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Abstract

Consider the following task taught in introductory optimization courses which
addresses challenges articulated by the community at the intersection of (generative)
Al and OR: generate the dual of a linear program. LLMs, being trained at web-
scale, have the conversion process and many instances of Primal to Dual Conversion
(P2DC) at their disposal. Students may thus reasonably expect that LLMs would
perform well on the P2DC task. To assess this expectation, this paper introduces
DUALSCHOOL, a comprehensive framework for generating and verifying P2DC
instances. The verification procedure of DUALSCHOOL uses the Canonical Graph
Edit Distance, going well beyond existing evaluation methods for optimization
models, which exhibit many false positives and negatives when applied to P2DC.
Experiments performed by DUALSCHOOL reveal interesting findings. Although
LLMs can recite the conversion procedure accurately, state-of-the-art open LLMs
fail to consistently produce correct duals. This finding holds even for the smallest
two-variable instances and for derivative tasks, such as correctness, verification,
and error classification. The paper also discusses the implications for educators,
students, and the development of large reasoning systems.

1 Introduction

Large Language Models (LLMs) have garnered significant interest for their potential to serve as
always-available personalized education assistants, automating time-consuming tasks such as tutoring
and grading in STEM education. To fully realize this potential, however, LLMs must demonstrate
the ability to reliably execute detailed multi-step procedures. In particular, real-world tasks are often
nuanced, making attention to detail paramount to success — a higher bar than plausible-looking text.

This paper proposes the relatively simple primal-to-dual conversion (P2DC) task as a benchmark
to evaluate whether LLMs can execute detailed procedures reliably. P2DC is an interesting task
for several reasons. (1) P2DC is commonly taught in introductory optimization courses. (2) LLMs,
being trained on a web scale, have the conversion process and many instances of Primal to Dual
Conversion (P2DC) in their training corpus. Indeed, when asked directly how to do P2DC, most
LLMs respond with a correct strategy. (3) P2DC requires a clear understanding of the procedure,
since there are many ways to obtain a dual. (4) P2DC captures several challenges recently articulated
at the intersection of (generative) Al and OR, including the verification of optimization models, the
availability of datasets, and the design of evaluation criteria and methodologies [1]]. (5) P2DC is also
an inherently structured task since the input and output are linear programs which can be represented
in different formats (e.g., JSON, XML, MPS files). This makes the P2DC task an attractive test-bed
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Figure 1: The P2DC task of DUALSCHOOL.: it illustrates the primal-to-dual conversion, the canonical
representation of linear programs and the evaluation using CGED, which is the concatenation of the
canonicalization step and the Graph Edit Distance comparison.

for reasoning models specialized to structured data, a relatively under-studied but extremely valuable
competency.

Because of the simplicity of P2DC and the availability of the P2DC instructions and instances in the
training corpus of LLMs, students in optimization classes may reasonably expect that LLMs would
perform well on the P2DC task. To assess this expectation, this paper introduces DUALSCHOOL, a
comprehensive framework for generating and verifying P2DC instances. To generate P2DC instances,
DUALSCHOOL leverages automatic symbolic dualization, converting new synthetic and existing
primal-only datasets (e.g. NLP4OPT [2]], ComplexOR [3], and EasyLP [4])), to P2DC datasets. To
enable automatic evaluation, DualSchool includes a graph-based equivalence detection algorithm
called Canonical Graph Edit Distance (CGED). CGED is similar to the NGED algorithm of Xing
et al. [5]], but it adds a crucial pre-processing canonicalization step specifically designed to allow for
differences in dualization procedure conventions. As such, DUALSCHOOL overcomes the limitations
of existing validation techniques in the optimization setting which are either overly restrictive or overly
permissive. Indeed, existing validations either force particular convention choices or forget much of
the problem structure, complicating their use in post-training techniques to improve performance (e.g.,
(6L [7]). P2DC is illustrated in Figure[I} which exemplifies the canonical form used for comparing
linear programs.

Preliminary experimental results with DUALSCHOOL reveal interesting findings: they show that the
P2DC is surprisingly challenging for leading open LLMs. This discrepancy — being able to recite the
procedure but not carry it out reliably — underscores a critical limitation of LLMs: they yield duals
with mistakes that may be minor in terms of token count but are clearly wrong (e.g., an unbounded
dual for a feasible primal). These findings hold even for the smallest two-variable instances and for
derivative tasks, such as error correction, error classification, and verification. In CORRECTION, the
LLM is asked to correct the error; in CLASSIFICATION, the LLM is asked what the error is; and in
VERIFICATION, the LLM is asked if the primal-dual pair is valid.

The main contributions of this paper can be summarized as follows:



1. The paper proposes DUALSCHOOL, a comprehensive framework to evaluate the reliability
of LLMs for a relatively simple optimization task, whose instructions are widely available.
The multi-task framework includes the P2DC (primal to dual conversion) task and derivative
tasks CORRECTION, CLASSIFICATION, and VERIFICATION.

2. The paper designs a robust automatic evaluation using a Canonical Graph Edit Distance
(CGED) algorithm that simultaneously allows for differences in dualization convention
while robustly checking the correctness of all problem data.

3. The paper is associated with a repository of open data and code: over 1,300 primal-dual
pairs as well as error-injected variants for each are published alongside the paper, including
the code to automatically generate more samples if needed.

4. Experimental results show that P2DC is a compelling challenge despite its simplicity, as
state-of-the-art open LLMs struggle even for very small instances. P2DC, and its derivative
tasks, also address several challenges recently articulated at the intersection of (generative)
AT and OR [1]].

The rest of the paper is organized as follows. Section[2]discusses related work. Section[3introduces the
P2DC task and Section ] introduces the CGED algorithm. Then, Section [5 presents the experimental
results and Section [6] concludes the paper.

2 Related Work

This section reviews related work at the intersection of large language models and optimization.

LLMs for Optimization Recent years have witnessed a surge of interest in leveraging large
language models (LLMs) for various optimization tasks (LLM4OPT). Notable examples include
natural language modeling [8, 13| 2], where LLMs are given a natural language description of an
optimization problem and are asked to formulate it, conversational interfaces to configure and
customize existing models [9} [10]], algorithmic configuration for cutting plane subroutines in MILP
solvers [11], explaining infeasibilities [12], and even solving optimization problems directly [13]].
These efforts highlight the growing recognition of LLMs as a versatile tool that can be applied beyond
traditional natural language processing tasks and into the realm of mathematical optimization.

Evaluation Methods Despite the increasing attention, existing work in this area primarily rely
on the optimal objective value as the sole criterion for evaluating correctness of LLM-generated
optimization formulations. This approach has inherent limitations, as it can silently ignore major
errors in the formulation such as missing or incorrect constraints/variables if those errors happen to
not affect the optimal value. The problem of equivalence detection between different optimization
formulations remains largely under-explored. [S]] shows that their normalized graph edit distance
(NGED) more closely aligns with human assessments of correctness than token and optimal-value
based evaluation. However, in the context of P2DC, the direct use of NGED results in many false
negatives due to benign conventional differences, while optimal value yields many false positives.

LLM for Education and Tutoring The potential of LLMs in education and tutoring has attracted
significant interest with several recent works exploring their use in personalized learning and auto-
mated assessment. [[14] investigates the use of LLMs in personalized tutoring systems. Benchmarks
such as MathTutorBench [15] have been developed to evaluate the capabilities of LLMs in educa-
tional settings, and case studies such as [[16] and [[17] explore their potential in physics and power
engineering education respectively.



3 Primal-to-Dual Conversion

This section introduces P2DC, the main task of DUALSCHOOL. A linear program (LP) is a constrained
optimization problem with linear objective and affine constraints, i.e., a problem that can be stated as

;IGl]%}L cx (1a)
st. ajx<b; Vi€ I (1b)
a] x> b; Vi € I (1c)

a] x = b, VjeI (1d)

where x € R" is the vector of decision variables, ¢ € R™ is the objective vector, a; € R™ are the
constraint coefficient vectors, and b; € R are the constraint right-hand-sides. Any x which satisfies
(1), and (Id) (i.e., a feasible x) provides an upper bound on the optimal value of the LP. Any
feasible solution to the dual of an LP, which itself is an LPE], provides a lower bound on the optimal
LP value. Moreover, in many practical applications, dual programs often have useful interpretations,
as demonstrated in the example below. Readers are referred to Nemirovski [18], Section 1.3] for a
detailed introduction to linear programming duality.

Example: Production Planning Consider the production planning problem where a factory
manager is tasked with finding the most profitable production plan given a fixed amount of resources;
wood (W) and steel (.5). In this example, the factory can produce a number of doors (d) and tables
(), each using varying amounts of resources. All products are sold for a profit, pg for doors and p;
for tables. The amount of wood (resp. steel) needed to produce a door is denoted by a,,q4 (resp. asq)
and likewise the amount of wood (resp. steel) needed to produce a table is denoted by a.,; (resp. as).
The full formulation is stated below as Model 2] The dual of this program, given below as Model [3]
is known as the resource-valuation problem [[19], with variables y,, and y, denoting the so-called
“shadow-price” of wood and steel respectively.

max pad + pit min - Wy, + 5ys
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Gsqd + agt < S tYw + AstYs = Pt
d>0, t>0 Yw =0, ys 20

Performing this transformation — converting Model [2]to Model [3] - is the main task in DUALSCHOOL,
called Primal-to-Dual Conversion (P2DC). Note that there exists several different procedures for
deriving the dual of an LP; the most common methods are summarized in Appendix [A.T] The dual
program is not unique in that there exist different procedures and convention choices that can yield
different, but valid, dual programs. For instance, consider Model E} that differs from Model E] only in
its use of slack variables z; and z; to convert the inequality constraints to equalities. In the context
of P2DC, one may arrive at Model ] if dualizing by first converting the primal to the standard form
min ¢’z s.t. Az < b then writing the dual as max b’y sit. ATy =¢, y > 0.

min Wy + Sys
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Models [3| and |4] are both considered “correct” duals of Model |2} This complicates equivalence
detection, since directly applying NGED on the graphs corresponding to Models [3|and 4] would result
in a non-zero edit-distance due to the missing slack variable nodes, missing edges denoting the slack
constraint coefficients, and changed constraint senses. Thus, in the context of P2DC, it is important
to use a “convention-invariant” matching procedure that explicitly treats such differences. Section ]
expands on the shortcomings of existing approaches and proposes a new metric, Canonical Graph
Edit Distance (CGED), that meets the requirements of the P2DC setting.

“The dual program corresponding to Model is stated in Appendix as Model



4 Automatic Evaluation for P2DC

This section begins by explaining why existing evaluation methods are insufficient to determine
the correctness of a candidate dual in the P2DC setting. It then proposes a correctness detection
algorithm that extends that of Xing et al. [5] in order to enable a “convention-invariant” matching of
the candidate dual program to a known correct dual formulation obtained by automatic dualization.

NER-based matching Several prior works [2, 20} 21], including the NLAOPT “generation” sub-
task, use a declaration-level accuracy [2, Equation 2] that matches tokens within declarations.
Although, compared to a naive token-matching, this metric allows to handle permutations of declara-
tions, it cannot handle basic symmetries that are either within declarations, such as the order of terms
in a constraint, or span across multiple declarations, such as variable sign convention.

Optimal Value Most prior work uses an optimal value check, often referred to as execution accuracy,
to establish the correctness of a given formulation [8, 22]]. Although this is a necessary condition
for correctness, it often yields false positives. For example, if the formulation omits a constraint that
is not tight at the optimal solution, the optimal value check will still mark the formulation correct.
Furthermore, in the P2DC setting, simply echoing back the primal model always gives the same
objective value, even for problems which are not self-dual (due to strong duality). This makes the
optimal value check easy to “reward-hack” [23|], limiting its applicability as a reward signal.

Polyhedral congruence and isomorphism Since the feasible set of an LP is a polyhedron, poly-
hedral computation libraries, e.g., polymake [24], can be used to evaluate whether the polyhedra
corresponding to the candidate and ground truth feasible sets are congruent or isomorphic. However,
checking congruency does not fit the P2DC setting since, although it does treat permutations and
variable sign convention differences and, in some cases it may be useful to forget constraint scaling
and redundant constraints, polyhedral congruence also allows for arbitrary transformations such as
rotation and translation, breaking the primal-dual correspondence. Similarly, polyhedral isomorphism
is not a good fit since it verifies only the incidence structure of the polyhedron, effectively forgetting
most of the structure imposed by the problem data.

Graph Edit Distance Recent work in ML for optimization use graph representations of optimization
problems [25, 26]. Xing et al. [S]] proposes to use graph edit distance (GED) algorithms on these
graph representations to evaluate equivalence between a candidate and a ground truth program. Their
method, called NGED, is attractive due to its ability to handle variable and constraint permutations.
Furthermore, GED is a rich reward signal in that it outputs not only a boolean value but the optimal
edit path between the two formulations. However, NGED is still overly restrictive in the P2DC setting
since dualization procedures and conventions can result in dual programs that have different graph
representations, i.e. additional variable nodes and edges when slack variables appear. Thus, directly
applying NGED is too restrictive for P2DC.

Finally, note that each of these metrics rely on successful parsing of the LLM output into the required
representation for comparison, e.g. XML for NER or the bipartite graph for GED. In cases where the
parser fails due to incorrect formatting of the LLM response, the paper deems the formulations not
equivalent. However, as shown in Section [3] the vast majority of responses are correctly parsed.

4.1 Canonical Graph Edit Distance

This paper proposes the Canonical Graph Edit Distance (CGED) for correctness detection: it modifies
the NGED method to include a canonicalization step in order to control for variations in dualization
procedure. In particular, the paper notes that these convention differences result in (combinations of)
two kinds of “symmetries” in the dual programs: variable sign and slack variables. Although NGED
itself includes some canonicalization such as converting the objective sense to minimization and
single-sided inequalities to less-than sense, it fails to treat these convention differences, leading to
many false negatives as demonstrated in Section[5} The following paragraphs describe the proposed
modifications in detail.

Slack variables As demonstrated using Models [3]and ] in Section [3] slack variables appear in the
dual when the dualization procedure treats primal variables as free, either by explicitly including their



bounds in the main constraints or due to the particular standard form or ruleset used. The correction
detection algorithm treats these convention differences by eliminating the resulting slack variables.
Equation (3)) demonstrates such an elimination.

min xp -+ o .
min xp + Io
st. z14+220+5=1 — (®)]
st. 1 F+a22>1
s<0

Variable Sign The second common symmetry that arises due to variations in dualization convention
is variable sign, since as pointed out in Step 2 of the Lagrangian dualization method in Appendix
the sign constraint given to a dual variable only has to match how the corresponding constraint’s
residual is formed. In other words, as long as the memorized procedure/standard form/ruleset is
consistent, the dual variables can be given any sign, including free variables (corresponding to equality
constraints in the primal). For instance, the programs in Equation [6]are deemed equivalent for the
purposes of P2DC.

min  x1 + 29 min  —x) + 22
S.t. x1+ 20 2>1 = st. —r14+a>1 6)
120, 2220 zh <0, 29>0

To establish equivalence up to variable sign, both the candidate and ground truth are reformulated to
convert variables whose bound constraint reads < u to x > —u by flipping the sign of its constraint
and objective coefficients. In order to allow for sign convention differences in free variables and those
with double-sided finite bounds, CGED exploits the variable permutation property of GED by using
the difference-of-positive variables transformationz € R = x =zt — 2=, 2 >0, 2~ > 0.
An example for the double-sided finite bounded variable case is given in Appendix [A.2.1]

When these modifications are used as pre-processing steps for GED, the overall procedure is able to
recognize the correctness of a dual even if it differs from the ground truth in the following ways:

1. Objective sense — flipping the objective sense is allowed as long as all objective coefficient
signs are also flipped. In P2DC, this corresponds to a common post-processing that is
applied if, for instance, all the objective coefficients are negative.

2. Inequality sense — flipping the sense of an inequality is allowed as long as the signs of
the coefficients and RHS are also flipped. In P2DC this corresponds to a common post-
processing that is applied if, for instance, all the problem data in a constraint is negative.

3. Variable and constraint permutation — reordering constraints and variables is allowed.

4. Slack variables — using slack variables to turn inequalities into equalities is allowed. In
P2DC, slack variables appear in the dual when treating primal variables as free.

5. Variable sign — flipping the sign of a variable is allowed as long as the sign of its con-
straint and objective coefficients are also flipped. In P2DC, this corresponds to a common
convention choice when defining dual variables associated with primal inequality constraints.

Note that although CGED is designed specifically for the P2DC setting, the canonicalization proce-
dures can be used more broadly to detect equivalence between formulations or as a normalization
procedure for systems that take a linear program as input. For other applications, it is important to
consider exactly what should be preserved and what should be forgotten. In particular, due to its
specialization to P2DC, CGED does not treat several symmetries which may be natural to forget in
other areas such as scaling of variables or constraints and variable substitutions.

S Experiments

This section describes the experiments conducted to evaluate the performance of leading open LLMs
on the DUALSCHOOL dataset.

Benchmark Instances DUALSCHOOL comprises over 1300 LP instances drawn from three main
sources: (1) two dimensional LPs from bounded toy poltyopes, (2) continuous relaxations of small-
scale combinatorial optimization instances and (3) LP instances from prior work on natural language



Table 1: Mean (max) number of variables and constraints for each dataset.

ComplexOR[3] EasyLP [4] NL4OPT[2] NLP4LP[S] 2D CO-Small

Variables 4.10) 2.8(5) 2.03) 2.2(6) 202 3.9()
Constraints 4.5 (12) 4.3 (14) 29(5) 3.1(6) 5.7(12) 3.5(6)
Instances 15 585 205 266 108 140

modeling benchmarks[24} 8]. For each instance, DUALSCHOOL includes ground-truth duals gener-
ated using symbolic dualization [27]]. For the CORRECTION, VERIFICATION, and CLASSIFICATION
tasks, DUALSCHOOL also includes duals with (labeled) errors; the error types are described in
Appendix [C] Table[I] summarizes the data sources.

Language Models Due to resource limitations, the experiments consider only small and medium-
sized open-weight LLMs. The models are evaluated in both the zero-shot and one-shot in-context
learning settings. Readers are referred to Appendix [A.3]for more details about model configurations
and compute resources.

Evaluation Pipeline For GENERATION and CORRECTION, the LLM is prompted to produce
gurobipy code that formulates the dual. The code is executed in a sandbox environment to create
the gurobipy.Model object which is then written to MPS for evaluation. That MPS file is then
compared to that of the ground truth dual using NGED [5]], OBJ [8, 22], and the proposed CGED
(Section[). Instances that crash or cannot be parsed are counted as incorrect. For the VERIFICATION
and CLASSIFICATION tasks, two methods for extracting an answer from the LLM response are tested:
1) XML from free-flow output and 2) enforced JSON schema/’| Problems are rendered to the model
in I&TEX using the prompt template described in Appendix

The DUALSCHOOL tasks have two kinds of outputs: models (GENERATION and CORRECTION) and
choices (VERIFICATION and CORRECTION). For tasks with model outputs, three metrics are reported:
the canonical graph edit distance (CGED) from SectionE]> the normalized graph edit distance (NGED)
from Xing et al. [S]], and the objective-match (OBJ). Each of these is reported as an accuracy, i.e. how
often the edit distance to the ground truth dual is equal to zero. For tasks with choice outputs, the
classification accuracy is reported, i.e. how often the LLM chose the correct choice.

5.1 Results for P2DC GENERATION

Table E]reports the CGED, NGED, and OBJ accuracies across four benchmark datasets under both
0-shot and 1-shot prompting conditions. The Execution accuracy (Exec%) column reports the
percentage of instances for which the LLM code successfully produced an MPS file. Overall, even
though Exec% is high for most models, no model reliably produces correct duals — even when
prompted with small, synthetic instances. The best-performing model, Phi 4 - 14B, reaches 47.8%
CGED and 53.7% objective accuracy on the NL4OPT samples in the O-shot setting. Due to space
limitations and relatively poor performance, the results for the instances coming from CO small and
Easy LP are presented in Appendix [A.3]in Table[d]

In all cases, OBJ consistently exceeds CGED. This highlights a key pitfall of objective-based
evaluation: LLMs often produce duals with the correct objective value but incorrect or malformed
structure. Based on an informal analysis of samples in this category — CGED is nonzero while
OB is true — the most common mistake is omitting a (dual) variable bound that happened to be
redundant. Conversely, NGED is too restrictive in this setting, giving consistently lower scores than
CGED. These results underscore the need for convention-invariant evaluation like CGED in the P2DC
setting. Surprisingly, one-shot prompting provides no consistent benefit and occasionally degrades
performance (e.g. Phi-4 drops from 35.7% to 28.6% on the COMPLEXOR samples), suggesting
limited applicability of in-context learning in the P2DC setting.

Susing the Structured Outputs feature in Ollama https://ollama.com/blog/structured-outputs
SISTEX is generated using https://jump.dev/JuMP.j1/stable/manual/models/#Print-the-model
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Table 2: Aggregated accuracy results for the GENERATION task

ComplexOR NL4OPT NLP4LP 2D
Model Prompt Exec% NGED OBJ CGED NGED OBJ CGED NGED OBJ CGED NGED OBJ CGED
Mistral 7B 0-shot 24.8 0 0 0 0 0 0 0 39 0 0 115 0
1-shot 225 0 500 O 0 0 0 0 33 0 0 77 0
Phi 4.14B 0-shot 99.1 7.1 500 357 244 537 478 105 468 308 1.0 57 1.0
1-shot 99.7 7.1 429 286 20 345 276 290 340 189 140 187 14.0
Gemma 3.128  0-shot 69.9 0 0 0 06 37 30 0 46 0 0 85 0
- 1-shot 9.5 0 0 0 0 0 0 0 30 0 0 58 0
0-shot 937 0 0 0 0 31 05 13 35 18 0 19 0
Qwen2.5-7B | hot 94.2 0 0 0 0 0 0 0 18 0 0 29 0
Qwen2.5-14p  O-Shot 92.2 71 143 7.1 43 207 13.6 27 109 36 0 21 0
: 1-shot 93.6 0 0 0 0 0 0 0 31 04 104 236 104
Llama 3188 O-shot 94.8 0 0 0 0 17 L1 0 14 0 0 66 0
: 1-shot 95.3 0 0 0 0 0 0 0 46 14 0 97 0
Liama 33708 0-shot 73.8 167 417 250  17.0 458 399 82 306 189 0 111 0
ama 3.5+ 1-shot 100.0 0 214 143 0 190 176 04 248 16.0 19 65 19

5.2 Results for P2DC CORRECTION

Figure [2]reports the performance of LLMs on the CORRECTION task. All models struggle to reliably
repair the incorrect duals, with accuracies below 60% across all models and error types. Similarly to
the GENERATION task, the Phi 4 and Llama 3.3 models outperform the others. These uniformly low
accuracies — even on error types that are relatively easy to detect as shown in the next section — reveal
that CORRECTION is essentially just as challenging as GENERATION for the open LLMs considered.
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Figure 2: Accuracy for the CORRECTION task by model and error type.

5.3 Results for P2DC VERIFICATION and CLASSIFICATION

Figure3]reports the accuracies for the primal—dual pair VERIFICATION task (left) and the CLASSIFICA-
TION task (right), with a red dashed line denoting the random-guess baseline (50% for VERIFICATION,
25% for CLASSIFICATION). Overall, results are slightly negative: most models cluster at or below
the random-guess baseline, reflecting limited reliability of predictions. Importantly, note that in the
VERIFICATION task, across all models there is a clear bias towards predicting “no”, resulting in high
accuracy on all but the “Correct” category (black); the only one where the right answer is “yes”. This
is even more prevalent when using structured outputs, as shown in Appendix [B]in Figure [

In the error classification task, detecting the flipped objective sense stands out as the easiest error
type, with the best-performing models achieving accuracies between 70% and 90%. However, the
more nuanced error types remain challenging with most models’ accuracies hovering near or below
the random-guess line.
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Figure 3: Accuracy for the VERIFICATION and CLASSIFICATION tasks by model and error type.

6 Conclusion

This paper introduced DUALSCHOOL, the first comprehensive benchmark for probing an LLM’s
ability to perform and critique primal-to-dual conversions in linear programming. DUALSCHOOL
combines four structured tasks (generation, verification, correction, and error classification) with a
graph-based correctness detector that goes beyond simple token matching or objective-value checks,
and is specifically designed to avoid false positives and negatives for the primal-to-dual task. Code
is published alongside the paper as well as a dataset of P2DC samples based on both synthetic and
real-world LPs, each including a set of duals with injected errors. Preliminary experiments using
leading open models show that the best LLMs tested achieve a best-case dualization accuracy of only
47.8%, with similarly low performance on the derivative tasks.

From an education standpoint, it is important to communicate to students, especially those without
knowledge of generative Al and its implementation, that LLMs are not in the same equivalence class
as e.g. Matlab or Julia. Although LLMs can return the "recipe" for various mathematical tasks, they
struggle to follow these recipes even for simple tasks that are expected from undergraduate students
in introductory classes. Moreover, it is important to be aware of the fact that LLM responses often
feature high-quality writing and rich formatting, making it easy to believe the response is accurate.

From a research standpoint, DUALSCHOOL provides a simple, yet meaningful benchmark to measure
progress in LLMs and reasoning systems over the next years. Furthermore, thanks to the automatic
labeling and evaluation algorithms, DUALSCHOOL can be directly used in fine-tuning methods such
as reinforcement learning with symbolic feedback [7] that can leverage rich reward signals. Future
directions include extending DUALSCHOOL to quadratic and conic formulations and evaluating its
efficacy as a fine-tuning dataset.
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A Appendix

A.1 Primal to dual conversion methods

Standard Form A common method for forming the dual of a primal program is to first memorize
a standard-form primal-dual pair, i.e. min ¢z st Az <b =— max bTy S.t. ATy =c y>0,
then convert the given primal to that standard form and apply the memorized map. If the standard
form primal memorized is Model[I] this method is coincides with SOB (modulo objective sense).
The dual of Model[Ilis included below as Model [7}

max biy; + biy; + b;y; 7a
max jezlz iYj je;geq Y5 jezz:: i Yj (7a)
st. Aly=c¢ (7b)
y; >0 Vj el (7¢)

y; <0 Vjels (7d)

y; €R Vjel- (Te)

Sensible-Odd-Bizarre Benjamin [29] describes the Sensible-Odd-Bizarre (SOB) method for re-
membering how to write the dual of a linear program. Variants of the method, i.e. table or rule-based
approaches, are widely used as a practical approach to write the dual without having to go through a
standard form. The method is summarized in Table[A.T]

Table 3: The Sensible-Odd-Bizarre method for mnemonic dualization [29]].

Primal (Dual) Dual (Primal)
Objective | Maximize ¢z (Minimize b y) Maximize b "y (Minimize ¢ )
Constraint j: Variable y; (or x;):
Sensible aszz- >b; y; =0
Odd a}r:vi =b; y; €R
Bizarre aiji <b; y; <0
Variable x; (or y;): Constraint j:
Sensible z; >0 a;y; < b;
Odd r; €R a;y; = b;
Bizarre z; <0 a;y; > by

Lagrangian Duality The Lagrangian route to deriving the dual program starts by forming the
Lagrangian function by introducing Lagrangian multipliers. The dual program is then the problem
of maximizing the infimum of the Lagrangian over the primal variables subject to the Lagrangian
multiplier sign constraints (for minimization primals).

1. Take as input the primal program Model ]

2. Form the Lagrangian by introducing multipliers y;. The example below will use the sign
conventiony; >0 Vj € I<, y; <0 Vj€I>, y; € R Vj € Z_ which corresponds to
residual convention b; — aij.

L(z,y)=c'z + Z y;-—(bj - a;x) + Z y;-r(bj - ajTac) + Z y]—-r(bj - a;x)
J€T< JET> jeT-
=bTy+aT(c—ATy)
3. Form the dual function by taking the infimum of the Lagrangian over x:
{bTy ifc—ATy=0

dly) = inf L(z,y) = —oo otherwise

zER™

"Note that the opposite sign convention can be used if using ajT:c — b; for that residual.

13



4. Maximize the dual function subject to the Lagrangian multiplier constraints:

bT
max d(y) ey
Yy
. st. ATy=c¢
st. y;, >0 Vjelc
’ - = y; >0  Vjelc

y; <0 VjeIls

y; €ER Vjel_ y; <0 Vj el

ijR Vjelo

Automatic Dualization Several software systems allow for the automatic dualization of convex
programs including YALMIP in MATLAB [30, 31]] and JuMP in Julia [32, 33]]. DualSchool uses
Dualization. j1 [27] from the JuMP ecosystem which implements a standard form-based approach.

A.2 CGED Implementation Details

Besides the canonicalization steps described in Section[d] there are several differences in how CGED
is implemented compared to the EOR [34] implementation of NGED:

1. Variable nodes have only one feature ¢; compared to the ¢;, I;, and u; in NGED. This is due
to the fact that variable bounds are included in the constraint nodes.

2. Constraint nodes have only one feature b; compared to the /;, u; in NGED since in CGED,
constraints are reformulated to aTx > b; rather than/; < aTx < uy;. This allows to consider
equivalent [; < aj r<uj < —u; <—alx< -l anda x=0b; = —aTm = —b;.
Note that the EOR [34] implementation differs from NGED as descrlbed in Xlng et al. [5]
in that the EOR version does not normalize constraints with less-than sense to greater-than.

A.2.1 Variable sign canonicalization example

The treatment of free and double-sided bounded variables in CGED relies on combining the difference-
of-positives trick with the variable permutation invariance of GED. In the case of double-sided bounds,
it also relies on the inequality sense normalization. Consider the example ground-truth and candidate
pair in Equation [§]

min ] + x2 min —x1 + o
St. x14+x2>1 = st. —xz1t+a>1 ®)
1<2:<2, 2920 —2<z1<—-1,29>0

The algorithm begins by moving the double-sided bounds to the constraints, normalizing to > sense.

min ] + x2 min —x1 + 29
St. x1+x0>1 st. —x1tay>1
1 >1 <= x> =2 “
-1 > —2 —r 21
z1 €R, 29 >0 r1 €R, 29 >0
Then the difference of positives transformation is applied to free variables.
min xi" —x] + T2 min —:171" + ] + 22
S.t. xi"—xl_—FxQZl S.t. —xf—kxl_—i-:z:ng
717—1i_+171_2*2 = ZET*ZEIE*Q (10)
xi"fxl_21 fquLxl_Zl
zf >0, 27 >0, 29 >0 zf >0, 27 >0, 29 >0

Observe that the formulations are identical when swapping = for ] and vice-versa, which corre-
sponds to a node order permutation that GED handles naturally.

Indeed, the difference-of-positives transformation can in principle be applied to all variables. Then,
all bounds can be treated as constraints, removing the need for the explicitz < u — z > —u
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canonicalization step. However, applying the transformation to all variables would introduce many
extra nodes and edges which can needlessly slow down the graph edit distance computation and
extend the optimal edit path length. Thus, CGED uses explicit canonicalization for one-side finite
bounded variables (the most common case) to only introduce additional variables when handling free
and double-bounded variables.

A.3 Additional details on experimental setup

Dataset Generation The DUALSCHOOL samples come from three sources:

1. 2D LPs: 36 canonical polytopes, each with three distinct objective vectors, ranging from
simple shapes (e.g., unit square, triangle) to more complex ones (e.g., hexagon, irregular
pentagon).

2. CO Relaxations: Seven families of combinatorial optimization instances are generated
using GECO [35]]: maximum independent set, multidimensional knapsack, maximum cut,
maximum clique, minimum vertex cover, packing, and production planning.

3. LLM4OPT-Derived LPs:

e NLP4LP ([8]): use the provided gurobipy code directly.

* NL4OPT[2]], Easy LP[4], ComplexOR[3]]: these benchmarks only supply an objective
value and prompt. Thus, Llama 3.3 is used, following [8]], to generate gurobipy
formulations for each sample. These formulations are checked using the objective
value and re-tried until there is a match. Any instance for which there is no match
within five retries is excluded from DUALSCHOOL.

LLM Configuration All models run with temperature 0.0, context window size 8192, repeat
penalty 1.1, top k 40, top p 0.9 and min p 0.05. Inference is performed via Ollamzﬁ

Compute Resources The paper used in total about 1000 GPU-hours to run LLM inference for both
the experiments presented and those run during development. The evaluations are run on CPU and
are relatively fast, adding up to only about 1 CPU-hour. All experiments were run on a node with two
Intel Xeon 6426Y (2.5GHz) CPUs and 8 NVIDIA L40S 48GB GPUs.

B Additional Experimental Results

B.1 LLMs know the procedure

To verify that the evaluated models “know” how to dualize an LP, the authors prompt and manually
evaluate each model’s response to “How do you convert a primal linear program to its dual?” Since
this prompt does not request a highly detailed response nor an example, LLMs are free to remain at
a high level where it is easier to describe a valid procedure; details such as converting correctly to
its chosen standard form are a single sentence rather than a careful subroutine implementation. In
this setting, all models evaluated produced valid procedures except for Gemma 3 - 12B which has
an incorrect sign in the objective coefficients and Mistral 7B which forgot to treat primal equality
constraints. Notably, all models used a standard form-type method, though with varying standard
forms.

B.2 Symbolic and Synthetic Verification of LLM P2DC

Although the main task of DUALSCHOOL is dualization of specific linear programs, i.e. single
instances, one may consider instead prompting the LLMs to generate code that carries out the
dualization more generically, i.e. to write Python code implementing symbolic dualization. This
section contains experimental results for such a setting, where the LLM is asked to create a function
that takes the primal problem data tuple (A, b, ¢, [, u, objective sense, constraint senses) and returns
its dual as a gurobipy model. Table[5|reports the aggregated accuracy results for this task, for both
open and closed models. Similarly to the main GENERATION task, the execution accuracy is high

$https://github.com/ollama/ollama
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Table 4: Aggregated accuracy results for the GENERATION task (continued)

CO small Easy LP
Model Prompt Exec% NGED OBJ CGED NGED OBJ CGED
. 0-shot 23.0 0 0 0 0 0 0
Mistral - 7B l-shot 213 0O 0 0 O 0 0
. 0-shot 96.2 0 0 0 8.1 248 179
Phi 4 - 14B l-shot  94.0 0O 0 0 55 129 6.0
0-shot 64.8 0 0 0 0 0.8 0
Gemma 3 -12B i o¢ 91.4 0 0 0 0 0 0
0-shot 80.9 0 0 0 0 1.5 0
Qwen25-7B | hot 893 0O 0 0 0 05 0
0-shot 84.1 0 0 0 0 5.6 0
Qwen25-14B | g0t 962 O 0 0 0 04 O
0-shot 92.1 0 0 0 0 1.0 0
Llama3.1-8B /5t 89.0 O 0 0 0 06 0
0-shot 71.0 0 0 0 35 104 35
Llama3.3-70B /5 998 0O 0 0 0 10 0
HEE Correct Il Flipped Bound Sense Missing Variable
I Flipped Constraint Sense Wrong Objective Sense Missing Constraint
100- Primal-Dual Pair Verification 100 P2DC Error Type Classification
90 90 1
80 1 80
< 701
< 601 60
@ 501 501
O 404 40 -
(@]
< 307 301
20 1 20
101 101
0 . 1® ® ® P .19 s O ®  .1® ° ® P .1® ©
AN \1 }% 190 A2 51 AN ) AN ’ \1 :&% 190 A2 51 AN
QX wes® 0@ o -Gem‘(\a e ’LQ\“ e‘\l& ok V"‘c"“a\,\a“‘&\’\a e ée(““\a e ’LQ\N e“’lf’

Figure 4: Accuracy for VERIFICATION and CLASSIFICATION DUALSCHOOL tasks when using
structured outputs.

—in fact 100% - indicating the LLMs reliably produce executable code. However, the dualization
accuracy of the produced routines is very low, with only chatGPT 4o achieving a non-zero CGED.

B.3 Common mistakes

An informal analysis reveals the following common mistakes made by LLMs in the GENERATION
task (when the response is almost correct):

* gurobipy defaults — When declaring a new variable in gurobipy, the default lower bound

is zero. Sometimes, when attempting to model z < 0, the LLM forgets to set the lower
bound to —oo, effectively adding z = 0 instead.
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Table 5: Aggregated accuracy results for the symbolic P2DC task.

Model ComplexOR NL4OPT NLP4LP Easy LP
NGED OBJ CGED NGED OBJ CGED NGED OBJ CGED NGED OBJ CGED

Claude 3.5 0 0 0 0 0 0 0 0 0 0 0 0
Claude 3.7 0 14.3 0 0 0.5 0 0 33 0 0 0 0
Gemini 1.5 Flash 0 14.3 0 0 0 0 0 0.4 0 0 0 0
Gemini 2.0 Flash 0 14.3 0 0 332 0 0 274 0 0 0 0
Genmini 2.5 Flash 0 0 0 0 0 0 0 0 0 0 0 0
Gemma3 12B 0 0 0 0 0 0 0 0 0 0 0 0
Gemma3 27B 0 0 0 0 0 0 0 4.1 0 0 0 0
Gemma3 4B 0 0 0 0 0 0 0 0 0 0 0 0
chatGPT 40 7.1 7.1 7.1 0 0.5 0 0 29 0 0 0 0
chatGPT 40 mini 0 0 0 0 0 0 0 0 0 0 0 0
chatGPT 40 mini-high 0 0 0 0 0 0 0 0 0 0 0 0
chatGPT O3 0 0 0 0 0 0 0 0 0 0 0 0
Llama3.1 8B 0 7.1 0 0 0 0 0 79 0 0 0 0
Llama3.2 3B 0 0 0 0 0 0 0 0 0 0 0 0
Phi 4 0 0 0 0 0 0 0 0 0 0 0 0
Qwen2.5 14B 0 0 0 0 0 0 0 0 0 0 0 0
Qwen2.5 7B 0 0 0 0 0 0 0 0 0 0 0 0

* Incorrect bound senses — often, the variable bound senses are consistently wrong, i.e. all
bounds are flipped compared to ground truth, but the constraint and objective coefficients
are not flipped accordingly.

* Missing dual variables — LLMs tend to forget to include dual variables corresponding to
primal variable upper bounds when there is a finite lower bound on the same primal variable.

C Error Types

To systematically inject errors into ground-truth dual programs, the paper considers the following
error types.

Wrong Objective Sense Flip the sense of the dual objective (minimize <+ maximize), without
adjusting the coefficients.

min 5z + 4xo max bxy + 4xs
s.t. 2x1+ 310 >1 = s.t. 2x1 +3x2 >1
120, 2220 120, 22 >0

Missing Variable Randomly select a variable and delete it from the model.

min 5x1 + 4xo min 5xq
s.t. 2x1+ 312 >1 — s.t. 2x1 >1
1 >0, 20 >0 1 >0

Missing Constraint Randomly select a constraint and delete it from the model.
min 5x1 + 4o
s.t. 2x1 + 310 > 1
1 >0, 220 >0

min 5x1 + 4xo
st. 120, 20>0

Flipped Constraint Sense Randomly select a constraint and change its sense.

min 5z + 4xo min bz + 4xo
S.t. 21’1 + 31‘2 > 1 — S.t. 21‘1 + 3£E2 <1
2120, 22 2>0 2120, 222>0

Flipped Bound Sense Randomly select a variable and change the sense of its bound constraint.

min  5xq + 4xo min bxi + 4xo
s.t. 2x1+ 312 >1 - s.it. 2x1 + 320 > 1
2120, 2220 2120, 22 <0
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D Prompt Formats

Figure[5includes a visualization of the prompt format used in the experiments.

prompt_template E [ primal_problem E
" You are an expert optimization Max 100 y[0] + 200 y[1] + 150 y[2]
: practitioner and mathematician. Subject t?
- Your task is to read and understand the p x[6]_lb = x[0] > 0
. primal linear program below and produce y x[1]_1b : x[1] > ©
python code for the dual linear program in y y[el_1b : yle] = o
python with gurobipy. oo oy[lllb @ y[1] > ©
o y[2]_1b : y[2] =0

Here is the given primal problem: Budget : 3 x[0] + 4 x[1] < 4

{primal_problem} Coverage_0 : -x[0] + y[0] <0
Coverage_1 : -x[1] + y[1] <0
Put all your code between two '=====' Tlines, Coverage_ 2 : -x[0] + y[2] < ©

code_format

—==== E * qmport gurobipy as gp
. from gurobipy import GRB, quicksum
. Generate the complete code, including the

dual model definition, variables, E E def create_dual_model():

constraints, objective function. | model = gp.Model("dual_model")
. It must be runnable. = # TODO: create the dual model
. Take a deep breath and think step by step - cee .

about the primal to dual conversion process. . . model.optimize()

return model

Figure 5: The prompt template used in the Section [5]experiments.
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