. Connor, and K. Tuyls.
Evolutionary dynamics and phi-regret minimization in games. Journal of Artificial Intelligence
Research, 74:1125–1158, 2022.

[51] A. Roth and M. Shi. Forecasting for swap regret for all downstream agents. arXiv preprint
arXiv:2402.08753, 2024.

[52] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. nature,
550(7676):354–359, 2017.

[53] G. Stoltz and G. Lugosi. Internal regret in on-line portfolio selection. Machine Learning,
59:125–159, 2005.

[54] J. W. Weibull. Evolutionary Game Theory. MIT Press; Cambridge, MA: Cambridge University
Press., 1995.

[55] A. Wibisono, M. Tao, and G. Piliouras. Alternating mirror descent for constrained min-max
games. In Proceedings of the 36nd International Conference on Neural Information Processing
Systems, 2022.

[56] B. H. Zhang, I. Anagnostides, G. Farina, and T. Sandholm. Efficient phi-regret minimization
with low-degree swap deviations in extensive-form games. arXiv preprint arXiv:2402.09670,
2024.

13



A No-swap regret dynamics with asymmetric initial conditions do not
converge to Nash equilibrium

We show via a simple counter-example that symmetric initializations are necessary for convergence
to Nash. Specifically, in Figure 3 we show the trajectory of two players running the Blum-Mansour
no-swap-regret algorithm against each other, initialized with asymmetric starting conditions in the
symmetric zero-sum game of Rock-Paper-Scissors. Their behavior does not converge to Nash,
whereas as we have seen in Figure 1, symmetric initialization in the same game would have led to
convergence.

Figure 3: This figure shows the trajectory of two players running the Blum-Mansour no-swap-regret
algorithm against each other initialized with asymmetric starting conditions. Unlike the symmetric
dynamics, these do not ultimately converge to the unique symmetric Nash equilibrium (the blue
point).

B Omitted proofs of Section 4

B.1 Proof of Lemma 7

Proof of Lemma 7. Define W = ∑n3+L
m=n3+1

A(n1, n2,m)3. We will present a distribution D over
action sequences of length T for Bob such that the expected regret RegA that Alice incurs when
playing against a randomly drawn sequence from D is at least (L −W ) −O(

√
T ). If the algorithm

A has the guarantee that RegA = o(T ), then this implies that we must have W = L − o(T ), from
which the theorem statement follows.

We will construct the distribution D as follows:

• For the first n1 + n2 + n3 rounds, Bob will play a uniform random sequence that includes
action 1 n1 times, action 2 n2 times, and action 3 n3 times.

• In the next L rounds, Bob will always play action 3.

• Finally, in the last T ′ = T −(n1+n2+n3) rounds, Bob will play a uniform random sequence
that includes action 1 T ′/3 times, action 2 T ′/3 times, and action 3 T ′/3 times.

Note that for any such sequence, the best action in hindsight for Alice is action 3, which achieves
utility exactly n3 + L + T ′/3. To compute Alice’s expected regret, it suffices to compare Alice’s
expected utility to this quantity.
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To bound Alice’s optimal expected utility, we will make use of the following result of Diaconis and
Graham [25]. Consider a game where there is a uniformly shuffled deck of N = n1 + n2 + n3 cards
with n1 cards labeled 1, n2 cards labeled 2, and n3 cards labeled 3. In this game, the player must
repeatedly guess the label of the card on the top of the deck, at which point it is revealed to the player
and discarded. Then Diaconis and Graham show that the expected number of correct guesses of
the player is at most max(n1, n2, n3) +O(

√
N) (in fact in Theorem 3 of [25] provides bounds that

apply to any number of labels, but we only need this specific consequence).

Note that in the first n1 + n2 + n3 rounds, Alice is facing essentially this exact game (since she gains
utility 1 when she matches the action of Bob, and 0 otherwise). Therefore Alice’s expected utility
in the first segment of the rounds is at most n3 +O(

√
n1 + n2 + n3) = n3 +O(

√
T ). Similarly, in

the last segment of rounds, Alice’s expected utility is at most T ′/3 +O(
√
T ). Finally, in the middle

segment of rounds, Alice’s utility is exactly W (as this is the total weight she places on action 3). It
follows that Alice’s expected regret is at least (L −W ) −O(

√
T ), as desired.

B.2 Proof of Lemma 8

Proof of Lemma 8. By applying Lemma 7 L times, we have that:

1

L′ ⋅L

n2−1

∑
m′=n2−L′

n2+L

∑
m=n2

A(n1,m
′,m)3 = 1 − o(1).

By switching the order of summation, this implies that there must exist a fixed value of m ∈
[n2, n2 +L] such that

1

L′

n2−1

∑
m′=n2−L′

A(n1,m
′,m)3 = 1 − o(1).

We can take n3 to be this value of m.

With Lemmas 7 and 8 (and their symmetric counterparts), we can construct a sequence of play for
Bob where Alice incurs high swap regret.

B.3 Proof of Theorem 6

Proof of Theorem 6. Fix L = T /100. Bob will begin by selecting an n1 ∈ [T /3, T /3+T /1000] such
that:

1

T /3

T /3

∑
m′=1

A(n1,m
′,0)3 = 1 − o(1).

(Such an n1 is guaranteed to exist by a symmetric variant of Lemma 8). Bob will then play action 1
for n1 rounds followed by action 2 for T /3 rounds.

Bob will then select a value n2 ∈ [T /3 + T /1000, T /3 + 2T /1000] such that:

1

(T /3) − (T /100)

T /3−T /100

∑
m′=1

A(n1, n2,m
′)3 = 1 − o(1).

(Again, such an n2 is guaranteed to exist by a symmetric variant of Lemma 8). Bob will then play
action 2 for n2 − T /3 rounds, and action 3 for the remaining rounds.

What does Alice do against this sequence of play of Bob? We break this down segment by segment:

• First Bob plays action 1 for n1 rounds, moving the state from (0,0,0) to (n1,0,0). Since
n1 > T /1000, Lemma 7 implies that Alice plays action 1 for 1 − o(1) of these rounds.
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• Bob then plays action 2 for T /3 rounds, moving the state to (n1, T /3,0). By the guarantee
of Lemma 8, Alice will still play action 1 for 1 − o(1) of these rounds.

• Bob then plays action 2 for n2 − T /3 more rounds, moving the state to (n1, n2,0). This is
at most T /500 rounds, which will be negligible in our final swap regret computation.

• Bob then plays action 3 for (T /3) − (T /100) rounds, moving the state to (n1, n2, T /3 −
T /100). By the guarantee of Lemma 8, Alice will play action 2 for 1− o(1) of these rounds.

• Bob then plays action 3 for the remaining rounds. This is at most T /100 rounds, which will
be negligible in our final swap regret computation.

The key observation is that Alice would significantly improve her expected utility (by Ω(T )) by
playing action 3 every time she played action 2, and therefore Alice has linear swap regret. To see
this, note that Alice plays action 2 for at least (1− o(1))((T /3)− (T /100)) ≥ T /4 rounds when Bob
is playing action 3. On the other hand the number of rounds where both Alice and Bob play action 2
is at most the T /500 rounds in the third segment. Therefore the expected gain from switching from
action 2 to action 3 is at least T /4−T /500 = Ω(T ), and therefore the algorithmA incurs Ω(T ) swap
regret.

16



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This is a theoretical paper, and the claims made in the abstract and introduction
don’t overstate what’s theoretically established in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Conditions and assumptions for all results are clearly stated.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

17



Justification: The proofs of all theorems and supporting lemmas are provided in the main
text or the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments. (We have produced some helpful
illustrations with code, but these serve entirely to help illustrate the mathematical theorems
in the text).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed (it focuses on a fundamental
theoretical question).
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release models nor datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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