
Published in Transactions on Machine Learning Research (10/2022)

Distributed Stochastic Algorithms for High-rate Streaming
Principal Component Analysis

Haroon Raja haroon.raja@rutgers.edu
Department of Electrical and Computer Engineering
Rutgers University–New Brunswick, Piscataway, NJ 08854 USA

Waheed U. Bajwa waheed.bajwa@rutgers.edu
Department of Electrical and Computer Engineering
Department of Statistics
Rutgers University–New Brunswick, Piscataway, NJ 08854 USA

Reviewed on OpenReview: https: // openreview. net/ forum? id= CExeD0jpB6

Abstract

This paper considers the problem of estimating the principal eigenvector of a covariance
matrix from independent and identically distributed data samples in streaming settings.
The streaming rate of data in many contemporary applications can be high enough that
a single processor cannot finish an iteration of existing methods for eigenvector estimation
before a new sample arrives. This paper formulates and analyzes a distributed variant of
the classical Krasulina’s method (D-Krasulina) that can keep up with the high streaming
rate of data by distributing the computational load across multiple processing nodes. The
analysis improves upon the one in (Balsubramani et al., 2013) for the original Krasulina’s
method and shows that—under appropriate conditions—D-Krasulina converges to the prin-
cipal eigenvector in an order-wise optimal manner; i.e., after receiving M samples across
all nodes, its estimation error can be O(1/M). In order to reduce the network communica-
tion overhead, the paper also develops and analyzes a mini-batch extension of D-Krasulina,
which is termed DM-Krasulina. The analysis of DM-Krasulina shows that it can also achieve
order-optimal estimation error rates under appropriate conditions, even when some samples
have to be discarded within the network due to communication latency. Finally, experiments
are performed over synthetic and real-world data to validate the convergence behaviors of
D-Krasulina and DM-Krasulina in high-rate streaming settings.

1 Introduction

Dimensionality reduction and feature learning methods such as principal component analysis (PCA), sparse
PCA, independent component analysis, and autoencoder form an important component of any machine learn-
ing pipeline. For data lying in a d-dimensional space, such methods try to find the k ≪ d variables/features
that are most relevant for solving an application-specific task (e.g., classification, regression, estimation,
data compression, etc.). The focus of this work is on PCA, where the objective is to compute k-features
that capture most of the variance in data. The proliferation of big data (both in terms of dimensionality
and number of samples) has resulted in an increased interest in developing new algorithms for PCA due to
the fact that classical numerical solutions (e.g., power iteration and Lanczos method (Golub & Van Loan,
2012)) for computing eigenvectors of symmetric matrices do not scale well with high dimensionality and large
sample sizes. The main interest in this regard has been on developing algorithms that are cheap in terms of
both memory and computational requirements as a function of dimensionality and number of data samples.

In addition to high dimensionality and large number of samples, another defining characteristic of modern
data is their streaming nature in many applications; examples of such applications include the internet-of-
things, high-frequency trading, meteorology, video surveillance, autonomous vehicles, social media analytics,

1

https://openreview.net/forum?id=CExeD0jpB6

Published in Transactions on Machine Learning Research (10/2022)

etc. Several stochastic methods have been developed in the literature to solve the PCA problem in streaming
settings (Krasulina, 1969; Oja & Karhunen, 1985; Sanger, 1989; Warmuth & Kuzmin, 2007; Zhang & Balzano,
2016). These methods operate under the implicit assumption that the data arrival rate is slow enough so
that each sample can be processed before the arrival of the next one. But this may not be true for many
modern applications involving high-rate streaming data. To overcome this obstacle corresponding to high-
rate streaming data, this paper proposes and analyzes distributed and distributed, mini-batch variants of
the classical Krasulina’s method (Krasulina, 1969). Before providing details of the proposed methods and
their relationship to prior work, we provide a brief overview of the streaming PCA problem.

1.1 Principal Component Analysis (PCA) from Streaming Data

For data lying in Rd, PCA learns a k-dimensional subspace with maximum data variance. Let x ∈ Rd

be a random vector that is drawn from some unknown distribution Px with zero mean and Σ covariance
matrix. For the constraint set V := {V ∈ Rd×k : VTV = I}, we can pose PCA as the following constrained
optimization problem:

Q∗ := arg max
V∈V

EPx

{
Tr(VTxxTV)

}
, (1)

where Tr(.) denotes the trace operator. The solution for the statistical risk maximization problem (1) is
the matrix Q∗ with top k eigenvectors of Σ. In practice, however, (1) cannot be solved in its current form
since Px is unknown. But if we have T data samples, {xt}T

t=1, drawn independently from Px, then we can
accumulate these data samples to calculate the sample covariance matrix as:

ĀT := 1
T

T∑
t=1

At, (2)

where At := xtxT
t . Instead of solving (1), we can now solve an empirical risk maximization problem

Q := arg max
V∈V

Tr(VTĀT V) = arg max
V∈V

1
T

T∑
t=1

Tr(VTAtV). (3)

In principle, we can solve (3) by computing the singular value decomposition (SVD) of sample covariance
ĀT . But this is a computationally intensive task that requires O(d3) multiplications and that has a mem-
ory overhead of O(d2). In contrast, the goal in high-dimensional PCA problems is often to have O(d2k)
computational complexity and O(dk) memory complexity (Li et al., 2016).

More efficient (and hence popular) approaches for PCA use methods such as the power/orthogonal iteration
and Lanczos method (Golub & Van Loan, 2012, Chapter 8). Although these methods improve overall
computational complexity of PCA to O(d2k), they still have memory requirements on the order of O(d2). In
addition, these are batch methods that require computing the sample covariance matrix ĀT , which results in
O(d2T) multiplication operations. Further, in streaming settings where the goal is real-time decision making
from data, it is infeasible to compute ĀT . Because of these reasons, stochastic approximation methods such
as Krasulina’s method (Krasulina, 1969) and Oja’s rule (Oja & Karhunen, 1985) are often favored for the
PCA problem. Both these are simple and extremely efficient algorithms, achieving O(d) computational and
memory complexity per iteration, for computing the principal eigenvector (i.e., k = 1) of a covariance matrix
in streaming settings. Recent years in particular have seen an increased popularity of these algorithms and
we will discuss these recent advances in Section 1.3.

Both Oja’s rule and Krasulina’s method share many similarities. In this paper, we focus on Krasulina’s
method with the understanding that our findings can be mapped to Oja’s rule through some tedious but
straightforward calculations. Using t for algorithmic iteration, Krasulina’s method estimates the top eigen-
vector by processing one data sample in each iteration as follows:1

vt = vt−1 + γt

(
xtxT

t vt−1 −
vT

t−1xtxT
t vt−1vt−1

∥vt−1∥2
2

)
, (4)

1In contrast, the iterate of Oja’s rule is given by vt = vt−1 + γt

(
xtxT

t vt−1 − vT
t−1xtxT

t vt−1vt−1
)

.

2

Published in Transactions on Machine Learning Research (10/2022)

where γt denotes the step size. Going forward, we will be using At in place of xtxT
t in expressions such

as (4) for notational compactness. In practice, however, one should neither explicitly store At nor explicitly
use it for calculation purposes.

Note that one can interpret Krasulina’s method as a solution to an optimization problem. Using Courant–
Fischer Minimax Theorem (Golub & Van Loan, 2012, Theorem 8.1.2), the top eigenvector computation (i.e.,
1-PCA, which is the k = 1 version of (1)) can be posed as the following optimization problem:

q1 := arg min
v∈Rd

f(v) = arg min
v∈Rd

−vTAtv
∥v∥2

2
. (5)

In addition, the gradient of the function f(v) defined in (5) is:

∇f(v) = 1
∥v∥2

2

(
−Atv + (vTAtv)v

∥v∥2
2

)
. (6)

Looking at (4)–(6), we see that (4) is very similar to applying stochastic gradient descent (SGD) to the
nonconvex problem (5), with the only difference being the scaling factor of 1/∥v∥2

2. Nonetheless, since
(5) is a nonconvex problem and we are interested in global convergence behavior of Krasulina’s method,
existing tools for analysis of the standard SGD problem (Bottou, 2010; Recht et al., 2011; Dekel et al.,
2012; Reddi et al., 2016b;c) do not lend themselves to the fastest convergence rates for Krasulina’s method.
Despite its nonconvexity, however, (5) has a somewhat benign optimization landscape and a whole host of
algorithmic techniques and analytical tools have been developed for such structured nonconvex problems in
recent years that guarantee fast convergence to a global solution. In this paper, we leverage some of these
recent developments to guarantee near-optimal global convergence of two variants of Krasulina’s method in
the case of high-rate streaming data.

Before proceeding further, it is worth noting that while Krasulina’s method primarily focuses on the 1-PCA
problem, it can be used to solve the k-PCA problem. But such an indirect approach, which involves repeated
use of the Krasulina’s method k times, can be inefficient in terms of sample complexity (Allen-Zhu & Li,
2017a, Section 1). We leave investigation of a near-optimal direct method for the k-PCA problem involving
high-rate streaming data for future work.

1.2 Our Contributions

In this paper, we propose and analyze two distributed variants of Krasulina’s method for estimating the top
eigenvector of a covariance matrix from fast streaming, independent and identically distributed (i.i.d.) data
samples. Our theoretical analysis, as well as numerical experiments on synthetic and real data, establish
near-optimality of the proposed algorithms. In particular, our analysis shows that the proposed algorithms
can achieve the optimal convergence rate of O(1/M) for 1-PCA after processing a total of O(M) data samples
(see (Jain et al., 2016, Theorem 1.1) and (Allen-Zhu & Li, 2017a, Theorem 6)). In terms of details, following
are our key contributions:

1. Our first contribution corresponds to the scenario in which there is a mismatch of N ∈ Z+ > 1
between the data streaming rate and the processing capability of a single processor, i.e., one iteration
of Krasulina’s method on one processor takes as long as N data arrival epochs. Our solution to this
problem, which avoids discarding of samples, involves splitting the data stream into N parallel
streams that are then input to N interconnected processors. Note that this splitting effectively
reduces the streaming rate at each processor by a factor of N . We then propose and analyze a
distributed variant of Krasulina’s method—termed D-Krasulina—that solves the 1-PCA problem for
this distributed setup consisting of N processing nodes. Our analysis substantially improves the one
in (Balsubramani et al., 2013) for Krasulina’s method and shows that D-Krasulina can result in an
improved convergence rate of O(1/Nt) after t iterations (Theorem 1), as opposed to the O(1/t) rate
for the classical Krasulina’s method at any one of the nodes seen in isolation. Establishing this result
involves a novel analysis of Krasulina’s method that brings out the dependence of its convergence
rate on the variance of the sample covariance matrix; this analysis coupled with a variance reduction
argument leads to the convergence rate of O(1/Nt) for D-Krasulina under appropriate conditions.

3

Published in Transactions on Machine Learning Research (10/2022)

2. Mini-batching of data samples has long been promoted as a strategy in stochastic methods to
reduce the wall-clock time. Too large of a mini-batch, however, can have an adverse effect on the
algorithmic performance; see, e.g., (Shamir & Srebro, 2014, Sec. VIII). One of the challenges in
mini-batched stochastic methods, therefore, is characterizing the mini-batch size that leads to near-
optimal convergence rates in terms of the number of processed samples. In (Agarwal & Duchi,
2011; Cotter et al., 2011; Dekel et al., 2012; Shamir & Srebro, 2014; Ruder, 2016; Golmant et al.,
2018; Goyal et al., 2017), for example, the authors have focused on this challenge for the case of
mini-batch SGD for convex and nonconvex problems. In the case of nonconvex problems, however,
the guarantees only hold for convergence to first-order stationary points. In contrast, our second
contribution is providing a comprehensive understanding of the global convergence behavior of mini-
batched Krasulina’s method. In fact, our analysis of D-Krasulina is equivalent to that of a mini-
batch (centralized) Krasulina’s method that uses a mini-batch of N samples in each iteration. This
analysis, therefore, guarantees near-optimal convergence rate with arbitrarily high probability for
an appropriately mini-batcheded Krasulina’s method in a centralized setting. This is in contrast
to (Jain et al., 2016; Yang et al., 2018), where the focus is on Oja’s rule and the probability of
success is upper bounded by 3/4 for a single algorithmic run.2 In addition, in the case of high-
rate streaming data that requires splitting the data stream into N parallel ones, we characterize the
global convergence behavior of a mini-batch generalization of D-Krasulina—termed DM-Krasulina—
in terms of the mini-batch size. This involves specifying the conditions under which mini-batches
of size B/N per node can lead to near-optimal convergence rate of O(1/Bt) after t iterations of
DM-Krasulina (Theorem 2). An implication of this analysis is that for a fixed (network-wide) sample
budget of T samples, DM-Krasulina can achieve O(1/T) rate after t := T/B iterations provided the
(network-wide) mini-batch size B satisfies B = O(T 1− 2

c0) for some constant c0 > 2 (Corollary 1).

3. Our next contribution is an extended analysis of DM-Krasulina that concerns the scenario where
(computational and/or communication) resource constraints translate into individual nodes still
receiving more data samples than they can process in one iteration of DM-Krasulina. This resource-
constrained setting necessitates DM-Krasulina dropping µ ∈ Z+ samples across the network in
each iteration. Our analysis in this setting shows that such loss of samples need not result in
sub-optimal performance. In particular, DM-Krasulina can still achieve near-optimal convergence
rate as a function of the number of samples arriving in the network—for both infinite-sample and
finite-sample regimes—as long as µ = O(B) (Corollary 2).

4. We provide numerical results involving both synthetic and real-world data to establish the usefulness
of the proposed algorithms, validate our theoretical analysis, and understand the impact of the
number of dropped samples per iteration of DM-Krasulina on the convergence rate. These results
in particular corroborate our findings that increasing the mini-batch size improves the performance
of DM-Krasulina up to a certain point, after which the convergence rate starts to decrease. Since
the focus of this work is on systems theory, the reported results do not focus on some of the large-
scale system implementation issues such as unexpected processor failures, high network coordination
costs, etc. Such large-scale implementation issues, while relevant from a practical perspective, are
beyond the scope of this paper and provide interesting research directions for future work.

1.3 Related Work

Solving the PCA problem efficiently in a number of settings has been an active area of research for decades.
(Krasulina, 1969; Oja & Karhunen, 1985) are among the earliest and most popular methods to solve PCA
in streaming data settings. Several variants of these methods have been proposed over the years, includ-
ing (Bin Yang, 1995; Chatterjee, 2005; Doukopoulos & Moustakides, 2008). Like earlier developments in

2Note that it is possible to improve the probability of success for Oja’s rule, as derived in (Jain et al., 2016; Yang et al., 2018),
to 1−δ, δ ∈ (0, 1), by running O(log(1/δ)) instances of the algorithm and combining their outcomes. But such a strategy, which
also adds to the computational and storage overhead because of the ‘combine’ step, is impractical for the streaming settings
considered in this paper. Additional differences between the results of this paper pertaining to the centralized PCA problem for
streaming data and that of (Jain et al., 2016; Yang et al., 2018) are discussed in Section 1.3. It is, however, important to point
out that this work and (Jain et al., 2016; Yang et al., 2018) are analyzing two related, yet different, algorithmic approaches
that are based on Krasulina’s method and Oja’s rule, respectively, and their results are therefore complementary in nature.

4

Published in Transactions on Machine Learning Research (10/2022)

stochastic approximation methods (Robbins & Monro, 1951), such variants were typically shown to converge
asymptotically. Convergence rate analyses for stochastic optimization in finite-sample settings (Shapiro &
Homem-de Mello, 2000; Linderoth et al., 2006) paved the way for non-asymptotic convergence analysis of
different variants of the stochastic PCA problem, which is fundamentally a nonconvex optimization problem.
Within the context of such works, the results that are the most relevant to the algorithmic strategy devised
in this paper can be found in (Jain et al., 2016) and (Yang et al., 2018). The authors in these two papers
provide variance-dependent convergence guarantees for Oja’s rule in the finite-sample regime, thereby mak-
ing their results also translatable to the algorithmic framework being considered in this paper for high-rate
streaming PCA. However, as noted earlier, the results derived in (Jain et al., 2016; Yang et al., 2018) only
hold with probability 3/4, which is in contrast to the high-probability results of this paper. And while one
could increase the probability of success in (Jain et al., 2016; Yang et al., 2018) through multiple algorithmic
runs, this is not a feasible strategy in the streaming settings.

In order to complement the pioneering results of (Jain et al., 2016; Yang et al., 2018) in streaming settings,
we shift our focus away from Oja’s rule as the base algorithm and develop a different proof strategy that
substantially extends and generalizes the analysis in (Balsubramani et al., 2013) for Krasulina’s method.
The analysis in (Balsubramani et al., 2013) assumes that the ℓ2 norm of the data samples is bounded
by a positive constant, but it does not take into account the variance of the sample covariance matrices.
Such an analysis leads to convergence results that are independent of the variance and hence are unable to
capture any improvement in the convergence rate due to mini-batching and/or distributed implementations
for computing the top eigenvector of a covariance matrix. We overcome this limitation of the analysis in
(Balsubramani et al., 2013) by developing a proof in this work that explicitly accounts for the variance of the
sample covariance matrices. Note that this extension/generalization of the analysis in (Balsubramani et al.,
2013)—despite the intuitive nature of our final set of results—is a nontrivial task. There are in particular two
main technical challenges that are addressed in this paper: (i) Using concentration of measure results that
allow for incorporation of the variance within the analysis, as opposed to the Hoeffding inequality (Boucheron
et al., 2013) utilized in (Balsubramani et al., 2013); and (ii) Utilizing the variance-dependent concentration
guarantees within two terms in Lemma 1, one of which depends on the norm bound on data samples and
the other on the variance—a careful decoupling of these two quantities being critical to obtain convergence
results in which the dominant term depends only on the variance. Finally, another aspect that distinguishes
this paper from prior works such as (Balsubramani et al., 2013; Jain et al., 2016; Yang et al., 2018) is
that it provides a formal framework for studying the communications and computation tradeoffs involved
in solving the 1-PCA problem in distributed streaming settings. This framework is described in detail in
Section 3.2, with theoretical characterization of the proposed framework in terms of the communications and
computation costs described in Section 4.2.

Because of the vastness of literature on (stochastic) PCA, this work is also tangentially or directly related
to a number of additional prior works. We review some of these works in the following under the umbrellas
of different problem setups, with the understanding that the resulting lists of works are necessarily incom-
plete. Much of our discussion in the following focuses on solving the PCA problem in (fast) streaming and
distributed data settings, which is the main theme in this paper.

Sketching for PCA. Sketching methods have long been studied in the literature for solving problems
involving matrix computations; see (Woodruff, 2014) for a review of such methods. The main idea behind
these methods is to compress data using either randomized or deterministic sketches and then perform
computations on the resulting low-dimensional data. While sketching has been used as a tool to solve the
PCA problem in an efficient manner (see, e.g., (Warmuth & Kuzmin, 2007; Halko et al., 2011; Liberty, 2013;
Leng et al., 2015; Karnin & Liberty, 2015)), the resulting methods cannot be used to exactly solve (1) in the
fast streaming settings of this paper.

Online PCA. The PCA problem has also been extensively studied in online settings. While such settings
also involve streaming data, the main goal in online PCA is to minimize the cumulative subspace estimation
error over the entire time horizon of the algorithm. The online PCA framework, therefore, is especially useful
in situations where either the underlying subspace changes over time or there is some adversarial noise in
the sampling process. Some of the recent works in this direction include (Garber et al., 2015; Allen-Zhu &
Li, 2017b; Garber, 2018; Marinov et al., 2018; Kotłowski & Neu, 2019).

5

Published in Transactions on Machine Learning Research (10/2022)

Stochastic convex optimization for PCA. One approach towards solving (3) in streaming settings is to
relax the PCA problem to a convex optimization problem and then use SGD to solve the resulting stochastic
convex optimization problem (Arora et al., 2013; Garber & Hazan, 2015; Nie et al., 2016). The benefit of
this approach is that now one can rely on rich literature for solving stochastic convex problems using SGD.
But the tradeoff is that one now needs to store an iterate of dimension Rd×d, as opposed to an iterate of
dimension Rd×k when we solve the PCA problem in its original nonconvex form. Due to these high memory
requirements of O(d2), we limit ourselves to solving PCA in the nonconvex form.

Streaming PCA and nonconvex optimization. The PCA problem in the presence of streaming data
can also be tackled as an explicit constrained nonconvex optimization program (Zhang & Balzano, 2016;
De Sa et al., 2015). In (Zhang & Balzano, 2016), for instance, the problem is solved as an optimization
program over the Grassmannian manifold. The resulting analysis, however, relies on the availability of a
good initial guess. In contrast, the authors in (De Sa et al., 2015) analyze the use of the SGD for solving
certain nonconvex problems that include PCA. The resulting approach, however, requires the step size to
be a significantly small constant for eventual convergence (e.g., 10−12 for the Netflix Prize dataset); this
translates into slower convergence in practice.

Classical stochastic approximation methods for PCA. Recent years have seen an increased interest
in understanding the global convergence behavior of classical stochastic approximation methods such as
Krasulina’s method (Krasulina, 1969) and Oja’s rule (Oja & Karhunen, 1985) for the PCA problem in non-
asymptotic settings (Allen-Zhu & Li, 2017a; Chatterjee, 2005; Hardt & Price, 2014; Shamir, 2015; 2016;
Jain et al., 2016; Li et al., 2016; Tang, 2019; Henriksen & Ward, 2019; Amid & Warmuth, 2019). Some
of these works, such as (Shamir, 2015) and (Shamir, 2016), use variance reduction techniques to speed-up
the algorithmic convergence. Such works, however, require multiple passes over the data, which makes
them ill-suited for fast streaming settings. The analysis in (Shamir, 2015) and (Shamir, 2016) also requires
an initialization close to the true subspace, which is somewhat unlikely in practice. Among other works,
the authors in (Allen-Zhu & Li, 2017a) provide eigengap-free convergence guarantees for Oja’s rule. Since
the results in this work do not take into account the variance of data samples, they do not generalize to
mini-batch/distributed streaming settings. As stated earlier, the authors in (Jain et al., 2016) do provide
variance-dependent convergence guarantees for Oja’s rule, which makes this work the most relevant to ours.
In particular, the authors in (Yang et al., 2018) have extended the initial analysis in (Jain et al., 2016)
to mini-batch settings. But a limitation of the analysis in (Jain et al., 2016; Yang et al., 2018) is that it
guarantees convergence of Oja’s rule only up to a probability of 3/4. And while the probability of success can
be increased to 1− δ by running and combining the outcomes of O(log(1/δ)) instances of Oja’s rule, such an
approach has two major drawbacks in streaming settings. First, since new data samples arrive continuously
in a streaming setting, multiple runs of an algorithm in this case can only be achieved through multiple
replicas of the processing system. Such a strategy, therefore, leads to a substantial increase in system costs.
Second, the outcomes of the multiple runs need to be appropriately combined. In (Jain et al., 2016), it is
suggested this be done by computing the geometric median of the multiple outcomes, which requires solving
an additional optimization problem. This then adds to the computational and storage overhead for the
PCA problem. We conclude by remarking on two key distinctions between our results and those in (Jain
et al., 2016; Yang et al., 2018). First, the arbitrarily high probability of success in our analysis requires the
initial step size in Krasulina’s method to decrease with an increase in the probability; we refer the reader to
the discussion following Theorem 1 in this paper for further details on this point. Second, our convergence
guarantees have the flavor of ‘convergence in mean’ as opposed to the ‘convergence in probability’ nature
of the results in (Jain et al., 2016; Yang et al., 2018). A straightforward application of Markov’s inequality,
however, leads to results that are directly comparable to the ones in (Jain et al., 2016; Yang et al., 2018);
we refer the reader to Corollary 3 in Appendix D as an illustrative example of this.

Distributed PCA and streaming data. Several recent works such as (Balcan et al., 2016; Boutsidis
et al., 2016; Garber et al., 2017; De Sa et al., 2018) have focused on the PCA problem in distributed
settings. Among these works, the main focus in (Balcan et al., 2016; Boutsidis et al., 2016; Garber et al.,
2017) is on improving the communications efficiency. This is accomplished in (Balcan et al., 2016; Boutsidis
et al., 2016) by sketching the local iterates and communicating the resulting compressed iterates to a central
server in each iteration. In contrast, (Garber et al., 2017) provides a batch solution in which every node

6

Published in Transactions on Machine Learning Research (10/2022)

in the network first computes the top eigenvector of its local (batch) covariance matrix and then, as a last
step of the algorithm, all the local eigenvector estimates are summed up at a central server to provide an
eigenvector estimate for the global covariance matrix. In contrast to these works, our focus in this paper
is on establishing that distributed (mini-batch) variants of stochastic approximation methods such as Oja’s
rule and Krasulina’s method can lead to improved convergence rates, as a function of the number of samples,
for the PCA problem in fast streaming settings. In this regard, our work is more closely related to (De Sa
et al., 2018), where the authors use the momentum method to accelerate convergence of power method and
further extend their work to stochastic settings. However, the approach of (De Sa et al., 2018) relies on a
variance reduction technique that requires a pass over the complete dataset every once in a while; this is
impractical in streaming settings. In addition, theoretical guarantees in (De Sa et al., 2018) are based on
the assumption of a “good” initialization; further, an implicit assumption in (De Sa et al., 2018) is that
inter-node communications is fast enough that there are no communication delays.

Decentralized PCA. Another important practical setting under which the PCA problem has been studied
is when the data are distributed across an interconnected set of nodes that form a complete graph but not
a fully connected one. We refer the reader to (Blondel et al., 2005; Aysal et al., 2009; Khan et al., 2009;
Dimakis et al., 2010) for a general understanding of this decentralized setting. Some contributions to the
PCA problem in this setting are (Kempe et al., 2008; Li et al., 2011; Korada et al., 2011; Wu et al., 2017; 2018;
Gang et al., 2021; Gang & Bajwa, 2021; 2022). Most of these contributions consider batch data settings and
their extensions to the streaming setting are not evident. And while contributions such as (Li et al., 2011)
do consider the streaming data setting, the convergence rates established in such works are asymptotic in
nature and the theoretical analyses cannot be used to derive conditions for a linear speed-up in convergence
rates in the mini-batch setting.

Connections to low-rank matrix approximation. The low-rank matrix approximation problem (Frieze
et al., 2004; Clarkson & Woodruff, 2017), which involves computing a low-rank approximation of a given
matrix, is closely related to the PCA problem. The overarching goal in both problems is the same: find a
subspace that best approximates the data samples / given matrix. In the case of PCA, however, the focus is
fundamentally on finding an orthogonal basis for the subspace that is precisely given by the top eigenvectors
of the data covariance matrix. Notwithstanding this difference between the two problems, (Yun et al., 2015;
Tropp et al., 2019) are two works within the low-rank matrix approximation literature that are the most
related to this paper. The setting in (Yun et al., 2015) corresponds to a large-scale but fixed matrix whose
columns are presented to a low-rank approximation algorithm in a streaming manner. This is in contrast to
the streaming setting of this work that is akin to having a matrix with infinitely many columns. In addition,
the algorithm being studied in (Yun et al., 2015) requires computing the top principal component directions
of a random submatrix of the larger matrix in a batch setting as its first step, which is again a departure from
the streaming data setting of this work. Next, the mathematical model in (Tropp et al., 2019) corresponds
to a matrix that is given by the sum of a long sequence of low-rank and sparse matrices that are presented
to a low-rank approximation algorithm in a streaming manner. This summation aspect of the data model
in (Tropp et al., 2019) does not coincide with the mathematical model of the streaming data samples in this
work. Finally, and in stark contrast to this paper, neither of these works are concerned with the interplay
between the streaming data rate, data processing rate, and the number of interconnected processors.

Connections to stochastic nonconvex optimization. Recent years have also seen an increased focus
on understanding (variants of) SGD for general (typically unconstrained) stochastic nonconvex optimization
problems. Among such works, some have focused on classical SGD (Ge et al., 2015; Hazan et al., 2016;
2017; Li et al., 2021; Mokhtari et al., 2017), some have studied variance-reduction variants of SGD (Reddi
et al., 2016a;b; Qureshi et al., 2021), and some have investigated accelerated variants of stochastic nonconvex
optimization (Allen-Zhu, 2018b;a). In particular, works such as (Reddi et al., 2016a; Allen-Zhu & Hazan,
2016) are directly relevant to this paper since these works also use mini-batches to reduce sample variance
and improve on SGD convergence rates. While (implicit, through the distributed framework, and explicit)
mini-batching is one of the key ingredients of our work also, this paper differs from such related works because
of its ability to prove convergence to a global optimum of the 1-PCA problem. In contrast, aforementioned
works only provide guarantees for convergence to first-order stationary points of (typically unconstrained)
stochastic nonconvex optimization problems.

7

Published in Transactions on Machine Learning Research (10/2022)

1.4 Notational Convention and Paper Organization

We use lower-case (a), bold-faced lower-case (a), and bold-faced upper-case (A) letters to represent scalars,
vectors, and matrices, respectively. Given a scalar a and a vector a, ⌈a⌉ denotes the smallest integer greater
than or equal to a, while ∥a∥2 denotes the ℓ2-norm of a. Given a matrix A, ∥A∥2 denotes its spectral norm
and ∥A∥F denotes its Frobenius norm. In addition, assuming A ∈ Rd×d to be a positive semi-definite matrix,
λi(A) denotes its i-th largest eigenvalue, i.e., ∥A∥2 := λ1(A) ≥ λ2(A) ≥ · · · ≥ λd(A) ≥ 0. Whenever obvious
from the context, we drop A from λi(A) for notational compactness. Finally, E{·} denotes the expectation
operator, where the underlying probability space (Ω,F ,P) is either implicit from the context or is explicitly
pointed out in the body.

The rest of this paper is organized as follows. We first provide a formal description of the problem and the
system model in Section 2. The two proposed variants of Krasulina’s method that can be used to solve the 1-
PCA problem in fast streaming settings are then presented in Section 3. In Section 4, we provide theoretical
guarantees for the proposed algorithms, while proofs / outlines of the proofs of the main theoretical results
are provided in Section 5. Finally, numerical results using both synthetic and real-world data are presented
in Section 6, while appendices are used for detailed proofs of some of the theoretical results.

2 Problem Formulation and System Model

Our goal is to use some variants of Krasulina’s method (cf. (4)) in order to obtain an estimate of the top
eigenvector of a covariance matrix from independent and identically distributed (i.i.d.) data samples that
are fast streaming into a system. The algorithms proposed in this regard and their convergence analysis rely
on the following sets of assumptions concerning the data and the system.

2.1 Data Model

We consider a streaming data setting where a new data sample xt′ ∈ Rd independently drawn from an
unknown distribution Px arrives at a system at each sampling time instance t′. We assume a uniform data
arrival rate of Rs samples per second and, without loss of generality, take the data arrival index t′ ≥ 1 to
be an integer. We also make the following assumptions concerning our data, which aid in our convergence
analysis.

[A1] (Zero-mean, norm-bounded samples) Without loss of generality, the data samples have zero mean,
i.e., EPx{xt′} = 0. In addition, the data samples are almost surely bounded in norm, i.e., ∥xt′∥2 ≤ r,
where we let the bound r ≥ 1 without loss of generality.

[A2] (Spectral gap of the covariance matrix) The largest eigenvalue of Σ := EPx
{xt′xT

t′} is strictly greater
than the second largest eigenvalue, i.e., λ1(Σ) > λ2(Σ) ≥ λ3(Σ) ≥ · · · ≥ λd(Σ) ≥ 0.

Note that both Assumptions [A1] and [A2] are standard in the literature for convergence analysis of Kra-
sulina’s method and Oja’s rule (cf. (Balsubramani et al., 2013; Oja & Karhunen, 1985; Allen-Zhu & Li,
2017a; Jain et al., 2016)).

We also associate with each data sample xt′ a rank-one random matrix At′ := xt′xT
t′ , which is a trivial

unbiased estimate of the population covariance matrix Σ. We then define the variance of this unbiased
estimate as follows.
Definition 1 (Variance of sample covariance matrix). We define the variance of the sample covariance
matrix At′ := xt′xT

t′ as follows:
σ2 := EPx

{∥∥At′ −Σ
∥∥2

F

}
.

Note that all moments of the probability distribution Px exist by virtue of the norm boundedness of xt′

(cf. Assumption [A1]). The variance σ2 of the sample covariance matrix At′ as defined above, therefore,
exists and is finite.

8

Published in Transactions on Machine Learning Research (10/2022)

Splitter

x1,x2, . . .
<latexit sha1_base64="DPvIjTEJXEYQkkXXWLkiUsM9KUg=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwUUpSBV0W3LisYB/QhjKZTtqhk0mYuRFL6NaNv+LGhSJu/QN3/o2TNovaemDgzLn3cO89fiy4Bsf5sQpr6xubW8Xt0s7u3v6BfXjU0lGiKGvSSESq4xPNBJesCRwE68SKkdAXrO2Pb7J6+4EpzSN5D5OYeSEZSh5wSsBIfRv3QgIjP0gfp323svirVXqDCHTfLjtVZwa8StyclFGORt/+Nj6ahEwCFUTrruvE4KVEAaeCTUu9RLOY0DEZsq6hkoRMe+nskik+M8oAB5EyTwKeqYuOlIRaT0LfdGab6uVaJv5X6yYQXHspl3ECTNL5oCARGCKcxYIHXDEKYmIIoYqbXTEdEUUomPBKJgR3+eRV0qpV3Ytq7e6yXK/ncRTRCTpF58hFV6iOblEDNRFFT+gFvaF369l6tT6sz3lrwco9x+gPrK9fVf+aGA==</latexit>

xN ,x2N , . . .
<latexit sha1_base64="EV/0EarTfdegNM3jgvynZaugoZQ=">AAACDnicbVDLSsNAFL3xWesr6tLNYCm4kJJUQZcFN66kgn1AG8JkOmmHTh7MTMQS8gVu/BU3LhRx69qdf+OkzaK2Hhg4c+493HuPF3MmlWX9GCura+sbm6Wt8vbO7t6+eXDYllEiCG2RiEei62FJOQtpSzHFaTcWFAcepx1vfJ3XOw9USBaF92oSUyfAw5D5jGClJdes9gOsRp6fPmZuepudofl/XQv9QaSka1asmjUFWiZ2QSpQoOma39pHkoCGinAsZc+2YuWkWChGOM3K/UTSGJMxHtKepiEOqHTS6TkZqmplgPxI6BcqNFXnHSkOpJwEnu7Ml5WLtVz8r9ZLlH/lpCyME0VDMhvkJxypCOXZoAETlCg+0QQTwfSuiIywwETpBMs6BHvx5GXSrtfs81r97qLSaBRxlOAYTuAUbLiEBtxAE1pA4Ale4A3ejWfj1fgwPmetK0bhOYI/ML5+AezNnKU=</latexit>

x2,x2+N , . . .
<latexit sha1_base64="SGy/AHXueOAu2Zi9BokoexhNRX8=">AAACD3icbVDLSsNAFJ34rPUVdelmsCiCpSRV0GXBjSupYB/QhjKZTtqhkwczN2IJ+QM3/oobF4q4devOv3HSZmFbDwycOfce7r3HjQRXYFk/xtLyyuraemGjuLm1vbNr7u03VRhLyho0FKFsu0QxwQPWAA6CtSPJiO8K1nJH11m99cCk4mFwD+OIOT4ZBNzjlICWeuZJ1ycwdL3kMe0l1bSMZ/5nt2m52w9B9cySVbEmwIvEzkkJ5aj3zG/to7HPAqCCKNWxrQichEjgVLC02I0ViwgdkQHraBoQnyknmdyT4mOt9LEXSv0CwBP1ryMhvlJj39Wd2bZqvpaJ/9U6MXhXTsKDKAYW0OkgLxYYQpyFg/tcMgpirAmhkutdMR0SSSjoCIs6BHv+5EXSrFbs80r17qJUq+VxFNAhOkKnyEaXqIZuUB01EEVP6AW9oXfj2Xg1PozPaeuSkXsO0AyMr18y+Jy+</latexit>

x1,xN+1, . . .
<latexit sha1_base64="4oZ55iD3s+RX/aVJBmUuVPV5O/E=">AAACDXicbVDLSsNAFJ34rPUVdelmsAqCpSRV0GXBjSupYB/QhjCZTtqhkwczN2IJ/QE3/oobF4q4de/Ov3HSZlFbDwycOfce7r3HiwVXYFk/xtLyyuraemGjuLm1vbNr7u03VZRIyho0EpFse0QxwUPWAA6CtWPJSOAJ1vKG11m99cCk4lF4D6OYOQHph9znlICWXPO4GxAYeH76OHbtMp75pbdn9rjc7UWgXLNkVawJ8CKxc1JCOequ+a19NAlYCFQQpTq2FYOTEgmcCjYudhPFYkKHpM86moYkYMpJJ9eM8YlWetiPpH4h4Ik660hJoNQo8HRntq2ar2Xif7VOAv6Vk/IwToCFdDrITwSGCGfR4B6XjIIYaUKo5HpXTAdEEgo6wKIOwZ4/eZE0qxX7vFK9uyjVankcBXSIjtApstElqqEbVEcNRNETekFv6N14Nl6ND+Nz2rpk5J4D9AfG1y9L1Zuw</latexit>

(a)

x1,xN+1, . . .
<latexit sha1_base64="4oZ55iD3s+RX/aVJBmUuVPV5O/E=">AAACDXicbVDLSsNAFJ34rPUVdelmsAqCpSRV0GXBjSupYB/QhjCZTtqhkwczN2IJ/QE3/oobF4q4de/Ov3HSZlFbDwycOfce7r3HiwVXYFk/xtLyyuraemGjuLm1vbNr7u03VZRIyho0EpFse0QxwUPWAA6CtWPJSOAJ1vKG11m99cCk4lF4D6OYOQHph9znlICWXPO4GxAYeH76OHbtMp75pbdn9rjc7UWgXLNkVawJ8CKxc1JCOequ+a19NAlYCFQQpTq2FYOTEgmcCjYudhPFYkKHpM86moYkYMpJJ9eM8YlWetiPpH4h4Ik660hJoNQo8HRntq2ar2Xif7VOAv6Vk/IwToCFdDrITwSGCGfR4B6XjIIYaUKo5HpXTAdEEgo6wKIOwZ4/eZE0qxX7vFK9uyjVankcBXSIjtApstElqqEbVEcNRNETekFv6N14Nl6ND+Nz2rpk5J4D9AfG1y9L1Zuw</latexit>

xN ,x2N , . . .
<latexit sha1_base64="EV/0EarTfdegNM3jgvynZaugoZQ=">AAACDnicbVDLSsNAFL3xWesr6tLNYCm4kJJUQZcFN66kgn1AG8JkOmmHTh7MTMQS8gVu/BU3LhRx69qdf+OkzaK2Hhg4c+493HuPF3MmlWX9GCura+sbm6Wt8vbO7t6+eXDYllEiCG2RiEei62FJOQtpSzHFaTcWFAcepx1vfJ3XOw9USBaF92oSUyfAw5D5jGClJdes9gOsRp6fPmZuepudofl/XQv9QaSka1asmjUFWiZ2QSpQoOma39pHkoCGinAsZc+2YuWkWChGOM3K/UTSGJMxHtKepiEOqHTS6TkZqmplgPxI6BcqNFXnHSkOpJwEnu7Ml5WLtVz8r9ZLlH/lpCyME0VDMhvkJxypCOXZoAETlCg+0QQTwfSuiIywwETpBMs6BHvx5GXSrtfs81r97qLSaBRxlOAYTuAUbLiEBtxAE1pA4Ale4A3ejWfj1fgwPmetK0bhOYI/ML5+AezNnKU=</latexit>

x2,x2+N , . . .
<latexit sha1_base64="SGy/AHXueOAu2Zi9BokoexhNRX8=">AAACD3icbVDLSsNAFJ34rPUVdelmsCiCpSRV0GXBjSupYB/QhjKZTtqhkwczN2IJ+QM3/oobF4q4devOv3HSZmFbDwycOfce7r3HjQRXYFk/xtLyyuraemGjuLm1vbNr7u03VRhLyho0FKFsu0QxwQPWAA6CtSPJiO8K1nJH11m99cCk4mFwD+OIOT4ZBNzjlICWeuZJ1ycwdL3kMe0l1bSMZ/5nt2m52w9B9cySVbEmwIvEzkkJ5aj3zG/to7HPAqCCKNWxrQichEjgVLC02I0ViwgdkQHraBoQnyknmdyT4mOt9LEXSv0CwBP1ryMhvlJj39Wd2bZqvpaJ/9U6MXhXTsKDKAYW0OkgLxYYQpyFg/tcMgpirAmhkutdMR0SSSjoCIs6BHv+5EXSrFbs80r17qJUq+VxFNAhOkKnyEaXqIZuUB01EEVP6AW9oXfj2Xg1PozPaeuSkXsO0AyMr18y+Jy+</latexit>

(b)

Figure 1: The distributed PCA problem, which involves distributed processing of data over a network of N
processors, can arise in two contexts. (a) A data splitter can split a data stream into N parallel streams,
one for each processor in the network. In relation to the original data stream, this effectively reduces the
data arrival rate for each parallel stream by a factor of N . (b) Data can be inherently distributed, as in the
Internet-of-Things systems, and can arrive at N different processing nodes as N separate data streams.

The two algorithms proposed in this paper, namely, D-Krasulina and DM-Krasulina, are initialized with a
random vector v0 ∈ Rd that is randomly generated over the unit sphere in Rd with respect to the uniform
(Haar) measure. All analysis in this paper is with respect to the natural probability space (Ω,F ,P) given
by the stochastic process (v0, x1, x2, . . .) and filtered versions of this probability space.

2.2 System Model

Let Rp denote the number of data samples that a single processing node in the system can process in one
second using an iteration of the form (4).3 The focus of this paper is on the high-rate streaming setting,
which corresponds to the setup in which the data arrival rate Rs is strictly greater than the data processing
rate Rp. A naive approach to deal with this computation–streaming mismatch is to discard (per second) a
fraction α := Rs/Rp of samples in the system. Such an approach, however, leads to an equivalent reduction
in the convergence rate by α. We pursue an alternative to this approach in the paper that involves the
simultaneous use of N ≥ ⌈α⌉ interconnected processors, each individually capable of processing Rp samples
per second, within the system. In particular, we advocate the use of such a network of N processors in the
following two manners to achieve near-optimal convergence rates (as a function of the number of samples
arriving at the system) for estimates of the top eigenvector of Σ in high-rate streaming settings.

2.2.1 Distributed Processing Over a Network of Processors

We assume the fast data stream terminates into a data splitter, which splits the original stream with data rate
Rs samples per second into N parallel streams, each with data rate Rs/N samples per second, that are then
synchronously input to the interconnected network of N processors; see Figure 1(a) for a schematic rendering
of such splitting. In order to simplify notation in this setting, we reindex the data samples associated with
the i-th processor / data stream in the following as {xi,t}t∈Z+ , where the reindexing map (i, t) 7→ t′ is simply
defined as t′ = i + (t− 1)N .

3Note that the parameter Rp, among other factors, is a function of the problem dimension d; this dependence is being
suppressed in the notation for ease of exposition.

9

Published in Transactions on Machine Learning Research (10/2022)

We also assume the network of processors implements some message passing protocol that allows it to com-
pute sums of locally stored vectors, i.e.,

∑N
i=1 ai for the set of local vectors {ai}N

i=1, within the network.
This could, for instance, be accomplished using either Reduce or AllReduce primitives within most message
passing implementations. We let Rc(N) denote the number of these primitive (sum) operations that the
message passing protocol can carry out per second in the network of N processors. Note that, in addition
to the number of nodes N , this parameter also depends upon the problem dimension d, message passing
implementation, network topology, and inter-node communications bandwidth, all of which are being ab-
stracted here through Rc(N). We will also be suppressing the dependence of the parameter Rc on N within
the notation beyond this section for ease of exposition.

Data splitting among this network of N processors effectively slows down the data streaming rate at each
processing node by a factor of N . It is under this system model that we present a distributed variant of
Krasulina’s method, termed D-Krasulina, in Section 3.1 that involves two key operations after each round of
splitting of the N samples: (i) per-processor computation of the form (4), which requires 1/Rp seconds for
completion, and (ii) a network-wide vector-sum operation, which requires an additional 1/Rc(N) seconds for
completion. Under such an algorithmic framework, we can express the effective network-wide data processing
rate, denoted by Re, in terms of the per-node data processing rate Rp and the network-wide sum rate Rc(N)
by noticing that the effective time it takes to process one sample within the network is given by

Te = 1
NRp

+ 1
Rc(N) seconds/sample.

Here, the first algorithmic operation gives rise to the first term in the above expression, since it takes 1/Rp

seconds for computation of the form (4) for N samples, and the network-wide vector-sum operation gives
rise to the second term. It then follows that the effective data processing rate is Re = 1/Te = NRpRc(N)

NRp+Rc(N) .

In the high-rate streaming setting, D-Krasulina can only operate as long as the streaming rate Rs does not
exceed the effective processing rate Re, i.e., Rs ≤ Re. This gives rise to the following condition on the
number of processors N that enables our algorithmic framework to cope with the high-rate streaming data:

N (Rc(N)−Rs) ≥ RsRc(N)
Rp

=⇒ N ≥ RsRc(N)
Rp (Rc(N)−Rs) ; (Rc(N)−Rs) > 0. (7)

Our developments in the following will be based on the assumption that the condition on N in (7) is met.
The main analytical challenge for us is understanding the scenarios under which distributed processing over
a network of N processors using D-Krasulina still yields near-optimal performance; we address this challenge
in Section 4.1 by improving on the analysis in (Balsubramani et al., 2013) for Krasulina’s method.

We conclude by remarking on the nature of the lower bound in (7) on the number of processors N , given
that the bound itself is a function of N through its dependence on the parameter Rc(N) that is expected to
decrease with an increase in N . The high-performance computing community has access to copious amounts
of trace data for different parallel computing environments that allows one to relate the parameter Rc(N) for
a given dimension d to the number of processors N ; see, e.g., (Kavulya et al., 2010). One such relationship
could be, for instance, that Rc(N) ∝ 1/Nκ for some κ ∈ (0, 1]. The final bound on the number of processors
N can then be obtained by plugging such a relationship into the provided bound.4

Remark 1. It is straightforward to see that our developments in this paper are also applicable to the setting
in which data naturally arrives in a distributed manner at N different nodes, as in Figure 1(b). In addition,
our analysis of D-Krasulina is equivalent to that of a mini-batch Krasulina’s method running on a powerful-
enough single processor that uses a mini-batch of N samples in each iteration.

4As an illustrative toy example, let us consider a scenario for a fixed d in which Rs = 103 sec−1, Rp = 50 sec−1, and
the parameter Rc(N) scales as Rc(N) = CR

N
sec−1 for a constant CR that depends on the message passing implementation,

network topology, and inter-node communications bandwidth. In a “slow” network, corresponding to CR ≤ 103, there exists
no N that satisfies the condition (7). In a “faster” network, corresponding to CR > 103N , a necessary condition on the number
of processors is N < 10−3CR. But while this necessary condition is satisfied for 1 ≤ N < 80 for CR as high as 8 × 104, there
still does not exist any N that satisfies (7). In the case of even faster networks, however, we are able to find feasible values of
N for running D-Krasulina without discarding any samples; e.g., any 28 ≤ N ≤ 72 satisfies the condition (7) for CR = 105.

10

Published in Transactions on Machine Learning Research (10/2022)

2.2.2 Distributed Processing Coupled with Mini-batching

Mini-batching in (centralized) stochastic methods, as discussed in Section 1.2, helps reduce the wall-clock
time by reducing the number of read operations per iteration. Mini-batching of samples in distributed settings
has the added advantage of reduction in the average number of primitive (sum) operations per processed
sample, which further reduces the wall-clock time. It is in this vein that we put forth a mini-batched variant
of D-Krasulina, which is termed DM-Krasulina, in Section 3.2.

Similar to the case of D-Krasulina (cf. Figure 1), there are several equivalent system models that can benefit
from the DM-Krasulina framework. In keeping with our theme of fast streaming data, as well as for the
sake of concreteness, we assume the system buffers (i.e., mini-batches) B := bN ≥ ⌈Rs/Rp⌉ samples of the
incoming data stream every B/Rs seconds for some parameter b ∈ Z+. This network-wide mini-batch of B
samples is then split into N parallel (local) mini-batches, each comprising b = B/N samples, which are then
synchronously input to the interconnected network of N processors at a rate of Rs/N samples per second
and collaboratively processed by DM-Krasulina. In each iteration t of DM-Krasulina, therefore, the network
processes a total of B ≥ N samples, as opposed to N samples for D-Krasulina. In order to simplify notation
in this mini-batched distributed setting, we reindex the b data samples in the mini-batch associated with
the i-th processor in iteration t of DM-Krasulina as {xi,j,t}j=b

j=1,t∈Z+
, where the reindexing map (i, j, t) 7→ t′

is defined as t′ = j + (i− 1)b + (t− 1)B.

It is straightforward to see from the discussion surrounding (7) that the DM-Krasulina framework can process
all data samples arriving at the system as long as N ≥ bRcRs

Rp(bRc−Rs) and (bRc − Rs) > 0. However, when
this condition is violated due to faster streaming rate Rs, slower processing rate Rp, slower summation rate
Rc, or any combination thereof, it becomes necessary for DM-Krasulina to discard µ :=

(
bRs

Rp
+ NRs

Rc

)
− B

samples at the splitter per iteration. The main analytical challenges for DM-Krasulina are, therefore, twofold:
first, assuming µ = 0, characterize the mini-batch size B that leads to near-optimal convergence rates for
DM-Krasulina in terms of the total number of samples arriving at the system; second, when discarding of
samples becomes necessary, characterize the interplay between B and µ that allows DM-Krasulina to still
achieve (order-wise) near-optimal convergence rates. We address both these challenges in Section 4.2.

3 Proposed Distributed Stochastic Algorithms

We now formally describe the two stochastic algorithms, termed D-Krasulina and DM-Krasulina, that can
be used to solve the 1-PCA problem from high-rate streaming data under the two setups described in
Section 2.2.1 and Section 2.2.2, respectively.

3.1 Distributed Krasulina’s Method (D-Krasulina) for High-rate Streaming Data

Recall from the discussion in Section 2.2.1 that each node i in the network receives data sample xi,t in
iteration t of the distributed implementation, which comprises N processing nodes. Unlike the centralized
Krasulina’s method (cf. (4)), therefore, any distributed variant of Krasulina’s method needs to process N
samples in every iteration t. Using Ai,t as a shorthand for xi,txT

i,t, one natural extension of (4) that processes
N samples in each iteration is as follows:

vt = vt−1 + γt

(
1
N

N∑
i=1

Ai,tvt−1 −
1

∥vt−1∥2
2

(
vT

t−1
1
N

N∑
i=1

Ai,tvt−1vt−1

))
= vt−1 + γtξt. (8)

One natural question here is whether (8) can be computed within our distributed framework. The an-
swer to this is in the affirmative under the assumption N ≥ RsRc

Rp(Rc−Rs) , with the implementation (termed
D-Krasulina) formally described in Algorithm 1.5

Notice that unlike classical Krasulina’s method, which processes a total of t samples after t iterations,
D-Krasulina processes a total of Nt samples after t iterations in order to provide an estimate vt of the

5Here, and in the following, the implicit assumption is that the quantity Rc − Rs (resp., bRc − Rs) is strictly positive for
D-Krasulina (resp., DM-Krasulina).

11

Published in Transactions on Machine Learning Research (10/2022)

Algorithm 1 Distributed Krasulina’s Method (D-Krasulina)

Input: Incoming data streams at N processors, expressed as
{

xi,t
i.i.d.∼ Px

}N

i=1,t∈Z+
, and a step-size sequence

{γt ∈ R+}t∈Z+

Initialize: All processors initialize with v0 ∈ Rd randomly generated over the unit sphere
1: for t = 1, 2, . . . , do
2: (In Parallel) Processor i receives data sample xi,t and updates ξi,t locally as follows:

∀i ∈ {1, . . . , N}, ξi,t ← xi,txT
i,tvt−1 −

vT
t−1xi,txT

i,tvt−1vt−1

∥vt−1∥2
2

3: Compute ξt ← 1
N

∑N
i=1 ξi,t in the network using a distributed vector-sum subroutine

4: Update eigenvector estimate in the network as follows: vt ← vt−1 + γtξt

5: end for
Return: An estimate vt of the eigenvector q∗ of Σ associated with λ1(Σ)

top eigenvector q∗ of Σ. Another natural question, therefore, is whether the estimate vt returned by
D-Krasulina can converge to q∗ at the near-optimal rate of O (1/# of processed samples). Convergence
analysis of D-Krasulina in Section 4 establishes that the answer to this is also in the affirmative under
appropriate conditions that are specified in Theorem 1. An important interpretation of this result is that
our proposed distributed implementation of Krasulina’s method can lead to linear speed-up as a function of
the number of processing nodes N in the network.

3.2 Mini-batched D-Krasulina (DM-Krasulina) for High-rate Streaming Data

The distributed, mini-batched setup described in Section 2.2.2 entails each node i receiving a mini-batch of
b = B/N data samples, {xi,j,t}b

j=1, in each iteration t, for a total of B = bN samples across the network in
every iteration. Similar to (8), these B samples can in principle be processed by the following variant of the
original Krasulina’s iteration:

vt = vt−1 + γt

(
1
B

N∑
i=1

b∑
j=1

Ai,j,tvt−1 −
1

∥vt−1∥2
2

(
vT

t−1
1
B

N∑
i=1

b∑
j=1

Ai,j,tvt−1vt−1

))
︸ ︷︷ ︸

ξt

, (9)

where Ai,j,t is a shorthand for xi,j,txT
i,j,t. Practical computation of (9) within our distributed framework,

however, requires consideration of two different scenarios.

• Scenario 1: The mini-batched distributed framework satisfies N ≥ bRcRs

Rp(bRc−Rs) . This enables incor-
poration of every sample arriving at the system into the eigenvector estimate.

• Scenario 2: The mini-batched distributed framework leads to the condition N < bRcRs

Rp(bRc−Rs) . This

necessitates discarding of µ =
(

bRs

Rp
+ NRs

Rc

)
− B samples per iteration in the system. Stated dif-

ferently, the system receives B + µ samples per iteration in this scenario, but only B samples per
iteration are incorporated into the eigenvector estimate.

We now formally describe the algorithm (termed DM-Krasulina) that implements (9) under both these
scenarios in Algorithm 2.

Speaking strictly in terms of implementation, the mini-batched setup of DM-Krasulina allows one to relax
the condition N ≥ RsRc

Rp(Rc−Rs) associated with D-Krasulina to either N ≥ bRcRs

Rp(bRc−Rs) , which still incorporates
all samples into the eigenvector estimate, or N < bRcRs

Rp(bRc−Rs) , which involves discarding of µ > 0 samples

12

Published in Transactions on Machine Learning Research (10/2022)

Algorithm 2 Distributed Mini-batch Krasulina’s Method (DM-Krasulina)

Input: Incoming streams of mini-batches
{

xi,j,t
i.i.d.∼ Px

}N,b

i,j=1,t∈Z+
at N processors, size of the network-wide

mini batch B := bN , and a step-size sequence {γt ∈ R+}t∈Z+

Initialize: All processors initialize with v0 ∈ Rd randomly generated over the unit sphere
1: for t = 1, 2, . . . , do
2: (In Parallel) ∀i ∈ {1, . . . , N}, ξi,t ← 0
3: for j = 1, . . . , b do
4: (In Parallel) Processor i receives data sample xi,j,t and updates ξi,t locally as follows:

∀i ∈ {1, . . . , N}, ξi,t ← ξi,t + xi,j,txT
i,j,tvt−1 −

vT
t−1xi,j,txT

i,j,tvt−1vt−1

∥vt−1∥2
2

5: end for
6: Compute ξt ← 1

B

∑N
i=1 ξi,t in the network using a distributed vector-sum subroutine

7: Update eigenvector estimate in the network as follows: vt ← vt−1 + γtξt

8: if N < bRcRs

Rp(bRc−Rs) then
9: The system (e.g., data splitter/buffer) receives (B + µ) additional samples during execution of

Steps 2–7, out of which µ ∈ Z+ samples are discarded
10: end if
11: end for
Return: An estimate vt of the eigenvector q∗ of Σ associated with λ1(Σ)

per algorithmic iteration. While this makes DM-Krasulina particularly attractive for systems with slower
communication links, the major analytical hurdle here is understanding the interplay between the different
problem parameters that still allows DM-Krasulina to achieve near-optimal convergence rates in terms of the
number of samples received at the system. We tease out this interplay as part of the convergence analysis
of DM-Krasulina in Section 4.

3.3 A Note on the Processing of Non-centered and Non-i.i.d. Data

Both D-Krasulina and DM-Krasulina have been developed under the assumptions of zero-mean (i.e., centered)
and i.i.d. data samples. In this section, we discuss one possible approach to handling non-centered data using
the two algorithms and also provide a rationale for the applicability of D-Krasulina and DM-Krasulina in
the face of any shifts in the data distribution.

In the case of non-centered data, one simple strategy that works for D-Krasulina and DM-Krasulina is to
maintain a (network-wide) running average of the non-centered data samples, and then use it to center the
data samples at each processor before applying Step 2 (resp., Step 4) in Algorithm 1 (resp., Algorithm 2).
While such a modification requires an extension of the convergence analysis presented in the next section,
this can be accomplished in a manner similar to the analytical extension in (Zhou & Bai, 2021) for the
centralized Oja’s rule with non-centered data.

Next, while the forthcoming convergence analysis for D-Krasulina and DM-Krasulina has been provided
under the assumption of i.i.d. data samples, the two algorithms are expected to remain effective in the
non-i.i.d. data setting. This is because D-Krasulina and DM-Krasulina first essentially compute a new
gradient-like quantity using the latest batch of data samples at each time t (cf. Step 2 in Algorithm 1
and Step 4 in Algorithm 2), and then update their respective eigenvector estimates using this quantity. In
particular, any shifts in the data distribution can be tracked by the two algorithms because of such an update
rule. It is because of this reason that algorithms such as Oja’s rule and Krasulina’s method are also often
employed for the problem of subspace tracking (see, e.g., (Bin Yang, 1995; Chatterjee, 2005; Doukopoulos
& Moustakides, 2008)). Since providing a formal analysis of such tracking capabilities of D-Krasulina and
DM-Krasulina for non-i.i.d. data is beyond the scope of this paper, we leave it for future work.

13

Published in Transactions on Machine Learning Research (10/2022)

4 Convergence Analysis of D-Krasulina and DM-Krasulina

Our convergence analysis of D-Krasulina and DM-Krasulina is based on understanding the rate at which the
so-called potential function Ψt of these methods converges to zero as a function of the number of algorithmic
iterations t. Formally, this potential function Ψt is defined as follows.
Definition 2 (Potential function). Let q∗ be the eigenvector of Σ associated with λ1(Σ) and let vt be an
estimate of q∗ returned by an iterative algorithm in iteration t. Then the quality of the estimate vt can be
measured in terms of the potential function Ψt : vt 7→ [0, 1] that is defined as

Ψt := 1− (vT
t q∗)2

∥vt∥2 . (10)

Notice that Ψt is a measure of estimation error, which approaches 0 as vt converges to any scalar multiple
of q∗. This measure, which essentially computes sine squared of the angle between q∗ and vt, is frequently
used in the literature to evaluate the performance of PCA algorithms. In particular, when one initializes an
algorithm with a random vector v0 uniformly distributed over the unit sphere in Rd then it can be shown
that E{Ψ0} ≤ 1 − 1/d (Balsubramani et al., 2013). While this is a statement in expectation for t = 0,
our analysis relies on establishing such a statement in probability for any t ≥ 0 for both D-Krasulina and
DM-Krasulina. Specifically, we show in Theorem 3 that supt≥0 Ψt ≤ 1 − O(1/d) with high probability as
long as γt = c/(L + t) for any constant c and a large-enough constant L.

All probabilistic analysis in the following uses a filtration (Ft)t≥0 of sub σ-algebras of F on the sample space
Ω, where the σ-algebra Ft captures the progress of the iterates of the two proposed stochastic algorithms
up to iteration t. Mathematically, let us define the sample covariance matrix At as At := 1

N

∑N
i=1 Ai,t and

At := 1
B

∑N
i=1
∑b

j=1 Ai,j,t for D-Krasulina and DM-Krasulina, respectively. In order to simplify notation
and unify some of the analysis of D-Krasulina and DM-Krasulina, we will be resorting to the use of random
matrices At, as opposed to xi,t and xi,j,t, in the following. We then have the following definition of σ-algebras
in the filtration.
Definition 3 (σ-algebra Ft). The σ-algebra Ft ⊆ F on sample space Ω for both D-Krasulina and
DM-Krasulina is defined as the σ-algebra generated by the vector-/matrix-valued random variables
(v0, A1, . . . , At), i.e., Ft := σ(v0, A1, . . . , At).

In addition to the filtration (Ft)t≥0, the forthcoming analysis also uses a sequence of nested sample spaces
that is defined as follows.
Definition 4 (Nested sample spaces). Let (t0, ϵ0), (t1, ϵ1), (t2, ϵ2), . . . , (tJ , ϵJ) be a sequence of pairs such that
0 = t0 < t1 < t2 < . . . < tJ and ϵ0 > ϵ1 > ϵ2 > . . . > ϵJ > 0 for any non-negative integer J . We then define
a sequence (Ω′

t)t∈Z+ of nested sample spaces such that Ω ⊃ Ω′

1 ⊃ Ω′

2 ⊃ . . ., each Ω′

t is Ft−1-measurable, and

Ω
′

t :=
{

ω ∈ Ω : ∀ 0 ≤ j ≤ J, sup
tj≤l<t

Ψl(ω) ≤ 1− ϵj

}
. (11)

Here, ω denotes an outcome within the sample space Ω and Ψl(ω) is the (random) potential function after
the l-th iteration of D-Krasulina / DM-Krasulina that is being explicitly written as a function of the outcomes
ω in the sample space.

In words, the sample space Ω′

t corresponds to that subset of the original sample space for which the error Ψl

in all iterations l ∈ {tj , . . . , t− 1} is below 1− ϵj , where j ∈ {0, . . . , J}. In the following, we use the notation
Et{·} and Pt(·) to denote conditional expectation and conditional probability, respectively, with respect to Ω′

t.

An immediate implication of Definition 4 is that, for appropriate choices of ϵj ’s, it allows us to focus on
those subsets of the original sample space that ensure convergence of iterates of the proposed algorithms to
the top eigenvector q∗ at the desired rates. The main challenge here is establishing that such subsets have
high probability measure, i.e., P

(
∩t>0Ω′

t

)
≥ 1− δ for any δ > 0. We obtain such a result in Theorem 4 in

the following. We are now ready to state our main results for D-Krasulina and DM-Krasulina.

14

Published in Transactions on Machine Learning Research (10/2022)

4.1 Convergence of D-Krasulina (Algorithm 1)

The first main result of this paper shows that D-Krasulina results in linear speed-up in convergence rate as
a function of the number of processing nodes, i.e., the potential function for D-Krasulina converges to 0 at a
rate of O(1/Nt). Since the system receives a total of Nt samples at the end of t iterations of D-Krasulina, this
result establishes that D-Krasulina is order-wise near-optimal in terms of sample complexity for the streaming
PCA problem. The key to proving this result is characterizing the convergence behavior of D-Krasulina in
terms of variance of the sample covariance matrix At := 1

N

∑N
i=1 Ai,t that is implicitly computed within

D-Krasulina. We denote this variance as σ2
N , which has the form

σ2
N := EPx

∥∥∥∥∥ 1

N

N∑
i=1

xi,txT
i,t −Σ

∥∥∥∥∥
2

F

 . (12)

It is straightforward to see from Definition 1 and (12) that σ2
N = σ2/N . This reduction in variance of

the sample covariance matrix within D-Krasulina essentially enables the linear speed-up in convergence. In
terms of specifics, we have the following convergence result for D-Krasulina.
Theorem 1. Fix any δ ∈ (0, 1) and pick c := c0/2(λ1 − λ2) for any c0 > 2. Next, define

L1 := 64edr4 max(1, c2)
δ2 ln 4

δ
, L2 := 512e2d2σ2

N max(1, c2)
δ4 ln 4

δ
, (13)

pick any L ≥ L1+L2, and choose the step-size sequence as γt := c/(L+t). Then, as long as Assumptions [A1]
and [A2] hold, we have for D-Krasulina that there exists a sequence (Ω′

t)t∈Z+ of nested sample spaces such
that P

(
∩t>0Ω′

t

)
≥ 1− δ and

Et {Ψt} ≤ C1

(L + 1
t + L + 1

) c0
2 + C2

(σ2
N

t + L + 1

)
, (14)

where C1 and C2 are constants defined as

C1 := 1
2

(
4ed

δ2

) 5
2 ln 2

e2c2λ2
1/L and C2 := 8c2e(c0+2c2λ2

1)/L

(c0 − 2) .

Remark 2. While we can obtain a similar result for the case of c0 ≤ 2, that result does not lead to any
convergence speed-up. In particular, the convergence rate in that case becomes O(t−c0/2), which matches the
one in (Balsubramani et al., 2013).

Discussion. A proof of Theorem 1, which is influenced by the proof technique employed in (Balsubramani
et al., 2013), is provided in Section 5. Here, we discuss some of the implications of this result, especially in
relation to (Balsubramani et al., 2013) and (Jain et al., 2016). The different problem parameters affecting the
performance of stochastic methods for streaming PCA include: (i) dimensionality of the ambient space, d,
(ii) eigengap of the population covariance matrix, (λ1−λ2), (iii) upper bound on norm of the received data
samples, r, and (iv) variance of the sample covariance matrix, σ2 and/or σ2

N . Theorem 1 characterizes the
dependence of D-Krasulina on all these parameters and significantly improves on the related result provided
in (Balsubramani et al., 2013).

First, Theorem 1 establishes D-Krasulina can achieve the convergence rate O(σ2
N /t) ≡ O(σ2/Nt) with

high probability (cf. (14)). This is in stark contrast to the result in (Balsubramani et al., 2013), which
is independent of variance of the sample covariance matrix, thereby only guaranteeing convergence rate
of O(r4/t) for D-Krasulina and its variants. This ability of variants of Krasulina’s methods to achieve
faster convergence through variance reduction is arguably one of the most important aspects of our analysis.
Second, in comparison with (Balsubramani et al., 2013), Theorem 1 also results in an improved lower bound
on choice of L by splitting it into two quantities, viz., L1 and L2 (cf. (13)). This improved bound allows
larger step sizes, which also results in faster convergence. In terms of specifics, L1 in the theorem is on the

15

Published in Transactions on Machine Learning Research (10/2022)

order of Ω(r4d/δ2), which is an improvement over Ω(r4d2/δ4) bound of (Balsubramani et al., 2013). On the
other hand, while L2 has same dependence on δ and d as (Balsubramani et al., 2013), it depends on σ2

N

instead of r4 and, therefore, it reduces with an increase in N . Third, the improved lower bound on L also
allows for an improved dependence on the dimensionality d of the problem. Specifically, for large enough t
and N , the dependence on d in (14) is due to the higher-order (first) term and is of the order O(d 5

2 ln 2 + c0
2),

as opposed to O(d 5
2 ln 2 +c0) for (Balsubramani et al., 2013). It is worth noting here, however, that this is still

loser than the result in (Jain et al., 2016) that has only log2(d) dependence on d in higher-order error terms.

Fourth, in terms of the eigengap, our analysis has optimal dependence of 1/(λ1−λ2)2, which also matches the
dependence in (Balsubramani et al., 2013) and (Jain et al., 2016). It is important to note here, however, that
knowledge of the eigengap (λ1 − λ2) is not necessary to run Oja’s rule, Krasulina’s method, D-Krasulina, or
any of the related stochastic methods in a practical setting. Specifically, it can be seen from Theorem 1 that
the eigengap is only needed to set the step size in D-Krasulina for the optimal convergence rate. In practice,
however, step sizes of the form c̃/t work well for D-Krasulina and the related methods, and a simple yet
highly effective strategy for setting the step size in these methods is to estimate the parameter c̃ by running
multiple instances of the method during a warm-up phase. Such an approach is akin to approximating several
problem-related parameters using a single parameter c̃, and is the one we have followed for the numerical
experiments discussed in Section 6.

Finally, we compare the recommended step-size sequence γt = c/(L + t) in Theorem 1 to the ones in
(Balsubramani et al., 2013) and (Jain et al., 2016). Since the step sizes in these two prior works also take
the form γt = c/(L + t), all three works are equivalent to each other in terms of scaling of the step size as
a function of t. But in terms of the initial step size, and assuming small enough δ in Theorem 1, γ1 is the
largest for (Jain et al., 2016), second-largest for this work, and the smallest for (Balsubramani et al., 2013).
In relation to our work, this difference in the initial step size in the case of (Balsubramani et al., 2013) is
due to the improved lower bound on L in Theorem 1. In the case of (Jain et al., 2016), this difference is
attributable to the fact that the parameter L is independent of δ in that work. Stated differently, we are
able to vary the probability of success 1− δ in this work by making the parameter L be a function of δ, with
the caveat being that the initial step size γ1 gets smaller as δ decreases. In contrast, a fixed L in (Jain et al.,
2016) can be thought of as one of the reasons the probability of success is fixed at 3/4 in that work. We
conclude by noting that this dependence of the performance of D-Krasulina on different problem parameters
is further highlighted through numerical experiments in Section 6.
Remark 3. While Theorem 1 is for (a distributed variant of) Krasulina’s method, Oja’s rule can also be
analyzed using similar techniques; see, e.g., the discussion in (Balsubramani et al., 2013).
Remark 4. Recall from the discussion in Section 1.1 that an iteration of Krasulina’s method is similar to that
for SGD applied to the optimization problem (5). A natural question to ask then is whether D-Krasulina can
be “accelerated” in much the same way SGD can be accelerated by adding a momentum term to its iteration
expression. The authors in (De Sa et al., 2018), however, argue that naively applying momentum to Oja’s rule
or the power iteration, both of which are closely related to Krasulina’s method, results in worst performance
since this increases the effect of the noise within the iterates. And while the noise within the iterates can
be controlled through variance reduction techniques, as done in (De Sa et al., 2018) to accelerate the power
iteration for eigenvector computation, such techniques typically require multiple data passes and are therefore
not suited for the setting in which data samples continuously stream into the system.

4.2 Convergence of DM-Krasulina (Algorithm 2)

The convergence analysis of DM-Krasulina follows from slight modifications of the proof of Theorem 1 for
D-Krasulina. The final set of results, which covers the two scenarios of zero data loss (µ = 0) and some data
loss (µ > 0) in each iteration, is characterized in terms of variance of the (mini-batched) sample covariance
At := 1

B

∑N
i=1
∑b

j=1 Ai,j,t associated with DM-Krasulina. We denote this variance as σ2
B , which is given by

σ2
B := EPx

∥∥∥∥∥∥ 1

B

N∑
i=1

b∑
j=1

xi,j,txT
i,j,t −Σ

∥∥∥∥∥∥
2

F

 . (15)

16

Published in Transactions on Machine Learning Research (10/2022)

It is once again straightforward to see that σ2
B = σ2/B. We now split our discussion of the convergence of

DM-Krasulina according to the two scenarios discussed in Section 3.2.

4.2.1 Scenario 1—DM-Krasulina with no data loss: N ≥ bRcRs

Rp(bRc−Rs) =⇒ µ = 0

Analytically, this scenario is similar to D-Krasulina, with the only difference being that we are now incorpo-
rating an average of B sample covariances xi,j,txT

i,j,t in the estimate in each iteration (as opposed to N sample
covariances for D-Krasulina). We therefore have the following generalization of Theorem 1 in this scenario.
Theorem 2. Let the parameters and constants be as specified in Theorem 1, except that the parameter L2

is now defined as L2 := 512e2d2σ2
B max(1,c2)
δ4 ln 4

δ . Then, as long as Assumptions [A1] and [A2] hold, we have
for DM-Krasulina that P

(
∩t>0Ω′

t

)
≥ 1− δ and

Et {Ψt} ≤ C1

(L + 1
t + L + 1

) c0
2 + C2

(σ2
B

t + L + 1

)
. (16)

The proof of this theorem can be obtained from that of Theorem 1 by replacing 1/N and σ2
N in there with 1/B

and σ2
B , respectively. Similar to the case of D-Krasulina, this theorem establishes that DM-Krasulina can

also achieve linear speed-up in convergence as a function of the network-wide mini-batch size B with very
high probability, i.e., Et {Ψt} = O(σ2

B/t) ≡ O(σ2/Bt).

Our discussions of D-Krasulina and DM-Krasulina have so far been focused on the infinite-sample regime, in
which the number of algorithmic iterations t for both algorithms can grow unbounded. We now focus on the
implications of our results for the finite-sample regime, in which a final estimate is produced at the end of
arrival of a total of T ≫ 1 samples.6 This finite-sample regime leads to an interesting interplay between N
(resp., B) and the total number of samples T for linear speed-up of D-Krasulina (resp., DM-Krasulina). We
describe this interplay in the following for DM-Krasulina; the corresponding result for D-Krasulina follows
by simply replacing B with N in this result.
Corollary 1. Let the parameters and constants be as specified in Theorem 2. Next, pick parameters
(L′

1, L′
2) such that L′

1 ≥ L1 and L′
2 ≥ L2/σ2

B, and define the final number of algorithmic iterations for
DM-Krasulina as TB := T/B. Then, as long as Assumptions [A1] and [A2] hold and the network-wide
mini-batch size satisfies B ≤ T

1− 2
c0 , we have that P

(
∩0<t≤TB

Ω′

t

)
≥ 1− δ and

ETB
{ΨTB

} ≤ c0C1
L′

1
c0/2

T
+ c0C1

(
σ2L′

2
T

)c0/2

+ C2σ2

T
. (17)

Proof. Substituting t = TB in (16) and using simple upper bounds yield

ETB
{ΨTB

} ≤ C1

(L + 1
L + TB

) c0
2 + C2

(σ2
B

TB

)
≤ 2C1

(L

TB

) c0
2 + C2

(σ2
B

TB

)
.

Next, substituting L = L′
1 + σ2

BL′
2 in this expression gives us

ETB
{ΨTB

} ≤ c0C1

(L′
1

TB

) c0
2 + c0C1

(σ2
BL′

2
TB

) c0
2 + C2

(σ2
B

TB

)
. (18)

Since σ2
B = σ2/B and TB = T/B, (18) reduces to the following expression:

ETB
{ΨTB

} ≤ c0C1

(
BL′

1
T

)c0/2

+ c0C1

(
σ2L′

2
T

)c0/2

+ C2σ2

T
.

The proof now follows from the assumption that B ≤ T
1− 2

c0 .
6An implicit assumption here is that T is large enough that it precludes the use of a batch PCA algorithm.

17

Published in Transactions on Machine Learning Research (10/2022)

Discussion. Corollary 1 dictates that linear convergence speed-up for DM-Krasulina (resp., D-Krasulina)
occurs in the finite-sample regime provided the network-wide mini-batch size B (resp., number of processing
nodes N) scales sublinearly with the total number of samples T . In particular, the proposed algorithms
achieve the best (order-wise) convergence rate of O(1/T) for appropriate choices of system parameters. We
also corroborate this theoretical finding with numerical experiments involving synthetic and real-world data
in Section 6.

4.2.2 Scenario 2—DM-Krasulina with data loss: N < bRcRs

Rp(bRc−Rs) =⇒ µ > 0

The statement of Theorem 2 for DM-Krasulina in the lossless setting immediately carries over to the resource-
constrained setting that causes loss of µ (> 0) samples per iteration. The implication of this result is that
DM-Krasulina can achieve convergence rate of O(1/Bt) in the infinite-sample regime after receiving a total
of (B + µ)t samples. Therefore, it trivially follows that DM-Krasulina can achieve order-wise near-optimal
convergence rate in the infinite-sample regime as long as µ = O(B).

We now turn our attention to understanding the interplay between µ, B, and the total number of samples
T arriving at the system for the resource-constrained finite-sample setting for DM-Krasulina. To this end,
we have the following generalization of Corollary 1.
Corollary 2. Let the parameters and constants be as specified in Corollary 2, and define the final number
of algorithmic iterations for DM-Krasulina as T µ

B := T/(B + µ). Then, as long as Assumptions [A1] and
[A2] hold, we have that P

(
∩t>0Ω′

t

)
≥ 1− δ and

ET µ
B

{
ΨT µ

B

}
≤ c0C1

(
(B + µ)L′

1
T

)c0/2

+ c0C1

(
(B + µ)σ2L′

2
BT

)c0/2

+ C2σ2(B + µ)
BT

. (19)

Proof. The proof of this corollary follows from replacing TB with T µ
B in (18) and subsequently substituting

the values of T µ
B and σ2

B in there.

Discussion. Recall that since the distributed framework receives a total of T samples, it is desirable to
achieve convergence rate of O(1/T). It can be seen from Corollary 2 that the first and the third terms in
(19) are the ones that dictate whether DM-Krasulina can achieve the (order-wise) optimal rate of O(1/T).
To this end, the first term in (19) imposes the condition (B + µ) ≤ T 1−2/c0 , i.e., the total number of samples
received at the system (both processed and discarded) per iteration must scale sublinearly with the final
number of samples T . In addition, the third term in (19) imposes the condition µ = O(B), i.e., the number of
samples discarded by the system in each iteration must scale no faster than the number of samples processed
by the system in each iteration. Once these two conditions are satisfied, Corollary 2 guarantees near-optimal
convergence for DM-Krasulina.

5 Proof of the Main Result

The main result of this paper is given by Theorem 1, which can then be applied to any algorithm that
(implicitly or explicitly) involves an iteration of the form (8). We develop a proof of this result in this
section, which—similar to the approach taken in (Balsubramani et al., 2013) for the analysis of Krasulina’s
method—consists of characterizing the behavior of D-Krasulina in three different algorithmic epochs. The
result concerning the initial epoch is described in terms of Theorem 3 in the following, the behavior of the
intermediate epoch, which comprises multiple sub-epochs, is described through Theorem 4, while the behavior
of D-Krasulina in the final epoch is captured through a formal proof of Theorem 1 at the end of this section.

Before proceeding, recall that our result requires the existence of a sequence (Ω′

t)t∈Z+ of nested sample
spaces that are defined in terms of a sequence of pairs (t0 ≡ 0, ϵ0), (t1, ϵ1), . . . , (tJ , ϵJ). Our analysis of
the initial epoch involves showing that for the step size γt chosen as in Theorem 1, the error for all t ≥ 0
will be less than (1 − ϵ0) with high probability for some constant ϵ0. We then define the remaining ϵj ’s
as ϵj = 2jϵ0, j = 1, . . . , J , where J is defined as the smallest integer satisfying ϵJ ≥ 1/2. Our analysis

18

Published in Transactions on Machine Learning Research (10/2022)

in the intermediate epoch then focuses on establishing lower bounds on the number of iterations tj for
which D-Krasulina is guaranteed to have the error less than 1− ϵj with high probability. Stated differently,
the intermediate epoch characterizes the sub-epochs {1 + tj−1, tj} during which the error is guaranteed to
decrease from (1− ϵj−1) to (1− ϵj) with high probability.

5.1 Initial Epoch

Our goal for the initial epoch is to show that if we pick the step size appropriately, i.e., we set L to be large
enough (cf. (13)), then the error, Ψt, will not exceed a certain value with high probability. This is formally
stated in the following result.
Theorem 3. Fix any δ ∈ (0, 1), define ϵ ∈ (0, 1) as ϵ := δ2/8e, and let

L ≥ 8dr4 max(1, c2)
ϵ

ln 4
δ

+ 8d2σ2
N max(1, c2)

ϵ2 ln 4
δ

. (20)

Then, if Assumptions [A1] and [A2] hold and we choose step size to be γt = c/(L + t), we have

P
(

sup
t≥0

Ψt ≥ 1− ϵ

d

)
≤
√

2eϵ ≡ δ

2 . (21)

In order to prove Theorem 3 we need several helping lemmas that are stated in the following. We only
provide lemma statements in this section and move the proofs to Appendix A. We start by writing the
recursion of error metric Ψt in the following lemma.
Lemma 1. Defining a scalar random variable

zt := 2γt
(vT

t−1q∗)(ξT
t q∗)

∥vt−1∥2
2

, (22)

we get the following recursion:

(i) Ψt ≤ Ψt−1 + 4γ2
t

(∥∥∥ 1
N

∑N
i=1 Ai,t −Σ

∥∥∥2

F
+ λ2

1Ψt−1

)
− zt, and

(ii) Ψt ≤ Ψt−1 + γ2
t r4 − zt.

Proof. See Appendix A.1.

Part (i) of this lemma will be used to analyze the algorithm in the final epoch for proof of Theorem 1, while
Part (ii) will be used to prove Theorem 3 for this initial epoch and Theorem 4 for the intermediate phase.

Next we will bound the moment generating function of Ψt conditioned on Ft−1 (Definition 3). For this, we
need an upper bound on conditional variance of zt, which is given below.
Lemma 2. The conditional variance of the random variable zt is given by

E{(zt − E{zt})2|Ft−1} ≤ 16γ2
t σ2

N . (23)

Proof. See Appendix A.2.

Using this upper bound on conditional variance of zt we can now upper bound the conditional moment
generating function of Ψt. In order to simplify notation, much of our discussion in the following will revolve
around the moment generating function with parameter s ∈ S :=

{
d/4ϵ, (2/ϵ0) ln(4/δ)

}
. Note, however, that

similar results can be derived for any positive-valued parameter s ∈ R.
Lemma 3. The conditional moment generating function of Ψt for s ∈ S is upper bounded as

E{exp(sΨt)|Ft−1} ≤ exp
(

sΨt−1 − sE{zt|Ft−1}+ sγ2
t r4 + s2γ2

t σ2
N

)
. (24)

19

Published in Transactions on Machine Learning Research (10/2022)

Proof. See Appendix A.3.

Note that this result is similar to (Balsubramani et al., 2013, Lemma 2.3) with the difference being that the
last term here is sample variance, σ2

N , as opposed to upper bound on input ∥xt′∥2 ≤ r in (Balsubramani
et al., 2013, Lemma 2.3). This difference prompts changes in next steps of the analysis of D-Krasulina and
it also enables us to characterize improvements in convergence rate of Krasulina’s method using iterations
of the form (8).

We are now ready to prove the statement of Theorem 3, which is based on Lemma 1 and 3.

Proof of Theorem 3. We start by constructing a supermartingale from sequence of errors Ψt. First, restrict-
ing ourselves to s ∈ S, we define quantities

βt := γ2
t r4, ζt := sγ2

t σ2
N , τt :=

∑
l>t

(βl + ζl), and Mt := exp (sΨt + sτt).

Now, taking expectation of Mt conditioned on the filtration Ft−1 we get

E{Mt|Ft−1} = E{exp (sΨt)|Ft−1} exp (sτt)
(a)
≤ exp (sΨt−1 + sβt + sζt + sτt)

= exp (sΨt−1 + sτt−1) = Mt−1.

Here, (a) is due to Lemma 3 and using the fact that E{zt|Ft−1} ≥ 0 (Balsubramani et al., 2013, Theorem 2.1).
These calculations show that the sequence {Mt} forms a supermartingale. Using sequence Mt, we can now
use Doob’s martingale inequality (Durrett, 2010, pg. 231) to show that Ψt will be bounded away from 1
with high probability. Specifically, for any ∆ ∈ (0, 1), we have

P
(

sup
t≥0

Ψt ≥ ∆
)
≤ P

(
sup
t≥0

Ψt + τt ≥ ∆
)

= P
(

sup
t≥0

exp (sΨt + sτt) ≥ es∆
)

= P
(

sup
t≥0

Mt ≥ es∆
)
≤ E{M0}

es∆ = exp (−s(∆− τ0))E{esΨ0}.

Substituting ∆ = 1− ϵ/d and using (Balsubramani et al., 2013, Lemma 2.5) to bound EesΨ0 we get

P
(

sup
t≥0

Ψt ≥ 1− ϵ

d

)
≤ exp (−s(1− (ϵ/d)− τ0))es

√
d

2s
. (25)

Next we need to bound
∑

l>0 βl and
∑

l>0 ζl. First we get∑
l>0

βl =
∑
l>0

γ2
l r4 = r4

∑
l>0

γ2
l = r4

∑
l>0

c2

(l + L)2 ≤
r4c2

L
. (26)

Again using a similar procedure we get ∑
l>0

ζl ≤
sσ2

N c2

L
. (27)

Combining (26) and (27), along with the definition of τt at the beginning, we get

τ0 ≤
c2

L

(
r4 + sσ2

N

)
. (28)

Now using the lower bound on L, we get τ0 ≤ ϵ/d for s = d/4ϵ as shown in Proposition 4 in Appendix D.
Substituting this in (25) we get

P
(

sup
t≥0

Ψt ≥ 1− ϵ

d

)
≤ exp (−s(1− ϵ/d− ϵ/d))es

√
d

2s
= exp (2sϵ/d)

√
d

2s
.

Finally, substituting s = d/4ϵ, we get P
(

supt≥0 Ψt ≥ 1− ϵ
d

)
≤
√

2eϵ.

20

Published in Transactions on Machine Learning Research (10/2022)

5.2 Intermediate Epoch

In Theorem 3 we have shown that if we choose L such that it satisfies the lower bound given in Theorem 3
then we have error Ψt greater than 1− ϵ0 (here, ϵ0 = δ2/8ed) with probability δ. Next, our aim is to show
that if we perform enough iterations tJ of D-Krasulina then for any t ≥ tJ the error in the iterate will be
bounded by Ψt ≤ 1/2 with high probability. In order to prove this, we divide our analysis into different
sub-epochs that are indexed by j ∈ {1, . . . , J}. Starting from 1−ϵ0, we provide a lower bound on the number
of iterations tj such that we progressively increase ϵj in each sub-epoch until we reach ϵJ .
Theorem 4. Fix any δ ∈ (0, 1) and pick c := c0/2(λ1−λ2) for any c0 > 2. Next, let the number of processing
nodes N > 1, the parameter L ≥ 8r4 max(1,c2)

ϵ0
ln 4

δ + 8σ2
N max(1,c2)

ϵ2
0

ln 4
δ , and the step size γt := c/(L+t). Finally,

select a schedule (0, ϵ0), (t1, ϵ1), . . . , (tJ , ϵJ) such that the following conditions are satisfied:

[C1] ϵ0 = δ2

8ed , 3
2 ϵj ≤ ϵj+1 ≤ 2ϵj for 0 ≤ j < J , and ϵJ−1 ≤ 1

4 , and

[C2]
(

tj+1 + L + 1
)
≥ e5/c0

(
tj + L + 1

)
for 0 ≤ j < J .

Then P
(
∩t>0Ω′

t

)
≥ 1− δ.

In order to prove this theorem, we need Lemmas 4–7, which are stated as follows.
Lemma 4. For t > tj, the moment generating function of Ψt for s ∈ S conditioned on Ω′

t satisfies

Et

{
esΨt

}
≤ exp

(
s

(
Ψt−1

(
1− c0ϵj

t + L

)
+ c2r4

(t + L)2 + sc2σ2
N

(t + L)2

))
.

Proof. See Appendix B.1.

Lemma 5. For t > tj and s ∈ S, we have

Et{esΨt} ≤ exp
(

s(1− ϵj)
(

tj + L + 1
t + L + 1

)c0ϵj

+
(

sc2r4 + s2c2σ2
N

)(
1

tj + L
− 1

t + L

))
. (29)

Proof. See Appendix B.2.

Using Lemma 5, our next result deals with a specific value of t, namely, t = tj+1.
Lemma 6. Suppose Conditions [C1]–[C2] are satisfied. Then for 0 ≤ j < J and s ∈ S, we get

Etj+1

{
esΨtj+1

}
≤ exp

(
s(1− ϵj+1)− sϵj +

(
sc2r4 + s2c2σ2

N

)(1
tj + L

− 1
tj+1 + L

))
.

Proof. See Appendix B.3.

Lemma 7. Suppose Conditions [C1]–[C2] are satisfied. Then picking any 0 < δ < 1, we have

J∑
j=1

Ptj

(
sup
t≥tj

Ψt > 1− ϵj

)
≤ δ

2 .

Proof. See Appendix B.4.

Proof. (Proof of Theorem 4) Using results from Lemma 7 and Theorem 3 and applying union bound, we get
the statement of Theorem 4.

21

Published in Transactions on Machine Learning Research (10/2022)

5.3 Final Epoch

Now that we have shown that Ψt ≤ 1/2 with probability 1 − δ for all t ≥ tJ , we characterize in the final
epoch how Ψt decreases further as a function of algorithmic iterations. The following result captures the
rate at which Ψt decreases during this final epoch.
Lemma 8. For any t > tJ and c := c0/(λ1 − λ2), the (conditional) expected error in Ψt is given by

Et{Ψt} ≤

(
1 + c2

0λ2
1

2(t + L)2(λ1 − λ2)2 −
c0

2(t + L)

)
Et−1{Ψt−1}+ 4c2σ2

N

(t + L)2 .

Proof. See Appendix C.

We are now ready to prove our main result, which is given by Theorem 1.

Proof. (Proof of Theorem 1) Recall the definitions of the sub-epochs corresponding to the pairs (tj , ϵj)′s that
satisfy the two conditions in Theorem 4. Following the same procedure as in the proof of (Balsubramani et al.,
2013, Theorem 1.1), notice that J = log2

(
1/(2ϵ0)

)
(since ϵJ = 2ϵJ−1 = · · · = 2Jϵ0 ⇒ 2J = ϵJ/ϵ0 = 1/2ϵ0)

and therefore Condition [C2] implies

tJ + L + 1 =
(
L + 1

)
exp

(5J

c0

)
=
(
L + 1

)(1
2ϵ0

)5/(c0 ln 2)
=
(
L + 1

)(4ed

δ2

)5/(c0 ln 2)
. (30)

Defining a1 := c2
0λ2

1/2(λ1 − λ2)2, a2 := c0/2, b := 4c2σ2
N , and using Lemma 8 for t > tJ , we have

Et{Ψt} ≤
(

1 + a1

(t + L)2 −
a2

t + L

)
Et−1{Ψt−1}+ b

(t + L)2 .

Now using Proposition 1 from Appendix C with c0 > 2, we get

Et{Ψt} ≤
(tJ + L + 1

t + L + 1

) c0
2 exp

(a1

tJ + L + 1

)
EtJ
{ΨtJ

}

+ b

a2 − 1

(
1 + 1

tJ + L + 1

)2
exp

(a1

tJ + L + 1

) 1
t + L + 1

(a)
≤ 1

2

(L + 1
t + L + 1

) c0
2
(4ed

δ2

) 5a2
(c0 ln 2) exp

(a1

tJ + L + 1

)
+ b

a2 − 1 exp
(2

tJ + L + 1

)
exp

(a1

tJ + L + 1

) 1
t + L + 1

= 1
2

(L + 1
t + L + 1

) c0
2
(4ed

δ2

) 5
(2 ln 2) exp

(a1

(L + 1)(4ed/δ2)(5/2 ln 2)

)
+ 8c2σ2

N

c0 − 2 exp
(2 + a1

(L + 1)(4ed/δ2)(5/2 ln 2)

) 1
(t + L + 1) .

Here, the inequality in (a) is due to (30) and we have also used the fact that (1 + x)a ≤ exp (ax) for x < 1.
In addition, since (4ed/δ2)(5/2 ln 2) ≥ 1, we get

Et{Ψt} ≤
1
2

(L + 1
t + L + 1

) c0
2
(4ed

δ2

) 5
(2 ln 2) exp

(a1

L + 1

)
+ 8c2σ2

N

c0 − 2 exp
(a1 + 2

L + 1

) 1
(t + 1)

≤ 1
2

(L + 1
t + L + 1

) c0
2
(4ed

δ2

) 5
(2 ln 2)

ea1/L + 8c2σ2
N e(a1+2)/L

c0 − 2
1

(t + L + 1)

= C1

(L + 1
t + L + 1

) c0
2 + C2

(σ2
N

t + L + 1

)
. (31)

This completes the proof of the theorem.

22

Published in Transactions on Machine Learning Research (10/2022)

10
0

10
2

10
4

10
6

10
-6

10
-4

10
-2

10
0

(a) Impact of the mini-batch size on the convergence rate
of DM-Krasulina for the resourceful regime. Note that the
B = 1 plot is effectively Krasulina’s method.

10
0

10
2

10
4

10
6

10
-6

10
-4

10
-2

10
0

(b) Performance of DM-Krasulina in a resource-constrained
regime (i.e., N < bRcRs

Rp(bRc−Rs)), which causes loss of µ sam-
ples per iteration; here, (N, B) = (10, 100).

Figure 2: Convergence behavior of DM-Krasulina for the case of synthetic data under two scenarios: (a) No
data loss (µ = 0) and (b) loss of µ > 0 samples per algorithmic iteration.

6 Numerical Results

In this section, we utilize numerical experiments to validate the theoretical findings of this work in terms
of the ability of implicit/explicit mini-batched variants of the original Krasulina’s method (Krasulina, 1969)
to estimate the top eigenvector of a covariance matrix from (fast) streaming data. Instead of repeating the
same set of experiments for the original Krasulina’s method, D-Krasulina, and DM-Krasulina, we present our
results that are parameterized by the network-wide mini-batch size B ∈ {1}

⋃
{bN : b ∈ Z+} that appears

in DM-Krasulina. This is because B = 1 trivially corresponds to the original Krasulina’s iterations, while
B = N corresponds to iterations that characterize D-Krasulina.

Our goals for the numerical experiments are threefold: (i) showing the impact of (implicit/explicit) mini-
batching on the convergence rate of DM-Krasulina, (ii) establishing robustness of DM-Krasulina against the
loss of µ > 0 samples per iteration for the case when N < bRcRs

Rp(bRc−Rs) , and (iii) experimental validation
for scaling of the convergence rate in terms of the problem parameters as predicted by our theoretical
findings, namely, eigengap (λ1 − λ2), dimensionality (d), and upper bound on input samples (∥xt′∥2 ≤ r).
In the following, we report results of experiments on both synthetic and real-world data to highlight these
points. Since the main purpose is to corroborate the scaling behaviors within the main results—and not
to investigate additional system-related issues concerned with large-scale implementations—the real-world
datasets are chosen to facilitate their processing on low-cost compute machines.

6.1 Experiments on Synthetic Data

In the following experiments we generate T = 106 samples from some probability distribution (specified for
each experiment later) and for each experiment we perform 200 Monte-Carlo trials. In all the experiments
in the following we use step size of the form γt = c/t. We performed experiments with multiple values of c
and here we are reporting the results for the value of c which achieves the best convergence rate. Further
details about each experiment are provided in the following sections.

6.1.1 Impact of mini-batch size on the performance of DM-Krasulina

For a covariance matrix Σ ∈ R5×5 with λ1 = 1 and eigengap λ1 − λ2 = 0.2, we generate T = 106 samples
from N (0, Σ) distribution. The first set of experiments here deals with the resourceful regime, i.e., N ≥

bRcRs

Rp(bRc−Rs) , with mini-batches of sizes B ∈ {1, 10, 100, 500, 1000, 2000}. Note that these values of B can be

23

Published in Transactions on Machine Learning Research (10/2022)

10
0

10
2

10
4

10
6

10
-8

10
-6

10
-4

10
-2

10
0

(a)

10
0

10
2

10
4

10
6

10
-6

10
-4

10
-2

10
0

(b)

Figure 3: Understanding the impact of (a) eigengap (λ1 − λ2) and (b) dimensionality d on the convergence
behavior of DM-Krasulina, corresponding to B = 1000 and µ = 0.

factored into any positive integers b and N as long as the condition N ≥ bRcRs

Rp(bRc−Rs) that is governed by
the application scenario and the physical system is satisfied. It is, therefore, unnecessary to specify b and
N for these experiments, whose results are shown in Figure 2(a). These results are obtained for step-size
parameter c ∈ {70, 80, 80, 90, 110, 100}, which are the values of c resulting in the best convergence rate. As
predicted by Corollary 1, we can see that after T/B iterations of DM-Krasulina, the error ΨT/B is on the
order of O(1/T) for B ∈ {1, 10, 100, 500, 1000}, while for B = 2000, the error ΨT/B is not optimal anymore.

Next, we demonstrate the performance of DM-Krasulina for resource constrained settings, i.e.,
N < bRsRc

Rp(bRc−Rs) , which causes the algorithm to discard µ :=
(

bRs

Rp
+ NRs

Rc

)
− B samples per itera-

tion. Using the same data generation setup as before, we run DM-Krasulina for a network of 10 nodes
(N = 10) with network-wide mini-batch of size B = 100 (i.e., b = 10). We consider different mismatch
factors between streaming, processing, and communication rates in this experiment, which result in the
number of samples being discarded as µ ∈ {0, 10, 100, 200}. The results are plotted in Figure 2(b), which
shows that the error ΨT/(B+µ) for µ = 10 is comparable to that for µ = 0, but the error for µ = 200 is an
order of magnitude worse than the nominal error.

6.1.2 Impact of the eigengap on the performance of DM-Krasulina

For this set of experiments, we again generate data in R5 from a normal distribution N (0, Σ), where the
covariance matrix Σ has the largest eigenvalue λ1 = 1. We then vary the remaining eigenvalues to ensure an
eigengap that takes values from the set {0.1, 0.2, 0.3, 0.4, 0.5}. The corresponding values of c that give the
best convergence rate for each unique eigengap satisfy c ∈ {180, 110, 90, 70, 60}. The final results for these
experiments are plotted in Figure 3(a) for the case of B = 1000 and µ = 0. These results establish that
the final gap in error after observing T = 106 data samples is indeed on the order of O(1/(λ1 − λ2)2), as
suggested by the theoretical analysis.

6.1.3 Impact of dimensionality on the performance of DM-Krasulina

For this set of experiments, we generate data in Rd from a normal distribution N (0, Σ) whose dimensionality
is varied such that d ∈ {5, 10, 15, 20}. In addition, we fix the largest eigenvalue of Σ to be λ1 = 1 and
its eigengap to be 0.2. The values of c corresponding to each unique value of d that provide the best
convergence rate in these experiments satisfy {110, 110, 100, 100}; contrary to our theoretical analysis, this
seems to suggest that the optimal step-size sequence does not have a strong dependence on d, at least for
small values of d. We also plot the potential function for each d as a function of the number of received
samples in Figure 3(b) for the case of B = 1000 and µ = 0. Once again, we observe little dependence of

24

Published in Transactions on Machine Learning Research (10/2022)

10
0

10
2

10
4

10
6

10
-8

10
-6

10
-4

10
-2

10
0

Figure 4: Performance of DM-Krasulina for varying upper bound on the norm of the streaming data.

the performance of DM-Krasulina on d. Both these observations suggest that our theoretical analysis is not
tight in terms of its dependence on dimensionality d of the streaming data.

6.1.4 Impact of upper bound on the performance of DM-Krasulina

In order to understand the impact of the upper bound ∥xt′∥2 ≤ r on the convergence behavior of
DM-Krasulina, we generate xt′ ∈ R5 as xt′ = Cut′ with ut′ ∈ R5 having independent entries drawn
from uniform distribution U(−a, a) and C chosen to ensure an eigengap of 0.2 for the covariance matrix. As
we vary the value of a within the set {1, 2, 3, 10}, we generate four different datasets of T = 106 samples for
which the resulting r ∈ {1.45, 2.9, 4.5, 14.5}. The values of c that provide best convergence for these values
of r satisfy c ∈ {8, 2, 1, 0.08}. The final set of results are displayed in Figure 4 for B = 1 and µ = 0. It can
be seen from this figure that changing r does not affect the convergence behavior of DM-Krasulina. This
behavior can be explained by noticing that the parameter r appears in our convergence results in terms of a
lower bound on L (cf. (13)) and within the non-dominant term in the error bound. The dependence of L on
the parameter r is already being reflected here in our choice of the step-size parameter c that results in the
best convergence result. In addition, we hypothesize that the non-dominant error term in our experiments,
compared to the dominant one, is significantly small that it masks the dependence of the final error on r.

6.2 Experiments on Real-world Datasets

In this section, we evaluate the performance of DM-Krasulina on two real-world datasets, namely, the MNIST
dataset (LeCun, 1998) and the Higgs dataset (Baldi et al., 2014). The MNIST dataset corresponds to d = 784
and has a total of T = 6×104 samples, while the Higgs dataset is d = 28 dimensional and comprises 1.1×107

samples. It is worth noting here that since it is straightforward to store all the samples in these datasets
at a single machine, one can always solve the 1-PCA problem for these datasets without resorting to the
utilization of a distributed streaming framework. Nonetheless, it is still possible to utilize these dataset in
a simulated distributed streaming setting in order to highlight the agreement between the scaling behavior
predicted by our theoretical results and the scaling behavior observed using real-world datasets; this is indeed
the purpose of the following sets of experiments.

Our first set of experiments is for the MNIST dataset, in which we use the step size γ = c/t with c ∈
{0.6, 0.9, 1.1, 1.5, 1.6} for network-wide mini-batch sizes B ∈ {1, 10, 100, 300, 1000} in the resourceful regime
(µ = 0). The results, which are averaged over 200 random initializations and random shuffling of data, are
given in Figure 5(a). It can be seen from this figure that the final error relatively stays the same as B increases
from 1 to 100, but it starts getting affected significantly as the network-wide mini-batch size is further
increased to B = 300 and B = 1000. Our second set of experiments for the MNIST dataset corresponds to

25

Published in Transactions on Machine Learning Research (10/2022)

10
0

10
2

10
4

10
6

10
-4

10
-3

10
-2

10
-1

10
0

(a) MNIST Data (µ = 0): Impact of network-
wide mini-batch size B on the convergence behavior of
DM-Krasulina for the resourceful regime.

10
0

10
2

10
4

10
6

10
-3

10
-2

10
-1

10
0

(b) MNIST Data (N = 10; B = 100): Convergence be-
havior of DM-Krasulina in a resource-constrained regime,
which causes loss of µ samples per iteration.

Figure 5: Performance of DM-Krasulina for the MNIST dataset under two scenarios: (a) No data loss (µ = 0)
and (b) loss of µ > 0 samples per algorithmic iteration.

10
0

10
2

10
4

10
6

10
8

10
-6

10
-4

10
-2

10
0

(a) Higgs Data (µ = 0): Impact of network-wide mini-batch
size B on the convergence behavior of DM-Krasulina for the
resourceful regime.

10
0

10
2

10
4

10
6

10
8

10
-6

10
-4

10
-2

10
0

(b) Higgs Data (N = 10; B = 1000): Convergence behavior
of DM-Krasulina in a resource-constrained regime, which
causes loss of µ samples per iteration.

Figure 6: Performance of DM-Krasulina for the Higgs dataset under two scenarios: (a) No data loss (µ = 0)
and (b) loss of µ > 0 samples per algorithmic iteration.

the resource-constrained regime with (N, B) = (10, 100) and step-size parameter c ∈ {0.6, 0.9, 1.1, 1.5, 1.6}
for the number of discarded samples µ ∈ {0, 10, 20, 40, 100}. The results, averaged over 200 trials and given
in Figure 5(b), show that the system can tolerate loss of some data samples per iteration without significant
increase in the final error; the increase in error, however, becomes noticeable as µ approaches B. Both these
observations are in line with the insights of our theoretical analysis.

We now turn our attention to the Higgs dataset. Our results for this dataset, averaged over 200 trials and
using c = 0.07, for the resourceful and resource-constrained settings are given in Figure 6(a) and Figure 6(b),
respectively. In the former setting, corresponding to B ∈ {1, 102, 103, 104, 2 × 104}, we once again see that
the error relatively stays the same for values of B that are significantly smaller than T ; in particular, since
T for the Higgs dataset is larger than for the MNIST dataset, it can accommodate a larger value of B
without significant loss in performance. In the latter resource-constrained setting, corresponding to N = 10,

26

Published in Transactions on Machine Learning Research (10/2022)

B = 1000 and µ ∈ {0, 10, 100, 1000, 2000}, we similarly observe that small (relative to B) values of µ do not
impact the performance of DM-Krasulina in a significant manner. Once again, these results corroborate our
research findings.

7 Conclusion

In this paper, we studied the problem of estimating the principal eigenvector of a covariance matrix from
independent and identically distributed data samples. Our particular focus in here was developing and an-
alyzing two variants, termed D-Krasulina and DM-Krasulina, of a classical stochastic algorithm that can
estimate the top eigenvector in a near-optimal fashion from fast streaming data that overwhelms the pro-
cessing capabilities of a single processor. Unlike the classical algorithm that must discard data samples in
high-rate streaming settings, and thus sacrifice the convergence rate, the proposed algorithms manage the
high-rate streaming data by trading off processing capabilities with computational resources and commu-
nications infrastructure. Specifically, both D-Krasulina and DM-Krasulina virtually slow down the rate of
streaming data by spreading the processing of data samples across of a network of processing nodes. In addi-
tion, DM-Krasulina can overcome slower communication links and/or lack of sufficient number of processing
nodes through a network-wide mini-batching strategy, coupled with discarding of a small number of data
samples per iteration.

Our theoretical analysis, which fundamentally required a characterization of the error incurred by the pro-
posed algorithms as a function of the variance of the sample covariance matrix, substantially improved the
variance-agnostic analysis in (Balsubramani et al., 2013) and established the conditions under which near-
optimal convergence rate is achievable in the fast streaming setting, even when some data samples need to
be discarded due to lack of sufficient computational and/or communication resources. We also carried out
numerical experiments on both synthetic and real-world data to validate our theoretical findings.

In terms of future work, extension of our algorithmic and analytical framework for estimation of the principal
subspace comprising multiple eigenvectors remains an open problem. In addition, tightening our theoretical
analysis to better elucidate the role of dimensionality of data in the performance of the proposed algorithmic
framework is an interesting problem. Finally, investigation of additional practical issues (e.g., processor
failures, variable compute costs, and network coordination costs) concerning processing of data in large-scale
systems provides another avenue for future research.

Funding Acknowledgements

This work has been supported in part by the National Science Foundation under Awards CCF-1907658,
OAC-1940074, and CNS-2148104, and by the Army Research Office under Awards W911NF-17-1-0546 and
W911NF-21-1-0301.

References
Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In Proc. Advances Neural

Inform. Process. Syst. (NeurIPS), pp. 873–881, 2011.

Zeyuan Allen-Zhu. How to make the gradients small stochastically: Even faster convex and nonconvex SGD.
In Proc. Advances Neural Inform. Process. Syst. (NeurIPS), pp. 1157–1167, 2018a.

Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than SGD. In Proc. Advances Neural Inform.
Process. Syst. (NeurIPS), pp. 2680–2691, 2018b.

Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization. In Intl. Conf.
Mach. Learning (ICML), pp. 699–707, 2016.

Zeyuan Allen-Zhu and Yuanzhi Li. First efficient convergence for streaming k-PCA: a global, gap-free, and
near-optimal rate. In Proc. IEEE 58th Annu. Symp. Found. Comput. Sci. (FOCS), pp. 487–492. IEEE,
2017a.

27

Published in Transactions on Machine Learning Research (10/2022)

Zeyuan Allen-Zhu and Yuanzhi Li. Follow the compressed leader: Faster online learning of eigenvectors and
faster MMWU. In Proc. 34th Int. Conf. Mach. Learning. (ICML), pp. 116–125. JMLR. org, 2017b.

Ehsan Amid and Manfred K Warmuth. An implicit form of Krasulina’s k-PCA update without the orthonor-
mality constraint. arXiv preprint arXiv:1909.04803, 2019.

Raman Arora, Andy Cotter, and Nati Srebro. Stochastic optimization of PCA with capped MSG. In Proc.
Advances Neural Inform. Process. Syst. (NeurIPS), pp. 1815–1823, 2013.

Tuncer Can Aysal, Mehmet Ercan Yildiz, Anand D Sarwate, and Anna Scaglione. Broadcast gossip algo-
rithms for consensus. IEEE Trans. Signal Process., 57(7):2748–2761, 2009.

Maria Florina Balcan, Yingyu Liang, Le Song, David Woodruff, and Bo Xie. Communication efficient
distributed kernel principal component analysis. In Proc. 22nd ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining, pp. 725–734. ACM, 2016.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy physics
with deep learning. Nature communications, 5:4308, 2014.

Akshay Balsubramani, Sanjoy Dasgupta, and Yoav Freund. The fast convergence of incremental PCA. In
Proc. Advances Neural Inform. Process. Syst. (NeurIPS), pp. 3174–3182, 2013.

Bin Yang. Projection approximation subspace tracking. IEEE Trans. Signal Process., 43(1):95–107, 1995.

Vincent D Blondel, Julien M Hendrickx, Alex Olshevsky, and John N Tsitsiklis. Convergence in multiagent
coordination, consensus, and flocking. In Proc. 44th IEEE Conf. Decision and Control, pp. 2996–3000.
IEEE, 2005.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proc. 19th Intl. Conf.
Computational Statistics (COMPSTAT’10), pp. 177–186, 2010. doi: 10.1007/978-3-7908-2604-3_16.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory
of independence. Oxford University Press, 2013.

Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal component analysis in distributed
and streaming models. In Proc. 48th Annu. ACM Symp. Theory Computing (STOC), pp. 236–249. ACM,
2016.

Chanchal Chatterjee. Adaptive algorithms for first principal eigenvector computation. Neural Networks, 18:
145–159, 2005. ISSN 08936080. doi: 10.1016/j.neunet.2004.11.004.

Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input sparsity time.
J. of the ACM, 63(6):1–45, 2017.

Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms via ac-
celerated gradient methods. In Proc. Advances Neural Inform. Process. Syst. (NeurIPS), pp. 1647–1655,
2011.

Christopher De Sa, Kunle Olukotun, and Christopher Ré. Global convergence of stochastic gradient descent
for some non-convex matrix problems. In Proc. 32nd Int. Conf. Machine Learning (ICML), pp. 2332–2341,
July 2015. URL http://arxiv.org/abs/1411.1134.

Christopher De Sa, Bryan He, Ioannis Mitliagkas, Christopher Ré, and Peng Xu. Accelerated stochastic
power iteration. Proc. Mach. Learning Res., 84:58, 2018.

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction using
mini-batches. J. Mach. Learning Res. (JMLR), 13(Jan):165–202, 2012.

Alexandros G Dimakis, Soummya Kar, José MF Moura, Michael G Rabbat, and Anna Scaglione. Gossip
algorithms for distributed signal processing. Proc. IEEE, 98(11):1847–1864, 2010.

28

http://arxiv.org/abs/1411.1134

Published in Transactions on Machine Learning Research (10/2022)

Xenofon G. Doukopoulos and George V. Moustakides. Fast and stable subspace tracking. IEEE Trans.
Signal Process., 56(4):1452–1465, 2008. ISSN 1053587X. doi: 10.1109/TSP.2007.909335.

Rick Durrett. Probability: theory and examples. Cambridge University Press, 2010.

Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast Monte-Carlo algorithms for finding low-rank approx-
imations. J. of the ACM, 51(6):1025–1041, 2004.

Arpita Gang and Waheed U Bajwa. FAST-PCA: A fast and exact algorithm for distributed principal
component analysis. arXiv preprint arXiv:2108.12373, 2021.

Arpita Gang and Waheed U Bajwa. A linearly convergent algorithm for distributed principal component
analysis. Signal Process., 193:108408, 2022.

Arpita Gang, Bingqing Xiang, and Waheed U Bajwa. Distributed principal subspace analysis for partitioned
big data: Algorithms, analysis, and implementation. IEEE Trans. Signa Inform. Process. over Netw., 7:
699–715, 2021.

Dan Garber. On the regret minimization of nonconvex online gradient ascent for online PCA. arXiv preprint
arXiv:1809.10491, 2018.

Dan Garber and Elad Hazan. Fast and simple PCA via convex optimization. In Proc. 32nd Int. Conf.
Machine Learning (ICML), 2015.

Dan Garber, Elad Hazan, and Tengyu Ma. Online learning of eigenvectors. In Proc. 32nd Int. Conf. Machine
Learning. (ICML), pp. 560–568, 2015.

Dan Garber, Ohad Shamir, and Nathan Srebro. Communication-efficient algorithms for distributed stochas-
tic principal component analysis. arXiv preprint arXiv:1702.08169, 2017.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online stochastic gradient
for tensor decomposition. In Proc. Conf. Learning Theory (COLT), pp. 797–842, 2015.

Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir Gholami, Kai Rothauge, Michael W
Mahoney, and Joseph Gonzalez. On the computational inefficiency of large batch sizes for stochastic
gradient descent. arXiv preprint arXiv:1811.12941, 2018.

Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins University Press, Baltimore,
MD, third edition, 2012.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training ImageNet in 1 hour.
arXiv preprint arXiv:1706.02677, 2017.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–288, 2011.

Moritz Hardt and Eric Price. The noisy power method: A meta algorithm with applications. In Proc.
Advances Neural Inform. Process. Systs (NeurIPS), pp. 2861–2869, 2014.

Elad Hazan, Kfir Yehuda Levy, and Shai Shalev-Shwartz. On graduated optimization for stochastic non-
convex problems. In Proc. Int. Conf. Mach. Learn. (ICML), pp. 1833–1841, 2016.

Elad Hazan, Satyen Kale, and Shai Shalev-Shwartz. Near-optimal algorithms for online matrix prediction.
SIAM J. Computing, 46(2):744–773, 2017.

Amelia Henriksen and Rachel Ward. AdaOja: Adaptive learning rates for streaming PCA. arXiv preprint
arXiv:1905.12115, 2019.

29

Published in Transactions on Machine Learning Research (10/2022)

Prateek Jain, Chi Jin, Sham M Kakade, Praneeth Netrapalli, and Aaron Sidford. Streaming PCA: Matching
matrix Bernstein and near-optimal finite sample guarantees for Oja’s algorithm. In Proc. Conf. Learning
Theory (COLT), pp. 1147–1164, 2016.

Zohar Karnin and Edo Liberty. Online PCA with spectral bounds. In Proc. Conf. Learning Theory (COLT),
pp. 1129–1140, 2015.

Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. An analysis of traces from a production
MapReduce cluster. In Proc. 10th IEEE/ACM Int. Conf. Cluster, Cloud and Grid Comput., pp. 94–103,
2010.

David Kempe, Frank McSherry, Kempe David, and Frank McSherry. A decentralized algorithm for spectral
analysis. J. Comput. and Syst. Sci., 74(1):70–83, 2008.

Usman A Khan, Soummya Kar, and José MF Moura. Distributed sensor localization in random environments
using minimal number of anchor nodes. IEEE Trans. Signal Process., 57(5):2000–2016, 2009.

Satish Babu Korada, Andrea Montanari, and Sewoong Oh. Gossip PCA. ACM SIGMETRICS Performance
Evaluation Review, 39(1):169–180, 2011.

Wojciech Kotłowski and Gergely Neu. Bandit principal component analysis. In Proc. Conf. Learning Theory.
(COLT), 2019.

TP Krasulina. The method of stochastic approximation for the determination of the least eigenvalue of a
symmetrical matrix. USSR Comput. Mathematics and Mathematical Physics, 9(6):189–195, 1969.

Yann LeCun. The MNIST database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Cong Leng, Jiaxiang Wu, Jian Cheng, Xiao Bai, and Hanqing Lu. Online sketching hashing. In Proc. IEEE
Conf Comput. Vision and Pattern Recognition (CVPR), pp. 2503–2511, 2015.

Chun-Liang Li, Hsuan-Tien Lin, and Chi-Jen Lu. Rivalry of two families of algorithms for memory-restricted
streaming PCA. In Proc. Int. Conf. Artificial Intell. and Statis. (AISTATS), pp. 473–481, 2016.

Lin Li, Anna Scaglione, and Jonathan H Manton. Distributed principal subspace estimation in wireless
sensor networks. IEEE J. Sel. Topics Signal Process., 5(4):725–738, 2011.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. PAGE: A simple and optimal probabilistic
gradient estimator for nonconvex optimization. In Int. Conf. Mach. Learn., pp. 6286–6295. PMLR, 2021.

Edo Liberty. Simple and deterministic matrix sketching. In Proc. 19th ACM SIGKDD Int. Conf. Knowledge
discovery and data mining, pp. 581–588. ACM, 2013.

Jeff Linderoth, Alexander Shapiro, and Stephen Wright. The empirical behavior of sampling methods for
stochastic programming. Ann. Operations Research, 142(1):215–241, 2006.

Teodor Vanislavov Marinov, Poorya Mianjy, and Raman Arora. Streaming principal component analysis in
noisy settings. In Proc. 35th Int. Conf. Mach. Learning (ICML), pp. 3410–3419, 2018.

Aryan Mokhtari, Alec Koppel, Gesualdo Scutari, and Alejandro Ribeiro. Large-scale nonconvex stochastic
optimization by doubly stochastic successive convex approximation. In IEEE Int. Conf. Acoustics, Speech
and Signal Process., pp. 4701–4705, 2017.

Jiazhong Nie, Wojciech Kotlowski, and Manfred K Warmuth. Online PCA with optimal regret. J. Mach.
Learning Res. (JMLR), 17(173):1–49, 2016.

Erkki Oja and Juha Karhunen. On stochastic approximation of the eigenvectors and eigenvalues of the
expectation of a random matrix. J. Math. Anal. and Applicat., 106(1):69–84, 1985.

Muhammad I Qureshi, Ran Xin, Soummya Kar, and Usman A Khan. Push-SAGA: A decentralized stochastic
algorithm with variance reduction over directed graphs. IEEE Control Syst. Letters, 6:1202–1207, 2021.

30

Published in Transactions on Machine Learning Research (10/2022)

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to par-
allelizing stochastic gradient descent. In Proc. Advances Neural Inform. Process. Systs (NeurIPS), pp.
693–701, 2011.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance reduction
for nonconvex optimization. In Proc. Int. Conf. Mach. learning (ICML), pp. 314–323, 2016a.

Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Fast stochastic methods for nonsmooth
nonconvex optimization. In Proc. Advances Neural Inform. Process. Syst. (NeurIPS), 2016b.

Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Fast incremental method for smooth
nonconvex optimization. In IEEE 55th Conf. Decision and Control (CDC), pp. 1971–1977. IEEE, 2016c.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Ann. Math. Stat., pp. 400–407,
1951.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747,
2016.

Terence D Sanger. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural
networks, 2(6):459–473, 1989.

Ohad Shamir. A stochastic PCA algorithm with an exponential convergence rate. In Proc. Int. Conf. Mach.
Learning (ICML), 2015.

Ohad Shamir. Fast stochastic algorithms for SVD and PCA: Convergence properties and convexity. In Proc.
33rd Int. Conf. Mach. Learning, 2016.

Ohad Shamir and Nathan Srebro. Distributed stochastic optimization and learning. In 52nd Annu. Allerton
Conf. Commun., Control, and Compute., pp. 850–857. IEEE, 2014.

Alexander Shapiro and Tito Homem-de Mello. On the rate of convergence of optimal solutions of Monte
Carlo approximations of stochastic programs. SIAM J. optimization, 11(1):70–86, 2000.

Cheng Tang. Exponentially convergent stochastic k-PCA without variance reduction. arXiv preprint
arXiv:1904.01750, 2019.

Joel A Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher. Streaming low-rank matrix approximation
with an application to scientific simulation. SIAM J. Scientific Comput., 41(4):A2430–A2463, 2019.

Manfred K Warmuth and Dima Kuzmin. Randomized PCA algorithms with regret bounds that are logarith-
mic in the dimension. In Proc. Advances Neural Inform. Process. Syst. (NIPS), volume 19, pp. 1481–1488,
2007. ISBN 9780262195683. doi: 10.1.1.133.8332.

David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends® in Theoretical
Computer Science, 10(1–2):1–157, 2014.

Sissi Xiaoxiao Wu, Hoi-To Wai, Anna Scaglione, and Neil A Jacklin. The Power-Oja method for decentralized
subspace estimation/tracking. In Proc. 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3524–3528. IEEE, 2017.

Sissi Xiaoxiao Wu, Hoi-To Wai, Lin Li, and Anna Scaglione. A review of distributed algorithms for principal
component analysis. Proc. IEEE, 106(8):1321–1340, 2018.

Puyudi Yang, Cho-Jui Hsieh, and Jane-Ling Wang. History PCA: A new algorithm for streaming PCA.
arXiv preprint arXiv:1802.05447, 2018.

Se-Young Yun, Alexandre Proutiere, et al. Fast and memory optimal low-rank matrix approximation.
Advances in Neural Information Processing Systems, 28, 2015.

31

Published in Transactions on Machine Learning Research (10/2022)

Dejiao Zhang and Laura Balzano. Global convergence of a Grassmannian gradient descent algorithm for
subspace estimation. In Proc. Int. Workshop Artificial Intell. and Statist. (AISTATS), pp. 1460–1468,
2016.

Siyun Zhou and Yanqin Bai. Convergence analysis of Oja’s iteration for solving online PCA with nonzero-
mean samples. Science China Mathematics, 64(4):849–868, 2021.

Appendix A Proofs of Lemmas for the Initial Epoch

A.1 Proof of Lemma 1

In order to prove Lemma 1, we first need the following result.
Lemma 9. The second moment of the update vector ξt in D-Krasulina is upper bounded as

E

{
∥ξt∥2

2
∥vt−1∥2

2

}
≤

E
{
∥ξt − Eξt∥2

2
}

∥vt−1∥2
2

+ 2λ2
1Ψt−1.

Proof. We start by writing E
{
∥ξt − E{ξt}∥2

2
}

in terms of E
{
∥ξt∥2

2
}

as follows:

E
{
∥ξt − E{ξt}∥2

2
}

= E

{
ξT

t ξt + (E{ξt})TE{ξt} − ξT
t E{ξt} − (E{ξt})Tξt

}
= E{∥ξt∥2

2} − E{ξT
t }E{ξt}.

Now defining Ct := E{ξT
t }E{ξt} and rearranging the above equation, we get

E{∥ξt∥2
2} = E{∥ξt − E{ξt}∥2

2}+ Ct.

Next, substituting value of ξt from (8) we get

Ct

∥vt−1∥2
2

= E{ξT
t }E{ξt}
∥vt−1∥2

2
= 1
∥vt−1∥2

2

(
Σvt−1 −

vT
t−1Σvt−1vt−1

vT
t−1vt−1

)T(
Σvt−1 −

vT
t−1Σvt−1vt−1

vT
t−1vt−1

)

=
vT

t−1Σ2vt−1

∥vt−1∥2
2
−

(
vT

t−1Σvt−1

∥vt−1∥2
2

)2

. (32)

Since Σ is a positive semi-definite matrix, we can write its eigenvalue decomposition as Σ =
∑d

i=1 λiqiqT
i ,

where λ1 > λ2 ≥ · · · ≥ λd ≥ 0 and q1(≡ q∗), q2, . . . , qd are the eigenvalues and corresponding eigenvectors
of Σ, respectively. It follows that

Ct

∥vt−1∥2
2

=
d∑

i=1
λ2

i

(vT
t−1qi)2

∥vt−1∥2
2
−

(
d∑

i=1
λi

(vT
t−1qi)2

∥vt−1∥2
2

)2

= λ2
1

(vT
t−1q∗)2

∥vt−1∥2
2

+
d∑

i=2
λ2

i

(vT
t−1qi)2

∥vt−1∥2
2
−

(
λ1

(vT
t−1q∗)2

∥vt−1∥2
2

+
d∑

i=2
λi

(vT
t−1qi)2

∥vt−1∥2
2

)2

≤ λ2
1

(vT
t−1q∗)2

∥vt−1∥2
2

+ λ2
2

d∑
i=2

(vT
t−1qi)2

∥vt−1∥2
2
− λ2

1
(vT

t−1q∗)4

∥vt−1∥4
2

= λ2
1

(vT
t−1q∗)2

∥vt−1∥2
2

(
1−

(vT
t−1q∗)2

∥vt−1∥2
2

)
+ λ2

2

(
1−

(vT
t−1q∗)2

∥vt−1∥2
2

)
.

Finally, we get from definition of Ψt−1 that
Ct

∥vt−1∥2
2
≤ Ψt−1

(
(1−Ψt−1)λ2

1 + λ2
2
)
≤ Ψt−1

(
λ2

1 + λ2
2
)
≤ 2λ2

1Ψt−1.

This completes the proof of the lemma.

32

Published in Transactions on Machine Learning Research (10/2022)

Using Lemma 9, we can now prove Lemma 1 in the following.

Proof of Lemma 1. From (10), we have Ψt = ∥vt∥2
2−(vT

t q∗)2

∥vt∥2
2

. Substituting vt from (8), we get

Ψt = ∥vt−1 + γtξt∥2
2 − ((vt−1 + γtξt)Tq∗)2

∥vt∥2
2

(a)= ∥vt−1∥2
2 + γ2

t ∥ξt∥2
2 − ((vt−1 + γtξt)Tq∗)2

∥vt∥2
2

(b)
≤ ∥vt−1∥2

2 + γ2
t ∥ξt∥2

2 − ((vt−1 + γtξt)Tq∗)2

∥vt−1∥2
2

= 1 + γ2
t

∥ξt∥2
2

∥vt−1∥2
2
− ((vt−1 + γtξt)Tq∗)2

∥vt−1∥2
2

= 1 + γ2
t

∥ξt∥2
2

∥vt−1∥2
2
−

(vT
t−1q∗)2 + γ2

t (ξT
t q∗)2 + 2γt(vT

t−1q∗)(ξT
t q∗)

∥vt−1∥2
2

= 1−
(vT

t−1q∗)2

∥vt−1∥2
2

+ γ2
t

∥ξt∥2
2 − (ξT

t q∗)2

∥vt−1∥2
2

− 2γt
(vT

t−1q∗)(ξT
t q∗)

∥vt−1∥2
2

= Ψt−1 + γ2
t

∥ξt∥2
2

∥vt−1∥2
2
− 2γt

(vT
t−1q∗)(ξT

t q∗)
∥vt−1∥2

2
. (33)

Here (a) and (b) are due to (Balsubramani et al., 2013, Lemma A.1), where (a) is true because vt−1 is
perpendicular to ξt and (b) is true because ∥vt−1∥2 ≤ ∥vt∥2. The second term in the above inequality can
be bounded as

∥ξt∥2
2

∥vt−1∥2
2

= ∥ξt − E{ξt}∥2
2 + E{ξT

t }E{ξt}
∥vt∥2

2

(c)
≤

E
{
∥ξt − E{ξt}∥2

2
}

∥vt−1∥2
2

+ 2λ2
1Ψt−1

= 1
∥vt−1∥2

2
E

{∥∥∥∥∥ 1
N

N∑
i=1

Ai,tvt−1 −
1

∥vt−1∥2
2

(
vT

t−1
1
N

N∑
i=1

Ai,tvt−1vt−1

)

− E
{ 1

N

N∑
i=1

Ai,tvt−1 −
1

∥vt−1∥2
2

(
vT

t−1
1
N

N∑
i=1

Ai,tvt−1vt−1

)}∥∥∥∥∥
2

2

}

= 1
∥vt−1∥2

2
E

{∥∥∥ 1
N

N∑
i=1

Ai,tvt−1 −
1

∥vt−1∥2
2

(
vT

t−1
1
N

N∑
i=1

Ai,tvt−1vt−1

)
−Σvt−1 + 1

∥vt−1∥2
2

(
vT

t−1Σvt−1vt−1

)∥∥∥2

2

}

= 1
∥vt−1∥2

2
E

{∥∥∥(1
N

N∑
i=1

Ai,t −Σ
)

vt−1 −
1

∥vt−1∥2
2

vT
t−1

(1
N

N∑
i=1

Ai,t −Σ
)

vt−1vt−1

∥∥∥2

2

}

≤ 4
∥∥∥∥∥ 1

N

N∑
i=1

Ai,t −Σ

∥∥∥∥∥
2

2

+ 2λ2
1Ψt−1 ≤ 4

∥∥∥∥∥ 1
N

N∑
i=1

Ai,t −Σ

∥∥∥∥∥
2

F

+ 2λ2
1Ψt−1, (34)

where (c) is due to Lemma 9. Substituting (34) in (33) completes the proof of Part (i) of Lemma 1. Next,
we prove Part (ii) of the lemma by defining v̂t−1 = vt−1/∥vt−1∥2 and noting that

∥ξt∥2
2

∥vt−1∥2
2

= ∥(1/N)
∑N

i=1 ξi,t∥2
2

∥vt−1∥2
2

= (1/N2)∥
∑N

i=1 ξi,t∥2
2

∥vt−1∥2
2

(d)
≤

(1/N2)
∑N

i=1 N∥ξi,t∥2
2

∥vt−1∥2
2

=
∑N

i=1(xT
i,tvt−1)2∥xi,t − (xT

i,tv̂t−1)v̂t−1∥2
2

N∥vt−1∥2
2

≤ 1
N

N∑
i=1
∥xi,t∥2

2∥xi,t − (xT
i,tv̂t−1)v̂t−1∥2

2 = 1
N

N∑
i=1
∥xi,t∥2

2(∥xi,t∥2
2 − (xT

i,tv̂t−1)2)

≤
N∑

i=1

∥xi,t∥4
2

N
≤ max

i
∥xi,t∥4

2 ≤ r4. (35)

33

Published in Transactions on Machine Learning Research (10/2022)

Here, (d) is by using Cauchy–Schwartz inquality and the last inequality is due to Assumption [A1]. Now
substituting this in (33) completes the proof.

A.2 Proof of Lemma 2

We begin by writing

E{(zt − E{zt})2|Ft−1} = E

{(
2γt(vT

t−1q∗)(ξT
t q∗)

∥vt−1∥2
2

− E
{2γt(vT

t−1q∗)(ξT
t q∗)

∥vt−1∥2
2

})2∣∣∣∣∣Ft−1

}

=
4γ2

t (vT
t−1q∗)2

∥vt−1∥4
2

E

{(
ξT

t q∗ − E
{

ξT
t q∗

})2}
.

Substituting value of ξt in this, we get

E{(zt − E{zt})2|Ft−1} =
4γ2

t (vT
t−1q∗)2

∥vt−1∥4
2

E

{((1
N

N∑
i=1

Ai,tvt−1 −
vT

t−1
1
N

∑N
i=1 Ai,tvt−1vt−1

∥vt−1∥2
2

)T
q∗

− E
{(1

N

N∑
i=1

Ai,tvt−1 −
vT

t−1
1
N

∑N
i=1 Ai,tvt−1vt−1

∥vt−1∥2
2

)T
q∗
})2}

=
4γ2

t (vT
t−1q∗)2

∥vt−1∥4
2

E

{((1
N

N∑
i=1

Ai,tvt−1 −
vT

t−1
1
N

∑N
i=1 Ai,tvt−1vt−1

∥vt−1∥2
2

)T
q1

− vT
t−1E

{ 1
N

N∑
i=1

Ai,t

}
q∗ +

vT
t−1vT

t−1E{ 1
N

∑N
i=1 Ai,t}vt−1

∥vt−1∥2
2

q∗

)2}
.

Since E
{

1
N

∑N
i=1 Ai,t

}
is the covariance matrix Σ, we get

E{(zt−E{zt})2|Ft−1}

=
4γ2

t (vT
t−1q∗)2

∥vt−1∥4
2

E

{((
(1
N

N∑
i=1

Ai,t −Σ)vt−1 −
vT

t−1(1
N

∑N
i=1 Ai,t −Σ)vt−1vt−1

∥vt−1∥2
2

)T
q∗

)2}
,

=
4γ2

t (vT
t−1q∗)2

∥vt−1∥4
2

E

{((
q∗T(1

N

N∑
i=1

Ai,t −Σ)vt−1 −

(
vT

t−1(1
N

∑N
i=1 Ai,t −Σ)vt−1

)
q∗Tvt−1

∥vt−1∥2
2

))2}

≤
8γ2

t (vT
t−1q∗)2

∥vt−1∥4
2

E

{(
q∗T(1

N

N∑
i=1

Ai,t −Σ)vt−1

)2

+
((vT

t−1(1
N

∑N
i=1 Ai,t −Σ)vt−1

)
q∗Tvt−1

∥vt−1∥2
2

)2}

=
8γ2

t (vT
t−1q∗)2

∥vt−1∥2
2

E

{(
q∗T(1

N

∑N
i=1 Ai,t −Σ)vt−1

∥vt−1∥2

)2

+
(

vT
t−1(1

N

∑N
i=1 Ai,t −Σ)vt−1

∥vt−1∥2
2

)2(
q∗Tvt−1

∥vt−1∥2

)2}

≤ 8γ2
t E

{(
q∗T(1

N

∑N
i=1 Ai,t −Σ)vt−1

∥vt−1∥2

)2

+
(

vT
t−1(1

N

∑N
i=1 Ai,t −Σ)vt−1

∥vt−1∥2
2

)2}
, (36)

where the last inequality in (36) is due to the fact that
(

q∗Tvt−1
∥vt−1∥2

)2

≤ 1. We can see that both the

remaining terms in (36) are Rayleigh quotients of matrix (Σ− 1
N

∑N
i=1 Ai,t) and hence the largest eigenvalue

of (Σ− 1
N

∑N
i=1 Ai,t) maximizes both the terms. Using this fact we get

E{(zt − E{zt})2|Ft−1} ≤ 16γ2
t E{∥Σ−

1
N

N∑
i=1

Ai,t∥2
2} ≤ 16γ2

t E{∥Σ−
1
N

N∑
i=1

Ai,t∥2
F }.

Using (12), we get E{(zt − E{zt})2|Ft−1} ≤ 16γ2
t σ2

N , which completes the proof.

34

Published in Transactions on Machine Learning Research (10/2022)

A.3 Proof of Lemma 3

Using Lemma 1, we can write the moment generating function of Ψt as follows:

E{exp(sΨt)|Ft−1} ≤ E
{

exp
(

sΨt−1 + sγ2
t r4 − szt

)∣∣∣Ft−1

}
= exp(sΨt−1 + sγ2

t r4)E
{

exp
(
− szt

)∣∣∣Ft−1

}
= exp(sΨt−1 + sγ2

t r4 − sE{zt|Ft−1})E
{

exp
(
− s(zt − E{zt})

)∣∣∣Ft−1

}
. (37)

We can bound this using Bennett’s inequality (Proposition 2 in Appendix D), which requires the variance
and range of the random variable zt. We have already computed the variance of zt in Lemma 2. Next we
compute the boundedness of (zt − E{zt}) as follows:∣∣∣zt − E{zt}

∣∣∣ ≤ 2|zt| ≤ 2γt∥xi,t∥2
2 ≤ 2γtr

2 =: h. (38)

Here, the last inequality is due to Assumption [A1]. Using parameters σ2
N and h with Bennett’s inequality,

we get

E{exp(sΨt)|Ft−1} ≤ exp
(

sΨt−1 − sE{zt|Ft−1}+ sγ2
t r4 + s2γ2

t σ2
N

(
esh − 1− sh

(sh)2

))
. (39)

For L ≥ L1 + L2, where L1 and L2 are given by (13), we show in Proposition 3 in Appendix D that
(esh−1−sh

(sh)2) ≤ 1 for s ∈ S. This implies

E{exp(sΨt)|Ft−1} ≤ exp
(

sΨt−1 − sE{zt|Ft−1}+ sγ2
t r4 + s2γ2

t σ2
N

)
,

which completes the proof of the lemma.

Appendix B Proofs of Lemmas for the Intermediate Epoch

B.1 Proof of Lemma 4

Using Lemma 3, we have

E{esΨt
∣∣Ft−1} ≤ exp

(
s

(
Ψt−1 + γ2

t r4 − E{zt|Ft−1}+ sγ2
t σ2

N

))
(a)
≤ exp

(
s

(
Ψt−1 − 2γt

(
λ1 − λ2

)
Ψt−1

(
1−Ψt−1

)
+ γ2

t r4 + sγ2
t σ2

N

))
(b)
≤ exp

(
s

(
Ψt−1 −

c0Ψt−1

(
1−Ψt−1

)
t + L

+ c2r4

(t + L)2 + sc2σ2
N

(t + L)2

))
. (40)

Here, (a) is due to (Balsubramani et al., 2013, Lemma A.3) and (b) is by substituting γt = c/(t + L) =
c0/2(λ1− λ2)(t + L). Finally, for ω ∈ Ω′

t we have Ψt−1(ω) ≤ 1− ϵj . Now taking expectation over Ω′

t, we get
the desired result.

B.2 Proof of Lemma 5

Define αt := 1− c0ϵj

t+L and ζt(s) := sc2r4

(t+L)2 + s2c2σ2
N

(t+L)2 . Substituting αt and ζt(s) in Lemma 4, we get

Et

{
esΨt

}
≤ Et

{
esαtΨt−1

}
exp

(
ζt(s)

)
≤ Et−1

{
esαtΨt−1

}
exp

(
ζt(s)

)
. (41)

35

Published in Transactions on Machine Learning Research (10/2022)

Note that the second inequality in (41) is due to (Balsubramani et al., 2013, Lemma 2.8). Applying this
procedure repeatedly yields

Et

{
esΨt

}
≤ Etj+1

{
exp

(
sΨtj

αt . . . αtj+1
)}

exp
(
ζt(s)

)
. . . exp

(
ζtj+1

(
sαt . . . αtj+1

))
≤ Etj+1

{
exp

(
sΨtj

αt . . . αtj+1
)}

exp
(
ζt(s)

)
. . . exp

(
ζtj+1

(
s
))

.

Substituting values of αt and ζt(s) in the above, we get

Et

{
esΨt

}
≤ Etj+1

{
exp

(
sΨtj

(
1− c0ϵj

t + L

)
. . .
(

1− c0ϵj

tj + L + 1

))}
exp

((
sc2r4 + s2c2σ2

N

)(1
(t + L)2 + · · ·+ 1

(tj + L + 1)2

))

≤ exp
(

s(1− ϵj) exp
(
− c0ϵj

(1
t + L

+ · · ·+ 1
tj + L + 1

)))
exp

((
sc2r4 + s2c2σ2

N

)(1
(t + L)2 + · · ·+ 1

(tj + L + 1)2

))
. (42)

Here, the last inequality is true because Ψtj
(ω) ≤ 1− ϵj for ω ∈ Ω′

tj+1 and 1− x ≤ e−x for x ≤ 1. Next we
bound the summations in (42) as follows:

1
t + L

+ · · ·+ 1
tj + L + 1 ≥

∫ t+1

tj+1

dx

x + L
= ln t + L + 1

tj + L + 1 ,

1
(t + L)2 + · · ·+ 1

(tj + L + 1)2 ≤
∫ t

tj

dx

(x + L)2 = 1
tj + L

− 1
t + L

.

Substituting these bounds in (42), we get the desired result.

B.3 Proof of Lemma 6

This lemma uses Lemma 5 and deals with a specific value of t = tj+1. For t = tj+1, (29) gives

Etj+1{esΨtj +1} ≤ exp
(

s(1− ϵj)
(

tj + L + 1
tj+1 + L + 1

)c0ϵj

+
(

sc2r4 + s2c2σ2
N

)(
1

tj + L
− 1

tj+1 + L

))
. (43)

Using conditions [C1] and [C2] and the fact that e−2x ≤ 1− x for 0 ≤ x ≤ 3/4, we get

(1− ϵj)
(tj + L + 1

tj+1 + L + 1

)c0ϵj

≤ e−ϵj (e−5/c0)c0ϵj = e−6ϵj ≤ 1− 3ϵj ≤ 1− ϵj+1 − ϵj .

Substituting this in (43), we obtain the desired result.

B.4 Proof of Lemma 7

Constructing a supermartingale sequence Mt in the same way as we did in Theorem 3 for s ∈ S and applying
Doob’s martingale inequality, we get

Ptj

(
sup
t≥tj

Ψt ≥ 1− ϵj

)
≤ Ptj

(
sup
t≥tj

Mt ≥ es(1−ϵj)
)
≤

E{Mtj}
es(1−ϵj)

=
E
{

exp (sΨtj + sτtj)
}

es(1−ϵj) =
E
{

exp (sΨtj)
}

exp (sτtj)
es(1−ϵj) .

Using Lemma 6 then results in

Ptj

(
sup
t≥tj

Ψt ≥ 1− ϵj

)
≤ 1

es(1−ϵj) exp
(

s(1− ϵj)− sϵj−1 +
(

sc2r4 + s2c2σ2
N

)(1
tj−1 + L

− 1
tj + L

)
+ sτtj

)
.

36

Published in Transactions on Machine Learning Research (10/2022)

Substituting a bound on τtj
from Theorem 3 (see, e.g., the discussion around (28)), we get

Ptj

(
sup
t≥tj

Ψt ≥ 1− ϵj

)
≤ exp

(
− sϵj−1 +

(
sc2r4 + s2c2σ2

N

)(1
tj−1 + L

− 1
tj + L

)
+ s
(

c2r4 + sc2σ2
N

) 1
tj + L

)

= exp
(
− sϵj−1 + s

(
c2r4 + sc2σ2

N

) 1
tj−1 + L

)
.

Substituting s = (2/ϵ0) ln (4/δ) and using the lower bound on L, we get (see Proposition 5 in Appendix D
for formal verification)

Ptj

(
sup
t≥tj

Ψt ≥ 1− ϵj

)
≤ exp

(
− sϵj−1

2

)
=
(

δ

4

)ϵj−1/ϵ0

≤ δ

2j+1 .

Summing over j completes the proof of the lemma.

Appendix C Proofs for the Final Epoch

Proof of Lemma 8. From Lemma 1, Part (i), we have

Ψt ≤ Ψt−1 + 4γ2
t

(∥∥∥ 1
N

N∑
i=1

Ai,t −Σ
∥∥∥2

F
+ λ2

1Ψt−1

)
− zt.

Taking expectation conditioned on Ft−1, we get

E{Ψt|Ft−1} ≤ Ψt−1(1 + γ2
t λ2

1) + 4γ2
t σ2

N − E
{

zt

∣∣Ft−1
}

,

where the second term is due to Lemma 9. Now using upper bound on −E
{

zt

∣∣Ft−1
}

from (Balsubramani
et al., 2013, Lemma A.4), we get the following:

E{Ψt|Ft−1} ≤ Ψt−1(1 + γ2
t λ2

1) + 4γ2
t σ2

N − 2γt(λ1 − λ2)Ψt−1(1−Ψt−1)

= Ψt−1

(
1 + γ2

t λ2
1 − 2γt(λ1 − λ2)(1−Ψt−1)

)
+ 4γ2

t σ2
N .

Finally, taking expectation over Ω′

t, substituting γt = c0/(2(t + L)(λ1 − λ2)), and using the facts that Ω′

t is
Ft−1-measurable and for t > tJ , Ψt−1 ≤ 1/2 and we lie in sample space Ω′

t with probability greater than
1− δ (Theorem 3), we obtain

Et{Ψt} ≤ Et

{
Ψt−1

(
1 + c2

0λ2
1

2(t + L)2(λ1 − λ2)2 −
c0

2(t + L)

)}
+ 4c2σ2

N

(t + L)2

=
(

1 + c2
0λ2

1
2(t + L)2(λ1 − λ2)2 −

c0

2(t + L)

)
Et{Ψt−1}+ 4c2σ2

N

(t + L)2

≤

(
1 + c2

0λ2
1

2(t + L)2(λ1 − λ2)2 −
c0

2(t + L)

)
Et−1{Ψt−1}+ 4c2σ2

N

(t + L)2 .

This completes the proof of the lemma.

Proposition 1. Let a1, b > 0 and a2 > 1 be some constants. Consider a nonnegative sequence (ut : t > tJ)
that satisfies

ut ≤
(

1 + a1

(t + L)2 −
a2

t + L

)
ut−1 + b

(t + L)2 .

Then we have:

ut ≤

(
L + 1

t + L + 1

)a2

exp
(a1

L + 1

)
u0 + 1

(t + L + 1) exp
(a1

L + 1
)(L + 2

L + 1

)2 b

a2 − 1 .

37

Published in Transactions on Machine Learning Research (10/2022)

Proof. Recursive application of the bound on ut gives:

ut ≤

(
t∏

i=tJ +1

(
1 + a1

(i + L)2 −
a2

i + L

))
ut0 +

t∑
i=tJ +1

b

(i + L)2

(
t∏

j=i+1

(
1 + a1

(j + L)2 −
a2

j + L

))
. (44)

Using (Balsubramani et al., 2013, Lemma D.1) we can bound the product terms as
t∏

j=i+1

(
1 + a1

(j + L)2 −
a2

j + L

)
≤ exp

(
t∑

j=i

a1

(j + L)2 −
t∑

j=i

a2

j + L

)

≤

(
i + L + 1
t + L + 1

)a2

exp
(

t∑
j=i

a1

(j + L)2

)
. (45)

Next, we bound the last term here as

exp
(

t∑
j=i

a1

(j + L)2

)
≤ exp

(∫ t+1

i+1

a1

(x + L)2 dx

)
= exp

(a1

i + L + 1 −
a1

t + L + 1

)
≤ exp

(a1

i + L + 1

)
.

Substituting this in (45) we get
t∏

j=i+1

(
1 + a1

(j + L)2 −
a2

j + L

)
≤

(
i + L + 1
t + L + 1

)a2

exp
(a1

i + L + 1

)
.

Substituting this in (44) we get

ut ≤

(
tJ + L + 1
t + L + 1

)a2

exp
(a1

tJ + L + 1

)
utJ

+
t∑

i=tJ +1

b

(i + L)2

(
t∏

j=i+1

(
1 + a1

(j + L)2 −
a2

j + L

))

≤

(
tJ + L + 1
t + L + 1

)a2

exp
(a1

tJ + L + 1

)
utJ

+
t∑

i=tJ +1

b

(i + L)2

(
i + L + 1
t + L + 1

)a2

exp
(a1

i + L + 1
)

≤

(
tJ + L + 1
t + L + 1

)a2

exp
(a1

tJ + L + 1

)
utJ

+ exp
(a1

tJ + L + 1

) b

(t + L + 1)a2

t∑
i=1

(i + L + 1)a2

(i + L)2

≤

(
tJ + L + 1
t + L + 1

)a2

exp
(a1

tJ + L + 1

)
utJ

+ exp
(a1

tJ + L + 1

) b

(t + L + 1)a2

(L + 2
L + 1

)2 t∑
i=1

(i + L + 1)a2−2.

Again applying (Balsubramani et al., 2013, Lemma D.1), we get the final result as follows

ut ≤

(
tJ + L + 1
t + L + 1

)a2

exp
(a1

tJ + L + 1

)
utJ

+ exp
(a1

tJ + L + 1

) b

(t + L + 1)a2

(L + 2
L + 1

)2 (t + L + 1)a2−1

a2 − 1

=
(

tJ + L + 1
t + L + 1

)a2

exp
(a1

tJ + L + 1

)
utJ

+ 1
(t + L + 1) exp

(a1

tJ + L + 1
)(L + 2

L + 1

)2 b

a2 − 1 .

This completes the proof of the proposition.

Appendix D Other Auxiliary Results

Proposition 2 (Bennett’s Inequality (Boucheron et al., 2013)). Consider a zero-mean, bounded random
variable Xi ∈ R (i.e., |Xi| ≤ h almost surely) with variance σ2

i . Then for any s ∈ R, we have

E
{

esXi
}
≤ exp

(
σ2

i s2
(esh − 1− sh

(sh)2

))
.

38

Published in Transactions on Machine Learning Research (10/2022)

Proposition 3. Let h := 2γtr
2 and s ∈

{
d/4ϵ, (2/ϵ0) ln(4/δ)

}
. It then follows that esh−1−sh

(sh)2 ≤ 1.

Proof. It is straightforward to see that esh−1−sh
(sh)2 ≤ 1 as long as sh ≤ 7/4. Therefore, in order to prove this

proposition, it suffices to show that the lower bound on L implies sh ≤ 7/4 for s ∈
{

d/4ϵ, (2/ϵ0) ln(4/δ)
}

.
We establish this claim as two separate cases for the two values of s.

Case I: For s = d/4ϵ, substituting the value of h gives us

sh = dγtr
2

2ϵ
= dcr2

2(t + L)ϵ ≤
dcr2

2Lϵ
≤ dcr2

2ϵL1
≤ dcr2

2ϵ

ϵ

8dr4 max(1, c2) ln(4/δ) ≤
1

16 ln(4/δ) ≤
7
4 .

Case II: For s = (2/ϵ0) ln(4/δ), we obtain

sh = 2 ln(4/δ)cr2

ϵ0(t + L) ≤ 2 ln(4/δ)cr2

ϵ0L1
≤ 2 ln(4/δ)cr2

ϵ0

ϵ0

8r4 max(1, c2) ln 4
δ

≤ 1
4 ≤

7
4 .

This completes the proof of the proposition.

Proposition 4. Assuming L ≥ 8dr4 max(1,c2)
ϵ ln 4

δ + 8d2σ2
N max(1,c2)

ϵ2 ln 4
δ and the parameter s = d/4ϵ, we have

c2

L

(
r4 + sσ2

N

)
≤ ϵ

d .

Proof. We prove this by proving the following two statements:

c2r4

L
≤ c2r4

L1
≤ ϵ

2d
and sc2σ2

N

L
≤ sc2σ2

N

L2
≤ ϵ

2d
.

We start by proving the first statement: c2r4

L1
≤ c2r4 ϵ

8dr4 max(1,c2) ln 4
δ

≤ ϵ
2d . Next, we prove the second

statement as follows: c2sσ2
N

L2
≤ c2dσ2

N

4ϵ
ϵ2

8d2σ2
N

max(1,c2) ln 4
δ

≤ ϵ
2d . This completes the proof.

Proposition 5. For L ≥ 8r4 max(1,c2)
ϵ0

ln 4
δ + 8σ2

N max(1,c2)
ϵ2

0
ln 4

δ , we have

(i) c2r4

(tj−1+L) ≤
ϵ0
4 , and

(ii) 2c2σ2
N

ϵ0(tj−1+L) ln 4
δ ≤

ϵ0
4 .

Proof. We begin by noting that

c2r4

(tj−1 + L) ≤
2c2r4

L
≤ 2c2r4

L1
≤ 2c2r4 ϵ0

8r4 max(1, c2) ln 4
δ

≤ ϵ0

4 .

Next we prove the second statement as follows:

2c2σ2
N

ϵ0(tj−1 + L) ln 4
δ
≤ 2c2σ2

B

ϵ0L
ln 4

δ
≤ 2c2σ2

N

ϵ0L2
ln 4

δ
≤ 2c2σ2

N

ϵ0
ln 4

δ

ϵ2
0

8σ2
N max(1, c2) ln(4/δ) ≤

ϵ0

4 .

This completes the proof of the proposition.

Corollary 3 (Restatement of the Main Result (Theorem 1): Convergence in Probability). Fix any δ ∈ (0, 1)
and pick c := c0/2(λ1 − λ2) for any c0 > 2. Next, define

L1 := 64edr4 max(1, c2)
δ2 ln 4

δ
, L2 := 512e2d2σ2

N max(1, c2)
δ4 ln 4

δ
,

39

Published in Transactions on Machine Learning Research (10/2022)

pick any L ≥ L1+L2, and choose the step-size sequence as γt := c/(L+t). Then, as long as Assumptions [A1]
and [A2] hold, we have for D-Krasulina that there exists a sequence (Ω′

t)t∈Z+ of nested sample spaces such
that P

(
∩t>0Ω′

t

)
≥ 1− δ and

P
{

Ψt ≥ C
′

1

(L + 1
t + L + 1

) c0
2 + C

′

2

(σ2
N

t + L + 1

)}
≤ 2δ, (46)

where C
′

1 and C
′

2 are constants defined as

C
′

1 := 1
2δ

(
4ed

δ2

) 5
2 ln 2

e2c2λ2
1/L and C

′

2 := 8c2e(c0+2c2λ2
1)/L

δ(c0 − 2) .

Proof. The proof follows by first using Markov’s inequality to bound the conditional probability

Pt

{
Ψt ≥ C

′

1

(L + 1
t + L + 1

) c0
2 + C

′

2

(σ2
N

t + L + 1

)}
,

then using the bound on Et {Ψt} in Theorem 1 to further bound the conditional probability by δ, and finally
removing the conditioning on the nested sample spaces by using the facts that (i) P(A) ≤ P(A|B) + P(Bc)
for any two events A and B, and (ii) P

(
∪t>0Ω′

t

c
)
≤ δ.

40

	Introduction
	Principal Component Analysis (PCA) from Streaming Data
	Our Contributions
	Related Work
	Notational Convention and Paper Organization

	Problem Formulation and System Model
	Data Model
	System Model
	Distributed Processing Over a Network of Processors
	Distributed Processing Coupled with Mini-batching

	Proposed Distributed Stochastic Algorithms
	Distributed Krasulina's Method (D-Krasulina) for High-rate Streaming Data
	Mini-batched D-Krasulina (DM-Krasulina) for High-rate Streaming Data
	A Note on the Processing of Non-centered and Non-i.i.d. Data

	Convergence Analysis of D-Krasulina and DM-Krasulina
	Convergence of D-Krasulina (Algorithm 1)
	Convergence of DM-Krasulina (Algorithm 2)
	Scenario 1—DM-Krasulina with no data loss: blackN b Rc RsRp(b Rc - Rs) -3mu= 0
	Scenario 2—DM-Krasulina with data loss: blackN < b Rc RsRp(b Rc - Rs) -3mu> 0

	Proof of the Main Result
	Initial Epoch
	Intermediate Epoch
	Final Epoch

	Numerical Results
	Experiments on Synthetic Data
	Impact of mini-batch size on the performance of DM-Krasulina
	Impact of the eigengap on the performance of DM-Krasulina
	Impact of dimensionality on the performance of DM-Krasulina
	Impact of upper bound on the performance of DM-Krasulina

	Experiments on Real-world Datasets

	Conclusion
	Appendix Proofs of Lemmas for the Initial Epoch
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	Appendix Proofs of Lemmas for the Intermediate Epoch
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7

	Appendix Proofs for the Final Epoch
	Appendix Other Auxiliary Results

