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Abstract
We propose a framework for systematic design
and analysis of quantisation formats. Our objec-
tive of minimising the KL divergence between
the original and quantised model outputs aligns
with minimising the squared quantisation error of
the model parameters. Guided by classical quan-
tisation theory, we therefore develop and evaluate
squared-error-optimal formats for known distribu-
tions. Uniform quantisation followed by lossless
compression with a variable-length code is shown
to be optimal. However, we find that commonly
used block formats and sparse outlier formats also
outperform fixed-length codes, implying they also
exploit variable-length encoding. Finally, we de-
rive the optimal allocation of bit-widths to individ-
ual parameter tensors across the model’s layers,
saving up to 0.25 bits per parameter when tested
with direct-cast quantisation of language models.

1. Introduction
Weight quantisation enables large deep learning models to
run on low-resource hardware and edge devices by saving
space and memory bandwidth usage. It can be seen as an op-
timisation problem, where the goal is to retain the behaviour
of the high-precision reference model while reducing the
total number of bits needed to store its parameters. This
naturally splits into two sub-problems of format design and
quantisation procedure, both of which are highly active ar-
eas of research. We focus on the format design question,
i.e., how to choose a representation space for model param-
eters. This is somewhat independent from the quantisation
procedure, which aims to find an optimal point in that space.

The space of possible formats for a model is rich, where
element formats including integer, floating-point and non-
uniform quantisers can be combined with tensor, channel or
block scaling and augmented using sparse outlier storage or
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Figure 1. The trade-off between average bits per parameter and
top-k KL divergence for Llama 3.1 8B. To approach optimal perfor-
mance, some form of variable-length encoding is needed: lossless
compression, block (or channel) absmax scaling or 0.1% sparse
outlier removal. The shaded line width is ±2 standard error over
evaluation data. See Figure 6 for other models.

rotations (Dettmers et al., 2022a; Dettmers & Zettlemoyer,
2023; Dettmers et al., 2023; Dotzel et al., 2024; Rouhani
et al., 2023; Tseng et al., 2024). Since this combinatorial
space is too large to be explored directly, empirical studies
typically narrow the search space.

This work considers the problem of optimal format design
after direct-cast quantisation. Our main takeaway is that the
most effective quantisation formats all employ some form
of variable-length encoding (see Figure 1). Block formats
outperform optimal elementwise formats by effectively al-
locating their scale bits to represent the block maximum.
Tensor-scaled formats can be effective if sparse outliers are
stored separately, again implying variable bits-per-element.
Finally, quantisation followed by lossless compression em-
ploys variable length explicitly and doesn’t benefit from
block scaling or sparse outlier removal.

Contributions Our work explains the performance of var-
ious quantisation schemes through the lens of optimising
KL divergence and weight statistics. Towards this, we pro-
pose 3

√
p block-scaled Normal, Laplace and Student-t non-

uniform quantisers. Additionally, we propose the signmax
scaling scheme, as well as using Fisher information to de-
termine optimal bit width per parameter. These are, to the
best of our knowledge, novel contributions.
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2. Optimal Quantisation Formats
Our objective is to minimise the expected KL divergence
between the predictions of a quantised model and those of
the original model. This KL divergence between predictive
distributions pθ(y | x) and pθ̃(y | x) of output y given input
x can be approximated as

DKL

(
pθ∥pθ̃

)
≈ 1

2

∑

t

f̄t ·
∑

i∈Tt

(θ̃i − θi)
2, (1)

where θ are the original parameters, θ̃ are quantised, θ̃ =
dequantise(quantise(θ)), f̄t is the average of the diago-
nal of the Fisher information matrix for tensor t and Tt are
the parameter indices corresponding to t. See Appendix A
for further explanation and Figures 7 and 8 for an empirical
evaluation of how well this equation predicts KL divergence
between pretrained LLM outputs when a single tensor is
perturbed with noise.

To minimise this approximation to the KL divergence, we
must minimise the squared reconstruction error of each
tensor, subject to a bit-width constraint. This problem is
well-studied in classical quantisation literature.

Fixed-length-coding This formulation constrains the size
of each encoded element qi := quantiseelem(θi) where
qi ∈ Qelem and |Qelem| ≤ b for a bit width target b. For
samples from an unknown distribution, the Lloyd-Max algo-
rithm (Lloyd, 1982; Max, 1960) i.e. 1D k-means can be used
to choose the codepoints Qelem. For a known distribution
θi ∼ D, the density of codepoints should be proportional
to the cube root of the pdf of D (Panter & Dite, 1951). We
outline such cube root density ( 3

√
p) quantisers for Normal,

Laplace and Student-t distributions in Appendix B.

Block-absmax scaling In order to avoid truncating ex-
treme values, calculate n := maxi∈B |θi| over a block of
B elements and store quantiseelem(θi/n) for each element
(Rouhani et al., 2023). Observing that the scaled distribution
Delem is well-approximated by mixture of a truncated-and-
scaled D and a two-point distribution at ±1 (Figure 12), we
derive 3

√
p quantisers for block-scaled data. Example code

for Student-t data is given in Listing 1 and other distributions
in Appendix F.

Block-signmax scaling We also consider a variation which
normalises a block according to the signed value which is
the absolute maximum within the block, i.e. nsignmax := θî
where î = argmaxi∈B |θi|. The benefit is that the block
maximum is known to be at +1 (rather than ±1 for block-
absmax scaling), so an element format with an even number
of codepoints can allocate a pair of special codepoints at 0
and +1, while being otherwise symmetric (see Figure 2).

RMS scaling In order to assume a distribution of θi, this

scaling scheme sets nRMS :=
√

1
B

∑
i∈B θ2i . Either moment

Listing 1 3
√
p block-absmax Student-t quantiser

b, block_size, df = 4, 64, 7

df_ = (df - 2) / 3
scale = ((2 * log(block_size / pi)) ** ((3-df)/(2*df))

* block_size ** (-1/df)
* sqrt(3))

c0, c1 = scipy.stats.t.cdf([-1, 1], df_, scale=scale)
p = torch.linspace(c0, c1, 2**b)
Q = torch.tensor(scipy.stats.t.ppf(p, df_, scale=scale))

def quantise(x): return torch.bucketize(x, (Q[1:]+Q[:-1])/2)
def dequantise(i): return Q[i]

-2 -1 1 2Qi

RMS (Sym)

RMS (Asym)

Block-Absmax (Sym)

Block-Absmax (Asym)

Block-Signmax (Asym)

Figure 2. 3-bit 3
√
p codepoint distributions for normally distributed

data, illustrating RMS, absmax and signmax scaling methods and
symmetric/asymmetric variants (with B = 64 for block formats).
The principal benefit of asymmetric variants is that they have an
encoding for 0. INT formats are asymmetric, while most floating-
point formats are symmetric but represent zero twice (±0).

matching to the D assumed by the quantiser or search can
then be used to select quantiser parameters.

Variable-length-coding An alternative formulation ap-
plies an entropy constraint on qi, assuming that the quan-
tised values are encoded using a lossless compressor that
approaches the Shannon (1948) limit. In this case, the op-
timal quantisation before compression is uniform (integer)
quantisation, see Appendix A.4.

Variable bit-width allocation Equation (1) indicates that
Fisher information can predict KL divergence due to quanti-
sation. This suggests that there may be an optimal variable
allocation of bits across parameter tensors, while respecting
the average bit-width constraint at the model level. This
scheme should allocate more bits to tensors that are more
“sensitive”, i.e., having higher Fisher information. We derive
the following variable bit allocation scheme:

b⋆t := b0 + log2 RMS(θTt) +
1

2
log2 f̄t, (2)

where b⋆t is the bit width of tensor t and b0 is chosen to
satisfy the overall size constraint. Intuitively, if tensor a has
4× the Fisher information of tensor b, or 2× the RMS, a
uses 1 more bit than b. See Figure 10 for an example bit
allocation and Appendix A.5 for a derivation.
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Figure 3. A histogram of absolute parameter values for
Llama 3.1 8B. As we care about tails not scales (the overall scale
of a tensor is easily absorbed into a scaling factor), we divide each
parameter value by the RMS of the tensor. See Figure 23 for other
models.

3. Analysis — Simulated Data
Motivated by the parameter statistics of Figure 3, we con-
sider D ∈ {Normal,Laplace,Student-t} in turn. Using the
methods described above, we compare optimal formats with
block absmax or tensor RMS scaling on iid data from each
distribution. Our aim is to establish whether there are bene-
fits to block absmax formats for iid data, and where those
benefits come from. Unless noted, all experiments in this
section use bfloat16 block scale and symmetric codepoints.
We report R, the ratio of RMS error to parameter RMS and
often plot R · 2b to make diagonal error/bits trade-off lines
horizontal. See Appendix D for details and more results.

Block formats exploit variable-length encoding. Our
main result is the tradeoff between error and bit width for
various scaling strategies with optimal quantisers, Figures 4
and 15. We were surprised to find that block absmax formats
can outperform tensor RMS formats using optimal element
quantisers, even for iid simulated data. An explanation is
suggested when we add lossless compression, which uses a
variable number of bits to encode each value. With compres-
sion, the advantage of block formats disappears and tensor
RMS scaling performs best. This suggests a perspective on
the benefit of block absmax formats — instead of viewing
them as a way to avoid clipping, we can view them as a
variable-length code, using additional (scale) bits to encode
the block maximum. Since they outperform optimal fixed-
length codes, they must somehow exploit variable-length
coding. While the exact mechanism isn’t clear, we provide
a rough illustration of the effective code length in Figure 14.

Additional observations We compare standard formats
against optimal block element formats in Figure 16. Here
we see that NF4 (Dettmers et al., 2023) is not optimal for
RMS error across different block sizes, and that E2M1 is
consistently better than INT4 and E3M0. For floating-point
formats, Figure 17 shows that the optimal number of expo-
nent bits generally doesn’t change as the total bit allocation
grows. This is expected, since exponent bits govern the
shape of the quantisation density function while mantissa

3 4 5 6
b
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2.5

R
·2

b RMS

RMS B=128

Absmax B=128

+ Compression

Figure 4. The error/size tradeoff for iid Student-t [ν = 5] data
with various optimal quantisers (hue). Surprisingly, block absmax
quantisers can outperform tensor RMS formats for iid data, even
though there is no inherent block structure. However this situation
is reversed when adding optimal compression, implying that block
absmax quantisers exploit some form of variable-length coding.

bits govern the resolution, and the optimal shape should
remain fixed. Figure 18 shows the benefit of using 4-10
scale mantissa bits over E8M0. In Figure 22, we see that
an elementwise Huffman code approaches the theoretical
compression performance.

4. Experiments
We evaluate a wide variety of weight formats described
above for direct-cast quantisation of pretrained language
models from the Llama 3, Qwen 2.5, Gemma 3 and Phi 4
families. Direct-cast quantisation, sometimes called round-
to-nearest, is a simple quantisation technique that performs
one-shot conversion, without using data or fine-tuning to
recover task performance. The primary comparison is an
efficiency trade-off between top-k KL-divergence of quan-
tised and original model predictions, DKL, against average
bits per parameter, b. We also use ρ := DKL · 22b as a
measure of inefficiency of representation. See Appendix E
for further details of our methodology.

Uniform quantisation with compression is efficient. Fig-
ures 1 and 6 show that a uniform grid quantiser followed
by optimal lossless compression consistently outperforms
other approaches. Here, tensor RMS scaling is sufficient
and can be folded into the grid resolution. Huffman coding
achieves near-optimal compression, as shown in Figure 6.

Variable-length encoding is necessary for good perfor-
mance. Figures 1 and 6 also demonstrate the characteris-
tics of near-optimal formats without lossless compression.
All employ block or channel absmax scaling and/or separate
storage of sparse outliers (Kim et al., 2024). Our search
over a wide range of element formats was unable to find
fixed-length schemes that can reach the same performance
as block or sparse formats. Consistent with our observations
of Section 3, this indicates that they exploit variable-length
encoding. We also observe that there is no benefit in adding
block absmax scaling or sparse outlier removal to lossless
compression (see Figure 24), indicating that their benefit
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Figure 5. The performance of the Fisher-based variable bit alloca-
tion scheme of Equation (2) for Llama 3.1 8B. The tradeoff curve
for shows a general shift to the left, although some settings for
absmax scaling are degraded. See also Figures 26 and 27.

comes from the same source. Alternatively, random ro-
tations can mitigate the poor performance of fixed-length
codes Figure 25, but cannot match the performance of opti-
mal variable-length codes.

Variable bit allocation improves efficiency. The variable
bit allocation scheme promises to reach the same overall
compression level for a model with less degradation by
allocating more bits to parameters with higher Fisher infor-
mation. Figure 26 shows that this is the case, with an im-
provement across 8 of 11 models and different formats. The
exception is Gemma models, where our prediction of KL
based on Fisher information also breaks down (Figure 8).

Additional observations In Figure 28, we compare element
formats against a Student-t baseline over b ∈ [3..5], indicat-
ing the Student-t format performs best in almost all cases.
Figure 29 compares 4-bit 3

√
p formats against NF4 and SF4

baselines: 3
√
p Normal and NF4 show similar performance,

but 3
√
p Student-t outperforms SF4. For block absmax scal-

ing, Figure 30 confirms the results from simulated data — a
block size near 128 and 4-7 scale mantissa bits perform best.
We compare symmetric, asymmetric and signmax variants
for block scaling with integer or Student-t element formats
in Figure 31, finding that signmax delivers a consistent im-
provement across models and particularly for small b ≈ 3.
The performance of symmetric vs asymmetric variants is in-
consistent across models. In Figure 32 we evaluate different
ways to choose the quantiser scale. Search to minimise R is
better than moment matching when using RMS scaling, but
can be harmful for absmax scaling unless weighted by the
per-parameter Fisher information.

5. Discussion
Related work Integer and floating-point formats have been
extensively evaluated for training and inference (Wang &
Kanwar, 2019; Wang et al., 2018; Noune et al., 2022; Sun
et al., 2020; Gernigon et al., 2023; Dettmers & Zettlemoyer,
2023; Liu et al., 2025). Non-linear formats allow greater
flexibility and can be implemented using look-up tables to
accelerate communication without requiring specific hard-

ware support. Dettmers et al. (2023) introduce NF4, aimed
to be the theoretically optimal 4-bit format under the as-
sumption of normally-distributed weights; similarly, Dotzel
et al. (2024) introduce SF4, assuming a Student-t distribu-
tion. In both approaches, the authors derive the codebook
so that each quantisation bin is equally populated under the
assumed distribution. However, this does not lead to optimal
codes in terms of the RMS error, which we instead motivate
and pursue in our current work. Yoshida (2023) identifies
that block size can have a significant impact on the scaled
distribution, and derives AF4 assuming a normal distribution.
AF4 is similar to our proposed block absmax 3

√
p Normal

format, but optimises for absolute rather than squared error
and uses a different approximation for the block maximum.
In SqueezeLLM (Kim et al., 2024), the authors augment
Lloyd-Max codepoint selection (Lloyd, 1982; Max, 1960)
with Fisher sensitivity information, improving the efficacy
of the obtained codebook. Their results highlight the util-
ity of Fisher sensitivity, which we use to allocate variable
precision across weight tensors. Number formats can be aug-
mented in various ways: storing sparse outliers separately
(Dettmers et al., 2022a; 2024), using random or trained ro-
tations to suppress outliers (Tseng et al., 2024; Ashkboos
et al., 2024; Liu et al., 2024) or with lossless compression
(Han et al., 2016; Zhang et al., 2025).

Limitations Our analysis and experiments are restricted
to direct-cast quantisation, which is a suboptimal method.
While this does not affect our conclusion that block and
sparse-outlier formats exploit variable-length coding, it
does limit the direct applicability of the formats that we
derive under our assumptions. Additionally, we consider
only the weight compression constraint, with no consider-
ation of compute efficiency. Finally, we note that we only
tested transformer LLMs in the 0.5–14B parameter range,
although the optimal quantisation framework is much more
general than this.

Conclusions Framing weight quantisation as an optimi-
sation problem highlights the importance of choosing the
right compression constraint. Under a codebook length con-
straint, 3

√
p and Lloyd-Max quantisers are optimal. Under

an entropy constraint, uniform quantisation followed by
lossless compression is optimal. We have shown that both
block absmax and sparse outlier formats can be viewed as
forms of variable-length encoding, exploiting the advantage
of the entropy constraint. For the format designer, this sug-
gests opportunities to develop practical formats that further
close the gap with lossless compression. For the format
user, it suggests coherent constructions to use, for example,
block absmax formats or tensor RMS formats with sparse
outliers. Finally, the fact that Fisher information predicts
performance loss due to quantisation motivates variable
bit-width allocation across tensors, enabling a principled
replacement for heuristic schemes.
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we show ρ := DKL · 22b to flatten the curve based on the error scaling limit of Zador (1982). We also show that simple per-element
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Note: shaded lines show ±2 standard error over the evaluation data. Where trends appear noisy but error bars are tight (especially
in Figure 1), this is due to the model itself — we are unable to quantify uncertainty due to model parameters, since there is only one
independent fully-trained checkpoint for each family & size.

8



Optimal Formats for Weight Quantisation

A. Optimal Quantisation Formats
In this section, we explain our framework for format design in detail. We begin by defining the overall optimisation
problem at the model level, showing how this objective can be reduced to minimising the squared error of individual tensors
through appropriate approximations. Next, we present solutions for RMS and absmax scaling schemes, as well as a lossless
compression scheme. Finally, we revisit model-level optimisation by proposing a scheme for optimal bit allocation across
tensors.

A.1. Model KL

Consider a probabilistic model with output y conditioned on input drawn from a dataset x ∼ X , where the pdf pθ(y | x) is
represented by a neural network, parametrised by θ ∈ R|θ|. We wish to find a quantised parameter vector θ̃⋆ which is in
Θ̃ ⊂ R|θ|, minimising the expected KL divergence of pθ̃(y | x) against the reference model,

θ̃⋆ := argmin
θ̃∈Θ̃

DKL

(
pθ∥pθ̃

)
,

DKL

(
pθ∥pθ̃

)
:= E

x∼X

[
E

pθ(y|x)

[
log

pθ(y | x)
pθ̃(y | x)

]]
, (3)

with |Θ̃| ≤ 2|θ|·b.

The final line induces a compression constraint on Θ̃, specifying an average of b bits per parameter. Now we introduce a
sequence of approximations.

2nd order approximation Consider a Taylor expansion of DKL

(
pθ∥pθ̃

)
around θ̃ = θ,

DKL

(
pθ∥pθ̃

)
≈ DKL (pθ∥pθ)
+ (θ̃ − θ)⊤

(
∇θ̃ DKL

(
pθ∥pθ̃

))
θ̃=θ

+
1

2
· (θ̃ − θ)⊤

(
∇2

θ̃
DKL

(
pθ∥pθ̃

))
θ̃=θ

(θ̃ − θ),

and observe that the first two terms = 0, since θ̃ = θ is a minimum. Now we expand the second derivative

∇2
θ̃
DKL

(
pθ∥pθ̃

)
= − E

x∼X

[
E

pθ(y|x)

[
∇2

θ̃
log pθ̃(y | x)

]]
,

= E
x∼X

[
E

pθ(y|x)

[
−
∇2

θ̃
pθ̃(y | x)

pθ̃(y | x) +
∇θ̃ pθ̃(y | x)(∇θ̃ pθ̃(y | x))⊤

pθ̃(y | x)2

]]
,

= E
x∼X

[∑

y

−∇2
θ̃
pθ̃(y | x)

]
+ E

x∼X

[
E

pθ(y|x)

[∇θ̃ pθ̃(y | x)(∇θ̃ pθ̃(y | x))⊤
pθ̃(y | x)2

]]
.

The first term = 0, since the second derivative can be moved outside the sum. For the second term, we substitute the Fisher
information F ∈ R|θ|×|θ|, defined as

F := E
x∼X

[
E

pθ(y|x)

[
(∇θ log pθ(y | x))(∇θ log pθ(y | x))⊤

]]
(4)

= E
x∼X

[
E

pθ(y|x)

[∇θ̃ pθ̃(y | x)(∇θ̃ pθ̃(y | x))⊤
pθ̃(y | x)2

]]
.

Therefore,
(
∇2

θ̃
DKL

(
pθ∥pθ̃

))
θ̃=θ

= F , and

DKL

(
pθ∥pθ̃

)
≈ 1

2
(θ̃ − θ)⊤F (θ̃ − θ). (5)

Diagonal approximation As a further simplification, we assume the cross terms are small, Fij ≈ 0 ∀ i ̸= j, so we can
simplify the approximate KL divergence to

DKL

(
pθ∥pθ̃

)
≈ 1

2

∑

i

Fii · (θ̃i − θi)
2. (6)
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Figure 7. The KL divergence from modifying each parameter tensor in turn with iid noise, compared against (Left) the predicted KL
divergence from Equation (6), and (Right) the scale of perturbation without using Fisher information. For each parameter tensor of
Llama 3.1 8B, we perturb θ̃Tt = θTt + σt · ϵ, for a range of σt and with ϵ ∼ N|Tt|(0, 1), and measure the top-k KL divergence of outputs
against the original model. This result indicates that Fisher information is able to predict KL divergence — tensors with higher Fisher
information are more sensitive to perturbation.

Tensor-constant approximation Deep learning model parameters can be partitioned into tensors, often the maximal sets
of parameters that can be applied in parallel to the intermediate activations — in other words, where the input to the forward
pass operation of any scalar parameter does not depend on any other parameter from the same tensor. It is convenient to
encode each tensor using a single format, although different tensors may use different formats, so we expand Θ̃ =

∏
t Θ̃t,

and θ̃Tt
∈ Θ̃t where Tt ∈ N|Tt| is a vector of parameter indices belonging to tensor t.

For much of our analysis, we further approximate the diagonal of the Fisher matrix as constant within each parameter tensor
(Fii = f̄t, for i ∈ Tt). With this approximation, the increase in KL divergence due to quantisation is a weighted sum across
parameter tensors of the unweighted squared error,

DKL

(
pθ∥pθ̃

)
≈ 1

2

∑

t

f̄t ·
∑

i∈Tt

(θ̃i − θi)
2. (1)

This form is convenient, as the squared error is easy to compute and the diagonal of F can be estimated with computational
and memory costs comparable to a few steps of SGD. We test this equation for predicting the KL divergence after perturbing
with iid normal noise in Figures 7 and 8.

A.2. Optimal tensor formats for known distributions

We now turn to the problem of designing a format to represent a single parameter tensor. The formats we consider all operate
on blocks of data — all or part of the tensor. The block size B is fixed within a tensor, but may vary across tensors. For the
ith block of the tth tensor, we wish to quantise the parameters sub-vector θCti

, given block indices Cti ∈ NB , but to aid
readability we will drop the indices and use θ directly.

Using the approximate relationship given by Equation (1), KL divergence is minimised by minimising the squared
reconstruction error of each parameter. We therefore consider the following optimisation problem for a block of parameters
θ ∈ RB :

find: quantise : RB → Q , dequantise : Q → RB (7)

to minimise: E2 :=
∑

i∈[1..B]

(θi − dequantise(quantise(θ))i)
2

such that: |Q| ≤ 2B·b,
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Figure 8. How Fisher information predicts KL divergence given a single-tensor iid random perturbation (as per Figure 7). Most models
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specific or code-specific issue. We believe that the flattening of the curve for small noise levels (where the measured KL is higher than
predicted) may be due to the bfloat16 precision of the model computation amplifying the noise.
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Figure 9. 4-bit quantisation curve gradients for Normal, Laplace, Student-t distributions, showing strong agreement between cube root
density and Lloyd-Max. The legend shows relative quantisation error R for “(cube root quantiser; Lloyd-Max)” over data from the
appropriate distribution. (Left) RMS-scaled formats. The cube root density rule breaks down with the heavy tails of Student-t. (Right)
absmax-scaled formats. The discrepancy at the extremes occurs because the cube root quantiser has a special case for ±1, whereas
Lloyd-Max treats it as a single distribution to quantise.

where the set of quantised representations Q is subject to a compression constraint of b bits per element in the block of B
elements. For our analysis, θ is iid, with θi ∼ D from a Normal, Laplace or Student-t distribution.

Cube root density quantiser When B = 1 and D is known with pdf pD, we can use the cube root density quantiser
(Panter & Dite, 1951) to minimise the error:

Qelem ⊂ R , density(Qelem) ∝ 3
√
pD

quantiseelem(θ) = argminq∈Qelem |θ − q|
dequantiseelem(q) = q,

When D is Normal, Laplace or Student-t, we observe that 3
√

pD is proportional to the pdf of D′, the same parametric
distribution as D but with different parameters. Therefore Qelem can be derived from the inverse cdf of D′, see Appendix B.3
for details and F for code examples.

Linear scaling When B > 1, if we assume D is a known parametric distribution but with unknown scale, we can adapt the
scalar quantisation technique above:

Qlinear := R× (Qelem)B , norm : RB → R

quantiselinear(θ) =

[
n, quantiseelem

(
θi
n

)

∀i∈[1..B]

]
where n = norm(θ)

dequantiselinear(n, q)i = n · dequantiseelem (qi) ,

In this scheme, we store and use a statistic norm(θ) to normalise the block values, such that quantiseelem can assume some
properties of its input distribution, Delem. Note that these equations cannot yet obey the compression constraint, as Qlinear is
uncountable; for a practical scheme we must instead store quantisescale(n) using an appropriate format.

RMS scaling Applying linear scaling with norm(θ) =
√

1
B

∑
i θ

2
i , we obtain RMS scaling. If we replace the random

variable n with a point estimate at its expected value, then θi
n follows Delem, a scaled version of D such that E

[
θ2i
]
= 1.

Moment matching of the RMS can provide the parameters of Delem needed for an optimal format according to the cube root
density rule (Table 1). See Figure 9 for example quantisation curves including a comparison against Lloyd-Max, which is
trained against transformed samples from D to optimise RMS error.
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Absmax scaling Linear scaling with norm(θ) = maxi |θi| gives absolute-maximum scaling, a popular block quantisation
scheme. In this case Delem has support −1 ≤ θi ≤ 1. Following Yoshida (2023), we consider Delem as a mixture of two
components: (1) the normalised maximum value, which is a transformed Bernoulli distribution and (2) the normalised
distribution of everything else in the block, which was not the maximum. To approximate (2), we observe empirically
that the marginal distribution of θi ̸=argmaxj |θj | is a good match to a truncated D, where the truncation point is the block
maximum (Figure 12). We then use a closed form approximation to E [maxi |θi|] (Table 1) to calculate the truncation points.
To construct Qelem, we always include ±1, then use the inverse cdf of the truncated-and-scaled D to distribute the rest of
Qelem according to the cube root rule. Example quantisation curves are shown in Figure 9.

Signmax scaling Observing that the distribution of block-scaled data is well-approximated by a mixture of the maximum
and non-maxima, it seems natural to also try signmax scaling. In this scheme, the block scale is set to the signed absolute
maximum, norm(θ) = θî where î = argmaxi |θi|. The element format can then assume that the maximum is always at +1
(not ±1) and allocate a pair of special codepoints {0, 1} with the rest specified according to 3

√
p (see Figure 2). This comes

at the cost of requiring a sign bit for the block scale, i.e. 1
B bits per element.

Symmetric/Asymmetric variants One important detail is the representation of zero. Practical implementation consid-
erations often provide an even number of codepoints, so allocating a codepoint for zero mandates asymmetry or waste.
However, exact zero has been shown empirically to be valuable (Liu et al., 2025). The 3

√
p scheme for allocating codepoints

is easily adapted to provide symmetric and asymmetric variants for both RMS and absmax scaling (Figure 2). For block
scaling the asymmetry is purely in resolution, while for RMS it naturally provides both additional resolution and range on
one side.

A.3. Unknown distributions

In general, the distribution of parameters of neural networks after training is unknown, so we cannot apply the techniques
described in Appendix A.2 directly. If we assume the data comes from a given distribution family there remains an unknown
scale parameter, which must be estimated. In the case of absmax and signmax scaling it’s natural to match the range of
the element format with the normalised data. For RMS scaling, one solution is moment-matching — after normalising
the data to have RMS=1, we use the optimal quantiser for the assumed distribution with RMS=1. Moment matching,
however, isn’t guaranteed to minimise E2 (see Figure 21). Therefore we also evaluate per-tensor search to find the scale
and any distribution parameters (e.g. Student-t ν) that minimise E2. An alternative to assuming a canonical distribution is
to directly optimise a non-uniform format against the data, to solve Equation (7). A standard solution is the Lloyd-Max
algorithm (Lloyd, 1982; Max, 1960), i.e. 1D k-means. Both distribution parameter search and Lloyd-Max can solve a
weighted objective, so we can drop the scaled-identity approximation to the Fisher information, and use diag(F ) as a weight
on the importance of each parameter, as proposed by Kim et al. (2024).

A.4. Optimal tensor formats with compression

An alternative approach is to first use a (lossy) quantiser such as those described in Appendix A.2 then follow it with a
lossless compressor, operating on quantised data in Q. In this case we can optimise the quantiser using the objective from
Equation (7), substituting the last line with an entropy coding constraint:

. . . such that: E [I(quantise(θ))] ≤ B · b

where: I(q) = −
∑

i∈[1..B]

log2 p
Q(qi) .

I.e. I(q) computes the information content of a quantised block under a model of their values given by pQ and we assume
an optimal compressor approaching the Shannon (1948) limit.

Compressed grid Under this new constraint if B = 1 the optimal distribution of elementwise codepoints is a uniform grid
i.e. density(Qelem) = const (Gish & Pierce (1968), see also Appendix C.2). The probability model pQ for compression
can either be estimated based on samples or derived by transforming D by quantise(θ), which in the case of elementwise
quantisers is trivial: via the cdf or approximately via the pdf of D.
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Figure 10. Variable allocation of bits across tensors in Llama 3.1 8B using Equation (2) with a target of 4 bits per parameter. For many
element formats, b⋆t would need to be rounded to the nearest integer. Other members of the Llama 3 and Qwen 2.5 families show a similar
trend of requiring additional bits for the attention key and value projections. We suspect this is due to grouped query attention (Ainslie
et al., 2023), where the outputs of key and value projections are reused across a group of multiple attention heads.

A.5. Optimal bit-width allocation

In this section, we derive the variable bit-width allocation scheme of Equation (2). We start from the constant-per-tensor
Fisher approximation to KL divergence of Equation (1), repeated here:

DKL

(
pθ∥pθ̃

)
≈ 1

2

∑

t

f̄t ·
∑

i∈Tt

(θ̃i − θi)
2.

Now, to forecast how the squared error term depends on bit width, we use the asymptotic limit of Zador (1982), which can
be stated as

E
[
(θ̃i − θi)

2
]
= ϵ2t · σ̂2

t · 2−2·b′t ,

where b′t is the bit width used for tensor t, ϵt depends on the distribution of θ and σ̂2
t :=

∑
i∈Tt

E[θ2
i ]

Nt
≈ RMS2(θTt

) with
Nt := |Tt|. This gives the optimisation

minimise J :=
1

2

∑

t

Nt · f̄t · ϵ2t · σ̂2
t · 2−2·b′t ,

subject to
∑

t

b′t ·Nt ≤ b ·
∑

t

Nt.

Using the Lagrange multiplier λ, and removing constant factors, we pursue the constrained optimisation,

J ′ =
∑

t

Nt · f̄t · ϵ2t · σ̂2
t · 2−2·b′t + λ ·Nt · (b′t − b),

dJ ′

db⋆t
= −2 · ln 2 ·Nt · f̄t · ϵ2t · σ̂2

t · 2−2·b⋆t + λ ·Nt = 0,

b⋆t = b0 + log2 σ̂t +
1

2
log2 f̄t + log2 ϵt,

for some constant b0. As a final approximation, we assume that ϵt = const across t, so it can be folded into b0.

We show an example variable bit allocation computed from this procedure in Figure 10. Most tensors are ±1 bit from the
average, and there is a general trend toward representing some groups of tensors more accurately, e.g. attn.v.
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Table 1. Statistics required for deriving optimal RMS and absmax scaled 3
√
p quantisers. See Appendix B.3 for a derivation of parameters

of D′. The expected absmax is taken from extreme value theory (Leadbetter et al., 2012), or in the case of Student-t from our empirical
approximation (see Figure 11). Note that γ is the Euler–Mascheroni constant.

Value Normal (s) Laplace (s) Student-t (s, ν)
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√
E [θ2i ] s

√
2 · s

√
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ν−2 · s

E
[
maxi∈[1..B] |θi|

]
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√
2 log B

π · s (γ + logB) · s
(
2 log B

π

) ν−3
2ν ·B 1

ν ·
√

ν
ν−2 · s

D′ params s′ =
√
3 · s s′ = 3 · s ν′ = ν−2

3 , s′ =
√

ν
ν′ · s

4 64 1024 16384

B

1

10

A
b

sm
ax

Normal√
2 log B

π

Laplace

γ + logB

4 64 1024 16384

B

Student-t

ν = 3

ν = 4

ν = 6

ν = 10

ν = 20

ν = 100
(
2 log B

π

) ν−3
2ν B

1
ν

√
ν
ν−2

Figure 11. Approximations (dashed) to the expected block absmax value for Normal, Laplace and Student-t distributions with scale
s = 1, versus simulation (solid) with 220

B
samples. (Left) Normal and Laplace distributions. The fit for Normal at small B ≤ 8 is poor,

but typical block sizes are larger than this. (Right) Student-t for various degree-of-freedom ν ≥ 3, showing good fit across a range of
sizes, converging to the Normal approximation as ν → ∞.

B. Cube root density quantisers
B.1. Recipe

1. Compute parameters of the target distribution D.

• For RMS scaling, set RMS = 1 and use Table 1 to calculate s.
• For Absmax scaling, set E

[
maxi∈[1..B] |θi|

]
= 1 and use Table 1 to calculate s.

2. Compute parameters of D′, which has pdf pD
′ ∝ 3

√
pD from Table 1.

3. Use the inverse cdf to select quantisation codepoints with density given by D′.

Code examples are given in Appendix F.

B.2. The cube root rule

The cube root rule states that, under some assumptions, the optimal quantiser for distribution D should have a codepoint
density proportional to the cube root of the pdf of D. This is contrasted with quantile quantisation (Gersho & Gray, 1991;
Dettmers et al., 2022b), which attempts to distribute quantised values evenly, where the density is proportional to the pdf
directly. See Figure 13 for an illustration.
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Figure 12. An example of block-scaled Normal data, B=64, using (left) absmax and (right) signmax scaling: an empirical histogram
from sampled data (filled colour) and our mixture model (dashed), using the approximate maximum from Table 1. The empirical marginal
distribution is a good fit to our mixture of ±1 (signmax +1) maximum and truncated-Normal non-maxima.
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Figure 13. An example of the cube root density rule. Left: The density of a standard Normal and 3
√ of that density, which is a scaled

normal pdf. Right: The quantisation curves and error for 4-bit formats derived from the cube root rule, a naive “proportional rule” and a
Lloyd-Max quantiser trained on standard Normal samples, showing good match between cube root density and Lloyd-Max.
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Derivation For a sketch derivation of the cube root rule (Panter & Dite, 1951), consider a piecewise-uniform probability
distribution {pi} and a piecewise-uniform quantiser with ni codepoints in section i. Then for a single piece of width w, the
RMS error is

Ei = 2ni · pi ·
∫ w

2ni

0

x2

w
dx =

pi · w2

12n2
i

.

So, with a constraint on number of codepoints i.e.,
∑

i ni = 2b, we use the Lagrange multiplier λ to optimise

E′ =
∑

i

pi · w2

12n2
i

+ λ ·
(∑

i

ni − 2b

)
.

This gives the gradients
dE′

dni
= −pi · w2

6n3
i

+ λ,

therefore with dE′

dni

∣∣
ni=n⋆

i

= 0, we see that n⋆
i ∝ 3

√
pi.

B.3. Parameters of D′

In this section, we derive the rules for s′ and ν′ for the Normal, Laplace and Student-t distributions given in Table 1. For all
of these distributions, there is a distribution of the same family, but with different parameters such that the new distribution’s
pdf is proportional to the cube root of the original pdf.

Normal For a Normal distribution N(0, s2),

p(x|s) = 1√
2π · s2

· e− x2

2 s2 .

If we set p(x|s′) ∝ 3
√

p(x|s), we see that for some constant C

1
6
√
2π · s2

· e− x2

6 s2 =
C√

2π · s′2
· e− x2

2 s′2 ,

therefore s′ =
√
3 s.

Laplace For a Laplace distribution,

p(x|s) = 1

2 s
· e− |x|

s .

If we set p(x|s′) ∝ 3
√

p(x|s), we see that for some constant C

1
3
√
2 s

· e− |x|
3 s =

C

2 s′
· e− |x|

s′ ,

therefore s′ = 3 s.

Student-t For a Student-t distribution,

p(x | ν, s) = 1

s · √ν · B( 12 , ν
2 )

·
(
1 +

x2

s2 · ν

)− ν+1
2

.

If we set p(x | ν′, s′) ∝ 3
√
p(x | ν, s), we see that for some constant C

1

6

√
s2 · ν · B( 12 , ν

2 )
2
·
(
1 +

x2

s2 · ν

)− ν+1
6

=
C

s′ ·
√
ν′ · B( 12 , ν

2 )
·
(
1 +

x2

s′ 2 · ν′
)− ν′+1

2

,

therefore ν′ = ν−2
3 and s′ =

√
ν
ν′ · s.
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Figure 14. A 2D histogram of bits βi used to encode parameter i from the first MLP down-projection from Llama 3.1 8B, illustrating
how different schemes achieve variable-length encoding. (Left) sparse outliers create a distinct step between regular values and the 0.1%
largest absolute values, which require 32+16 bits for the position and value respectively. (Center) block absmax with a bfloat16 scale
can be seen as using 16+4 bits to represent the block maximum and ≈4 for everything else. The histogram has an overlap, since the
maximum is per-block not global, but fewer bits are required to store its location. (Right) lossless compression on a uniform grid with
βi = − log2 pi, where pi is the proportion of parameters assigned to that quantisation bucket.

C. Entropy coding quantisers
C.1. Recipe

1. Choose a resolution for the grid, δ, so that the quantisation codepoints are {δ · k | k ∈ N}.

2. Either compute the density of values mapped to each codepoint analytically, or via samples.

3. Build an entropy code from this distribution, e.g. using Huffman coding.

To reach a target b, this procedure can be wrapped in a search to find an appropriate δ.

C.2. The uniform density rule

The previous method constrained the total number of codepoints, which is appropriate for an uncompressed data stream. If
the quantiser is followed by an optimal lossless compressor, we should instead use an entropy constraint:

H = −
∑

i

ni ·
pi
ni

log
pi
ni

= b

This gives the optimisation objective

E′′ =
∑

i

pi · w2

12n2
i

+ λ ·
(∑

i

pi log
pi
ni

+ b

)
,

and gradients
dE′′

dni
= −pi · w2

6n3
i

− λ · pi
ni

,

and when dE′′

dni

∣∣
ni=n⋆

i

= 0, pi cancels and n⋆
i = const.

Somewhat surprisingly, the RMS-optimal quantiser when followed by a perfect lossless compressor is a uniform grid
(lattice), where the tradeoff between b and E is made by varying the resolution of the grid.

D. Analysis Details (Simulated Data)
For our analysis on simulated data, we draw data iid from Normal, Laplace or Student-t distributions and measure the
quantisation error. Since the scale of a distribution is easily absorbed in the formats we consider, our primary evaluation
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metric is the ratio of RMS error to data RMS,

R :=

√√√√√
(∑

i

[E]2i

)
/


∑

i

∑

j∈[1..B]

θ2B·i+j


,

where i is a block index. We often report R · 2b for legibility when b varies across an experiment, as R tends to scale as 2−b.

Unless noted, we sample |θ| = 224 scalar values for each experiment, and use float32 compute precision throughout. For
compression results, we use a sampling-based method to calculate the model pQ with a fresh set of samples from the target
distribution, and use +1 smoothing of the counts (within the training sample range) to avoid zeros.

D.1. Results

Additional observations To validate the cube root rule, we test a generalised quantiser with pdf exponent α, where α = 1
3

matches the cube root rule in Figure 20 and α = 1 is quantile quantisation, finding that the cube root setting indeed performs
best and similarly to Lloyd-Max. For block scaled formats, we must choose an appropriate block size. Smaller blocks have
lower error from a tighter block range but incur greater space overhead from storing the block scale. For a fair comparison,
smaller blocks must use a narrower element bit width. See Figure 19, showing that B = 128 is a good choice for these
distributions. The figure also validates our default choice of bfloat16 over E8M0.

Question Figures

How to choose between compression & scaling schemes? 15
How to choose an element format? 16, 17
How to choose a scale format? 18, 19
How to choose block size? 19

Does the cube-root rule work? 20
Is moment matching sufficient for choosing quantiser scale? 21
How well does practical compression approach the optimal limit? 22
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Figure 15. The error/size tradeoff for different data distributions (column) and optimal quantisers (hue). Surprisingly, block absmax
quantisers can outperform tensor RMS formats for iid data, even though there is no inherent block structure. However this situation is
reversed when adding optimal compression, implying that block absmax quantisers exploit some form of variable-length coding.
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Figure 16. The performance of optimal and extant 4-bit element formats as block size B varies. Note that the total bit width varies with
B, but is consistent across element formats. We see that the 3

√
p formats are marginally better than NF4 and SF4, which don’t optimise for

RMS error. Of the floating-point and integer formats, E2M1 is generally the best. Signmax quantisation improves INT4 considerably and
makes it competitive for Normal data, although performance is still poor for heavier-tailed distributions.
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Figure 17. Floating-point element format performance as the total bit width b varies. In general, the optimal number of exponent bits
doesn’t depend on total bit width. The exception is for RMS scaling, where low-exponent formats eventually stop improving with more
mantissa bits (so R · 2b starts increasing). This is due to the error in quantising the distribution tails, which lie outside the format’s range —
increasing the number of mantissa bits has negligible effect on range, so this source of error eventually dominates. Note that for this plot,
it was important that the bfloat16 scaling factor used round-away rather than round-to-nearest, to avoid range issues from rounding the
scale down.
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Figure 18. The performance advantage of scale mantissa bits, keeping average bit width b approximately constant by varying the element
bit width, for Student-t (ν=5) data. Both 3

√
p and integer formats benefit from 4-10 scale exponent bits, and integers show greater benefit.

Note the jumps in the b ≈ 4 plot are due to a discrete number of codepoints in the element format.
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Figure 19. Absmax-scaled format error versus block size B, for different approximate bit widths, data distributions and scale format. As
B decreases, the element bit width is reduced to keep b = belement + bscale

B
approximately constant. bfloat16 (or E8M7) outperforms the

mantissa-less E8M0 format. The optimum for Normal data is generally slightly to the right of that for heavy-tailed Laplace and Student-t
distributions, generally in the range 64–256.
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Figure 20. Validation of optimal 4-bit 3
√
p quantisers via simulation. We generalise the 3

√
p rule to a pα rule for various α (horizontal

axis) and try quantisers derived from different distributions (hue) using moment-matching. (Top) RMS scaling. (Bottom) Absmax scaling,
B = 64. We find that the best quantiser is consistently the matching 3

√
p (α = 1

3
), which performs comparably to a Lloyd-Max trained

quantiser. We also show the curve for a compressed quantiser with b ≈ 4, which has optimum at α = 0, i.e. a uniform grid that is
independent of the pdf.
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Figure 21. Search to find the best 5-bit quantiser parameters after RMS scaling of data generated from a Student-t (ν=5) distribution.

(Left) search over the scale applied to the quantiser, such that θ̃i = n′ · dequantise
(
quantise

(
θi
n′

))
. Note that each quantiser (Normal,

Laplace, etc) is optimal for data of their matching distribution, with RMS=1. For the correct Student-t quantiser, RMS moment matching
(n′ = 1) works well, but moment matching performance is suboptimal for mismatched quantisers. (Right) search to find the correct
Student-t quantiser ν. For each ν, we search for the scale n′ that minimises R.
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Figure 22. The performance of practical compressors using RMS scaling and 3
√
p element formats, compared with the theoretical limit,

over |θ| = 220 samples. An elementwise Huffman code (Huffman, 1952) using dahuffman (Lippens, 2017) performs close to optimal.
Bzip2 doesn’t reach the same compression ratio, however it still outperforms an uncompressed block format.
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E. Experimental Details
Our language modelling experiments use the WikiText-103 (Merity et al., 2017) combined validation and test sets. For each
sequence in the dataset, we generate full sequence (teacher-forcing) logits from the reference model and test model for
evaluation using cross entropy and top-k KL divergence, which is described below. Hyperparameters are given in Table 2.
The 11 models evaluated are: Llama 3.1 8B, Llama 3.2 1B, Llama 3.2 3B, Phi 4 (14B), Qwen 2.5 {0.5B, 1.5B, 3B, 7B} and
Gemma 3 {1B, 4B, 12B} (Dubey et al., 2024; Yang et al., 2024; Kamath et al., 2025; Abdin et al., 2024). Where multiple
variants exist, we use the bare pretrained model.

The division of parameters into tensors follows the Huggingface transformers (Wolf et al., 2020) checkpoints, which
differ slightly between models. For example, Phi-4 contains a single “stacked” projection matrix for query-key-value, while
the other models tested store them separately.

Our k-means results use a custom implementation which iterates until the proportion of cluster assignments that change
drops below 10−4 and uses k-means++ (Arthur & Vassilvitskii, 2007) initialisation for RMS-scaled data and uniform (−1, 1)
initialisation for absmax-scaled data — settings which we found to be robust during early testing.

Table 2. Experimental settings.

Hyperparameter Value

Sequence length 4096
KL top-k 128
Evaluation tokens ≈ 5 · 105
Fisher estimation tokens 4 · 106
Reference weight format bfloat16
transformers version 4.51.3
Scale search range [2−2, 2−1.75, . . . , 22] (17 steps)
Student-t ν search range logspace(log2 3, log2 100, steps=12, base=2)

Top-k KL divergence Our comparison metric is top-k KL divergence, defined for a single pair of logits that specify
pθ(yi | x) and pθ̃(yi | x) as

DKL
top-k(pθ,pθ̃) :=


 ∑

y∈argtopk(p)

py · log
py
qy


+ ptail · log ptail

qtail

where py := pθ(y | x) and qy := pθ̃(y | x) ,
ptail :=

∑

y/∈argtopk(p)

py ,

qtail :=
∑

y/∈argtopk(p)

qy .

Note that the top-k always applies to the reference model, never the target model. The tail term is required to ensure that the
KL divergence is ≥ 0. The logic is equivalent to creating a modified distribution where the non-top-k classes are collapsed
into a single output class, followed by regular KL divergence over k + 1 classes.

We use top-k KL divergence rather than full KL divergence because the vocabulary size of language models (typically
>105) makes it prohibitive to store a dataset of reference logits. Top-k KL divergence stores 2 · k scalar values per token,
an index and a log-probability, versus a log-probability per vocabulary term for full KL divergence.

Fisher estimation To estimate the diagonal of the Fisher information defined in Equation (4) for the reference model, we
sample text sequences from the WikiText-103 training set. For each sequence, we generate logits from the model, sample a
single output token per position in the sequence from the predicted distribution and backpropagate the cross entropy loss
of the sampled token to get the gradient with respect to activations. We replace the calculation of weight gradients with a
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Figure 23. A histogram of absolute parameter values for various models. Each line corresponds to a parameter tensor in the model. As
we care about tails not scales (the overall scale of a tensor is easily absorbed into a scaling factor), we divide each parameter value by the
RMS of the tensor. We note that different models show the same general trends: heavy tails that seem closest to a Student-t distribution in
shape, with some variability across tensors in the model.
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custom version, which squares the gradients before accumulation (see Appendix F.3). That is, we calculate

Fii ≈
1

M · L
∑

m∈[1..M ]

∑

p∈[1..L]

(
∇θi log pθ(ŷ

(m)
p | x(m)

<p )
)2

where ŷ(m)
p ∼ pθ(y | x(m)

<p ). (8)

over M = 1024 sequences of length L = 4096. Note that we use a sampled target label rather than the ground truth from
WikiText in order to be closer to estimating the Fisher rather than empirical Fisher, a difference explored by Kunstner et al.
(2019), at the cost of increased variance of our estimator. Despite this effort, since we use “teacher forcing” of inputs in an
autoregressive setting, the method remains somewhat empirical.

Since this method accumulates the diagonal Fisher, it stores |θ| additional values, a similar amount of memory to training
with SGD. Although the parameters may be represented in bfloat16, it is important to accumulate the Fisher statistics in a
format with more mantissa bits, as bfloat16 updates will be swamped after O(28) steps. To support Fisher estimation with
limited accelerator memory, we implement a 2-stage accumulator that accumulates 64 steps in bfloat16 on device, then
accumulates these batched updates in float32 on the host CPU.

Moment matching baselines For RMS scaling with 3
√
p formats, the moment matching baseline sets the RMS of the

quantiser to match that of the data. For standard formats it scales such that data RMS = 1 in the case of E2M* and 2b−1−1√
3

(to match the RMS of a uniform distribution) in the case of INT. With Absmax scaling, the moment matching baseline sets
the scale such that the minimum of the positive and negative range of the quantiser matches that of the normalised data, i.e.
to cover (−1, 1).

E.1. Results

Question Figures

How to choose between (compression, scaling, outlier) schemes? 1, 6, 24
How do random rotations help? 25
Does variable bit allocation help? 26, 27
How to choose an element format 28, 29
How to choose a scale format? 30
How to choose block size? 30
Signmax, Asymmetric or Symmetric scaling? 31
Moment matching or scale search? 32
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Figure 24. The average change in scaled KL for various scaling schemes and sparsity, when combined with optimal lossless compression.
Note that each point is the scaled KL for a model, averaged over bit widths, and divided by the tensor RMS baseline. In the presence of
lossless compression, there is no benefit to block scaling or separating sparse outliers, consistent with our claim that they exploit the
same variable-length encoding benefit offered by compression. The only scaling mode that outperforms simple tensor RMS scaling when
combined with compression is channel RMS scaling, which exploits structure in the tensor data.
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Figure 25. An evaluation of random rotations, where the rotations V and W are applied before quantising the rows and columns
respectively of a 2D parameter tensor, i.e. θ̃ = V ⊤dequantise(quantise(V θW ))W⊤. Since we expect rotated parameters to be
roughly normally distributed, we use the 3

√
p normal quantiser, optionally with a block scaling scheme, sparse outliers or compression.

Our results show that random rotations are useful for fixed-length schemes such as tensor scaling without sparse outliers, but unnecessary
for schemes that employ variable-length coding. This is what we’d expect: rotations transform heavy-tailed marginal distributions, where
fixed-length quantisation performs much worse than variable-length quantisation (Figure 15 (right)), towards the Normal distribution, for
which fixed-length quantisation performs better (Figure 15 (left)).
Note that the outlier point for Tensor RMS scaling with rotation corresponds to the Phi-4 model, which is likely an experimental issue —
for sake of memory, we skip rotations where the dimension is too large (e.g. embedding vocabulary dimension), and with the large hidden
size of Phi-4, our code also skipped rotating the output dimension of the stacked MLP up-and-gate projection.
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Figure 26. The performance of the Fisher-based variable bit allocation scheme of Equation (2). (Left) the tradeoff curve for Llama 3.1 8B,
showing a general shift to the left, although some settings for absmax scaling are degraded. (Right) the average scaled KL of different bit
allocation schemes compared with flat allocation, for all models. For 7 of the 11 models tested, the variable allocation scheme improves
the average KL across bit widths, versus flat allocation. The exceptions are for all 3 Gemma models (see Figure 6) and for one format
with Qwen 2.5 3B. See Figure 27 for a cross-domain result and an explanation of heuristic bit allocation.

3.0 3.5 4.0 4.5 5.0

b

10−2

10−1

D
K

L

Flat allocation

Variable
bit allocation

Variable
bit allocation

Heuristic
bit allocation

0.5

1

2

ρ̄
(x

) /
ρ̄

(F
la

t)

Gemma
models

Flat allocation better

x-label better

Tensor RMS
+ Compression

Tensor RMS
+ Sparsity

Block Absmax

Figure 27. The performance of the Fisher-based variable bit allocation scheme of Equation (2) for codeparrot/github-code (Tunstall
et al., 2022), when the Fisher information was calculated over WikiText, a substantially different dataset. (Left) the tradeoff curve for
Llama 3.1 8B, showing a general shift to the left, although some settings for absmax scaling are degraded. (Right) the average scaled
KL of different bit allocation schemes compared against flat allocation, for all models. Much of the in-domain improvement is retained,
indicating that the Fisher information can generalise across datasets. Note that the heuristic bit allocation scheme allocates +2 bits to all
parameters in the first 2 and last 2 transformer layers, and to embedding and final projection weights; this performs poorly.

28



Optimal Formats for Weight Quantisation

INT E2M*
3
√
p Normal

3
√
p Laplace

3
√
p t

3
√
p t[ν=30]

Lloyd-Max

1.0

0.8

0.9

2.0

ρ̄
(x
,h

u
e
) /
ρ̄

(t
,

R
M

S
+

S
p

)

(t, RMS+Sp) better

(x-label, hue) better

Tensor RMS + Sparsity

Block Absmax

Figure 28. A comparison of different element formats, each point the best setting for a given model, over {moment matching/search/Fisher-
weighted search, symmetric/asymmetric variant}, compared with Student-t with RMS scaling and sparse outliers. No setting consistently
beats this baseline across models; surprisingly, this includes Lloyd-Max with Fisher weighting.
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Figure 29. A comparison of 3
√
p against extant formats with block absmax scaling, 4-bit elements and bfloat16 scale, i.e. b = 4 + 16

B
.

(Left) Llama 3.1 8B performance as B varies. We see that the 3
√
p formats and NF4 perform similarly. Note that 3

√
p Normal is different

from NF4, since 3
√
p formats optimise for RMS not incompressibility and use a model of the block-maximum, meaning that the curve

depends on B. (Right) average performance across different models, where each point gives the average ρ across block size, divided by
the performance of (model, 3

√
p Student-t). We see that 3

√
p Laplace and Student-t perform best in general, and there is little to choose

between 3
√
p Normal and NF4. Surprisingly, SF4 is worse, at odds with the findings of Dotzel et al. (2024). One possible explanation for

the difference is our use of a bfloat16 scale, which provides a tighter bound on the block maximum, compared with an E8M0 exponent.
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Figure 30. Hyperparameter sweep for block absmax formats using the Student-t element quantiser and b ≈ 4. (Left) block size sweep,
showing that almost all models agree on B=128, given a bfloat16 scale, consistent with our simulations in Figure 19. (Right) scale
mantissa bits sweep with round-away, showing that most models benefit from 4-6 scale mantissa bits, given B=128, consistent with
Figure 18. For both sweeps, a fair comparison is made by adjusting the element width to account for the different scale overhead. For
example, for B=64 with a bfloat16 scale, the element bit width is set as close to 4− 16

64
as possible.
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Figure 31. A comparison of scaling variants (see Figure 2) for INT and 3
√
p Student-t element formats, using block scaling with B=128.

(Left) the tradeoff curve for Llama 3.1 8B, showing that signmax outperforms regular absmax scaling at small b. Symmetric scaling, which
does not include a representation for 0 does not perform consistently for this model. (Right) scaled KL over all models, relative to the
absmax + asymmetric variant. The improvement from signmax is consistent. The symmetric format is sometimes better and sometimes
worse than asymmetric.
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Figure 32. Moment matching vs search over quantiser scale to optimise R and Fisher-weighted search. Each point corresponds to the
average ρ over bit width for one of the 11 models tested. The results suggest that search is helpful for RMS scaling, but not reliable
for absmax scaling, although Fisher weighting seems to help here. Note that all formats for Qwen2.5-3B perform very badly using
Fisher-weighted search, with a ratio ρ(Fisher)

ρ(Moment) > 2. Only one of these results is visible in-range.
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F. Code examples
This section provides illustrative implementations that compute optimal quantisation curves for RMS and block abs-
max Normal, Laplace and Student-t distributions as well as code to estimate the diagonal of the Fisher information
matrix. For the full implementation used for our experiments, please see https://github.com/graphcore-research/
optimal-weight-formats.

F.1. Cube root density (RMS scaling)

Illustrative implementations of 4-bit cube root density quantisation of different distributions (symmetric variant).

Normal

b = 4
p = torch.linspace(0, 1, 2**b + 2)
Q = torch.tensor(scipy.stats.norm.ppf(p[1:-1], scale=sqrt(3)))

def quantise(x): return torch.bucketize(x, (Q[1:] + Q[:-1]) / 2)
def dequantise(i): return Q[i]

Note the scale for the ppf (inverse cdf) is set to
√
3, according to the rule from Table 1.

Laplace (RMS=1):

b = 4
p = torch.linspace(0, 1, 2**b + 2)
Q = torch.tensor(scipy.stats.laplace.ppf(p[1:-1], scale=3/sqrt(2)))

Student-t (ν = df, RMS=1):

b, df = 4, 7
p = torch.linspace(0, 1, 2**b + 2)
Q = torch.tensor(scipy.stats.t.ppf(p[1:-1], (df-2)/3, scale=sqrt(3)))

F.2. Cube root density (block absmax scaling)

Illustrative implementations of 4-bit cube root density quantisation of different distributions, scaled by their block absmax
(symmetric variant).

Normal

b, block_size = 4, 64
p = torch.linspace(0, 1, 2**b)
scale = sqrt(3 / (2 * log(block_size/pi)))
Q = torch.tensor(scipy.stats.truncnorm.ppf(p, -1/scale, 1/scale, scale=scale))

Note the scale for the inverse cdf is s′

E[maxi θi]
from Table 1.

Laplace

def trunclaplace_ppf(q, x0, x1, scale):
c0, c1 = scipy.stats.laplace.cdf([x0*scale, x1*scale], scale=scale)
return scipy.stats.laplace.ppf(c0 + (c1-c0)*q, scale=scale)

b, block_size = 4, 64
p = torch.linspace(0, 1, 2**b)
scale = 3 / (0.57721566 + log(block_size))
Q = torch.tensor(trunclaplace_ppf(p, -1/scale, 1/scale, scale=scale))

Student-t (ν = df)

def trunct_ppf(q, df, x0, x1, scale):
c0, c1 = scipy.stats.t.cdf([x0*scale, x1*scale], df, scale=scale)
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return scipy.stats.t.ppf(c0 + (c1-c0)*q, df, scale=scale)

b, block_size, df = 4, 64, 7
p = torch.linspace(0, 1, 2**b)
scale = (2*log(block_size/pi))**((3-df)/(2*df)) * block_size**(-1/df) * sqrt(3)
Q = torch.tensor(trunct_ppf(p, (df-2)/3, -1/scale, 1/scale, scale=scale))

F.3. Fisher estimation

Illustrative code for wrapping a torch.nn.Linear layer with logic to compute the sum of squared gradients in order to
estimate the diagonal of the Fisher information matrix.

class FisherWrappedLinear(torch.nn.Module):
def __init__(self, m: torch.nn.Linear):

super().__init__()
self.m = m
self.gW2 = torch.zeros_like(self.m.weight, dtype=torch.float32)

def forward(self, x):
y = self.m(x)
y.requires_grad_(True).register_hook(

lambda gy: self.gW2.addmm_(
gy.detach().flatten(0, -2).float().square().T,
x.detach().flatten(0, -2).float().square(),

) is None or None
)
return y
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