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Abstract

Domain generalization aims at performing well on unseen test environments with
data from a limited number of training environments. Despite a proliferation of
proposed algorithms for this task, assessing their performance both theoretically
and empirically is still very challenging. Distributional matching algorithms such
as (Conditional) Domain Adversarial Networks [12, 28] are popular and enjoy
empirical success, but they lack formal guarantees. Other approaches such as
Invariant Risk Minimization (IRM) require a prohibitively large number of training
environments—linear in the dimension of the spurious feature space ds—even
on simple data models like the one proposed by Rosenfeld et al. [37]. Under a
variant of this model, we show that ERM and IRM can fail to find the optimal
invariant predictor with o(ds) environments. We then present an iterative feature
matching algorithm that is guaranteed with high probability to find the optimal
invariant predictor after seeing only O(log ds) environments. Our results provide
the first theoretical justification for distribution-matching algorithms widely used
in practice under a concrete nontrivial data model.

1 Introduction

Domain generalization aims at performing well on unseen environments using labeled data from a
limited number of training environments [8]. In contrast to transfer learning or domain adaptation,
domain generalization assumes that neither labeled nor unlabeled data from the test environments
is available at training time. In the empirical literature, invariance of a “signal” feature distribution
conditioned on the label, i.e. P (Φ(x) | y), is the underlying assumption in widely adopted algorithms
such as Correlation Alignment (CORAL) [43, 42], Maximum Mean Discrepancy (MMD) [13, 25], and
(Conditional) Domain Adversarial Networks [12, 28]. Distribution-matching algorithms regularize
the distribution of intermediate representations of examples from different environments to be closer
in some metric. They are among the top-performing methods for domain generalization benchmarks
like PACS [24], VLCS [11], and DomainNet [34], but they lack formal guarantees. Previous empirical
works usually characterize the performance of these algorithms using generalization bounds based
on divergence between domain distributions [7, 31], but those bounds are vacuous for the typical
benchmarks for domain generalization and thus cannot explain their success. For example, when
different environments have disjoint supports (as is the case in the above-mentioned benchmarks)
the H-divergence [7] is 1 even for the linear hypothesis class. To obtain useful guarantees, it is
necessary to study data models that encode structure reflective of settings of interest. Prior works
attempting to theoretically characterize the performance of feature matching algorithms emphasize
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lower bounds [49, 44]. In this work, we seek to give the first positive theoretical justification for
feature matching algorithms.

Another common assumption in the literature is invariance of the label distribution conditioned on
the signal features. Invariant Risk Minimization (IRM) [3] assumes E[y | Φ(x)] is invariant, and
follow-up works assume invariance of higher moments [46, 18, 30, 6]. However, empirical results
for these algorithms are mixed: Gulrajani and Lopez-Paz [15], Aubin et al. [4] present experimental
evidence that these methods do not consistently outperform ERM for either realistic or simple linear
data models, when fairly evaluated.

Recent theoretical works [37, 19] also question the theoretical foundations of IRM and its variants,
shedding light on their failure conditions. These works study specific data generative models;
a common assumption is that, conditioned on the label, some invariant features have identical
distribution for all environments, and other spurious features have varying distributions across
environments. The goal of these methods is then to obtain an invariant predictor, i.e. a classifier
which uses only the invariant features. These works also often assume each training environment
contains infinite samples. Thus, the central measure of domain generalization is the number
of environments needed to recover an invariant predictor—we refer to this measure as the
environment complexity of a learning algorithm. Rosenfeld et al. [37] show even for a simple
generative model and linear classifiers, the environment complexity of IRM—and other objectives
based on the same principle of invariance—is at least as large as the dimension of the spurious
latent features, ds. Further results by Kamath et al. [19], Ahuja et al. [2] also point to a linear
environment complexity. Although the models in these works are simple, they help elucidate why
existing algorithms fail and can help inform better algorithmic design.

IRM’s linear environment complexity is prohibitive for realistic applications. Domain generalization
benchmarks have fewer training environments than spurious features dimensions—PACS, VLCS,
DomainNet have 4-6 total environments but the stylistic variations between domains are likely high-
dimensional. In this paper, we show that a variant of distributional matching algorithm (Algorithm 1)
finds the optimal invariant predictor with sublinear (even logarithmic) environment complexity.

1.1 Our contributions

Conceptually, we propose a “smoothed covariance” extension of the data model in Rosenfeld et al.
[37], which is rich enough to establish an environment complexity separation between IRM/ERM
and feature matching algorithms. More precisely, we show that ERM and IRM can fail to find the
optimal invariant predictor with fewer than ds + 1 training environments (Theorems 4.2, 4.3), while
a relatively simple and natural algorithm based on iterative feature matching (IFM) finds the optimal
invariant predictor with O(log ds) environments.

Moreover, our analysis highlights the value of iterative matching, much similar to matching at
multiple layers in a deep neural network. IFM iteratively projects the features to a lower dimension
while matching the label-conditioned feature distributions on a small, disjoint subset of the training
environments. A projection inducing invariance in the non-invariant features across one subset of
environments is unlikely to do so for a different subset, so each projection only removes (a constant
fraction of) spurious feature dimensions with high probability. Intuitively, the iterative scheme
prevents the different environments from “colluding” to create a solution which depends on spurious
features. As a result, IFM recovers the optimal invariant predictor after O(log ds) rounds and uses
O(1) environments per round, thus requiring O(log ds) environments.

Our techniques for proving the upper and lower bounds may be of independent interest. The upper
bound (Theorem 5.1) is proved by showing that any projection matrix that uses many spurious
dimensions cannot match feature covariances in a large set of training environments. This is done via
intricate matrix concentration bounds and decoupling inequalities [10].

We derive the exact lower bound for IRM (Theorem 4.3) using tools from differential topology.
Each environment provides an ellipsoidal constraint on the solution, and we prove that there exists a
non-trivial intersection of these constraints (besides the origin, which corresponds to the “intended”
solution). Our key lemma shows that the total number of intersections between two manifolds of
complementary dimensions k, d− k is even when certain tranversality conditions hold, implying that
the origin cannot be the only solution.
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Finally, to corroborate the advantages of the proposed algorithm, we perform experiments on a
Gaussian dataset and a semi-synthetic Noised MNIST dataset [23], where the background noise
spuriously correlates with the label. Our results in Section 6 suggest that practitioners may benefit
from feature matching algorithms when the distinguishing property of the signal feature is indeed
conditional distributional invariance, and may get additional advantage via matching at multiple
layers with diminishing dimensions, echoing existing empirical observations [27, 29].

2 Preliminaries

2.1 Domain generalization

In domain generalization, we are given a set of E training environments Etr indexed by e ∈ [E],1 and
a set of test environments Ets. For environment e we have n examples {(Xe

i , Y
e
i )}ni=1 drawn from

the distribution Pe. In this work we study the infinite sample limit n→∞ so as to separate the effect
of limited training environments from that of limited samples per environment, as is done in previous
theoretical works [37, 19]. Let X , P , Y denote the space of inputs, intermediate features, and labels.
For a featurizer Φ : X → P and classifier w : P → Y , their risk on environment e is denoted by
ReΦ,w = E(X,Y )∼Pe

[l(w ◦Φ(X), Y )] for any common loss function l. In this paper we focus on Y =

{±1}, linear featurizers Φ(X) = UX for U ∈ Rk×d, and unit-norm predictors Ŷ = sgn (w⊤Ux)
where w ∈ Rk and ∥w⊤U∥2= 1 for some feature dimension k ≤ d chosen by the algorithm. A
predictor’s 0-1 risk on environment e is denoted by ReU,w = Pr(X,Y )∼Pe

[sgn (w⊤UX) ̸= Y ]. We
focus on unit-norm predictors because we evaluate on the 0-1 risk on test environments, which are
invariant to the scaling of w⊤U under our data model.

2.2 Baseline algorithms

We analyze the performance of our proposed method and compare it to two baseline algorithms, ERM
and IRM. ERM learns a classifier that minimizes the average loss over all training environments,
where l is any common training loss such as the logistic loss:

min
w∈Sd−1

1

E

∑
e∈[E]

E(X,Y )∼Pe
[l(w⊤X,Y )].

IRM learns a featurizer Φ(X) ∈ Rk such that the optimal classifier on top of the featurizer is invariant
across training environments. As we focus on linear classifier, it is equivalent to learning a linear
transformation U ∈ Rk×d such that it induces a classifier w that is optimal for all e ∈ Etr:

min
U∈Rk×d,w∈Rk,∥w⊤U∥2=1

1

E

∑
e∈[E]

E(X,Y )∼Pe
l((w⊤UX), Y )

s.t. w ∈ argmin
w′∈Rk

E(X,Y )∼Pe
[l((w′⊤UX), Y )],∀e ∈ Etr.

This is objective is not the same as feature distribution matching; IRM only tries to match the first
moment. Observe that this constrained objective is intended to solve a minimax domain generalization
problem, as opposed to ERM which is typically viewed as minimizing the risk in expectation.

3 Problem setup

We first recall the data model from Rosenfeld et al. [37]. We assume without loss of generality that
the label Y is uniformly randomly drawn from {±1} (extension of our theorems to Y = 1 with
probability η ̸= 0.5 is straightforward). Latent variable Z consists of invariant features Z1 ∈ Rr
and spurious features Z2 ∈ Rds where ds = d− r. The number of spurious features can be much
larger than the number of invariant features, i.e. ds ≫ r. The input X ∈ Rd is generated via a linear

1We define [n] = {1, . . . , n}; 0n×m ∈ Rn×m denotes an all-zero matrix; Sd is the unit sphere in Rd+1;
sgn (c) ∈ {±1, 0} is the sign of scalar c ∈ R. † denotes the Moore-Penrose pseudo-inverse.
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transformation of latent variable Z, i.e. X = SZ for a matrix S ∈ Rd×d such that its left r columns
have rank r (so that there are r invariant dimensions).

For each training environment indexed by e ∈ [E], the invariant features conditioned on Y are drawn
from a Gaussian distribution with mean Y · µ1 ∈ Rr and nonsingular covariance Σ1 ∈ Rr×r. The
spurious features conditioned on Y have mean Y · µe2 ∈ Rde and covariance Σe2 ∈ Rde×de where
µe’s and Σe’s vary across e ∈ [E]. The assumption of symmetric class center with respect to the
origin can also be relaxed. Define µe = [µ1, µ

e
2] and Σe = [Σ1,0r×ds ;0ds×r,Σ

e
2]. The overall data

model for training environments is summarized below:

Y
iid∼ unif{±1}

Z1|Y ∼ N(Y · µ1,Σ1) ∈ Rr

Z2|Y ∼ N(Y · µe2,Σe2) ∈ Rds

Z = [Z1, Z2] ∈ Rd

X = SZ.

Since the goal of invariant feature learning is to learn a predictor that only uses the invariant features,
one reasonable measure for domain generalization is a predictor’s performance on test environments
where the spurious features Z2 are drawn from a different distribution—in particular, they are usually
chosen adversarially. A classifier that predicts using the spurious features will perform badly on such
test environments. When modeling the test environments, we consider the difficult scenario where
there is one corresponding test environment for each training environment, whose parameters are
the same except that the spurious means are flipped. Formally, for each environment e ∈ Etr we
construct a corresponding test environment e′ ∈ Etest where

Z2 ∼ N(−Y · µe2,Σe2) ∈ Rds .

In this setting where the observations X are a linear function of the latents Z, Rosenfeld et al. [37]
assume that the covariances of spurious features are isotropic and vary only in magnitude:
Assumption 3.1 (Data model for spurious covariances in Rosenfeld et al. [37]).

Σe2 = σ2
eIds , where σe is a scalar for an environment indexed by e.

We consider a generalized model where the covariances of spurious features for each environment is
a generic random PSD matrix, instead of only random in scaling:
Assumption 3.2 (Data model for spurious covariances in this work).

Σe2 ∼ Σe2 +GeG
⊤
e , where Σe2 ∈ Rds×ds is arbitrary (and can be adversarial), and

[Ge]i,j
iid∼ N(0, 1) for all i, j ∈ [ds]. Furthermore,maxe ∥Σe2∥22 ≤ D.

Assumption 3.2 allows the covariance matrix of the spurious features to be almost worst-case: it
is an arbitrary matrix, plus a Gaussian perturbation. This is a common assumption in algorithmic
complexity called smoothed analysis [41], as we allow the parameters to be a random smoothing of
arbitrary parameters.

While our data model is simple, it has already been used as a sandbox to understand algorithms like
IRM [37, 19] because it captures some important aspects of real-life data like latent variables and
correlations between the labels and the spurious features.

In the next section, we show that baseline algorithms ERM and IRM still have Ω(ds) environment
complexity under assumption 3.2, whereas our iterative feature matching algorithm (Algorithm 1)
requires onlyO(log ds) training environments. Note that the environment complexity of our algorithm
only depends logarithmically on the norm bound D.

4 Main results

Armed with assumption 3.2, we now present our main results. We begin by presenting our algorithm
based on iterative feature matching. We then provide formal guarantees for its environment complexity
in comparison to ERM and IRM.
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Algorithm 1 Iterative Feature Matching (IFM) algorithm

Require: Invariant feature dimension r, total feature dimension d, number of training environments
E = |Etr|, infinite samples {(Xe

i , Y
e
i )}∞i=1 ∼ Pe from each environment e ∈ Etr, an array of

integers indicating the number of training environments to use at each iteration E1, E2, . . . .
1: r0 ← d, t← 0.
2: while rt > r do
3: t← t+ 1.
4: Uniformly randomly sample Et training environments without replacement.
5: Binary search between 1 and rt−1 to find the maximum dimension rt such that there exists

orthonormal Ut ∈ Rrt×rt−1 and Ct ∈ Rrt×rt , where for all e ∈ Et,

E(X,Y )∼Pe
[Ut . . . U1XX

⊤U⊤
1 . . . U⊤

t |Y ] = Ct. (4.1)

6: Return a classifier on projected features that minimizes the average risk

ŵ = min
w∈Sr−1

1

E

∑
e∈[E]

E(X,Y )∼Pe
l(w⊤Ut . . . U1X,Y ).

4.1 Iterative feature matching algorithm

We hope to recover the invariant features by imposing constraints which are satisfied by only
those features (i.e., they are not satisfied by the spurious features). A natural idea is to match the
feature means and covariances across Etr. Since µ1,Σ1 are constant, any orthonormal featurizer
U ∈ Rr×d such that US has only non-zero entries in the first r rows yields invariant means USµe and
covariances USΣeS⊤U⊤. Thus we need E large enough such that any U ′ ∈ Rr×d using spurious
dimensions cannot match the means and covariances. Informally, for each e ∈ [E] we get r × r
equations from matching covariances UΣeU⊤ = C, and we have r × d parameters to estimate in U .
Rough parameter counting suggests that if we match covariances of all E environments jointly, we
need at least E > d/r environments to find a unique solution. Our key observation is that, due to the
independence of randomness in Σe2, we can split E environments into disjoint groups E1, . . . , ET , and
use Et to train an orthonormal featurizer that shrinks the feature dimensions from rt−1 to rt. Thus, in
each round we shrink the dimension by a constant factor using a constant number of environments.
The main theoretical challenge that remains is to show that in each iteration, with high probability,
only spurious features are projected out.

This brings us to IFM (Algorithm 1), which proceeds in T = O(log ds) rounds. Starting with an
input dimension r0 = d, each round we learn an orthonormal matrix Ut projecting features from rt−1

to rt dimensions so that the feature covariances after projection match across a fresh set of training
environments. In practice, for each choice of rt, starting from random initialization, we perform SGD
on objective minUt∈Rrt×rt−1

∑
e,e′∈Et

∥Ut(Σe − Σe
′
)UTt ∥2F+λ∥U⊤

t Ut − I∥2F until the objective is
ϵ-close to 0. To ensure that all invariant dimensions are preserved, we always find the projection
with the maximum possible dimension rt that still matches the covariances (i.e. admits an ϵ-optimal
solution Ut), until we are left with only r dimensions.

Among algorithms used in practice, IFM is most similar to CORAL [43]. We study IFM since it is
more amenable to theoretical analysis. The differences between IFM and CORAL are: first, CORAL
does not enforce that the featurizer is orthonormal; second, IFM learns to extract features in an
unsupervised manner, whereas CORAL jointly minimizes the supervised loss and feature distribution
discrepancy; third, IFM matches the feature distributions at multiple layers and uses a disjoint set
of environments for each layer—this iterative process is necessary for the theoretical guarantees we
provide—but CORAL matches only at the last layer. Despite these differences, our theoretical results
serve as a justification for using feature matching algorithms in general, when the distinguishing
attribute of signal vs. spurious features is that the former have invariant distributions across all
environments. In section 6 we empirically show that adding the core features of IFM to CORAL can
improve test accuracy.

The following theorem states that the environment complexity of IFM is logarithmic in the spurious
feature dimension. A proof sketch is given in Section 5.
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Theorem 4.1 (IFM upper bound). Under assumption 3.2, suppose at each round IFM uses |Et|= Ω̃(1)
2 training environments, with probability 1 − exp (−Ω(ds)), IFM terminates in O(log ds) rounds
and outputs ŵ = w∗.

As a remark, we note that there is in fact a simple algorithm that achieves O(1) environment complex-
ity under Assumption 3.2 (see Appendix D). However, this algorithm is extremely brittle and reliant
on very specific aspects of the data model (such as Gaussianity) and it cannot be extended to other
settings, whereas feature matching algorithms are regularly applied to general model architectures
and real-world datasets. The goal of this paper is to provide theoretical justification for distribution
matching algorithms and to investigate why they may outperform ERM and IRM, rather than to solve
a specific data model.

4.2 ERM and IRM still have linear environment complexity

In the previous section, we showed that IFM has low environment complexity thanks to the additional
structure we imposed in our model. However, it is possible that this additional structure also allows
ERM and IRM to succeed. These next two results demonstrate that this is not the case.

ERM has low test accuracy In contrast to IFM, ERM still suffers from linear environment complex-
ity under Assumption 3.2. The first theorem says there are hard instances where the ERM solution
has worse-than-random performance on the test environments.

Theorem 4.2 (ERM lower bound). Suppose E ≤ ds, parameters µ1 ∈ Rr, Σ1 = σ2
1Ir, µ

e
2 ∈ Rds ,

Σe2 = σ2
2Ids (recall Σe2 ∼ Σe2 + GeG

⊤
e ). Then any unit-norm linear classifier which achieves

accuracy ≥ Φ
(

2∥µ1∥
min(σ1,σ2)

)
on all training environments will suffer 0-1 error at least 1

2 on every test
environment with flipped spurious mean, where Φ is the standard Normal CDF.

A complete proof of Theorem 4.2 is in Appendix B.3. Note that it is quite reasonable to assume that
the ERM solution satisfies the accuracy condition. In particular, it is common to model the spurious
features as having much greater magnitude than the invariant features, since they have much greater
dimensionality. For example, with a unit-norm mean we would expect ∥µ1∥2≈ r/d, ∥µe2∥2≈ ds/d.
Then for r ≪ d and σ1, σ2 = ω(1/

√
d) one can verify that 2∥µ1∥/min(σ1, σ2) = o(

√
r/d) is very

close to 0, meaning the lower bound Φ
(

2∥µ1∥
min(σ1,σ2)

)
is only slightly larger than 1

2 .

IRM fails to learn invariant features Our next theorem proves that even under Assumption 3.2, IRM
is still not guaranteed to find an invariant predictor. We can show this by proving that when E ≤ ds,
we can find a featurizer that only uses spurious dimensions, i.e., us ∈ Rds , such that u⊤s Σ

e
2us = u⊤s µ

e
2

for all e ∈ Etr. If so, the optimal predictor on top of features u⊤s Z2, ŵe = (u⊤s Σ
e
2us)

−1u⊤s µ
e is

invariant across all e, and can therefore be the preferred solution IRM when the spurious features
have greater magnitude than the invariant features on the training environments.

Theorem 4.3 (IRM lower bound). Suppose E ≤ ds. If µ1
2, . . . , µ

E
2 ∈ Rds are linearly independent,

then there exists us ∈ Rds , ∥us∥2> 0, such that u⊤s Σ
e
2us = u⊤s µ

e
2 for all e ∈ [E].

Proof Sketch. Observe that each environment provides an ellipsoidal constraint Ee = {us ∈ Rds :
u⊤s Σ

e
2us − u⊤2 µe2 = 0}. The origin is a trivial intersection. We prove the existence of a non-trivial

intersection using tools from differential topology. The key lemma is that the total number of
intersection points between two manifolds of complementary dimensions k, d − k is even when
certain tranversality conditions hold. Using these techniques, we show that |

⋂
eEe| ≥ 2 for almost

all matrices Σ1
2, . . . ,Σ

E
2 , as long as the means are linearly independent.

A complete proof of Theorem 4.3 is in Appendix B.4.

2Ω̃(·) hides logarithmic factors in D, r, ds.
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5 Proof sketch for the main upper bound Theorem 4.1

To argue that IFM outputs a featurizer U1 . . . UT that does not use the spurious features, we need to
show that the right ds columns of matrix UT . . . U1S are all-zero. The main lemma below says that
this happens with high probability if we match Ω̃(1) environments at every iteration,
Lemma 5.1. If for all 1 ≤ t ≤ T , |Et|= Et = Ω(c(log (D/ds) + log ds)), and U1, . . . , UT are
the orthonormal matrices returned by IFM, then with probability 1 − exp (−Ω(ds)), rt − r <
(rt−1− r+1)/c for all t, and if we write UT . . . U1S = [A,B], where B ∈ Rr×ds , then B = 0r×ds .

Theorem 4.1 follows from Lemma 5.1 as follows: We take c = 2 and the algorithm terminates in
T = O(log ds) rounds. Therefore with an environment complexity of O(log ds), we learn a feature
extractor U = UT . . . U1 that does not use any spurious dimensions. Since U is orthonormal, it must
contain all signal dimensions. The predictor on top of this representation uses all and only signal
dimensions, so with high probability, IFM outputs ŵ = w∗.

The first step towards proving Lemma 5.1 is to show that with high probability, any one-layer
featurizer Q1 ∈ Rk1×ds that uses only spurious dimensions cannot match feature covariances
from Ω̃(ds/k1) environments. If a featurizer U1 ∈ Rr1×d uses k1 spurious dimensions, there is a
corresponding rank-k1 featurizer Q1 ∈ Rk1×ds that uses only spurious dimensions. So Lemma 5.2
implies that any U1 that matches covariances in E1 must use at most ds/E1 spurious dimensions. We
will then apply this argument recursively until we have 0 spurious dimensions.
Lemma 5.2 (Informal version of Lemma B.3). For any integer 2 ≤ k1 ≤ ds/2, when |E1|=
E1 = Ω

(
ds−k1
k1−1 max

{
1, log

(
D

(k1−1)ds

)
, log

(
ds
k1−1

)})
, with probability 1 − O(exp (−ds)), no

orthonormal Q ∈ Rk1×ds satisfies that for some constant C1 ∈ Rk1×k1 .

∀e ∈ [E1], QΣe2Q
⊤ = C1. (5.1)

Section B.1 gives a proof sketch. The formal statement Lemma B.3 and its proof can be found in
Appendix B.2.

The next claim says that Lemma 5.2 can be applied iteratively, i.e. fixing a featurizer from previous
iterations that uses kt−1 spurious dimensions, with high probability, any Ut that matches features
from Ω (kt−1/kt) new environments uses at most kt spurious dimensions.
Corollary 5.3 (Informal version of Corollary B.7). Suppose 2 ≤ kt ≤ kt−1/2 ≤ ds/2.

When |Et|= Et = Ω
(
kt−1−kt
kt−1 max

{
1, log

(
D

(kt−1)ds

)
, log

(
ds
kt−1

)})
, for fixed orthonormal

P ∈ Rkt−1×ds , with probability 1−O(exp (−ds)), no orthonormalQ ∈ Rkt×kt−1 satisfies ∀e ∈ [Et],
QPΣe2P

⊤Q⊤ = Ct for some constant Ct ∈ Rrt×rt .

The formal statement Corollary B.7 and its proof can be found in Appendix B.2. Lemma 5.1 follows
from iterative application of Corollary 5.3, as shown in Appendix B.2.

6 Experiments

In light of the differences between IFM and CORAL discussed in section 4.1, we test several questions
inspired by our theory: (Q1) Do feature matching algorithms (IFM and CORAL) have much smaller
environment complexity compared to ERM and IRM, with finite samples drawn from data models
similar to our assumptions? (Q2) Can decoupling feature matching and supervised training of the
classifier (IFM) improve over joint training (CORAL)? (Q3) For neural network featurizers, can
matching feature distributions at multiple layers improve over matching at only the last layer (naive
CORAL)? (Q4) Can matching disjoint sets of environments at each layer perform as well as matching
all environments at all layers? (Q5) Is it important to shrink feature dimensions? We use two tasks to
investigate those questions empirically. Appendix C contains additional details.

Gaussian dataset is a binary classification task that closely reflects our assumptions in section 3.

Noised MNIST is a 10-way semi-synthetic classification task modified from LeCun and Cortes [23].
Conditioned on the class, we add noise with identical mean but changing covariances across training
environments. In test environments, the noise is uncorrelated with the label.
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Figure 1: For Gaussian dataset, our algorithm
IFM achieves highest test accuracy with the same
number of training environments.

Figure 2: For Noised MNIST, matching feature
distributions from multiple layers improves over
naive CORAL across different architectures.

Algorithms and architectures. For Gaussian dataset we use linear predictors. IRM follows the
implementation in Arjovsky et al. [3]; CORAL jointly minimizes average supervised loss on training
environments and Lcoral, which is the average of squared distances in conditonal feature means (in l2
norm) and covariances (in Frobenius norm) between adjacent training environments; CORAL+ON
adds orthonormal penalty loss Lon(U) = ∥UU⊤ − I∥2F where U is the featurizer; IFM is our
Algorithm 1, where for each layer Ut, the training objective is Lt(Ut) = λ1Lcoral + λ2Lon. We
test IFM with 1 vs. 3-layer featurizers, either matching all (match-all) or a disjoint set of training
environments (match-disjoint) at each layer.

For Noised MNIST we use ReLU networks with 1-6 layers. Although our theory for IFM is only
for the linear setting, in practice we can extend the idea to deep network by training the classifier
head together with feature matching at different layers.CORAL (match-all) and CORAL (match-
disjoint) in Figure 2 are natural extensions of IFM to nonlinear models. They match at all layers
post-activation, using either all (match-all) or a disjoint subset of training environments (match-
disjoint) per layer. Figure 2 shows that they outperform naive CORAL, which matches features only
at the last layer. Thus, the core ideas of IFM may be used to improve performance of existing feature
matching algorithms with nonlinear models and realistic datasets (e.g. DANN, MMD).

Results. (Q1) Figures 1 and 2 show that IFM and CORAL have much smaller environment
complexity compared to ERM and IRM in both datasets. (Q2) In Gaussian dataset, IFM improves over
CORAL. (Q3) For Noised MNIST, matching feature distributions at multiple layers (CORAL match-
all, CORAL match-disjoint) improves over matching at only the last layer (CORAL). (Q4) In both
datasets, matching disjoint sets of environments at each layer (IFM match-disjoint, CORAL match-
disjoint) is almost as good as matching all environments at all layers (IFM match-all, CORAL match-
all) while saving computation. (Q5) For Noised MNIST (Table 2 in Appendix C), shrinking feature
dimensions is crucial for the advantage of feature matching at multiple layers, e.g. matching features
at 3 layers with widths [24, 24, 24] does not significantly improve over matching features at the last
layer (CORAL). Overall, our results suggest that practitioners may benefit from feature matching
algorithms when the data is similar to our assumed model, and may get additional advantage via
matching at multiple layers with diminishing dimensions, echoing existing empirical works [27, 29].

7 Conclusion

This work presents the first domain generalization algorithm which provably recovers an invariant
predictor with a number of environments that scales sub-linearly with the spurious feature dimension.
Our results demonstrate that generalization which does not suffer from the “curse of dimensionality”
is possible, and based on our theory we believe the use of an iterative approach is a key insight which
could lead to additional positive results for out-of-distribution generalization. Notably, this work also
represents the first theoretical justification for the empirical success of existing algorithms which use
feature distribution matching. However, there remains much room for improvement: our results are

8



for a linear data model with fairly special assumptions. It would be interesting to analyze data models
in which the observables are a non-linear function of the latent variables.
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