
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CSATTENTION: CENTROID-SCORING ATTENTION FOR
ACCELERATING LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Long-context LLMs increasingly rely on long prefill prompts for agents and do-
main Q&A, pushing attention and KV-cache to become the dominant decode-
time bottlenecks. While sparse attention methods reduce computation and trans-
fer costs, they struggle to simultaneously maintain model accuracy and achieve
high inference speed under high sparsity. To address this challenge, we propose
Centroid-Scoring Attention (CSAttention), a training-free sparse attention method
for efficient LLM inference. CSAttention adopts a storage-for-computation strat-
egy: it leverages query distributions to construct a fixed-size, query-centric lookup
table in each subspace during the offline prefill stage, enabling online decoding to
perform efficient searches and centroid-score accumulation over regular, GPU-
friendly data structures. By combining subspace partitioning with query-centric
table construction, CSAttention mitigates distribution shift between queries and
keys, and reliably recovers high-scoring keys even under very high sparsity, en-
abling significant computational savings while maintaining competitive model
performance. Extensive experiments demonstrate that CSAttention maintains
near-lossless model accuracy while delivering substantial improvements in infer-
ence efficiency. Compared to state-of-the-art sparse attention methods, CSAtten-
tion achieves superior model accuracy and higher inference speed in high-sparsity
(95%) and long-context (32K-128K) scenarios. Notably, CSAttention achieves up
to 4.24× speedup over full attention when decoding 128K context length, demon-
strating its practical value for scalable long-context inference.

1 INTRODUCTION

Long-context LLM usage is accelerating, driven by LLM agents and domain Q&A workflows that
demand very long prompts. In many of these deployments, workloads naturally split into an offline
prefill stage and an online decode stage (Lu et al., 2024; Jin et al., 2024; Gao et al., 2024; Lee et al.,
2025). Offline prefill refers to pre-request computation on the shared, slowly-changing context
(e.g., system instructions, tool schemas, domain scaffolds): servers can run a one-time prefill to
materialize reusable KV and prepare search auxiliaries, persisting them outside HBM (CPU DRAM
or SSD) for later reuse. Online decode is the request-time path: when a user query arrives, the system
loads the needed artifacts on demand and performs decoding over the growing context; lightweight
maintenance (e.g., appending new keys) is allowed as long as latency remains predictable. With this
separation in mind, the prefill step may feed tens of thousands to millions of tokens, after which
decoding repeatedly applies attention over the accumulated context.

Beyond the quadratic cost of dense attention, a second bottleneck dominates in practice: the KV
cache. Its footprint scales linearly with sequence length, layers, and heads; storing all keys/values
on HBM quickly becomes the limiting factor for throughput, often forcing systems to page KV to
CPU RAM and back during decoding. Production serving stacks (e.g., vLLM with PagedAtten-
tion) mitigate fragmentation and enable sharing but still incur bandwidth/latency costs as contexts
grow (Kwon et al., 2023).

A concrete calculation underscores the challenge. For standard multi-head attention (MHA), per-
token KV bytes are 2 · nlayers · nheads · dhead · bytes, where the factor 2 accounts for K and V.
With grouped-query attention (GQA/MQA), replace nheads by the (smaller) number of KV heads
nkv (Shazeer, 2019; Ainslie et al., 2023). Even then, long contexts remain daunting: for Llama-3-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

8B at 1M tokens, recent measurements report on the order of 102 GB of KV memory in bf16 without
approximation, routinely exceeding a single GPU (Luo et al., 2025).

A natural response is sparse attention: standard attention matrices exhibit inherent sparsity, wherein
a large fraction of the computed weights are close to zero and can be pruned without significant
impact on output quality (Zhang et al., 2025b). Therefore, the model can reliably attend to only
a small fraction of keys, reducing attention FLOPs and the effective KV touched per step simul-
taneously. Prior work explores three main directions. (i) Token eviction/retention: dynamically
keep only “heavy-hitter” tokens in the cache (e.g., H2O and follow-ups) (Zhang et al., 2023; 2024),
which prunes storage but can be sensitive to online prediction errors. (ii) Bandwidth-aware fetch-
ing: techniques like SparQ selectively fetch historical KV to raise memory-bandwidth efficiency
during attention (Ribar et al., 2024). (iii) Index-based retrieval: treat KV search as MIPS/ANN over
quantized representations (e.g., PQCache) or use sampling via LSH (e.g., MagicPIG) to approxi-
mate attention (Zhang et al., 2025a; Chen et al., 2024). While these methods reduce computational
and transfer costs, they encounter a fundamental challenge at high sparsity: it becomes exceedingly
difficult to simultaneously maintain high model performance and achieve fast inference speed.

In this work, we propose Centroid-Scoring Attention (CSAttention), a training-free sparse attention
method that accelerates LLM inference. To achieve high model performance and fast inference
under high sparsity, CSAttention adopts a storage-for-computation strategy: it leverages query dis-
tributions to construct a fixed-size, query-centric lookup table in each subspace during the offline
prefill stage, enabling online decoding to perform efficient searches and centroid-score accumulation
over regular, GPU-friendly data structures. Specifically,

• Query-centric tables (offline). Split the feature space into m subspaces. For each sub-
space, cluster queries from prefill into C centroids. For every centroid, precompute partial
dot-products with all keys in that subspace as centroid-scores, and store a fixed-length Top-
L list (indices + scores). This design amortizes cost across many requests that share the
same long prefill context.

• Keys retrieval (online). For a new query, select its nearest centroid in each subspace (1-of-
C per subspace), fetch the m short lists, and sum partial scores by key index on GPU. Keys
truly aligned with the query tend to exhibit high centroid-scores across multiple subspaces,
rising to the top after sparse accumulation—without scanning the whole cache.

• Middle-dominant scheduling. We prioritize the middle region of the context (where re-
cency heuristics are weakest) while merging a small recent window as passthrough to pre-
serve short-range dependencies.

• Streaming-friendly updates. When a new key arrives, we try-insert it into each centroid’s
Top-L if its partial score exceeds the current minimum, keeping tables fixed-size and de-
code latency predictable.

Why this helps. (i) By exploiting query-centric clustering offline, the index structure tracks the
geometry of queries Q rather than only keys K, mitigating Q/K distribution shift that destabilizes
recall at high sparsity. (ii) By utilizing fixed-size lookup tables and only running a small number of
regular GPU kernels during decoding, CSAttention avoids per-query score movement and irregular
control flow, sustaining high hardware utilization and inference speed. (iii) By employing subspace
partitioning and query-centric tables, CSAttention effectively recovers high-scoring keys under very
high sparsity (e.g., 95%), enabling significant computational savings while maintaining model ac-
curacy.

Results at a glance. (i) Near-lossless accuracy at 95% sparsity: on LongBench evaluations across
three models (Llama-3-8B, Qwen-8B, and Mistral-7B), CSAttention maintains nearly identical ac-
curacy to full attention (within 0.7% loss) at 95% sparsity. (ii) Best accuracy and speed over com-
petitors: under high sparsity (95%) and long-context settings (32K–128K), CSAttention outper-
forms state-of-the-art sparse attention methods in both model accuracy and inference throughput.
(iii) Scalable speedup over full attention: the performance advantage of CSAttention increases with
context length, reaching up to 4.24× speedup compared to full attention at 128K context length.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Accuracy vs. sparsity (b) Accuracy vs. recall (c) Subspace rank–share
(L8–10)

(d) Q/K PCA (L10, H0)

Figure 1: Observations. (a/b) Accuracy vs. sparsity/recall on four LongBench tasks (Llama-3.1-
8B-Instruct) (c) Heterogeneous subspace: rank-share of accumulated q·k contributions across m = 8
subspaces, grouped over Layers 8–10. (d) PCA of queries Q and keys K from Llama-3.1-8B-
Instruct (Layer 10, Head 0) shows a distribution shift between Q and K.

2 OBSERVATIONS AND MOTIVATION

2.1 PRELIMINARIES AND EMPIRICAL SPARSITY OF ATTENTION

Let q,K, V ∈ RN×d be the query, key, and value sequences for one head, with d the hidden size and
N the (growing) context length during decoding. Scaled dot-product attention computes per-query
weights

a = softmax

(
qK⊤
√
d

)
∈ R1×N ,

and returns the weighted value aggregation o = aV ∈ R1×d. The vector a (the attention scores)
sums to 1 and determines which past tokens’ values contribute to the output. In multi-head attention
(MHA/GQA/MQA), this is applied per head and concatenated or averaged across heads.

Attention matrices in long-context LLMs are effectively sparse (most scores are near zero)—so
keeping only the Top-K keys typically preserves task quality. Let the keep ratio ρ = K/N de-
note the fraction of keys scored/used for a query (sparsity = 1− ρ). In Figure 1(a), we evaluate four
LongBench subtasks on Llama-3.1-8B-Instruct, forcing attention to select only the Top-K keys while
varying sparsity from 50% to 99.9% (i.e., ρ from 0.5 down to 0.001). Accuracy remains essentially
unchanged even at 95% sparsity. It indicates that retaining only the high-weight keys can substan-
tially reduce attention computation without degrading quality, consistent with recent reports (Liu
et al., 2024; Zhang et al., 2025b).

2.2 TOP-K RECALL GOVERNS ACCURACY IN HIGH SPARSITY

Even modest misses in the true Top-K hurt accuracy. Since the true Top-K is unavailable at decode
time without full attention, any sparse-attention method can only approximate it. As shown in
Figure 1(b), we first use full attention to obtain the oracle Top-K keys for each query, fixing K = ρN
with ρ = 0.05, then enforce a target recall r by randomly replacing the (1−r)N keys with the next-
best keys (K+1, K+2, . . .). Accuracy degrades as recall drops—and the loss is already visible
when recall falls from 95% to 90%. Thus, achieving consistently high Top-K recall is essential for
sparse attention to match full-attention accuracy.

2.3 IMPORTANCE DEVIATION OF DIFFERENT SUBSPACES

Search-based sparse attention methods essentially transform the problem of attention selection into
a vector similarity search task (Liu et al., 2024). Partitioning the d-dimensional origin space into m
d/m-dimensional subspaces and leveraging clustering to construct an index in each subspace is a
highly effective scheme in the field of vector similarity search (Jegou et al., 2010; Wei et al., 2025).
The underlying principle is that from the perspective of the original space, clustering with l clusters
in m subspaces is equivalent to the Cartesian product representation: Ctotal = C1×C2×· · ·×Cm,
where Ci and Ctotal denote the centroids set in each subspace and in the origin space. The clustering
complexity is thus reduced from O(lm) to O(ml), thereby improving the method performance.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The recently proposed subspace collision vector search framework has demonstrated promising per-
formance (Wei et al., 2025). This framework assigns equal weight to each subspace within Eu-
clidean space. However, we observe that subspaces contribute very unevenly to the inner-product
attention score. We run LLAMA-3.1-8B-INSTRUCT on a random sample from the LONGBENCH
subtask MULTIFIELDQA ZH, collect queries Q and keys K after prefilling, and analyze layers 8–10.
We split Q and K into m equal d/m-dimensional sub-vectors, Q = [Q(1); . . . ;Q(m)] and K =
[K(1); . . . ;K(m)]. For each subspace b, we compute the contribution matrix S(b) = Q(b)(K(b))⊤

and then mean-normalize across subspaces to obtain per-subspace shares. As shown in Figure 1(c),
the subspace shares are highly skewed, indicating that the different importance of each subspace.

It is necessary to design customized search strategies for attention calculation, so as to meet the
following requirements: (i) achieving high efficiency by partitioning the subspace, and (ii) achieving
high precision by considering the importance deviation of different subspaces.

Implication. Attention-friendly search should preserve the efficiency benefits of subspace parti-
tioning and account for unequal subspace contributions—e.g., via subspace-aware scoring, weight-
ing, or prioritized probing—to maintain high recall at extreme sparsity.

2.4 SEARCH PATH: FROM KEY-CENTRIC TO QUERY-CENTRIC

Prior search-based sparse attention methods only use keys to build clustering-based indices during
the prefilling stage (Zhang et al., 2025a; Liu et al., 2025). During decoding, these methods typically
follow a key-centric search path: Q→K-centroid→K. However, we run Llama-3.1-8B-Instruct on
a random NarrativeQA example and visualize the layer-10, head-0 query and key vectors via PCA,
as shown in Figure 1(d). The distributions of Q and K diverge significantly. This misalignment
stems from the fact that Q and K are generated by different projections, which can be biased for
certain heads/timesteps, especially under stylistic/domain shifts. Key-only indices (built on K) can
become out-of-distribution (OOD) for Q to search, causing unstable recall at high sparsity.

An query-centric search path, denoted as Q→Q-centroid→K, offers greater stability. Since the
nearest-centroid assignment occurs in the same space as Q, it significantly reduces OOD risk. Once
the query-centric centroid is selected, the search strategy only accesses the precomputed K lists
associated with that centroid-eliminating the need for an additional Q→K centroid hop during
decoding-thereby notably improving recall stability under high sparsity.

3 METHODOLOGY

3.1 OVERVIEW OF CSATTENTION

Architecture overview. Figure 2 provides an overview of CSAttention, which consists of an offline
prefilling stage and an online decoding stage. To enhance inference efficiency, CSAttention employs
a subspace partitioning strategy, as analyzed in Section 2.3. We split d dimensions into m subspaces
with sizes {db}mb=1 and

∑
b db = d. For key ki ∈ K = [k1, k2, ..., kN] and query q,

ki =
(
k
(1)
i , . . . , k

(m)
i

)
, q =

(
q(1), . . . , q(m)

)
, qk⊤i =

m∑
b=1

q(b)(k
(b)
i)⊤︸ ︷︷ ︸

subspace partial

.

During prefilling, operations are only performed independently within each subspace: queries are
clustered, and the inner products between each centroid and all keys are computed and recorded
as centroid-scores in a lookup table. During decoding, a query-centric search is conducted inside
each subspace, after which centroid-scores are sparsely accumulated across subspaces to efficiently
retrieve the most critical tokens.

Design overview. (i) Subspace split. We use uniform split by default (db=d/m) for balanced
GEMV/GEMM sizes; nonuniform splits are possible when heads emphasize bands. (ii) Normal-
ization. We ℓ2-normalize subspace vectors when clustering and during centroid matching (cosine
scores); the model’s native scaling is preserved for attention. (iii) Fixed-size tables. Each cen-
troid (b, j) stores contiguous arrays I(b)

j ∈NL and V(b)
j ∈RL for indices (as int32) and scores (as

fp16); this guarantees coalesced loads and a bounded decode union (≤ mL). (iv) Middle-dominant

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Prefill

Partition

Decode

…

𝑄 Partitioned 𝑄

𝑁 × 𝑑𝑏× 𝑚
𝑁 × 𝑑

Cluster

𝐶 × 𝑑𝑏× 𝑚

Centroids

Inner

product

Partitioned 𝐾

𝑁 × 𝑑𝑏× 𝑚

𝐿 × 𝐶 × 𝑚

Get

Codes

Top-𝐿 Scores

𝑞
Partition

Pick Nearest

Centroid

Centroid

 Indices

𝑚
1 × 𝑑𝑏 × 𝑚

1 × 𝑑

Gather and Sum

Across 𝑚 Subspaces

Weights

𝑁

Get

Top-K
𝑘1, 𝑘2, …

Top-K Keys

…

…

… …

< 𝑖𝑛𝑑𝑖𝑐𝑒, 𝑠𝑐𝑜𝑟𝑒 >

𝐿 = 𝛼𝑁

Partitioned 𝑞

Figure 2: CSAttention overview. Prefill (top): partition queries, cluster per subspace on GPU,
score each query-centroid against all keys in that subspace, and store fixed Top-L (idx, score) lists.
Decode (bottom): partition the new query, pick the nearest centroid per subspace, fetch m lists,
gather-and-sum across subspaces on GPU (or search on CPU in the CPU↔GPU variant), then take
Top-K and run standard KV gather/attention.

schedule. Search is applied to the middle region; a recent window of size R is merged as passthrough
to preserve short-range dependencies.

3.2 OFFLINE (PREFILL): QUERY CLUSTERING AND PER-CENTROID SCORING

(1) Subspace partition and queries clustering. Given prefill queries Q∈RN×d, partition each q

into {q(b)}mb=1 and run mini-batch k-means on GPU per subspace to obtain C centroids {c(b)j }Cj=1:

min
{c(b)j }

∑
q∈Q

min
j∈[1..C]

∥∥ q(b)

∥q(b)∥2
− c

(b)
j

∥∥2
2
, s.t. ∥c(b)j ∥2 = 1.

We use cosine k-means (normalize vectors); seeds are k-means++ with a small number of iterations
(e.g., 10–20) sufficient for stable nearest assignments at decode.

(2) Per-centroid scoring in each subspace. For each centroid (b, j) we compute

s
(b)
j (i) = c

(b)
j (k

(b)
i)⊤, i ∈ [1..N],

via batched GEMM across centroids, where N denotes the sequence length; then keep Top-L pairs
(i, s

(b)
j (i)) and serialize into (I(b)

j ,V(b)
j) on the target device (GPU for All-GPU; CPU DRAM for

CPU↔GPU). Tables are fixed size and reused across requests that share the long prefill.

3.3 ONLINE (DECODE): QUERY-CENTRIC SEARCH AND SPARSE ACCUMULATION

Given a new query q:

(1) Nearest query-centroid per subspace. For each subspace b,

ĵb = arg max
j∈[1..C]

q̃(b)(c
(b)
j)⊤, q̃(b) = q(b)/∥q(b)∥2.

Implementation is a batched GEMV over C centroids per subspace (per head), mapping well to
GPU.

(2) Gather m short lists and build the union. Fetch {(I(b)

ĵb
,V(b)

ĵb
)}mb=1. Concatenate into a single

array of at most mL pairs; loads are contiguous/coalesced.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(3) Reduce-by-key (gather-and-sum). Radix-sort the concatenated pairs by index and perform a
segmented sum to compute

ŝ(i) =

m∑
b=1

wb

[
i ∈ I(b)

ĵb

]
· V(b)

ĵb
[i], i ∈ U,

with |U | ≤ mL. We use uniform subspace weights (wb = 1), learned or confidence-based wb

are possible but not required in our best settings. This step is branchless and implemented with
warp-synchronous reductions. This step realizes centroid-scoring: aggregated scores are sums of
precomputed centroid→key partials, avoiding any online Q→K code movement.

(4) Merge recent window and select Top-K. Union the recent window {N −R+1, . . . , N} and
select Top-K on device. Only these K keys are used in attention; others are ignored.

(5) Streaming updates. After attention, when a new key kS is appended, compute scoreb,j =

(c
(b)
j)⊤k

(b)
S for all (b, j) and try-insert into (I(b)

j ,V(b)
j) if it exceeds the current minimum. In

CPU↔GPU mode, this maintenance runs on CPU asynchronously while GPU executes attention.

3.4 EXECUTION MODES AND MEMORY/COST CONSIDERATIONS

CPU↔GPU (index and KV in DRAM; asynchronous execution). When HBM capacity is con-
straining, both the KV cache and the centroid tables are resident in CPU DRAM, and decoding
proceeds with an explicitly overlapped CPU–GPU pipeline. Prefill: on the device, Q/K/V projec-
tions and full prefill attention execute on the default stream, while per-subspace query clustering and
centroid→key partial scoring run on a dedicated compute stream; the resulting tensors are transferred
to host via non-blocking D2H into pinned buffers, and keys/values are appended to a host-resident
KV store. Streams are synchronized only once before the first decode step. Decode (per step): (1)
the CPU performs the bounded search by merging the m Top-L lists, accumulating centroid scores
by index, and selecting Top-K (K=ρS, typically ρ≈0.05); (2) the corresponding K keys/values are
gathered from the host KV store and asynchronously copied H2D; (3) the GPU runs attention on
the selected set. Streaming updates insert the newly appended key into each centroid’s Top-L on
the CPU without resizing tables. Overlap: GPU attention at step t overlaps with CPU search and
the H2D transfer for step t+1 using separate CUDA streams and events, so PCIe latency is largely
hidden. Because only O(K) vectors are moved per step, the transfer budget is deterministic and
small.

All-GPU (index and KV on HBM). When HBM is sufficient, we keep both tables and KV on-
device. Decode is: nearest-centroid (batched GEMV) → coalesced list fetch → reduce-by-key
(radix sort + segmented sum) → device Top-K → attention over the gathered K pairs. No per-query
score movement; kernels are regular and easily batched, so speedups appear already at moderate con-
texts. All kernels are regular (batched GEMV, contiguous list loads, radix sort, segmented reduction,
device-side Top-K), which preserves high occupancy and minimizes control-flow divergence.

4 EXPERIMENTS

4.1 SETTING

Models & baselines. We evaluate on three instruction-tuned backbones: Llama3-8B, Qwen3-
8B, and Mistral-7B (Instruct v0.3). Baselines include MagicPIG (LSH sampling; L=300, K=10),
SparQ Attention (bandwidth-aware fetching), H2O (heavy-hitter retention), and PQCache (PQ-based
KV retrieval; we give it 15 k-means iterations and SUBBITS= 8 to favor accuracy at high sparsity).
Unless stated otherwise, all methods target a comparable keep ratio near 5%.

Hardware. Unless otherwise noted, experiments run on a single-node server with dual-socket
AMD EPYC 7513 and 1.0 TiB system memory. We bind inference to 64 CPU cores. For GPU,
we report two regimes: 1× NVIDIA A100 (single-GPU results) and 4× NVIDIA A100 on the
same host (multi-GPU throughput). All methods (ours and baselines) are executed under the same
software stack and runtime configuration; identical hardware is used across comparisons.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

LongBench Evaluation Tasks

MQA-E MQA-Z NarQA M-News Musiq Trec Samsum TrivQA P-Ret Hotpot G-Rep LCC LSHT VCSum Avg

Llama-3.1-8B-Instruct

Full 55.54 62.87 29.91 27.16 30.89 72.50 43.75 91.65 100.0 56.16 35.26 64.89 46.00 17.16 52.41
CSAttention 56.02 62.01 30.46 26.38 31.11 71.50 44.16 91.95 99.50 55.94 33.60 63.33 45.00 17.63 52.04
PQCache 52.96 57.57 30.14 16.67 28.69 71.00 40.01 91.82 99.00 55.22 34.01 60.52 43.00 16.38 49.79
H2O 40.17 40.01 29.21 23.94 28.08 62.00 41.10 90.32 97.00 53.36 28.32 57.96 23.50 16.50 45.11
SparQ 39.56 34.32 26.96 21.78 28.48 47.00 42.11 89.26 87.00 51.83 25.21 55.42 21.00 15.18 41.79
MagicPig 48.78 53.16 25.86 14.50 19.20 70.00 42.00 65.05 96.00 38.50 23.39 61.11 38.00 7.83 43.10

Qwen-8B

Full 53.67 63.37 26.05 24.88 36.18 71.50 44.30 88.54 100.0 59.40 33.35 69.13 47.50 14.31 52.30
CSAttention 53.21 63.74 26.18 24.60 37.05 72.00 45.10 88.62 100.0 59.18 32.63 68.89 46.00 14.29 52.25
PQCache 51.98 60.35 26.98 21.90 36.90 72.00 42.80 84.10 100.0 58.73 33.09 61.01 44.00 14.39 50.59
H2O 50.10 57.90 26.01 23.99 34.20 61.00 44.50 85.00 98.50 54.12 29.99 63.01 31.00 13.21 48.04
SparQ 45.32 50.07 25.88 21.03 31.90 59.00 43.90 80.20 91.00 47.93 27.62 48.32 25.50 13.48 43.65
MagicPig 52.11 57.32 26.31 18.94 28.08 58.00 44.22 87.90 98.50 51.88 24.32 55.67 40.00 9.12 46.60

Mistral-7B-Instruct-v0.3

Full 50.21 53.19 27.74 26.57 26.50 70.00 46.30 89.04 97.00 51.08 34.22 64.32 47.00 15.68 49.92
CSAttention 49.92 52.94 25.56 27.06 26.10 70.50 45.91 90.59 97.00 49.34 32.88 63.98 46.00 16.44 49.92
PQCache 45.57 39.59 22.57 26.04 22.30 71.00 42.18 88.62 89.00 35.22 29.68 64.01 46.00 15.01 45.49
H2O 37.26 30.43 21.07 25.33 17.01 63.00 41.98 84.77 52.00 31.56 22.92 59.91 31.00 6.04 37.45
SparQ 31.51 31.77 19.62 21.86 15.63 61.00 41.68 84.10 42.00 29.69 25.67 53.01 34.00 5.81 35.53
MagicPig 45.87 38.91 26.01 23.34 21.42 71.00 45.02 90.15 95.00 34.98 31.29 55.04 29.00 14.08 44.37

Table 1: LongBench accuracy of sparse methods across three models. Abbreviations: MQA-E
(multifieldqa en), MQA-Z (multifieldqa zh), NarQA (narrativeqa), M-News (multi news), Musiq
(musique), TrivQA (triviaqa), P-Ret (passage retrieval en), Hotpot (hotpotqa), G-Rep (gov report).

Datasets We use LongBench and LongBench v2. LongBench covers 14 datasets across six task
categories (single-/multi-doc QA, summarization, few-shot, synthetic, code), with average lengths
around 6.7k words (EN) and 13.4k characters (ZH). LongBench v2 expands the task set and con-
text range (from ∼8k up to the ultra-long regime), emphasizing realistic multi-task retrieval and
reasoning. We follow official protocols and task metrics (e.g., EM/F1/Acc for QA, ROUGE for
summarization) and report per-task and macro-averaged scores.

CSAttention Unless otherwise stated we use m=8 subspaces, C∈{64, 128, 200} query centroids
per subspace, unit subspace weights wb=1, and keep ∼5% tokens per step (final Top-K). We choose
L so that mL saturates recall while keeping the reduce-by-key bounded on device; subspace k-means
uses 10 iterations on GPU (cosine k-means with k-means++ seeding). We evaluate both execution
backends: All-GPU (tables+KV resident on GPU) and CPU↔GPU (search/gather on CPU, transfer
only Top-K KV to GPU).

4.2 PERFORMANCE

Results on LongBench. Table 1 reports per-task accuracy on LongBench for three backbones. On
Llama3-8B, CSAttention’s macro average (52.04) is within 0.7% loss of Full (52.41), with numer-
ous per-task wins (e.g., MQA-E/Z, NarQA, Musique, TrivQA) and near-ties elsewhere. Qwen-8B
shows virtually identical averages (52.25 vs. 52.30), again with CSAttention matching or exceed-
ing Full on multiple tasks (e.g., Musique, TrivQA), and never incurring large degradations on any
category. On Mistral-7B, CSAttention matches the Full average exactly (both 49.92) while leading
or tying on several tasks (e.g., TrivQA, P-Ret, VCSum), indicating robustness across architectures.
In contrast, PQCache—despite being tuned with 15 k-means iterations and SUBBITS= 8—and
H2O/SparQ/MagicPig all trail CSAttention on the macro average and drop notably on harder re-
trieval/summarization tasks (e.g., M-News, Hotpot), consistent with their sensitivity to high sparsity.

Results on LongBench v2. Table 2 presents the LongBench v2 accuracy results for Llama-3.1-
8B. CSAttention achieves an overall score of 31.2, surpassing the dense Full attention baseline
(31.0) and exceeding all sparse baselines. Notably, while keeping only ∼5% tokens, CSAttention
maintains performance within statistical noise of the Full model on the global metric, whereas other
sparse methods (PQCache, H2O, SparQ, and MagicPig) exhibit more substantial drops (ranging
from −1.2 to −4.8 points overall). These results demonstrate that our centroid-scoring token re-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method Overall Easy Hard Short Medium Long

Full 31.0 35.4 28.3 37.2 26.0 30.6
CSAttention 31.2 34.4 29.3 37.8 25.1 32.4
PQCache 29.8 33.3 27.7 37.8 22.3 31.5
H2O 29.9 32.9 28.0 33.8 27.9 31.5
SparQ 26.2 27.6 25.4 30.0 22.3 27.8
MagicPig 29.2 29.5 29.0 31.8 26.9 29.4

Table 2: LongBench v2 evaluation results on Llama-3.1-8B.

trieval mechanism effectively preserves near-full model accuracy even at very high sparsity levels.
Furthermore, CSAttention maintains strong performance on Easy and Short tasks (surpassing other
sparse methods) while demonstrating particular strength on challenging Hard and Long tasks. It
method improves Hard performance from 28.3 (Full) to 29.3 and Long from 30.6 (Full) to 32.4,
suggesting enhanced capability for complex, long-context tasks.

Stability at 95% sparsity. Across all three backbones, the gap between CSAttention and Full on
the macro average is ≤ 0.37 points, and exactly zero for Mistral-7B. Moreover, CSAttention’s per-
task variance is modest: it avoids catastrophic failures observed in some baselines (e.g., pronounced
declines on M-News or cross-lingual QA). Combined with the length-bucket analysis, these results
support the claim that subspace partitaion + centroid-scoring in Q-space maintains high recall of
truly relevant keys under very high sparsity, delivering accuracy that is indistinguishable from Full
in practice.

4.3 EFFICIENCY

Schedules. We report three CSAttention schedules that trade sparsity and search frequency while
maintaining near-full accuracy (cf. Appendix A.1): 0.05-step-1 keeps 5% tokens (95% sparsity) and
searches every step; 0.20-step-8 keeps 20% tokens and searches every 8 steps; 0.15-step-4 keeps
15% tokens and searches every 4 steps.

Decode throughput under CPU↔GPU mode. As illustrated in Figure 3 (Left), once the index is
preloaded, CSAttention attains state-of-the-art decode throughput in the CPU↔GPU setting and the
advantage grows with context length. Using the best CSAttention schedule at each length, speedups
over baselines are:

• vs. PQCache: 2.95× (8K), 4.35× (16K), 5.60× (32K), 9.40× (64K), 8.26× (128K).

• vs. MagicPig: 1.51× (8K), 2.14× (16K), 3.41× (32K), 3.98× (64K), 7.85× (128K).

• vs. SparQ: 1.25× (8K), 2.32× (16K), 5.78× (32K), 10.3× (64K), 17.9× (128K).

• vs. H2O (strong baseline), near parity at short lengths and consistent gains thereafter:
0.88× (8K), 0.97× (16K), 1.13× (32K), 1.16× (64K), 1.33× (128K).

These results validate the intended deployment pattern of offline prefill + online decode: a single
offline build enables substantially higher online throughput, and the gap widens with longer contexts
because CSAttention’s per-step work scales with fixed table sizes rather than total history.

Decode throughput under All-GPU mode. Figure 3 (Right) compares Full attention with the
three CSAttention schedules under an all-GPU backend. CSAttention consistently outperforms Full
attention across all context lengths, with the performance advantage emerging early and grow-
ing substantially as sequence length increases: 1.16× speedup at 8K, 1.22× speedup at 16K,
1.81× speedup at 32K, 3.31× speedup at 64K, and 4.24× speedup at 128K. The performance
gains arise from replacing O(N) dense inner products with fixed-size list lookups and device-side
union–reduce–Top-K kernels (cf. Section 3.3), whose cost is insensitive to history length.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

8 16 32 64 128
Context length (thousands tokens)

0

2

4

6

8

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

CPU–GPU Decode Throughput

8 16 32 64 128
Context length (thousands tokens)

5

10

15

20

25

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

All-GPU Decode Throughput

Algorithms
CSAttention 0.05 step 1
CSAttention 0.2 step 8

CSAttention 0.15 step 4
MagicPig

PQCache
H2O

sparq
Full Attention

Figure 3: Long-context decode efficiency. Left: CPU↔GPU mode; Right: All-GPU mode.

5 RELATED WORK

Attention serves as the core mechanism in Transformer models (Vaswani et al., 2017). Standard
attention matrices exhibit inherent sparsity, wherein a large fraction of the computed weights are
close to zero and can be pruned without significant impact on output quality (Zhang et al., 2025b).
By exploiting this sparsity pattern, sparse attention methods achieve significant improvements in
computational efficiency (Zhang et al., 2025c; Liu et al., 2024; Desai et al., 2024). Based on the
mechanism for selecting attention tokens, sparse methods can be categorized into two types: static
methods, which rely on a predefined sparsity pattern based on empirical observations to fix the
computational tokens (Xiao et al., 2024b; Fu et al., 2025; Zhu et al., 2024; Xiao et al., 2025), and
dynamic methods, which adaptively determine these tokens during decoding according to the real-
time distribution of queries and keys (Zhang et al., 2023; Xiao et al., 2024a; Jiang et al., 2024; Ribar
et al., 2024; Tang et al., 2024; Chen et al., 2024; Zhang et al., 2025a; Singhania et al., 2024). While
static methods offer straightforward implementation, their fixed token selection patterns may lead to
limitations in capturing long-range dependencies, as well as the potential loss of critical intermediate
information (Hu et al., 2025; Tang et al., 2024).

Dynamic sparse methods have attracted much attention due to their flexibility and adaptability.
Quest (Tang et al., 2024) and InfLLM (Xiao et al., 2024a) adopt a similar strategy: they partition the
KV cache into blocks and generate a representative key vector for each block to facilitate efficient
searching. SparQ (Ribar et al., 2024) and Loki (Singhania et al., 2024) estimate the Top-K most
relevant keys for a given query by performing dimensionality reduction. H2O (Zhang et al., 2023)
maintains a fixed-size KV cache during decoding by dynamically evicting tokens. MagicPig (Chen
et al., 2024), RetrievalAttention (Liu et al., 2024), HashAttention (Desai et al., 2024), and PQ-
Cache (Zhang et al., 2025a) adopt vector search techniques—such as learning to hash, locality-
sensitive hashing, and graph—to efficiently retrieve critical tokens. Our proposed CSAttention also
falls into the category of dynamic sparse methods, exhibiting superior efficiency and effectiveness
in LLM inference compared to existing techniques.

6 CONCLUSION

In this paper, we introduced Centroid-Scoring Attention (CSAttention), a training-free sparse atten-
tion method for efficient LLM inference. CSAttention ensures the reliable recovery of high-scoring
keys under very high sparsity by mitigating the query-key distribution shift through subspace par-
titioning and query-centric table construction. Extensive experiments demonstrate that compared
to state-of-the-art sparse attention methods, CSAttention maintains near-lossless model accuracy
while achieving higher inference speed in high-sparsity and long-context scenarios, demonstrating
its practical value for scalable long-context inference.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 4895–4901, 2023.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. Magicpig: Lsh sampling for efficient llm
generation. arXiv preprint arXiv:2410.16179, 2024.

Aditya Desai, Shuo Yang, Alejandro Cuadron, Matei Zaharia, Joseph E Gonzalez, and Ion Stoica.
Hashattention: Semantic sparsity for faster inference. arXiv preprint arXiv:2412.14468, 2024.

Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
Zixiao Huang, Shiyao Li, Shengen Yan, et al. Moa: Mixture of sparse attention for automatic
large language model compression. In ICLR 2025 Workshop on Foundation Models in the Wild,
2025.

Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic, Junbo Deng, Xingkun Yang,
Zhou Yu, and Pengfei Zuo. {Cost-Efficient} large language model serving for multi-turn conver-
sations with {CachedAttention}. In 2024 USENIX Annual Technical Conference (USENIX ATC
24), pp. 111–126, 2024.

Junhao Hu, Wenrui Huang, Weidong Wang, Zhenwen Li, Tiancheng Hu, Zhixia Liu, Xusheng Chen,
Tao Xie, and Yizhou Shan. Raas: Reasoning-aware attention sparsity for efficient llm reasoning.
arXiv preprint arXiv:2502.11147, 2025.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. Advances in Neural Information Processing
Systems, 37:52481–52515, 2024.

Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Shufan Liu, Xuanzhe Liu, and Xin Jin. Ragcache:
Efficient knowledge caching for retrieval-augmented generation. ACM Transactions on Computer
Systems, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023.

Hyungwoo Lee, Kihyun Kim, Jinwoo Kim, Jungmin So, Myung-Hoon Cha, Hong-Yeon Kim,
James J Kim, and Youngjae Kim. Shared disk kv cache management for efficient multi-instance
inference in rag-powered llms. arXiv preprint arXiv:2504.11765, 2025.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024.

Guangda Liu, Chengwei Li, Jieru Zhao, Chenqi Zhang, and Minyi Guo. Clusterkv: Manipulating
llm kv cache in semantic space for recallable compression. In 2025 62nd ACM/IEEE Design
Automation Conference (DAC), pp. 1–7. IEEE, 2025.

Songshuo Lu, Hua Wang, Yutian Rong, Zhi Chen, and Yaohua Tang. Turborag: Accelerating
retrieval-augmented generation with precomputed kv caches for chunked text. arXiv preprint
arXiv:2410.07590, 2024.

Cheng Luo, Zefan Cai, Hanshi Sun, Jinqi Xiao, Bo Yuan, Wen Xiao, Junjie Hu, Jiawei Zhao, Beidi
Chen, and Anima Anandkumar. Headinfer: Memory-efficient llm inference by head-wise offload-
ing. arXiv preprint arXiv:2502.12574, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas
Orr. Sparq attention: bandwidth-efficient llm inference. In Proceedings of the 41st International
Conference on Machine Learning, pp. 42558–42583, 2024.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki: Low-
rank keys for efficient sparse attention. Advances in Neural Information Processing Systems, 37:
16692–16723, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest: query-
aware sparsity for efficient long-context llm inference. In Proceedings of the 41st International
Conference on Machine Learning, pp. 47901–47911, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Jiuqi Wei, Xiaodong Lee, Zhenyu Liao, Themis Palpanas, and Botao Peng. Subspace collision:
an efficient and accurate framework for high-dimensional approximate nearest neighbor search.
Proceedings of the ACM on Management of Data, 3(1):1–29, 2025.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, and Maosong Sun. Infllm: Training-free long-context extrapolation for llms with an effi-
cient context memory. Advances in Neural Information Processing Systems, 37:119638–119661,
2024a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. The Twelfth International Conference on Learning Repre-
sentations, 2024b.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Shang Yang, Haotian Tang, Yao Fu, Song Han, et al.
Duoattention: Efficient long-context llm inference with retrieval and streaming heads. In The
Thirteenth International Conference on Learning Representations, 2025.

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen,
and Bin Cui. Pqcache: Product quantization-based kvcache for long context llm inference. Pro-
ceedings of the ACM on Management of Data, 3(3):1–30, 2025a.

Jintao Zhang, Rundong Su, Chunyu Liu, Jia Wei, Ziteng Wang, Pengle Zhang, Haoxu Wang,
Huiqiang Jiang, Haofeng Huang, Chendong Xiang, Haocheng Xi, Shuo Yang, Xingyang Li,
Yuezhou Hu, Tianyu Fu, Tianchen Zhao, Yicheng Zhang, Youhe Jiang, Chang Chen, Kai Jiang,
Huayu Chen, Min Zhao, Xiaoming Xu, Jun Zhu, and Jianfei Chen. A survey of efficient attention
methods: Hardware-efficient, sparse, compact, and linear attention. 2025b.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Haocheng Xi, Jun Zhu, Jianfei Chen, et al.
Spargeattention: Accurate and training-free sparse attention accelerating any model inference.
In Forty-second International Conference on Machine Learning, 2025c.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya Kailkhura, Beidi Chen, and Zhangyang Wang. Q-
hitter: A better token oracle for efficient llm inference via sparse-quantized kv cache. Proceedings
of Machine Learning and Systems, 6:381–394, 2024.

Qianchao Zhu, Jiangfei Duan, Chang Chen, Siran Liu, Xiuhong Li, Guanyu Feng, Xin Lv, Huanqi
Cao, Xiao Chuanfu, Xingcheng Zhang, et al. Sampleattention: Near-lossless acceleration of long
context llm inference with adaptive structured sparse attention. arXiv preprint arXiv:2406.15486,
2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

MQA-E MQA-Z NarQA M-News Musique Trec Samsum TrivQA P-Ret Hotpot G-Rep LCC LSHT VCSum Avg

Full 55.54 62.87 29.91 27.16 30.89 72.50 43.75 91.65 100.00 56.16 35.26 64.89 46.00 17.16 52.41

0.05 step 1 56.02 62.01 30.46 26.38 31.11 71.50 44.16 91.95 99.50 55.94 33.60 63.33 45.00 17.63 52.04
0.05 step 2 53.98 60.91 28.99 26.05 30.09 70.50 42.18 90.05 97.50 54.03 31.56 63.21 45.00 17.32 50.81
0.15 step 4 54.97 62.04 30.28 26.95 30.72 71.00 44.43 91.89 99.00 55.64 33.84 63.12 44.50 16.78 51.80
0.20 step 8 54.99 62.50 29.84 26.41 31.43 72.00 43.98 91.87 98.50 55.51 33.57 62.88 45.50 17.23 51.87

Table 3: Task-level accuracy on LongBench for CSAttention schedules (Llama3 8B). Schedules are
denoted as “keep ratio + search period”: 0.05-step-1 keeps 5% tokens and searches every step; 0.15-
step-4 keeps 15% and searches every 4 steps; etc. All schedules are accuracy-stable relative to Full;
macro-average gaps are ≤ 0.6 points.

A ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

A.1 SCHEDULES EVALUATION

Efficiency. As shown in Figure 3 (Right, All-GPU mode), at 8K–16K context lengths, the lower
search frequency of 0.20-step-8 yields the highest throughput. Beyond 32K, however, 0.15-step-4
and 0.05-step-1 become preferable as their stronger recall translates into better final throughput un-
der the same token retention budget. Under the CPU↔GPU mode (cf. Figure 3 (Left)), less frequent
searching reduces control traffic and amortizes host-side list merging along with PCIe H2D trans-
fers of gathered KV (only the selected K=ρS vectors are moved). Consequently, schedules such
as 0.15-step-4 and 0.20-step-8 deliver higher throughput at short to medium lengths, whereas 0.05-
step-1 dominates at very long contexts by maximizing recall under a fixed token keep rate. Notably,
all CSAttention scheduling variants maintain near-lossless accuracy compared to Full attention (cf.
Table 3), allowing schedule selection to be driven primarily by throughput considerations for any
given context length requirement.

Performance. Table 3 reports task-level accuracy on LongBench for several CSAttention sched-
ules under identical model and data settings. Three observations emerge. (i) Near-full accuracy at
95% sparsity. 0.05-step-1 (keep 5%, search every step) attains an average of 52.04, within 0.37
points of Full (52.41), and tracks Full closely across QA, summarization, and retrieval tasks. (ii)
Infrequent search preserves accuracy. Leveraging the empirical locality that consecutive tokens
tend to share similar attention patterns, both 0.15-step-4 (keep 15%, search every 4 steps; 51.80)
and 0.20-step-4 (keep 20%, search every 8 steps; 51.87) remain within ≤ 0.61 points of Full on
the macro average, with no catastrophic drops on any task. (iii) Robustness vs. PQ-style retrieval.
Even at the most aggressive sparsity, 0.05-step-1 matches or exceeds the accuracy typically observed
for PQCache-like methods at comparable keep budgets (cf. Section 4.2), reflecting the stability of
subspace partition and query-space centroid-scoring.

A.2 PREFILL LATENCY.

As illustrated in Figure 4, CSAttention invests additional computation during the prefill stage to
construct its query-centric tables. This upfront cost, which is offline and incurred once per shared
prompt and amortized over subsequent decoding steps, is a deliberate design trade-off to achieve the
significant acceleration and robustness observed during online decoding (cf. Figure 3).

B COMPLEXITY ANALYSIS

Notation (recap). We use column vectors and ⟨·, ·⟩ for inner products. Hidden size per head is d,
partitioned into m subspaces with sizes {db}mb=1 and

∑m
b=1 db = d. Sequence length is N (number

of cached keys/values so far). Each subspace has C centroids; for centroid (b, j) the offline list
length is

L = αN, α ∈ (0, 1).

At decode we keep K = ρN keys (ρ ∈ (0, 1)). Tables are (I(b)
j ,V(b)

j) with indices in int32
(4B) and scores in fp16/bf16 (2B). Unless otherwise stated, complexities are per head, per layer;
extension across layers/heads is linear. We denote by I the number of mini-batch k-means iterations
used for subspace clustering during prefill (we use I=10 by default on GPU).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

8 16 32 64 128
Context length (thousands tokens)

0.2

0.4

0.6
La

te
nc

y
(m

s/
to

ke
n)

CPU–GPU Prefill Latency

8 16 32 64 128
Context length (thousands tokens)

0.1

0.2

0.3

0.4

0.5

0.6

La
te

nc
y

(m
s/

to
ke

n)

All-GPU Prefill Latency

Algorithms
CSAttention 0.05 step 1
CSAttention 0.2 step 8

CSAttention 0.15 step 4
MagicPig

PQCache
H2O

sparq
Full Attention

Figure 4: Long-context prefill latency. Left: CPU↔GPU mode; Right: All-GPU mode.

B.1 PREFILL.

KV cache baseline. For one head in one layer, dense KV storage for length N is

KV bytes = 2 dB ·N,

where the factor 2 accounts for K and V, and B ∈ {2, 4} is bytes per element (fp16/bf16 or fp32).
Across layers the footprint scales linearly with N and dominates device memory at long context.

Index (tables) footprint with L = αN . Per head, our lists store mC(αN) entries (each 6B for
int32 index + fp16 score), plus subspace centroids:

mC (αN) · 6︸ ︷︷ ︸
lists (linear in N)

+ mC db · 2︸ ︷︷ ︸
centroids (independent of N)

bytes.

Comparing the linear-in-N terms per head gives the ratio

table bytes
KV bytes

=
6mCα

2 dB
=


3mCα

2 d
, B = 2 (fp16/bf16),

3mCα

4 d
, B = 4 (fp32).

Thus the table’s linear coefficient is controlled by mCα/d. In the CPU↔GPU mode lists reside
in DRAM; in the All-GPU mode feasibility is governed by HBM headroom (we choose (C,α)
accordingly). Centroids contribute only O(mCD) bytes and are small.

Prefill time. Per subspace, centroid→key scoring multiplies K(b) ∈ RN×db with (C(b))⊤ ∈
Rdb×C , costing O(NCdb), followed by Top-L selection per column in O(N) expected time (radix-
/selection kernels). Summed over m:

Tprefill = O
(
I NCd

)
+ O

(
NCd

)
+ O

(
NCm

)
,

dominated by subspace k-means (I iterations). Serialization writes O(mCαN) list entries (linear
in N). Prefill is a one-time cost per shared prompt and is amortized across requests.

B.2 DECODE.

Let U be the union of indices retrieved from the m lists at a step; with L = αN ,

|U | ≤ mL = mαN.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

All-GPU complexity. Per query (per head):

Nearest centroid (cosine GEMV) : O(Cd),

Concat/sort/segment-sum over U : O(mαN),

Device Top-K on U : O(mαN) (radix-select),
Sparse attention on K = ρN : O(ρN d).

Hence
Tall-GPU(N) = O(Cd) + O(mαN) + O(ρN d) .

Dense attention per step is O(Nd). CSAttention replaces it by a linear form with a smaller coeffi-
cient, ((mα) + (ρd))/d, provided (α, ρ) are moderate.

CPU↔GPU complexity and bandwidth (asynchronous). On the host, the bounded search is a
linear merge/reduce over mαN elements:

TCPU-search = O(mαN).

Gather moves only the selected K = ρN keys/values to device; the deterministic H2D bytes per step
(per head) are

H2D bytes/step = 2 ρN · d · B.
With search period P > 1 (reuse the index set for P−1 steps), the amortized host work and H2D
shrink by ≈ 1/P :

TCPU-search ≈ O
(

mα
P N

)
, H2D bytes/step ≈ 1

P · 2 ρNdB.

Device-side attention remains O(ρNd). Because CPU search + H2D for step t+1 overlap with
GPU attention at step t (streams/events, pinned buffers), PCIe latency is largely hidden; wall time is
dominated by O(ρNd).

Why the union remains small in practice. Although |U | ≤ mαN grows linearly with N , the
accumulator exploits ⟨q,ki⟩ =

∑m
b=1⟨q(b),k

(b)
i ⟩. Truly aligned keys “collide” across subspaces and

rise in the index-wise sum, so moderate α suffices to saturate recall (Sec. 3). Empirically, this keeps
the index-side linear coefficient mα small, while the attention-side coefficient ρ controls compute
and transfer.

Space/time takeaway under long context. Online memory is dominated by the KV cache O(Nd)
per head per layer; CSAttention adds lists of size O(mCαN) (DRAM in CPU↔GPU; HBM in All-
GPU) and O(mCD) centroids (negligible). Per-step time is linear in N but with reduced constants:

dense: O(Nd) ⇒ CSAttention: O
(
mαN

)
+O

(
ρNd

)
(+O(Cd)).

With typical settings (e.g., ρ ≈ 0.05, α ∈ [0.2, 0.4], m small), decode cost and H2D traffic are
substantially smaller than dense, and the one-time prefill/index overhead is amortized across many
decode steps and many requests that share the prefill.

C LLM USAGE

In the research process for this work, the authors used large language models (LLMs) for text pol-
ishing and writing assistance. After using these tools, the authors reviewed and edited the content
as needed and take full responsibility for the publication.

14

	Introduction
	Observations and Motivation
	Preliminaries and empirical sparsity of attention
	Top-K recall governs accuracy in high sparsity
	Importance deviation of different subspaces
	Search path: from key-centric to query-centric

	Methodology
	Overview of CSAttention
	Offline (Prefill): Query Clustering and Per-Centroid Scoring
	Online (Decode): Query-centric search and Sparse Accumulation
	Execution Modes and Memory/Cost Considerations

	Experiments
	Setting
	Performance
	Efficiency

	Related work
	Conclusion
	Additional experimental details and results
	Schedules evaluation
	Prefill latency.

	Complexity analysis
	Prefill.
	Decode.

	LLM usage

