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ABSTRACT

Long-context LLMs increasingly rely on long prefill prompts for agents and do-
main Q&A, pushing attention and KV-cache to become the dominant decode-
time bottlenecks. While sparse attention methods reduce computation and trans-
fer costs, they struggle to simultaneously maintain model accuracy and achieve
high inference speed under high sparsity. To address this challenge, we propose
Centroid-Scoring Attention (CSAttention), a training-free sparse attention method
for efficient LLM inference. CSAttention adopts a storage-for-computation strat-
egy: it leverages query distributions to construct a fixed-size, query-centric lookup
table in each subspace during the offline prefill stage, enabling online decoding to
perform efficient searches and centroid-score accumulation over regular, GPU-
friendly data structures. By combining subspace partitioning with query-centric
table construction, CSAttention mitigates distribution shift between queries and
keys, and reliably recovers high-scoring keys even under very high sparsity, en-
abling significant computational savings while maintaining competitive model
performance. Extensive experiments demonstrate that CSAttention maintains
near-lossless model accuracy while delivering substantial improvements in infer-
ence efficiency. Compared to state-of-the-art sparse attention methods, CSAtten-
tion achieves superior model accuracy and higher inference speed in high-sparsity
(95%) and long-context (32K-128K) scenarios. Notably, CSAttention achieves up
to 4.24 x speedup over full attention when decoding 128K context length, demon-
strating its practical value for scalable long-context inference.

1 INTRODUCTION

Long-context LLM usage is accelerating, driven by LLM agents and domain Q&A workflows that
demand very long prompts. In many of these deployments, workloads naturally split into an offline
prefill stage and an online decode stage (Lu et al.,[2024} Jin et al.|, [2024}|Gao et al., 2024; Lee et al.}
2025). Offline prefill refers to pre-request computation on the shared, slowly-changing context
(e.g., system instructions, tool schemas, domain scaffolds): servers can run a one-time prefill to
materialize reusable KV and prepare search auxiliaries, persisting them outside HBM (CPU DRAM
or SSD) for later reuse. Online decode is the request-time path: when a user query arrives, the system
loads the needed artifacts on demand and performs decoding over the growing context; lightweight
maintenance (e.g., appending new keys) is allowed as long as latency remains predictable. With this
separation in mind, the prefill step may feed tens of thousands to millions of tokens, after which
decoding repeatedly applies attention over the accumulated context.

Beyond the quadratic cost of dense attention, a second bottleneck dominates in practice: the KV
cache. Its footprint scales linearly with sequence length, layers, and heads; storing all keys/values
on HBM quickly becomes the limiting factor for throughput, often forcing systems to page KV to
CPU RAM and back during decoding. Production serving stacks (e.g., VLLM with PagedAtten-
tion) mitigate fragmentation and enable sharing but still incur bandwidth/latency costs as contexts
grow (Kwon et al., 2023)).

A concrete calculation underscores the challenge. For standard multi-head attention (MHA), per-
token KV bytes are 2 - Niayers - Mheads * dhead * bytes, where the factor 2 accounts for K and V.
With grouped-query attention (GQA/MQA), replace npeads by the (smaller) number of KV heads
nky (Shazeer, |2019; |Ainslie et al., 2023). Even then, long contexts remain daunting: for Llama-3-
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8B at 1M tokens, recent measurements report on the order of 102 GB of KV memory in bf16 without
approximation, routinely exceeding a single GPU (Luo et al., [2025)).

A natural response is sparse attention: standard attention matrices exhibit inherent sparsity, wherein
a large fraction of the computed weights are close to zero and can be pruned without significant
impact on output quality (Zhang et al., 2025b). Therefore, the model can reliably attend to only
a small fraction of keys, reducing attention FLOPs and the effective KV touched per step simul-
taneously. Prior work explores three main directions. (i) Token eviction/retention: dynamically
keep only “heavy-hitter” tokens in the cache (e.g., HoO and follow-ups) (Zhang et al., |2023};|2024),
which prunes storage but can be sensitive to online prediction errors. (ii) Bandwidth-aware fetch-
ing: techniques like SparQ selectively fetch historical KV to raise memory-bandwidth efficiency
during attention (Ribar et al.}[2024). (iii) Index-based retrieval: treat KV search as MIPS/ANN over
quantized representations (e.g., PQCache) or use sampling via LSH (e.g., MagicPIG) to approxi-
mate attention (Zhang et al.l 2025aj [Chen et al.| 2024). While these methods reduce computational
and transfer costs, they encounter a fundamental challenge at high sparsity: it becomes exceedingly
difficult to simultaneously maintain high model performance and achieve fast inference speed.

In this work, we propose Centroid-Scoring Attention (CSAttention), a training-free sparse attention
method that accelerates LLM inference. To achieve high model performance and fast inference
under high sparsity, CSAttention adopts a storage-for-computation strategy: it leverages query dis-
tributions to construct a fixed-size, query-centric lookup table in each subspace during the offline
prefill stage, enabling online decoding to perform efficient searches and centroid-score accumulation
over regular, GPU-friendly data structures. Specifically,

* Query-centric tables (offline). Split the feature space into m subspaces. For each sub-
space, cluster queries from prefill into C' centroids. For every centroid, precompute partial
dot-products with all keys in that subspace as centroid-scores, and store a fixed-length Top-
L list (indices + scores). This design amortizes cost across many requests that share the
same long prefill context.

» Keys retrieval (online). For a new query, select its nearest centroid in each subspace (1-of-
C per subspace), fetch the m short lists, and sum partial scores by key index on GPU. Keys
truly aligned with the query tend to exhibit high centroid-scores across multiple subspaces,
rising to the top after sparse accumulation—without scanning the whole cache.

* Middle-dominant scheduling. We prioritize the middle region of the context (where re-
cency heuristics are weakest) while merging a small recent window as passthrough to pre-
serve short-range dependencies.

* Streaming-friendly updates. When a new key arrives, we try-insert it into each centroid’s
Top-L if its partial score exceeds the current minimum, keeping tables fixed-size and de-
code latency predictable.

Why this helps. (i) By exploiting query-centric clustering offline, the index structure tracks the
geometry of queries () rather than only keys K, mitigating ()/ K distribution shift that destabilizes
recall at high sparsity. (ii) By utilizing fixed-size lookup tables and only running a small number of
regular GPU kernels during decoding, CSAttention avoids per-query score movement and irregular
control flow, sustaining high hardware utilization and inference speed. (iii) By employing subspace
partitioning and query-centric tables, CSAttention effectively recovers high-scoring keys under very
high sparsity (e.g., 95%), enabling significant computational savings while maintaining model ac-
curacy.

Results at a glance. (i) Near-lossless accuracy at 95% sparsity: on LongBench evaluations across
three models (Llama-3-8B, Qwen-8B, and Mistral-7B), CSAttention maintains nearly identical ac-
curacy to full attention (within 0.7% loss) at 95% sparsity. (ii) Best accuracy and speed over com-
petitors: under high sparsity (95%) and long-context settings (32K—128K), CSAttention outper-
forms state-of-the-art sparse attention methods in both model accuracy and inference throughput.
(iii) Scalable speedup over full attention: the performance advantage of CSAttention increases with
context length, reaching up to 4.24 x speedup compared to full attention at 128K context length.
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Figure 1: Observations. (a/b) Accuracy vs. sparsity/recall on four LongBench tasks (Llama-3.1-
8B-Instruct) (c) Heterogeneous subspace: rank-share of accumulated ¢-k contributions across m = 8
subspaces, grouped over Layers 8-10. (d) PCA of queries () and keys K from Llama-3.1-8B-
Instruct (Layer 10, Head 0) shows a distribution shift between @ and K.

2  OBSERVATIONS AND MOTIVATION

2.1 PRELIMINARIES AND EMPIRICAL SPARSITY OF ATTENTION

Let ¢, K,V € RV*4 be the query, key, and value sequences for one head, with d the hidden size and
N the (growing) context length during decoding. Scaled dot-product attention computes per-query
weights

gk "

a = softmax | ——

Vd

and returns the weighted value aggregation o = aV € R'*?, The vector a (the attention scores)

sums to 1 and determines which past tokens’ values contribute to the output. In multi-head attention
(MHA/GQA/MQA), this is applied per head and concatenated or averaged across heads.

> c RIXN

Attention matrices in long-context LLMs are effectively sparse (most scores are near zero)—so
keeping only the Top-K keys typically preserves task quality. Let the keep ratio p = K/N de-
note the fraction of keys scored/used for a query (sparsity = 1 — p). In Figure[I(a), we evaluate four
LongBench subtasks on Llama-3.1-8B-Instruct, forcing attention to select only the Top-K keys while
varying sparsity from 50% to 99.9% (i.e., p from 0.5 down to 0.001). Accuracy remains essentially
unchanged even at 95% sparsity. It indicates that retaining only the high-weight keys can substan-
tially reduce attention computation without degrading quality, consistent with recent reports (Liu
et al.,[2024} [Zhang et al., [2025b).

2.2 ToP-K RECALL GOVERNS ACCURACY IN HIGH SPARSITY

Even modest misses in the true Top-K hurt accuracy. Since the true Top-K is unavailable at decode
time without full attention, any sparse-attention method can only approximate it. As shown in
Figure[T[b), we first use full attention to obtain the oracle Top-K keys for each query, fixing K = pN
with p = 0.05, then enforce a target recall r by randomly replacing the (1 — ) N keys with the next-
best keys (K+1, K42, ...). Accuracy degrades as recall drops—and the loss is already visible
when recall falls from 95% to 90%. Thus, achieving consistently high Top-K recall is essential for
sparse attention to match full-attention accuracy.

2.3 IMPORTANCE DEVIATION OF DIFFERENT SUBSPACES

Search-based sparse attention methods essentially transform the problem of attention selection into
a vector similarity search task (Liu et al.} 2024)). Partitioning the d-dimensional origin space into m
d/m-dimensional subspaces and leveraging clustering to construct an index in each subspace is a
highly effective scheme in the field of vector similarity search (Jegou et al.| 2010; Wei et al., [2025).
The underlying principle is that from the perspective of the original space, clustering with [ clusters
in m subspaces is equivalent to the Cartesian product representation: Ciypq; = C1 X Co X - - - X Cyp,
where C; and C},,; denote the centroids set in each subspace and in the origin space. The clustering
complexity is thus reduced from O(I™) to O(ml), thereby improving the method performance.
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The recently proposed subspace collision vector search framework has demonstrated promising per-
formance (Wei et al.| 2025). This framework assigns equal weight to each subspace within Eu-
clidean space. However, we observe that subspaces contribute very unevenly to the inner-product
attention score. We run LLAMA-3.1-8B-INSTRUCT on a random sample from the LONGBENCH
subtask MULTIFIELDQA_ZH, collect queries () and keys K after prefilling, and analyze layers 8—10.
We split Q and K into m equal d/m-dimensional sub-vectors, @ = [Q();...;Q(™] and K =
[KMW);...; K(™)]. For each subspace b, we compute the contribution matrix S®) = Q® (K(®)T
and then mean-normalize across subspaces to obtain per-subspace shares. As shown in Figure[T|c),
the subspace shares are highly skewed, indicating that the different importance of each subspace.

It is necessary to design customized search strategies for attention calculation, so as to meet the
following requirements: (i) achieving high efficiency by partitioning the subspace, and (ii) achieving
high precision by considering the importance deviation of different subspaces.

Implication. Attention-friendly search should preserve the efficiency benefits of subspace parti-
tioning and account for unequal subspace contributions—e.g., via subspace-aware scoring, weight-
ing, or prioritized probing—to maintain high recall at extreme sparsity.

2.4 SEARCH PATH: FROM KEY-CENTRIC TO QUERY-CENTRIC

Prior search-based sparse attention methods only use keys to build clustering-based indices during
the prefilling stage (Zhang et al., [2025a; |Liu et al.,|2025)). During decoding, these methods typically
follow a key-centric search path: () — K -centroid — K. However, we run Llama-3.1-8B-Instruct on
a random NarrativeQA example and visualize the layer-10, head-0 query and key vectors via PCA,
as shown in Figure [T(d). The distributions of @ and K diverge significantly. This misalignment
stems from the fact that ) and K are generated by different projections, which can be biased for
certain heads/timesteps, especially under stylistic/domain shifts. Key-only indices (built on K) can
become out-of-distribution (OOD) for @) to search, causing unstable recall at high sparsity.

An query-centric search path, denoted as (Q — @)-centroid — K, offers greater stability. Since the
nearest-centroid assignment occurs in the same space as @, it significantly reduces OOD risk. Once
the query-centric centroid is selected, the search strategy only accesses the precomputed K lists
associated with that centroid-eliminating the need for an additional Q— K centroid hop during
decoding-thereby notably improving recall stability under high sparsity.

3 METHODOLOGY

3.1 OVERVIEW OF CSATTENTION

Architecture overview. Figure 2] provides an overview of CSAttention, which consists of an offline
prefilling stage and an online decoding stage. To enhance inference efficiency, CSAttention employs
a subspace partitioning strategy, as analyzed in Section[2.3] We split d dimensions into mn subspaces
with sizes {d}}", and >, dp, = d. Forkey k; € K = [k1, ko, ..., ky] and query g,

ki= (k) g= (D, ™), gk =D P )T
b_ vV

"~ subspace partial

During prefilling, operations are only performed independently within each subspace: queries are
clustered, and the inner products between each centroid and all keys are computed and recorded
as centroid-scores in a lookup table. During decoding, a query-centric search is conducted inside
each subspace, after which centroid-scores are sparsely accumulated across subspaces to efficiently
retrieve the most critical tokens.

Design overview. (i) Subspace split. We use uniform split by default (d,=d/m) for balanced
GEMV/GEMM sizes; nonuniform splits are possible when heads emphasize bands. (ii) Normal-
ization. We ¢5-normalize subspace vectors when clustering and during centroid matching (cosine
scores); the model’s native scaling is preserved for attention. (iii) Fixed-size tables. Each cen-

troid (b, j) stores contiguous arrays 7 e NL and V¥ € RY for indices (as int32) and scores (as
fpl6); this guarantees coalesced loadis and a bounded decode union (< mL). (iv) Middle-dominant
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Figure 2: CSAttention overview. Prefill (top): partition queries, cluster per subspace on GPU,
score each query-centroid against all keys in that subspace, and store fixed Top-L (idx, score) lists.
Decode (bottom): partition the new query, pick the nearest centroid per subspace, fetch m lists,
gather-and-sum across subspaces on GPU (or search on CPU in the CPU+GPU variant), then take
Top-K and run standard KV gather/attention.

schedule. Search is applied to the middle region; a recent window of size R is merged as passthrough
to preserve short-range dependencies.

3.2 OFFLINE (PREFILL): QUERY CLUSTERING AND PER-CENTROID SCORING

(1) Subspace partition and queries clustering. Given prefill queries @ € RY*?, partition each ¢
into {¢®}7 | and run mini-batch k-means on GPU per subspace to obtain C' centroids {c§b)}?:1:

. . (b) b)12 (b)
min min Hqi —c; || s.t. e[l = 1.
; lg®1| i 2 J
{c;b)} quje[l.AC] 2

We use cosine k-means (normalize vectors); seeds are k-means++ with a small number of iterations
(e.g., 10-20) sufficient for stable nearest assignments at decode.

(2) Per-centroid scoring in each subspace. For each centroid (b, j) we compute
b) /. b) /1.(b ,
sV@) =Pk, ie[1.N],

via batched GEMM across centroids, where N denotes the sequence length; then keep Top-L pairs

(i, s;b) (i)) and serialize into (Ij(-b), VJ(-b)) on the target device (GPU for All-GPU; CPU DRAM for
CPU<«++GPU). Tables are fixed size and reused across requests that share the long prefill.

3.3 ONLINE (DECODE): QUERY-CENTRIC SEARCH AND SPARSE ACCUMULATION

Given a new query ¢:

(1) Nearest query-centroid per subspace. For each subspace b,

P 0) (VT 0) — ) 711, O) ..
Jp=arg max (c;7) s d a” /a2

Implementation is a batched GEMV over C centroids per subspace (per head), mapping well to
GPU.

(2) Gather m short lists and build the union. Fetch {(Ij(_b), Vj(,b))}}?:l. Concatenate into a single
b b
array of at most m L pairs; loads are contiguous/coalesced.
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(3) Reduce-by-key (gather-and-sum). Radix-sort the concatenated pairs by index and perform a
segmented sum to compute

m

)= w, [z € Ij(ﬂ VR, ieu,
b=1

with |[U| < mL. We use uniform subspace weights (w, = 1), learned or confidence-based wy
are possible but not required in our best settings. This step is branchless and implemented with
warp-synchronous reductions. This step realizes centroid-scoring: aggregated scores are sums of
precomputed centroid—key partials, avoiding any online ()— K code movement.

(4) Merge recent window and select Top-K. Union the recent window {N — R+1,..., N} and
select Top-K on device. Only these K keys are used in attention; others are ignored.

(5) Streaming updates. After attention, when a new key kg is appended, compute scorey, ; =

(c<-b))Tk§;b) for all (b,j) and try-insert into (I(.b),VJ(.b)) if it exceeds the current minimum. In
CPU+GPU mode, this maintenance runs on CP{J asynchronously while GPU executes attention.

3.4 EXECUTION MODES AND MEMORY/COST CONSIDERATIONS

CPU+GPU (index and KV in DRAM; asynchronous execution). When HBM capacity is con-
straining, both the KV cache and the centroid tables are resident in CPU DRAM, and decoding
proceeds with an explicitly overlapped CPU-GPU pipeline. Prefill: on the device, Q/K/V projec-
tions and full prefill attention execute on the default stream, while per-subspace query clustering and
centroid—key partial scoring run on a dedicated compute stream; the resulting tensors are transferred
to host via non-blocking D2H into pinned buffers, and keys/values are appended to a host-resident
KV store. Streams are synchronized only once before the first decode step. Decode (per step): (1)
the CPU performs the bounded search by merging the m Top-L lists, accumulating centroid scores
by index, and selecting Top-K (K=pS, typically p~0.05); (2) the corresponding K keys/values are
gathered from the host KV store and asynchronously copied H2D; (3) the GPU runs attention on
the selected set. Streaming updates insert the newly appended key into each centroid’s Top-L on
the CPU without resizing tables. Overlap: GPU attention at step ¢ overlaps with CPU search and
the H2D transfer for step ¢t+1 using separate CUDA streams and events, so PCle latency is largely
hidden. Because only O(K) vectors are moved per step, the transfer budget is deterministic and
small.

All-GPU (index and KV on HBM). When HBM is sufficient, we keep both tables and KV on-
device. Decode is: nearest-centroid (batched GEMV) — coalesced list fetch — reduce-by-key
(radix sort + segmented sum) — device Top-K — attention over the gathered K pairs. No per-query
score movement; kernels are regular and easily batched, so speedups appear already at moderate con-
texts. All kernels are regular (batched GEMYV, contiguous list loads, radix sort, segmented reduction,
device-side Top-K), which preserves high occupancy and minimizes control-flow divergence.

4 EXPERIMENTS

4.1 SETTING

Models & baselines. We evaluate on three instruction-tuned backbones: Llama3-8B, Qwen3-
8B, and Mistral-7B (Instruct v0.3). Baselines include MagicPIG (LSH sampling; L=300, K=10),
SparQ Attention (bandwidth-aware fetching), H,O (heavy-hitter retention), and PQCache (PQ-based
KV retrieval; we give it 15 k-means iterations and SUBBITS= 8 to favor accuracy at high sparsity).
Unless stated otherwise, all methods target a comparable keep ratio near 5%.

Hardware. Unless otherwise noted, experiments run on a single-node server with dual-socket
AMD EPYC 7513 and 1.0 TiB system memory. We bind inference to 64 CPU cores. For GPU,
we report two regimes: 1x NVIDIA A100 (single-GPU results) and 4x NVIDIA A100 on the
same host (multi-GPU throughput). All methods (ours and baselines) are executed under the same
software stack and runtime configuration; identical hardware is used across comparisons.
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LongBench Evaluation Tasks

MQA-E MQA-Z NarQA M-News Musiq Trec Samsum TrivQA P-Ret Hotpot G-Rep LCC LSHT VCSum Avg

Llama-3.1-8B-Instruct

Full 5554  62.87 2991 27.16 30.89 7250 43.75 91.65 100.0 56.16 3526 64.89 46.00 17.16 5241
CSAttention 56.02  62.01 3046 2638 31.11 71.50 44.16 91.95 99.50 5594 33.60 63.33 45.00 17.63 52.04
PQCache 5296 5757 30.14 16.67 28.69 71.00 40.01 91.82 99.00 5522 34.01 60.52 43.00 16.38 49.79

H20 40.17  40.01 2921 2394 28.08 62.00 41.10 9032 97.00 53.36 2832 57.96 23.50 16.50 45.11

SparQ 39.56 3432 2696 21.78 2848 47.00 42.11 89.26 87.00 51.83 2521 5542 21.00 15.18 41.79

MagicPig 4878  53.16 25.86 1450 19.20 70.00 42.00 65.05 96.00 38.50 23.39 61.11 38.00 7.83 43.10
Qwen-8B

Full 53.67 63.37 2605 2488 36.18 71.50 44.30 88.54 100.0 59.40 3335 69.13 47.50 14.31 5230

CSAttention 53.21  63.74  26.18 24.60 37.05 72.00 45.10 88.62 100.0 59.18 32.63 68.89 46.00 14.29 52.25
PQCache 5198 6035 2698 2190 3690 72.00 42.80 84.10 100.0 58.73 33.09 61.01 44.00 14.39 50.59
H20 50.10 5790  26.01 23.99 3420 61.00 44.50 85.00 98.50 54.12 2999 63.01 31.00 1321 48.04
SparQ 4532 5007 2588 21.03 3190 59.00 43.90 80.20 91.00 4793 27.62 4832 2550 1348 43.65
MagicPig 52.11 5732 2631 18.94  28.08 58.00 44.22 87.90 9850 51.88 2432 55.67 40.00 9.12 46.60

Mistral-7B-Instruct-v0.3

Full 50.21 53.19 2774 2657 2650 70.00 46.30 89.04 97.00 51.08 3422 64.32 47.00 15.68 49.92
CSAttention 49.92 5294 2556 27.06 26.10 70.50 45.91 90.59 97.00 49.34 32.88 63.98 46.00 16.44 49.92
PQCache 4557 3959 2257 2604 2230 71.00 42.18 88.62 89.00 3522 29.68 64.01 46.00 15.01 4549
H20 3726 3043 21.07 2533 17.01 63.00 41.98 84.77 52.00 31.56 2292 5991 31.00 6.04 37.45
SparQ 31.51 31.77  19.62 2186 15.63 61.00 41.68 84.10 42.00 29.69 25.67 53.01 34.00 581 3553
MagicPig 4587 3891 2601 2334 2142 71.00 45.02 90.15 95.00 3498 31.29 55.04 29.00 14.08 44.37

Table 1: LongBench accuracy of sparse methods across three models. Abbreviations: MQA-E
(multifieldqa_en), MQA-Z (multifieldqa-zh), NarQA (narrativeqa), M-News (multi_news), Musiq
(musique), TrivQA (triviaqa), P-Ret (passage_retrieval_en), Hotpot (hotpotga), G-Rep (gov_report).

Datasets We use LongBench and LongBench v2. LongBench covers 14 datasets across six task
categories (single-/multi-doc QA, summarization, few-shot, synthetic, code), with average lengths
around 6.7k words (EN) and 13.4k characters (ZH). LongBench v2 expands the task set and con-
text range (from ~8k up to the ultra-long regime), emphasizing realistic multi-task retrieval and
reasoning. We follow official protocols and task metrics (e.g., EM/F1/Acc for QA, ROUGE for
summarization) and report per-task and macro-averaged scores.

CSAttention Unless otherwise stated we use m=8 subspaces, C € {64, 128,200} query centroids
per subspace, unit subspace weights w,=1, and keep ~ 5% tokens per step (final Top-K). We choose
L so that m L saturates recall while keeping the reduce-by-key bounded on device; subspace k-means
uses 10 iterations on GPU (cosine k-means with k-means++ seeding). We evaluate both execution
backends: All-GPU (tables+KYV resident on GPU) and CPU<++GPU (search/gather on CPU, transfer
only Top-K KV to GPU).

4.2 PERFORMANCE

Results on LongBench. Table[I|reports per-task accuracy on LongBench for three backbones. On
Llama3-8B, CSAttention’s macro average (52.04) is within 0.7% loss of Full (52.41), with numer-
ous per-task wins (e.g., MQA-E/Z, NarQA, Musique, TrivQA) and near-ties elsewhere. Qwen-8B
shows virtually identical averages (52.25 vs. 52.30), again with CSAttention matching or exceed-
ing Full on multiple tasks (e.g., Musique, TrivQA), and never incurring large degradations on any
category. On Mistral-7B, CSAttention matches the Full average exactly (both 49.92) while leading
or tying on several tasks (e.g., TrivQA, P-Ret, VCSum), indicating robustness across architectures.
In contrast, PQCache—despite being tuned with 15 k-means iterations and SUBBITS= 8—and
H,0O/SparQ/MagicPig all trail CSAttention on the macro average and drop notably on harder re-
trieval/summarization tasks (e.g., M-News, Hotpot), consistent with their sensitivity to high sparsity.

Results on LongBench v2. Table [2] presents the LongBench v2 accuracy results for Llama-3.1-
8B. CSAttention achieves an overall score of 31.2, surpassing the dense Full attention baseline
(31.0) and exceeding all sparse baselines. Notably, while keeping only ~5% tokens, CSAttention
maintains performance within statistical noise of the Full model on the global metric, whereas other
sparse methods (PQCache, H2O, SparQ, and MagicPig) exhibit more substantial drops (ranging
from —1.2 to —4.8 points overall). These results demonstrate that our centroid-scoring token re-
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Method Overall Easy Hard Short Medium Long
Full 31.0 354 283 372 26.0 30.6
CSAttention 31.2 344 293 378 25.1 324
PQCache 29.8 333 277 378 223 31.5
H20 29.9 329 28.0 338 27.9 31.5
SparQ 26.2 276 254 300 223 27.8
MagicPig 29.2 295 290 318 26.9 294

Table 2: LongBench v2 evaluation results on Llama-3.1-8B.

trieval mechanism effectively preserves near-full model accuracy even at very high sparsity levels.
Furthermore, CSAttention maintains strong performance on Easy and Short tasks (surpassing other
sparse methods) while demonstrating particular strength on challenging Hard and Long tasks. It
method improves Hard performance from 28.3 (Full) to 29.3 and Long from 30.6 (Full) to 32.4,
suggesting enhanced capability for complex, long-context tasks.

Stability at 95% sparsity. Across all three backbones, the gap between CSAttention and Full on
the macro average is < 0.37 points, and exactly zero for Mistral-7B. Moreover, CSAttention’s per-
task variance is modest: it avoids catastrophic failures observed in some baselines (e.g., pronounced
declines on M-News or cross-lingual QA). Combined with the length-bucket analysis, these results
support the claim that subspace partitaion + centroid-scoring in (Q-space maintains high recall of
truly relevant keys under very high sparsity, delivering accuracy that is indistinguishable from Full
in practice.

4.3 EFFICIENCY

Schedules. We report three CSAttention schedules that trade sparsity and search frequency while
maintaining near-full accuracy (cf. Appendix : 0.05-step-1 keeps 5% tokens (95% sparsity) and
searches every step; 0.20-step-8 keeps 20% tokens and searches every 8 steps; 0.15-step-4 keeps
15% tokens and searches every 4 steps.

Decode throughput under CPU+~>GPU mode. As illustrated in Figure 3] (Left), once the index is
preloaded, CSAttention attains state-of-the-art decode throughput in the CPU<+GPU setting and the
advantage grows with context length. Using the best CSAttention schedule at each length, speedups
over baselines are:

« vs. PQCache: 2.95x (8K), 4.35x (16K), 5.60x (32K), 9.40x (64K), 8.26x (128K).
« vs. MagicPig: 1.51x (8K), 2.14x (16K), 3.41x (32K), 3.98x (64K), 7.85x (128K).
e vs. SparQ: 1.25x (8K), 2.32x (16K), 5.78x (32K), 10.3x (64K), 17.9x (128K).

* vs. HyO (strong baseline), near parity at short lengths and consistent gains thereafter:
0.88x (8K), 0.97x (16K), 1.13x (32K), 1.16x (64K), 1.33x (128K).

These results validate the intended deployment pattern of offline prefill + online decode: a single
offline build enables substantially higher online throughput, and the gap widens with longer contexts
because CSAttention’s per-step work scales with fixed table sizes rather than total history.

Decode throughput under All-GPU mode. Figure [3| (Right) compares Full attention with the
three CSAttention schedules under an all-GPU backend. CSAttention consistently outperforms Full
attention across all context lengths, with the performance advantage emerging early and grow-
ing substantially as sequence length increases: 1.16x speedup at 8K, 1.22x speedup at 16K,
1.81x speedup at 32K, 3.31x speedup at 64K, and 4.24x speedup at 128K. The performance
gains arise from replacing O(N) dense inner products with fixed-size list lookups and device-side
union-reduce—Top-K kernels (cf. Section[3.3]), whose cost is insensitive to history length.
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Figure 3: Long-context decode efficiency. Left: CPU<«+>GPU mode; Right: All-GPU mode.

5 RELATED WORK

Attention serves as the core mechanism in Transformer models (Vaswani et al., [2017). Standard
attention matrices exhibit inherent sparsity, wherein a large fraction of the computed weights are
close to zero and can be pruned without significant impact on output quality (Zhang et al., 2025b).
By exploiting this sparsity pattern, sparse attention methods achieve significant improvements in
computational efficiency (Zhang et al.l 2025¢; [Liu et al.| [2024; Desai et al., [2024). Based on the
mechanism for selecting attention tokens, sparse methods can be categorized into two types: static
methods, which rely on a predefined sparsity pattern based on empirical observations to fix the
computational tokens (Xiao et al.l [2024b} [Fu et al., 2025} Zhu et al.| 2024} Xiao et al., |[2025)), and
dynamic methods, which adaptively determine these tokens during decoding according to the real-
time distribution of queries and keys (Zhang et al.| [2023} | Xiao et al., 2024a; |Jiang et al., 2024; Ribar,
et al.| 2024; Tang et al.| 2024; |Chen et al., 2024} [Zhang et al., |2025a}; [Singhania et al.} 2024)). While
static methods offer straightforward implementation, their fixed token selection patterns may lead to
limitations in capturing long-range dependencies, as well as the potential loss of critical intermediate
information (Hu et al.| 2025} |Tang et al., 2024).

Dynamic sparse methods have attracted much attention due to their flexibility and adaptability.
Quest (Tang et al.| [2024) and InfLLM (Xiao et al.,[2024al) adopt a similar strategy: they partition the
KV cache into blocks and generate a representative key vector for each block to facilitate efficient
searching. SparQ (Ribar et al., [2024)) and Loki (Singhania et al.| 2024) estimate the Top-K most
relevant keys for a given query by performing dimensionality reduction. H,O (Zhang et al., 2023)
maintains a fixed-size KV cache during decoding by dynamically evicting tokens. MagicPig (Chen
et al., 2024), RetrievalAttention (Liu et al., 2024}, HashAttention (Desai et al., |2024), and PQ-
Cache (Zhang et al.l 2025a)) adopt vector search techniques—such as learning to hash, locality-
sensitive hashing, and graph—to efficiently retrieve critical tokens. Our proposed CSAttention also
falls into the category of dynamic sparse methods, exhibiting superior efficiency and effectiveness
in LLM inference compared to existing techniques.

6 CONCLUSION

In this paper, we introduced Centroid-Scoring Attention (CSAttention), a training-free sparse atten-
tion method for efficient LLM inference. CSAttention ensures the reliable recovery of high-scoring
keys under very high sparsity by mitigating the query-key distribution shift through subspace par-
titioning and query-centric table construction. Extensive experiments demonstrate that compared
to state-of-the-art sparse attention methods, CSAttention maintains near-lossless model accuracy
while achieving higher inference speed in high-sparsity and long-context scenarios, demonstrating
its practical value for scalable long-context inference.
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MQA-E MQA-Z NarQA M-News Musique Trec Samsum TrivQA P-Ret Hotpot G-Rep LCC LSHT VCSum Avg
Full 55.54 62.87 2991 27.16 30.89 72.50 43.75 91.65 100.00 56.16 3526 64.89 46.00 17.16 5241

0.05step1  56.02 62.01 30.46 26.38 31.11 7150  44.16 9195 9950 5594 3360 63.33 45.00 17.63  52.04
0.05step2  53.98 60.91 28.99 26.05 30.09  70.50  42.18 90.05 9750 5403 3156 6321 45.00 17.32 50.81
0.15step4  54.97 62.04 30.28 26.95 3072 71.00  44.43 91.89  99.00 55.64 33.84 63.12 4450 16.78  51.80
0.20 step8  54.99 62.50 29.84 26.41 3143  72.00 4398 91.87 98.50 5551 3357 62.88 45.50 17.23  51.87

Table 3: Task-level accuracy on LongBench for CSAttention schedules (Llama3 8B). Schedules are
denoted as “keep ratio + search period”: 0.05-step-1 keeps 5% tokens and searches every step; 0.15-
step-4 keeps 15% and searches every 4 steps; etc. All schedules are accuracy-stable relative to Full;
macro-average gaps are < 0.6 points.

A ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

A.1 SCHEDULES EVALUATION

Efficiency. As shown in Figure [3] (Right, All-GPU mode), at 8K-16K context lengths, the lower
search frequency of 0.20-step-8 yields the highest throughput. Beyond 32K, however, 0.15-step-4
and 0.05-step-1 become preferable as their stronger recall translates into better final throughput un-
der the same token retention budget. Under the CPU+>GPU mode (cf. FigureE](Left)), less frequent
searching reduces control traffic and amortizes host-side list merging along with PCle H2D trans-
fers of gathered KV (only the selected K=pS' vectors are moved). Consequently, schedules such
as 0.15-step-4 and 0.20-step-8 deliver higher throughput at short to medium lengths, whereas 0.05-
step-1 dominates at very long contexts by maximizing recall under a fixed token keep rate. Notably,
all CSAttention scheduling variants maintain near-lossless accuracy compared to Full attention (cf.
Table [3), allowing schedule selection to be driven primarily by throughput considerations for any
given context length requirement.

Performance. Table [3|reports task-level accuracy on LongBench for several CSAttention sched-
ules under identical model and data settings. Three observations emerge. (i) Near-full accuracy at
95% sparsity. 0.05-step-1 (keep 5%, search every step) attains an average of 52.04, within 0.37
points of Full (52.41), and tracks Full closely across QA, summarization, and retrieval tasks. (ii)
Infrequent search preserves accuracy. Leveraging the empirical locality that consecutive tokens
tend to share similar attention patterns, both 0.15-step-4 (keep 15%, search every 4 steps; 51.80)
and 0.20-step-4 (keep 20%, search every 8 steps; 51.87) remain within < 0.61 points of Full on
the macro average, with no catastrophic drops on any task. (iii) Robustness vs. PQ-style retrieval.
Even at the most aggressive sparsity, 0.05-step-1 matches or exceeds the accuracy typically observed
for PQCache-like methods at comparable keep budgets (cf. Section[d.2), reflecting the stability of
subspace partition and query-space centroid-scoring.

A.2 PREFILL LATENCY.

As illustrated in Figure ] CSAttention invests additional computation during the prefill stage to
construct its query-centric tables. This upfront cost, which is offline and incurred once per shared
prompt and amortized over subsequent decoding steps, is a deliberate design trade-off to achieve the
significant acceleration and robustness observed during online decoding (cf. Figure [3).

B COMPLEXITY ANALYSIS

Notation (recap). We use column vectors and (-, -) for inner products. Hidden size per head is d,
partitioned into m subspaces with sizes {d;}}" ; and Z;":l dp = d. Sequence length is N (number
of cached keys/values so far). Each subspace has C' centroids; for centroid (b, j) the offline list
length is

L = aN, ac(0,1).

At decode we keep K = pN keys (p € (0,1)). Tables are (Ij(b), V;b)) with indices in int32
(4B) and scores in fpl 6/bf16 (2B). Unless otherwise stated, complexities are per head, per layer;
extension across layers/heads is linear. We denote by I the number of mini-batch k-means iterations
used for subspace clustering during prefill (we use /=10 by default on GPU).
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Figure 4: Long-context prefill latency. Left: CPU«++GPU mode; Right: All-GPU mode.

B.1 PREFILL.
KYV cache baseline. For one head in one layer, dense KV storage for length IV is
KV_bytes = 2dB- N,

where the factor 2 accounts for K and V, and B € {2,4} is bytes per element (fp16/bf16 or fp32).
Across layers the footprint scales linearly with N and dominates device memory at long context.

Index (tables) footprint with L = aN. Per head, our lists store mC(aN) entries (each 6B for
int32 index + £pl6 score), plus subspace centroids:

mC (aN)-6 + mCdy -2 bytes.
— ——
lists (linear in N') centroids (independent of V')

Comparing the linear-in-N terms per head gives the ratio

3mCa
table bytes 6mCoa 5d B = 2 (fp16/bf16),
B ) 3mC
KV bytes 2dB TZd a’ B = 4 (p32).

Thus the table’s linear coefficient is controlled by mCa/d. In the CPU<++>GPU mode lists reside
in DRAM; in the All-GPU mode feasibility is governed by HBM headroom (we choose (C, )
accordingly). Centroids contribute only O(mC D) bytes and are small.

Prefill time. Per subspace, centroid—key scoring multiplies K ¢ RN*% with (C®)T ¢
R%*C costing O(NCdy), followed by Top-L selection per column in O(N) expected time (radix-
/selection kernels). Summed over m:

Torefil = O(INCd) + O(NCd) + O(NC’m),

dominated by subspace k-means (I iterations). Serialization writes O(mCalN) list entries (linear
in V). Prefill is a one-time cost per shared prompt and is amortized across requests.

B.2 DECODE.

Let U be the union of indices retrieved from the m lists at a step; with L = aN,

U] < mL = maN.
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All-GPU complexity. Per query (per head):

Nearest centroid (cosine GEMV) :  O(Cd),
Concat/sort/segment-sum over U :  O(maNN),

Device Top-Kon U : O(maN) (radix-select),
Sparse attention on K = pN : O(pN d).

Hence

| Tucru(N) = O(Cd) + O(maN) + O(pNd) |

Dense attention per step is O(Nd). CSAttention replaces it by a linear form with a smaller coeffi-
cient, ((ma) + (pd))/d, provided («, p) are moderate.

CPU+GPU complexity and bandwidth (asynchronous). On the host, the bounded search is a
linear merge/reduce over ma.N elements:

Tcpu-search = O(maN)

Gather moves only the selected K = pN keys/values to device; the deterministic H2D bytes per step
(per head) are
H2D _bytes/step = 2pN -d - B.

With search period P > 1 (reuse the index set for P—1 steps), the amortized host work and H2D
shrink by ~ 1/P:

T pUcarch O(%N), F2D bytes/step ~ % - 2 pNdB.

Device-side attention remains O(pNd). Because CPU search + H2D for step ¢+1 overlap with
GPU attention at step ¢ (streams/events, pinned buffers), PCle latency is largely hidden; wall time is
dominated by O(pNd).

Why the union remains small in practice. Although |U| < maN grows linearly with N, the
accumulator exploits (g, k;) = >, (¥, kgb) ). Truly aligned keys “collide” across subspaces and
rise in the index-wise sum, so moderate « suffices to saturate recall (Sec. 3). Empirically, this keeps
the index-side linear coefficient ma small, while the attention-side coefficient p controls compute

and transfer.

Space/time takeaway under long context. Online memory is dominated by the KV cache O(Nd)
per head per layer; CSAttention adds lists of size O(mCaN) (DRAM in CPU+GPU; HBM in All-
GPU) and O(mC D) centroids (negligible). Per-step time is linear in N but with reduced constants:

dense: O(Nd) = CSAttention: O(maN) + O(pNd) (+O(Cd)).

With typical settings (e.g., p ~ 0.05, « € [0.2,0.4], m small), decode cost and H2D traffic are
substantially smaller than dense, and the one-time prefill/index overhead is amortized across many
decode steps and many requests that share the prefill.

C LLM USAGE

In the research process for this work, the authors used large language models (LLMs) for text pol-
ishing and writing assistance. After using these tools, the authors reviewed and edited the content
as needed and take full responsibility for the publication.
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