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ABSTRACT

Efficient design of genomic perturbation experiments is crucial for accelerating
drug discovery and therapeutic target identification, yet exhaustive perturbation
of the human genome remains infeasible due to the vast search space of potential
genetic interactions and experimental constraints. Bayesian optimization (BO)
has emerged as a powerful framework for selecting informative interventions, but
existing approaches often fail to exploit domain-specific biological prior knowl-
edge. We propose Biology-Informed Bayesian Optimization (BioBO), a method
that integrates Bayesian optimization with multimodal gene embeddings and en-
richment analysis, a widely used tool for gene prioritization in biology, to en-
hance surrogate modeling and acquisition strategies. BioBO combines biologi-
cally grounded priors with acquisition functions in a principled framework, which
biases the search toward promising genes while maintaining the ability to explore
uncertain regions. Through experiments on established public benchmarks and
datasets, we demonstrate that BioBO improves labeling efficiency by 25-40%, and
consistently outperforms conventional BO by identifying top-performing pertur-
bations more effectively. Moreover, by incorporating enrichment analysis, BioBO
yields pathway-level explanations for selected perturbations, offering mechanistic
interpretability that links designs to biologically coherent regulatory circuits.

1 INTRODUCTION

In vitro cellular experimentation with genomic interventions is a critical step in early-stage drug dis-
covery and target prioritization. By perturbing genes and observing cellular responses, researchers
can infer gene function and identify potential therapeutic targets (Chan et al., 2022; Bock et al.,
2022). Techniques such as CRISPR-Cas9 (Jinek et al., 2012; Jiang & Doudna, 2017) knockout
screens enable systematic perturbation of individual genes, but they are often resource-intensive and
time-consuming. Given the vast number of protein-coding genes in the human genome (approxi-
mately 20,000), exhaustively testing all possible perturbations is infeasible (Abascal et al., 2018).
Consequently, strategies that efficiently select the most informative experiments are essential to ac-
celerate drug discovery while minimizing experimental costs.

Bayesian experimental design provides a principled framework for this challenge. In particular,
Bayesian optimization (BO) offers a sample-efficient approach to identify genes whose perturba-
tion maximizes desired cellular phenotypes. BO relies on a probabilistic surrogate model, such as a
Gaussian process (Williams & Rasmussen, 2006) or a Bayesian neural network (Springenberg et al.,
2016), to model the response surface, and an acquisition function to balance exploration of uncer-
tain regions with exploitation of promising candidates (Frazier, 2018). While recent works have
applied BO to gene perturbation design (Mehrjou et al., 2021; Lyle et al., 2023), they typically use
generic, uni-modal gene representations (or embeddings) and do not fully leverage rich biological
knowledge, limiting their performance. Integrating multimodal gene representations, which capture
sequence, functional, and network-based information, can provide more informative representations
and improve the efficiency of experimental selection.

Beyond richer gene representations, explicit biological priors can further guide experimental de-
sign. For example, gene set enrichment analysis (EA) identifies pathways that are statistically over-
represented among the top-performing genes, providing information on molecular mechanisms and
potential high-value targets (Subramanian et al., 2005). However, conventional EA has two key lim-
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Figure 1: BioBO pipeline for perturbation design. We make two methodological innovations:
(i). Fusion of gene modalities to improve surrogate modeling; (ii). Enrichment analysis on top of
surrogate model predictions to strengthen gene acquisition via incorporating biological information.

itations: (i) it lacks granularity, treating all genes within a pathway as equally promising, and (ii)
it is purely exploitative, potentially biasing experiments toward well-characterized pathways while
neglecting unexplored regions of the genome.

To address these limitations, we propose Biology-Informed Bayesian Optimization (BioBO), a
framework that integrates multimodal gene representations and biological priors, such as enrichment
analysis (Figure 1), into BO. BioBO helps balancing exploration and exploitation, efficiently guid-
ing experiments toward both well-characterized and underexplored genes. Together, these advances
make BioBO a framework for efficient, interpretable, and effective experimental design, accelerating
targeted discovery in genomic perturbation studies. Our key contributions are as follows.

1. We introduce multimodal gene embeddings, integrating multiple sources of biological in-
formation in the surrogate modeling to improve the designs of BO.

2. We demonstrate that the improvement of BO from multimodal embeddings is mainly from
the improvement of surrogate model on regimes close to optimum rather than on the entire
data distribution.

3. We augment the acquisition function in BO using enrichment analysis within the theoreti-
cally principled π-BO (Hvarfner et al., 2022) framework. This approach incorporates prior
biological knowledge while maintaining principled exploration–exploitation trade-off and
provides interpretable insights into experimental design.

4. We empirically validate BioBO on established public benchmarks, showing that it outper-
forms conventional BO improves labeling efficiency by 25–40%, and identifies biologically
coherent pathways with markedly stronger enrichment signals.

2 BACKGROUND AND NOTATION

2.1 NOTATION AND PROBLEM SETUP

We consider the task of optimizing a black-box function f : G → R, which maps each gene
g ∈ G represented by the set of integers or one-hot embeddings to a value f(g) ∈ R denoting
the change of cell phenotype under the gene knockout, across the entire finite gene space G with
|G| ≈ 20, 000 (i.e., the number of protein-coding genes in human). Similar to (Lyle et al., 2023),
we use biologically informed d-dimensional embeddings of genes, X : G → X, which maps each
gene g ∈ G to a corresponding d-dimensional vector X(g) = x ∈ X ⊆ Rd capturing the biological
relationships with other genes. Moreover, the gene embeddings X construct a one-to-one mapping
from G and contain the same number of distinct d-dimensional vectors as G, i.e., |X| = |G|, so we
use f(x) and f(g) interchangeably where x is the embedding of the gene g. Therefore, we define
the optimization problem as follows

x∗ ∈ argmax
x∈X

f(x). (1)

In practice, f(x) is expensive to evaluate because it requires a CRISPR-Cas9 knockout experiment
in the lab, and we would like to maximize f(x) in an efficient manner by only evaluating a small
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number of points from X. For this work, we do not perform wet-lab experiments ourselves; instead,
we simulate the online BO loop by querying from a pool of genes with pre-measured phenotypes,
as is standard practice in BO and Active Learning (AL) studies (Filstroff et al., 2021; Gupta et al.,
2021; Li et al., 2024). While in practice BO would operate on truly unlabeled genes, retrospective
evaluation on fully labeled datasets is necessary to quantify and showcase the benefits of any BO or
AL method.

2.2 BAYESIAN OPTIMIZATION

Bayesian optimization (BO) (Mockus, 1998; Frazier, 2018) is a model-based black-box function
optimizer that employs a probabilistic model, e.g., Gaussian process (GP) (Williams & Rasmussen,
2006) or Bayesian neural network (BNN) (Springenberg et al., 2016), as a surrogate model. Specif-
ically, BO optimizes f from an initial experimental design D1 = {(x1,i, y1,i)}Mi=1 and sequentially
deciding on one or a batch (with size B) of new designs to label and form the data Dn+1 = Dn∪Bn

with new labeled dataset Bn = {(xn,b, yn,b)}Bb=1 for the n-th iteration with n ∈ {1, . . . , N}. At
each iteration n, BO learns a probabilistic surrogate model fn ∼ p(fn|Dn) to approximate the true
function f , where p(fn|Dn) is the posterior distribution of a GP or BNN given the labeled data. Us-
ing the predictive uncertainty from p(fn|Dn), BO selects next designs by optimizing an acquisition
function (AF), αp(fn|Dn)(x), across the set of unlabeled data points.

Acquisition functions encapsulate the underlying utilities; therefore, they correspond to the trade-off
between exploitation (using the current optimum from the surrogate model) and exploration (consid-
ering the uncertainty of the surrogate model). Popular choices of AF include Expected Improvement
(EI) (Jones et al., 1998) and Upper Confidence Bound (UCB) (Srinivas et al., 2010). For instance,
EI selects the next point x that maximizes the expected improvement:

αEI
p(fn|Dn)

(x) = E[|fn(x)− y∗n|+] = Zσn(x)Φ(Z) + σn(x)ϕ(Z), (2)

where y∗n is the best outcome observed so far, Z = fn(x)−µn(x)
σn(x)

with µn(x) and σn(x) representing
the mean and variance of the posterior p(fn|Dn) respectively, and ϕ(·) and Φ(·) are the PDF and
CDF of standard Gaussian distribution. UCB is defined as:

αUCB
p(fn|Dn)

(x) = µn(x) + κnσn(x), (3)

where κn is the user-specified parameter controlling the exploration–exploitation trade-off. Both EI
and UCB provide a myopic strategy for determining informative designs with theoretical guaran-
tees (Bull, 2011; Srinivas et al., 2010). Other popular myopic acquisition functions include Prob-
ability of Improvement (PI) (Jones, 2001), Thompson Sampling (TS) (Thompson, 1933), and Dis-
coBAX (Lyle et al., 2023). In this work, we mainly focus on using BNNs as surrogate models and
UCB, EI, TS, and DiscoBAX as acquisition functions, similar to existing works on perturbation
design (Mehrjou et al., 2021; Lyle et al., 2023); however, our work applies to other probabilistic
models and myopic acquisition functions as well.

2.3 ENRICHMENT ANALYSIS

Enrichment analysis (EA) or over-representation analysis is a computational approach used to de-
termine whether a set of genes associated with a specific biological process or pathway appears
more often than expected by chance (Boyle et al., 2004; Khatri et al., 2012; Huang et al., 2009).
Specifically, given a background gene set, e.g., all protein-coding human genes G, and a subset
S ⊂ G of genes of interest, EA tests whether a pathway i, i.e., a predefined gene set Pi ⊂ G, with
known biological function provided in pathway databases, such as Hallmark (Liberzon et al., 2015),
is represented in S statistically more frequently than expected by chance.

EA has been widely used to design experiments in applications such as target prioritization and
biomarker expansion (Katz et al., 2021; Zhao et al., 2022; Dai et al., 2022; Ramos et al., 2023;
Ordóñez et al., 2024). Intuitively, if several desirable genes have been identified, EA can be applied
to discover the pathways enriched by those desirable genes. Therefore, other untested genes in
those significantly enriched pathways would construct a good candidate set for the next round of
experiments. The significantly enriched pathways serve as a biologically informed prioritization

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

framework for designing experiments, allowing us to target molecular processes where the desirable
genes are most likely to be. This approach ensures that experimental interventions are focused
on high-value genes within the biological network, thereby increasing the likelihood of eliciting
interpretable system-level responses while reducing experimental redundancy.

Although EA serves as a well-established, biologically informed experimental design framework, it
contains two major shortcomings:

1. Lack of granularity: EA can prioritize pathways; however, all untested genes in the same pathway
are equally likely. This can still construct a huge pool if the significantly enriched pathway is large.

2. Lack of exploration: EA-based experimental design is a pure exploitation process and has po-
tential bias toward known biology. The significantly enriched pathway would be more exploited by
selecting more genes from it, and non-significant pathways will never be explored.

In this work, we propose a principled approach to combine the BO-based and EA-based experimen-
tal design framework to equip BO with extensive domain information in biology from EA and equip
EA with granularity and exploration from BO.

3 METHOD: BIOLOGY-INFORMED BAYESIAN OPTIMIZATION

3.1 SURROGATE MODELLING WITH MULTIMODAL GENE REPRESENTATIONS

We first improve BO by improving the surrogate modeling. Specifically, we propose to use multi-
modal gene embeddings rather than the uni-modal embeddings used in the existing gene perturbation
design literature (Mehrjou et al., 2021; Lyle et al., 2023). We consider the following two extra gene
embeddings that are effective in many gene-level tasks (Yang et al., 2022; Chen & Zou, 2025):

1. Gene2Vec (Du et al., 2019), xg2v: gene embeddings encode gene-gene relations defined in gene
ontology (Ashburner et al., 2000) learned with self-supervised learning;

2. GenePT (Chen & Zou, 2025), xGenePT: ChatGPT embeddings of genes based on the literature.

We use Bayesian Neural Networks (BNNs) as surrogate models similar to previous works (Mehrjou
et al., 2021; Lyle et al., 2023), and we concatenate the original gene embedding x with the gene
embeddings from the above-mentioned modalities as the input of a BNN, i.e., f([x,xg2v,xGenePT]).
We also explore a latent-space fusion strategy, which learns a joint representation integrating the
heterogeneous biological modalities in latent space either via concatenation or using cross-attention.

In Section 4.3, we design comprehensive analysis to study relations between the performance of BO
and surrogate models to reveal reasons behind the benefits of multimodal fusion in BO settings.

3.2 AUGMENTED ACQUISITION FUNCTION WITH ENRICHMENT ANALYSIS

Vanilla BO ignores prior beliefs about the optimum’s location, overlooking valuable knowledge that
could enhance the search. We mainly focus on πBO (Hvarfner et al., 2022), a principled general-
ization of the acquisition function to incorporate prior beliefs about the location of the optimum in
the form of probability distributions π(x). Specifically, for acquisition function αp(fn|Dn)(x), the
corresponding augmented acquisition function is:

παp(fn|Dn)(x) = αp(fn|Dn)(x)πn(x)
β

Ln , (4)

where β is a hyperparameter set by the user (see a sensitivity analysis of β in Section C), reflecting
their confidence in πn(x), and Ln is the number of labeled data so far. This reflects the intuition that,
as the optimization progresses, we should increasingly trust the surrogate model over the prior, as
BO will likely have enough data to reach the optimum confidently. This also comes with theoretical
properties described in the next section.

In this work, we propose to augment the acquisition function with the prioritization results from
enrichment analysis as a prior within the πBO framework. Enrichment analysis comes with statis-
tical hypothesis tests: under the null hypothesis H0, that genes in S are sampled uniformly from G,
the probability of observing at least |S ∩ Pi| overlaps follows the upper tail of the hypergeometric
distribution; therefore, we can compute the p-value with
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p(Pi) =

min(|Pi|,|S|)∑
i=|S∩Pi|

(
|Pi|
i

)(
|G| − |Pi|
|S| − i

)/(
|G|
|S|

)
, (5)

and multiple hypothesis testing across all pathways is controlled via Bonferroni correction (Haynes,
2013) to derive the adjusted p-value, padj(Pi). One can also compute the odds ratio, o(Pi), from the
EA results by constructing the contingency table, and a high o(Pi) (e.g., o(Pi) > 1) indicates that
Pi is over-represented in S compared to random. Chen et al. (2013) propose to combine the p-value
and odds ratio to evaluate the overall representativeness with c(Pi) = −o(Pi) log p(Pi), which will
be used to design the biologically informed prior πn(x) at each iteration.

At each iteration n, we rank labeled genes according to their labels (i.e., change of phenotype under
the gene knockout). We consider the top-k (we use top-10% in this paper and report the results with
di) genes as the genes of interest, i.e., Sn, and use enrichment analysis (Chen et al., 2013) to find
top enriched pathways, ranked by the combined score c(Pi). We additionally provide sensistivity
analysis of BioBO to this choice of k in Appendix H. If one unlabeled gene is within the top pathway,
we increase the probability of selecting the gene in the acquisition function. Specifically, we define
the probability of selecting an unlabeled gene x as follows:

sn(x) = logit(
1

Un
) +

1

t
agg{Pi|x∈Pi,p

adj
n (Pi)<0.05}[cn(Pi)], πn(x) =

esn(x)∑
x esn(x)

, (6)

where Un is the number of unlabeled genes at iteration n and agg[·] is a set aggregation operation that
summarizes the combined score cn(·) at iteration n across all significant pathways (with adjusted
p-value padj

n (Pi) < 0.05) that contains the unlabeled gene x. We use mean operation in the paper
to measure the averaged representativeness in all significant pathways. We also explore the max
operation in Section C (Appendix) which shows benefits as well. The hyperparameter temperature
t controls the level of information that we keep from the enrichment analysis. When t = ∞, π(x)
reduces to a uniform distribution and EA will be ignored. We use t = 0.1 in all experiments.

3.2.1 THEORETICAL PROPERTIES

BioBO comes with the same no-harm guarantee as the original πBO (Hvarfner et al., 2022), because
of the decaying effect of the prior in Eq.4 when employed with myopic AFs (all AFs used in this
paper). For instance, when paired with the EI, we can prove that the regret, Ln(BioEIn), to the
optimum at iteration n of the BioEI strategy, i.e., using EI in Eq.4, can be bounded by the regret of
the corresponding EI strategy, Ln(EIn), using the Theorem 1 of Hvarfner et al. (2022) as following:

Ln(BioEIn) ≤ Cπ,nLn(EIn), Cπ,n =

(
maxx πn(x)

minx πn(x)

) β
Ln

. (7)

For detailed conditions and proofs of the above Theorem, please refer to the original πBO paper
(Hvarfner et al., 2022). Therefore, we have the no-harm guarantee that the regret of the BioEI
strategy is asymptotically equal to the regret of the EI strategy:

Ln(BioEIn) ∼ Ln(EIn), (8)

which indicates that BioEI is robust against errors and biases from the enrichment analysis.

4 EXPERIMENTS

4.1 GENEDISCO DATASETS

Datasets We use five genome-wide CRISPR assays from the GeneDisco dataset (Mehrjou et al.,
2021) and present the analysis for the two most widely-used datasets from literature (IFN-γ and
IL-2) in the main text while the same analysis for others is shown in Appendix. We use the Achilles
gene descriptor, i.e., gene embedding X , from GeneDisco. Although GeneDisco includes other two
gene descriptors, CCLE and STRING, only Achilles is informative to predict the cell phenotypes, as
shown in (Mehrjou et al., 2021; Lyle et al., 2023) and Appendix Section E.1; therefore, we focus on
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Figure 2: Performance across single modalities (Achilles, Gene2Vec, GenePT) and their Fusion
on IFN-γ (top) and IL-2 (bottom). Row-wise dashed lines indicate the Fusion value at the final
cycle (20) for UCB, EI, TS, and DiscoBAX to aid comparison. We observe that BO with Fusion is
better than BO with any single modality.

the Achilles from GeneDisco. For richer gene representations, we go beyond unimodal Achilles and
include two additional embeddings: Gene2Vec and GenePT (in Section 3.1) to leverage multimodal
genetic descriptors. For additional details on datasets and descriptors, see Appendix Section A.

Measure the performance of BO We use Cumulative Top-k Recall to measure the ability of a
method to identify the top gene perturbations as those in the top percentile of the experimentally
measured phenotypes following Lyle et al. (2023).

Measure the performance of surrogate models We evaluate surrogate models on a separate
test set using LL (log-likelihood) for the quality of predictive distribution and RMSE (Root Mean
Squared Error) for the prediction accuracy. Moreover, we calculate LL and RMSE on subsets of the
test data that are close to the optimum, e.g., LL@top-10% represents the LL on the test data points
whose labels are within the top 10%, to evaluate the model performance near the maximum.

Baselines For surrogate models, we use a BNN in (Lyle et al., 2023), using Achilles, Gene2Vec,
GenePT, and Fusion (i.e., the fusion of three modalities). We use UCB, EI, TS, DiscoBAX as
acquisition functions, as well as augmented acquisition functions, BioUCB, BioEI, and BioTS, with
biological priors from enrichment analysis using Gene Ontology (GO) (Ashburner et al., 2000) and
Hallmark (HM) (Liberzon et al., 2015) databases. We run each experiment with 7 different seeds.

4.2 EXPLORING EFFECTS OF USING MULTIMODAL GENE REPRESENTATIONS IN BO

First, we study the effects of using multimodal gene representations , i.e., the Fusion, in surrogate
models. Figure 2 shows the cumulative top-k recall of different acquisition functions at each cycle
of the experimental design. We observe that all BO acquisition functions are better than random, es-
pecially UCB, and BO saves the labeling efforts 25%-75% compared with random, which indicates
the benefits of BO in experimental design. Moreover, we observe that using surrogate models with
the Fusion is always better than using single-modal surrogate models, with labeling effort saving
ranging from 4% to 40%. The best-performing model is using the Fusion with UCB. We also ob-
serve that DiscoBAX (Lyle et al., 2023) is worse than existing standard acquisition functions1 , and
hence we remove DiscoBAX in the subsequent experiments. In addition, as detailed in Appendix F,
the latent-space fusion strategies further improve BO performance over simple concatenation based
fusion, highlighting the advantage of integrating heterogeneous modalities more effectively.

1This observation is consistent with an issue reported by the DiscoBAX authors in their official GitHub
repository (Issue #3), noting that the originally reported performance was affected by an implementation bug.
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Figure 3: Relations between performance of BO and the surrogate model. We observe that
Fusion (red) does not improve the surrogate model globally (LL global, first column). However, it
improves on data points that are near optimum (LL@top-1% to LL@top-10%), which explains the
improvement on BO results (top-k recall). Specifically, the top-k recall of BO is more correlated
with local LL than global LL, measured by both Spearman and Pearson correlation.

4.3 ANALYZING RELATIONS BETWEEN PERFORMANCE OF BO AND SURROGATE MODELS

Observing the benefits of Fusion in BO from Figure 2, we further analyze why using Fusion in the
surrogate model improves BO. One intuitive hypothesis is that: a more expressive multimodal gene
representation improves the predictive distribution of the surrogate model, which leads to better
Bayesian Optimization. We test this hypothesis by estimating the correlation between the perfor-
mance of BO and surrogate model. Specifically, we divide the dataset into training and testing: we
run BO loops on the training set and measure the performance of BO (cumulative top-k recall), and
we measure the performance of the surrogate model on the test set. We plot the performance of BO
(cumulative top-k recall) and the surrogate model (test LL) in Figure 3.

We find that the correlation between cumulative top-k recall and LL is negative (first column in Fig-
ure 3), meaning a higher LL does not lead to a better BO. Although counterintuitive, it is consistent
with the conclusions from Foldager et al. (2023). In BO, however, the surrogate is primarily used
to estimate the relative ordering of high-value candidates and to locate the local optimum near top-
performing genes, rather than to achieve high global predictive accuracy. As also noted in Foldager
et al. (2023), global likelihood therefore has limited influence on the acquisition function. Thus, even
if fusion does not improve global likelihood, it can still enhance BO performance when it sharpens
the surrogate locally. We observe precisely this effect: the predictive distribution of the surrogate
model improves near optimum (red dots are higher than others on average: second, third, and
fourth columns in Figure 3), which is positively correlated with the BO performance significantly,
with Spearman correlation ranging from 0.31 to 0.49 for IFN-γ and being around 0.64 for IL-2.
Moreover, we observe the highest Spearman correlation of cumulative top-k recall is with LL@top-
1% on 4/5 datasets (see the results for other three datasets in Appendix Section E.3). Therefore,
we conclude that: multimodal gene embedding improves the predictive distribution of the surrogate
model near optimum, which leads to a better Bayesian optimization.

4.4 EXPLORING EFFECTS OF COMBINING ENRICHMENT ANALYSIS IN BO

Here, we study the benefits of combining enrichment analysis with BO using the proposed BioBO
framework in design experiments. First, we analyze if the prior distribution in Eq.6, constructed
from results of enrichment analysis is beneficial in experimental design, i.e., using a model-free
approach. We select genes with the highest prior probabilities (greedy selection) in Eq.6. Figure
4(a) shows that using both Gene Ontology and Hallmark as the pathway database for enrichment
can improve the design compared with random selection of genes, demonstrating the potential of
enrichment analysis to inform experimental design. However, this approach is purely exploitative.

Next, we combine the enrichment analysis prior with the acquisition function in BO, i.e., the model-
based BioBO approach, thus balancing eploitation-exploration trade-off explained in Section 3.2.
We observe that adding the enrichment analysis prior can improve the labeling efficiency over BO
with the corresponding acquisition function without the prior. Specifically, the enrichment analysis
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Figure 4: Performance of pure EA and BioUCB on Achilles. (a): Pure EA on IFN-γ and IL-2.
We observe that pure EA provides better designs than random. (b): BioUCB on Achilles for IFN-γ
and IL-2. We observe that BioUCB provides better designs than UCB and pure EA.

Table 1: Cumulative top-k recall with standard error of each acquisition function on different
datasets. We observe that BioBO achieves the best performance on 23/24 different settings, and
BioUCB-HM with surrogate function using fused features achieves the best performance for both
IFN-γ and IL-2. The best performance (with the smallest standard error) is bold.

Phenotype: IFN-γ Fusion Achilles GenePT Gene2Vec
EI 0.093 (0.001) 0.072 (0.001) 0.077 (0.004) 0.071 (0.006)

BioEI-GO (ours) 0.098 (0.000) 0.085 (0.000) 0.095 (0.005) 0.079 (0.004)
BioEI-HM (ours) 0.096 (0.001) 0.076 (0.001) 0.096 (0.007) 0.079 (0.002)

TS 0.083 (0.001) 0.068 (0.001) 0.088 (0.002) 0.073 (0.002)
BioTS-GO (ours) 0.095 (0.001) 0.073 (0.000) 0.097 (0.004) 0.095 (0.005)
BioTS-HM (ours) 0.097 (0.001) 0.097 (0.005) 0.093 (0.005) 0.081 (0.004)

UCB 0.100 (0.001) 0.077 (0.001) 0.086 (0.004) 0.093 (0.005)
BioUCB-GO (ours) 0.102 (0.001) 0.098 (0.002) 0.092 (0.005) 0.098 (0.002)
BioUCB-HM (ours) 0.109 (0.001) 0.085 (0.003) 0.101 (0.001) 0.103 (0.004)

Random 0.050 (0.001) 0.050 (0.001) 0.050 (0.001) 0.050 (0.001)

Phenotype: IL-2 Fusion Achilles GenePT Gene2Vec
EI 0.148 (0.002) 0.130 (0.003) 0.107 (0.005) 0.109 (0.002)

BioEI-GO (ours) 0.147 (0.003) 0.138 (0.003) 0.107 (0.005) 0.115 (0.002)
BioEI-HM (ours) 0.153 (0.002) 0.130 (0.003) 0.107 (0.005) 0.109 (0.002)

TS 0.142 (0.001) 0.119 (0.001) 0.113 (0.014) 0.113 (0.002)
BioTS-GO (ours) 0.147 (0.003) 0.142 (0.002) 0.119 (0.011) 0.119 (0.001)
BioTS-HM (ours) 0.153 (0.002) 0.123 (0.004) 0.139 (0.013) 0.124 (0.002)

UCB 0.174 (0.001) 0.143 (0.003) 0.118 (0.011) 0.123 (0.000)
BioUCB-GO (ours) 0.169 (0.001) 0.158 (0.001) 0.131 (0.008) 0.133 (0.002)
BioUCB-HM (ours) 0.178 (0.001) 0.163 (0.001) 0.138 (0.012) 0.127 (0.000)

Random 0.049 (0.001) 0.048 (0.001) 0.049 (0.001) 0.046 (0.002)

prior improves the labeling efficiency of UCB by 20% with Achilles gene embedding on optimizing
IFN-γ. We show the cumulative top-k recall of all experiments in Table 12, where we observe that
the prior from enrichment analysis can improve the original acquisition function most of the time
(23/24 cases). The best performance is achieved by BioUCB using Hallmark database for building
the enrichment prior with fused gene embeddings in both IFN-γ and IL-2.

4.5 INTERPRETABILITY OF DESIGNS

In this section, we conduct enrichment analysis using the Hallmark dataset to provide biological
interpretations of selected genes by BO. We compare two models on the IFN-γ dataset: the baseline
UCB + Achilles and our method BioUCB-HM + Fusion. Table 2 shows that BioUCB-HM pro-
duces markedly stronger enrichment signals in pathways closely tied to IFN-γ regulation in T cells.
While UCB identifies relevant pathways such as MYC TARGETS V1 and E2F TARGETS with mod-
est overlaps (32/200 and 22/200) and adjusted p-values in the range of 10−13 to 10−2, BioUCB-HM
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Table 2: Enrichment analysis results of designs from existing method and BioBO. We observed
that our BioUCB-HM with multimodal gene embedding shows significantly stronger enrichment
signals compared to existing approach (BO with UCB).

Phenotype: IFN-γ; Feature: Achilles; Acquisition: UCB
Pathway Overlap Adjusted p-value Odds Ratio Combined Score

MYC TARGETS V1 32/200 2.71× 10−13 7.25 237.22
E2F TARGETS 22/200 5.10× 10−6 4.32 66.18
DNA REPAIR 14/150 3.87× 10−3 3.45 28.51

G2M CHECKPOINT 15/200 1.79× 10−2 2.7 17.42

Phenotype: IFN-γ; Feature: Fusion; Acquisition: BioUCB-HM
Pathway Overlap Adjusted p-value Odds Ratio Combined Score

MYC TARGETS V1 187/200 4.98× 10−247 766.31 4.37× 105

E2F TARGETS 48/200 1.07× 10−16 5.92 235.98
G2M CHECKPOINT 40/200 3.93× 10−11 4.52 120.41
MYC TARGETS V2 18/58 2.90× 10−8 7.66 151.48

shows stronger enrichment signals compared to UCB. For example, MYC TARGETS V1 reaches
an extraordinary overlap of 187/200 genes with an adjusted p-value of 4.98 × 10−247, yielding
a combined score over 1,000-fold higher than UCB. Similarly, other critical pathways such as
E2F TARGETS and G2M CHECKPOINT not only remain significant but also demonstrate substan-
tially higher overlaps and more robust statistics under BioUCB-HM, while BioUCB-HM further
uncovers MYC TARGETS V2, missed entirely by UCB. From a biological perspective, these path-
ways are central regulators of cell growth, proliferation, and metabolism. MYC drives effector T
cell proliferation but can restrain differentiation, so its inhibition is consistent with enhanced IFN-γ
production (Melnik et al., 2019). Likewise, targeting E2F and G2M checkpoint regulators reduces
proliferation pressure and shifts T cell programming toward cytokine output, while DNA repair
mechanisms also intersect with stress responses in activated T cells (Ren et al., 2002). The ob-
servation that knockout of genes in these pathways increases IFN-γ log fold change supports the
idea that restraining proliferative and metabolic circuits frees T cells to mount stronger effector
responses. Thus, BioUCB-HM not only outperforms UCB quantitatively but also pinpoints biolog-
ically meaningful regulatory axes—MYC, E2F, and G2M—that provide a mechanistic rationale for
boosting IFN-γ production in T cells. Further analysis of underexplored biologically novel genes
prioritized by BioBO is detailed in Appendix N alongside biological mechanistic interpretability of
these genes.

Beyond IFN-γ, we additionally evaluate BioBO on a second immune-cell perturbation IL-2
dataset and observe qualitatively similar interpretability gains: BioUCB-HM consistently produces
markedly stronger and more biologically coherent enrichment signals than baseline UCB. Full re-
sults and pathway-level statistics are provided in Appendix I .

4.6 COMPUTATIONAL EFFICIENCY OF BIOBO

Runtime per iteration of BioBO is comparable to existing BO methods. We report detailed runtimes
in Appendix G. The choice of 20 acquisition cycles (selecting 400 genes with 20 genes per cycle)
follows exactly the experimental protocol established in (Mehrjou et al., 2021; Lyle et al., 2023),
ensuring comparability. The total of 400 perturbations selected by 20 iterations corresponds to less
than 5% of the typical gene pool, aligning with realistic experimental budgets in high-throughput
CRISPR screens (Mehrjou et al., 2021; Lyle et al., 2023). Thus, BioBO maintains is fast from a
practical standpoint and identifies high-value perturbations more efficiently compared to baseline
methods.

5 OTHER RELATED WORKS

Exploiting external knowledge in BO Incorporating external knowledge in BO has recently been
studied extensively. External knowledge can be elicited from the feedback of human experts through
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preference learning and used in BO (Mikkola et al., 2020; Adachi et al., 2023) when the explicit
knowledge is challenging to obtain. However, when the external knowledge on the input space over
the potential candidates is ready, it can be either treated as a constraint (Hernández-Lobato et al.,
2015; Adachi et al., 2022) or a prior belief (Souza et al., 2021; Cissé et al., 2024; Hvarfner et al.,
2022), and our BioBO fits within this framework.

Experimental design in drug discovery Many drug discovery and design applications use exper-
imental design to speed up the process. Active learning, a framework that finds the most informative
unlabeled datapoints to label for improving the model, has been applied to molecular property pre-
diction (Neporozhnii et al., 2025; Masood et al., 2025), Perturb-seq experiments (Zhang et al., 2023;
Huang et al., 2024), and genomics CRISPR assays (Mehrjou et al., 2021). Active learning uses the
information gain of the probabilistic surrogate model to guide the selection, such as BALD (Houlsby
et al., 2011) and EPIG (Smith et al., 2023); therefore, it is an exploration-only process. On the other
hand, BO trades off between exploration and exploitation to query the most informative unlabeled
datapoints to the optimum. BO has been applied to bio-sequence optimization by combining with
deep generative models, including small-molecular and protein sequences (Gómez-Bombarelli et al.,
2018; Stanton et al., 2022; Gruver et al., 2023; Ramchandran et al., 2025), as well as on genomics
CRISPR assays (Pacchiano et al., 2023; Lyle et al., 2023). Recently, large language model (LLM)
based agents have shown potential in experimental design by leveraging the rich background knowl-
edge and reasoning capabilities (Lee et al., 2024; Roohani et al., 2025), and enrichment analysis has
been shown to be an important tool in the multi-agent system (Hao et al., 2025). Different from
heuristic designs with LLM, we focus on well-principled Bayesian experimental design framework.

6 CONCLUSION

We introduce BioBO, a biology-informed BO framework for perturbation design, combining stan-
dard BO with multimodal gene representations and enrichment analysis to guide experimental pri-
oritization. Our theoretical analysis establishes a no-harm guarantee when integrating biological
priors from enrichment analysis, ensuring robustness to noisy or biased pathway information. Em-
pirical results on the GeneDisco datasets demonstrate substantial gains in sample efficiency, with
BioBO outperforming traditional BO methods and enrichment-only strategies. By fusing princi-
pled optimization with domain-specific biological insights, BioBO enables more efficient discovery
of high-value perturbations, reducing experimental costs. We also analyze failure cases, showing
that when an incorrect or biologically mismatched pathway resource is used, the enrichment prior
becomes uninformative and BioBO gracefully reduces to the underlying surrogate model (see Ap-
pendix J). Finally, we evaluate BioBO in realistic settings where some embedding modalities are un-
available, showing that simple KNN-imputation preserves strong performance and that multimodal
fusion continues to outperform single-modality surrogates (Appendix K). BioBO can also integrate
multiple enrichment sources simultaneously, and ensemble priors consistently match or outperform
individual databases (Appendix M). Looking forward, this approach provides a foundation for in-
tegrating broader biological knowledge sources—such as single-cell profiles and literature-derived
embeddings—into experimental design frameworks, paving the way for faster and more targeted
advances in genomics and therapeutic discovery.
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REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide data description in Section A and implementation details,
including choice of computational platform and model hyperparameters, in Section B. Code will be
released upon acceptance.
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optimisation with gaussian process prior variational autoencoders. In International Conference
on Learning Representations, 2025.

Azucena Ramos, Catherine E Koch, Yunpeng Liu-Lupo, Riley D Hellinger, Taeyoon Kyung,
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A DATA DESCRIPTION

GeneDisco contains three different embeddings: Achilles (dependency score of genetic intervention
across cancer cell lines) (Dempster et al., 2019), STRING (protein-protein interactions) (Szklarczyk
et al., 2021), and CCLE (quantitative proteomics information from cancer cell lines) (Nusinow et al.,
2020), which are available for 17,655, 17,972, and 11,943 genes. We also consider two gene embed-
dings: Gene2Vec and GenePT, which are available for 23,940 and 61,287 genes. In order to remove
the effect of the different missingness level of each gene embedding, we use the 10,556 genes that
have all five embeddings.

GeneDisco also contains 5 datasets from genome-wide CRISPR assays: IFN-γ, IL-2 (the log fold
change of Interferon-γ and Interleukin-2 production in primary human T cells (Schmidt et al.,
2021)), Tau (Tau protein assay (Sanchez et al., 2021)), NK (Leukemia assay with NK cells (Zhuang
et al., 2019)), and Sars-Covid2 (SARS-CoV-2 assay from (Zhu et al., 2021)). we consider an inter-
section of genes with all modalities and each assay.

B EXPERIMENTAL DETAILS

Device details All experiments were run on Debian GNU/Linux 10 (buster) with Python 3.10.16,
PyTorch 2.6.0, and CUDA 12.8. Training and inference used two NVIDIA L4 GPUs (each with
24 GB VRAM). The host machine had an AMD EPYC 7R13 processor with 192 hardware threads
and 80 GB of system memory. Computations used 64-bit floating-point precision where required by
the Bayesian layers.

Hyperparameters Unless noted, the BNN surrogate is a Monte Carlo (MC) dropout neural net-
work using a 2-layer MLP having a hidden width 64 and ReLU activations with dropout rate 0.5.
We optimize BNNs with Adam (learning rate η = 0.001, weight decay λ = 0.0001) for up to 200
epochs with early stopping (patience 30) on a 10% validation split; batch size was 256. The mean
and variance of the posterior distribution used in acquisition functions are estimated from 100 sam-
ples collected by MC dropout during testing. For modality fusion we concatenated L2-normalized
embeddings (Achilles, Gene2Vec, GenePT; and where used, CCLE/STRING).Acquisition functions
followed standard definitions for UCB (trade-off κn = 1), EI (ξ = 0), and TS; biology-informed
variants added enrichment weights from GO or Hallmark with temperature coefficient t = 0.1 and β
= 1 for IFN-γ and β = 0.1 for IL-2.

Reproducibility and error bars For every dataset–modality–acquisition setting we ran seven
independent random seeds. Plotted curves report the mean across seeds; shaded bands show ± s.e.m.
(standard error of the mean). Final-cycle bar plots likewise report mean ± s.e.m. Each BO iteration
in our experiments acquires a batch of 20 genes (B = 20) rather than a single gene, reflecting
realistic experimental design.

C SENSITIVITY ANALYSIS

We analyze the sensitivity of the BO results w.r.t. β in Eq.4 for both mean and max aggregation
operation on IFN-γ. We observe both mean and max aggregation can bring the benefits of EA
into BO. While performance varies across extreme β values, we observe that β in the range 1-
5 generally yields best performance across acquisition functions and datasets (Appendix C). This
is also expected as β controls the extent to which the enrichment prior influences the acquisition
score. Small β hence effectively removes the influence of biological structure thus yielding poorer
performance compared to using moderate β in the range 1-5.
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Phenotype: IFN-γ; Feature: Achilles
Acquisition β = 0.01 β = 0.05 β = 0.1 β = 0.5 β = 1 β = 5

BioEI-GO (mean) 0.0756 0.0756 0.0756 0.0756 0.0852 0.0846
BioEI-GO (max) 0.0848 0.0770 0.0770 0.0856 0.0873 0.0969

BioEI-HM (mean) 0.0756 0.0756 0.0756 0.0756 0.0763 0.0710
BioEI-HM (max) 0.0756 0.0756 0.0756 0.0760 0.0764 0.0743

BioUCB-GO (mean) 0.0850 0.0891 0.0984 0.0978 0.0975 0.0944
BioUCB-GO (max) 0.0877 0.0919 0.0956 0.0919 0.0750 0.0731

BioUCB-HM (mean) 0.0726 0.0731 0.0754 0.0816 0.0848 0.0833
BioUCB-HM (max) 0.0752 0.0747 0.0754 0.0764 0.0850 0.0836

D LLMS USAGE

Large Language Models (LLMs) were used to assist word choice and improve grammar.

E SUPPLEMENTARY EXPERIMENTAL RESULTS

E.1 CCLE AND STRING MODALITIES IN GENEDISCO
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Figure 5: CCLE and STRING modalities across datasets. Panels (left→right): IFN-γ—CCLE, IFN-
γ—STRING, IL-2—CCLE, IL-2—STRING. Curves show base acquisitions UCB/EI/TS (solid),
biology-informed variants BioUCB/BioEI/BioTS with GO (dotted) and HM (dash–dot) in the same
family color, plus Random (gray). Shaded ribbons denote mean ± s.e.m.

In this section, we studied other two modalities CCLE and STRING from GeneDisco in Figure 5.
We observe that both CCLE and STRING yield substantially lower absolute recall compared to the
Achilles, Gene2Vec, and GenePT features. Moreover BO is similar to random acquisition using
these two embeddings, which indicates that both both CCLE and STRING are less informative
to predict the selected phenotype. We exclude them from the main paper and report them here
for completeness. Even so, biology-informed variants provide modest, consistent gains over their
bases—particularly at smaller budgets.
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E.2 BO RESULTS FOR IFN-γ AND IL-2
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Figure 6: Performance of standard BO and BioBO with three different modalies and their
fusion for IFN-γ (top) and IL-2 (bottom). We observe that BO with Fusion is better than BO with
any single modality and BioBO that incorporates priors from enrichment analysis is better than the
corresponding BO without prior.

Figure 6 shows the complete BO results across both datasets and all four representations (Achilles,
Gene2Vec, GenePT, Fusion), where biology-informed variants (BioUCB, BioEI, BioTS) with en-
richment analysis significantly exceed their base counterparts (UCB, EI, TS), and surrogate models
with fused gene embeddings are better than any single modality. Improvements are most evident in
early–mid cycles (better sample efficiency) and narrow later as methods converge. UCB remains a
strong base acquisition function and random baseline is consistently inferior.
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E.3 CORRELATIONS BETWEEN THE PERFORMANCE OF BO AND SURROGATE MODEL
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Figure 7: Relations between the performance of BO (measured by cumulative top-k recall) and
surrogate model (measured by LL) on Tau, NK, and Sars-Covid2. We observed that the performance
of BO is more correlated with the performance of surrogate model near optimal (LL@top-1%)
compared with global.
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Figure 8: Relations between the performance of BO (measured by cumulative top-k recall) and
surrogate model (measured by RMSE) on 5 datasets. We observed that the performance of BO is
more correlated with the performance of surrogate model near optimal (RMSE@top-1%) compared
with global.
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E.4 PURE EA RESULTS FOR TAU, NK, AND SARS-COVID2

We show the performance of experimental designs using enrichment analysis only and using Bi-
oUCB for Tau, NK, and Sars-Covid2 datasets with Achilles on Figure 9. We observe that in most
cases, pure EA is similar to random on all three datasets, except for EA with GO on Tau where
BioUCB is better than UCB.
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Figure 9: Performance of pure EA and BioUCB on Achilles for Tau, NK, and Sars-Covid2.
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E.5 BO RESULTS FOR TAU, NK, AND SARS-COVID2
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Figure 10: Performance of BO and BioBO with three modalities and their fusion for Tau.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Cu
m

ul
at

iv
e 

To
p-

k 
Re

ca
ll

Ba
se

 a
cq

ui
si

ti
on

s

Achilles Gene2Vec GenePT Fusion

3 6 9 12 15 18
Cycles

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Cu
m

ul
at

iv
e 

To
p-

k 
Re

ca
ll

EA
 v

ar
ia

nt
s

3 6 9 12 15 18
Cycles

3 6 9 12 15 18
Cycles

3 6 9 12 15 18
Cycles

Dataset: NK
UCB EI TS Random BioUCB-GO BioUCB-HM BioEI-GO BioEI-HM BioTS-GO BioTS-HM

Figure 11: Performance of BO and BioBO with three modalities and their fusion for NK.

F LATENT-SPACE FUSION FOR MULTIMODAL SURROGATE MODELS

To better integrate heterogeneous biological modalities in Bayesian Optimization (BO) surrogate
models, we implement a latent-space fusion strategy. Each modality x1, x2, x3 is first projected
via modality-specific fully connected layers (with dropout for uncertainty), then fused in the latent
space via either concatenation or cross-attention, followed by a final Bayesian MLP to predict the
response:

y = fc3
(
fc2(cross attention(fc11(x1), fc12(x2), fc13(x3)))

)
or

y = fc3
(
fc2(concatenation(fc11(x1), fc12(x2), fc13(x3)))

)
21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Cu

m
ul

at
iv

e 
To

p-
k 

Re
ca

ll

Ba
se

 a
cq

ui
si

ti
on

s
Achilles Gene2Vec GenePT Fusion

3 6 9 12 15 18
Cycles

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Cu
m

ul
at

iv
e 

To
p-

k 
Re

ca
ll

EA
 v

ar
ia

nt
s

3 6 9 12 15 18
Cycles

3 6 9 12 15 18
Cycles

3 6 9 12 15 18
Cycles

Dataset: Sars-Covid2
UCB EI TS Random BioUCB-GO BioUCB-HM BioEI-GO BioEI-HM BioTS-GO BioTS-HM

Figure 12: Performance of BO and BioBO with three modalities and their fusion for Sars-Covid2.

This allows the surrogate to capture cross-modal interactions more effectively than simple concate-
nation of raw embeddings.

We evaluate three surrogate variants: standard Bayesian MLP (single-modal), latent concatenation,
and latent attention. Results for two datasets, IFN-γ and IL2, are shown in Table 3.

Acquisition IFN-γ IL2
Bayesian MLP Latent Concatenation Latent Attention Bayesian MLP Latent Concatenation Latent Attention

EI 0.093 (0.001) 0.102 (0.001) 0.109 (0.002) 0.148 (0.002) 0.141 (0.002) 0.164 (0.002)
BioEI-GO 0.098 (0.000) 0.107 (0.000) 0.115 (0.004) 0.147 (0.003) 0.143 (0.003) 0.166 (0.003)
BioEI-HM 0.096 (0.001) 0.108 (0.001) 0.116 (0.003) 0.153 (0.002) 0.154 (0.002) 0.174 (0.002)
TS 0.083 (0.001) 0.099 (0.003) 0.107 (0.001) 0.142 (0.001) 0.142 (0.002) 0.166 (0.004)
BioTS-GO 0.095 (0.001) 0.105 (0.001) 0.109 (0.002) 0.147 (0.003) 0.139 (0.001) 0.160 (0.002)
BioTS-HM 0.097 (0.001) 0.110 (0.003) 0.124 (0.002) 0.153 (0.002) 0.154 (0.002) 0.175 (0.003)
UCB 0.100 (0.001) 0.102 (0.003) 0.113 (0.000) 0.174 (0.001) 0.155 (0.001) 0.169 (0.003)
BioUCB-GO 0.102 (0.001) 0.101 (0.004) 0.116 (0.003) 0.169 (0.001) 0.173 (0.003) 0.173 (0.002)
BioUCB-HM 0.109 (0.001) 0.112 (0.002) 0.127 (0.003) 0.178 (0.001) 0.168 (0.002) 0.176 (0.005)

Table 3: Comparison of BO performance using different latent-space fusion strategies on IFN-γ and
IL2 datasets (mean ± std over 5 seeds).

Latent attention consistently outperforms latent concatenation and the Bayesian MLP across acqui-
sition functions for both datasets, particularly for BioUCB-HM where cross-modal interactions are
critical. Latent concatenation also improves over the single-modal MLP, confirming the benefit of
integrating multiple modalities. These results support the claim in the main text that multimodality
fusion enhances BO efficiency.

G RUNTIME COMPARISON

We report average runtime per iteration (evaluating 20 genes per cycle) for BioBO and baseline
BO methods over all datasets. All experiments were run on a standard GPU (NVIDIA A10). The
table includes variants with and without multimodal fusion and enrichment analysis (EA) to show
the computational overhead introduced by these components. While multimodal fusion and EA
slightly increase runtime compared to single-modality models, the additional cost remains modest
and practical for typical high-throughput CRISPR experiments.
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Method Avg Runtime per BO Cycle (s)

UCB (Achilles) 8.55
UCB (Fusion) 10.50
BioUCB-HM (Fusion) 12.45
EI (Achilles) 7.64
EI (Fusion) 12.57
BioEI-HM (Fusion) 13.05
TS (Achilles) 6.95
TS (Fusion) 12.18
BioTS-HM (Fusion) 12.87

Table 4: Runtime per iteration for BioBO and baseline BO methods, averaged over datasets. Variants
with multimodal fusion and/or enrichment analysis (EA) are included to show the overhead of these
components.

H SENSITIVITY TO THE TOP-K% THRESHOLD IN ENRICHMENT ANALYSIS

We evaluate the effect of different top-k% thresholds used for enrichment analysis, varying k from
5% to 50% on the IFN-γ dataset (Achilles features). As shown in Table 5, BioBO remains robust
for k between 5–20%, exhibiting only minor performance variation. Larger thresholds (30–50%)
dilute the enrichment signal by including a broader, noisier set of genes, leading to slightly reduced
BO performance. We use k = 10% as a practical default.

Top-k% 5% 10% 15% 20% 30% 50%

BioEI-GO 0.090 ± 0.001 0.085 ± 0.006 0.084 ± 0.009 0.085 ± 0.010 0.074 ± 0.002 0.071 ± 0.001

Table 5: Sensitivity of BioBO to top-k% used for enrichment analysis. Performance shown as
cumulative top-k recall.

I INTERPRETABILITY CASE STUDY ON IL-2 DATASET

To assess whether the interpretability benefits of BioBO generalize beyond the IFN-γ setting, we
analyze IL-2 immune-cell CRISPR perturbation dataset. The results mirror the IFN-γ findings:
baseline UCB recovers several relevant pathways but with modest enrichment strength, whereas
BioUCB-HM identifies the same pathways with higher overlap and stronger statistical significance.

Table 6: Enrichment analysis on IL-2 dataset comparing UCB and BioUCB-HM.
Baseline UCB

Pathway Overlap Adjusted p-value Odds Ratio Combined Score

MYC TARGETS V1 49/200 6.16× 10−27 11.512 738.585
E2F TARGETS 36/200 8.76× 10−15 7.004 248.528
G2M CHECKPOINT 26/200 2.01× 10−7 4.436 80.423
DNA REPAIR 22/150 2.41× 10−7 5.028 88.784

BioUCB-HM (Fusion + EA)

MYC TARGETS V1 179/200 2.39× 10−231 487.252 260596
E2F TARGETS 41/200 2.45× 10−12 4.962 148.099
MYC TARGETS V2 18/58 1.79× 10−8 8.081 166.006
G2M CHECKPOINT 32/200 5.50× 10−7 3.518 59.221
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These results show that BioUCB-HM not only recovers all pathways identified by UCB but also
enhances their enrichment signal by several orders of magnitude. Mechanistically, these path-
ways—MYC, E2F, G2M checkpoint, and DNA repair—govern central processes in lymphocyte
metabolism and proliferation (Ren et al., 2002; DeGregori et al., 1997; Wang et al., 2011; Rath-
mell, 2011). The stronger enrichment observed under BioUCB-HM reflects its ability to prioritize
perturbations that align with the regulatory circuitry of immune-cell activation, providing deeper
mechanistic insight into pathway-level drivers. This analysis was also validated by two independent
immunology domain experts.

J FAILURE CASES: MISMATCHED ENRICHMENT PATHWAYS

While enrichment analysis substantially strengthens acquisition when the pathway database is rel-
evant to the biological context, we also evaluate failure cases where the enrichment prior is mis-
matched. Specifically, we apply oncology-focused pathways (“ONC”) to guide immune-cell per-
turbation design. Because these pathways are unrelated to immune signaling, the enrichment prior
becomes uninformative and may slightly bias acquisition toward irrelevant genes. In such settings,
BioBO effectively falls back to the multimodal surrogate model, resulting in little or no improvement
over the baseline BO acquisition.

Table 7: Failure-case comparison on IFN-γ: correct enrichment prior (GO) vs. mismatched oncol-
ogy prior (ONC).

Method Fusion Achilles GPT Gene2vec

EI 0.093 (0.001) 0.072 (0.001) 0.077 (0.004) 0.071 (0.006)
BioEI-GO (correct) 0.098 (0.000) 0.085 (0.000) 0.095 (0.005) 0.079 (0.004)
BioEI-ONC (mismatched) 0.091 (0.001) 0.074 (0.002) 0.077 (0.008) 0.073 (0.006)

These results reinforce the practical takeaway: BioBO provides strong gains when pathway knowl-
edge is biologically aligned with the experimental setting, while remaining robust when the prior is
noisy or mismatched—consistent with our theoretical no-harm guarantee.

K ROBUSTNESS TO MISSING MODALITIES

To assess BioBO’s robustness in practical scenarios where some embedding modalities are unavail-
able, we simulate missing data on IFN-γ dataset by dropping selected modalities and imputing
missing embeddings with KNN. Table 8 summarizes the performance (mean ± std over 7 seeds)
across three acquisition functions. Fusion remains consistently superior to single-modality surro-
gates even under KNN-imputation, indicating that heterogeneous embeddings provide complemen-
tary biological signal and that BioBO remains usable when embeddings are partially missing—a
common situation in large-scale perturbation screens.

Table 8: Performance when some modalities are missing on IFN-γ dataset. KNN-imputation is used
for missing embeddings.

Modality EI UCB TS

Fusion (all modalities; 18,344 genes) 0.046 ± 0.003 0.060 ± 0.001 0.048 ± 0.002
Achilles only 0.040 ± 0.001 0.042 ± 0.002 0.041 ± 0.001
GPT only 0.034 ± 0.002 0.050 ± 0.008 0.041 ± 0.008
Gene2Vec only 0.028 ± 0.003 0.035 ± 0.003 0.033 ± 0.003
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These results show that multimodal fusion remains advantageous even under partially missing data,
reflecting the complementary structure of gene-level biological embeddings and supporting the prac-
tical deployability of BioBO.

L INTERPRETATION OF ENRICHMENT PARAMETERS t AND β

The temperature parameter t and the prior strength β control the contribution of enrichment anal-
ysis (EA) to the acquisition function relative to the surrogate model’s uncertainty. Conceptually, t
determines how concentrated the enrichment-derived prior is across candidate genes: as t → ∞, the
prior becomes uniform and EA is ignored (pure exploration), whereas as t → 0, the prior becomes
sharply peaked, emphasizing top-ranked genes (heavy exploitation). The parameter β modulates
the weight of this prior within the acquisition: very small β effectively removes the influence of
EA, while extremely large β over-amplifies the enrichment signals. Empirically, moderate values of
t and β provide stable performance, balancing exploitation of enriched pathways with exploration
guided by the surrogate model. This discussion complements the main text and provides practical
guidance for setting these hyperparameters.

M ENSEMBLING MULTIPLE ENRICHMENT SOURCES

BioBO is fully compatible with ensembling multiple enrichment sources because the π-BO prior
formulation allows additive or multiplicative aggregation of priors. While the main text reports GO
and Hallmark (HM) separately for clarity, we conducted experiments using an ensemble prior that
averages enrichment-derived scores from both databases (“BioEI-GOHM”). Table 9 summarizes
the performance across modalities on the IFN-γ dataset.

Table 9: Performance of BioBO with multiple enrichment sources. BioEI-GOHM averages GO and
Hallmark priors, showing consistent improvement over individual priors.

Method Fusion Achilles GPT Gene2Vec

EI 0.093 (0.001) 0.072 (0.001) 0.077 (0.004) 0.071 (0.006)
BioEI-GO 0.098 (0.000) 0.085 (0.000) 0.095 (0.005) 0.079 (0.004)
BioEI-HM 0.096 (0.001) 0.076 (0.001) 0.096 (0.007) 0.079 (0.002)
BioEI-GOHM 0.101 (0.002) 0.092 (0.004) 0.093 (0.008) 0.084 (0.004)

These results demonstrate that BioBO can naturally leverage complementary strengths from multiple
enrichment sources, and ensemble priors consistently match or outperform individual priors. More
dynamic weighting strategies for combining enrichment sources are a promising direction for future
work.

N FURTHER INTERPRETABILITY ANALYSIS OF UNDEREXPLORED
BIOLOGICALLY NOVEL GENES PRIORITIZED BY BIOBO

Beyond the well-known MYC/E2F modules reported in main text, BioBO prioritized a set of under-
explored genes whose knockouts produced top 0.1% IFN-γ increases. These include FAU, MAK16,
PCBP2, and multiple ribosomal proteins (e.g., RPL19, RPL27, RPL37, RPS11, RPS13, RPS17,
RPS20). These genes are not typically highlighted by baseline BO, yet they form a coherent mod-
ule downstream of MYC-driven ribosome biogenesis, a key regulator of T-cell growth and effector
differentiation (Destefanis et al., 2020). Perturbation of ribosomal components induces nucleolar
stress and NF-κB/p53 activation (Akef et al., 2020), shifting cells from proliferation toward higher
cytokine output. PCBP2 further modulates MAVS/RIG-I signaling Onomoto et al. (2021), linking
directly to interferon pathways.
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Two independent domain experts reviewed and validated this mechanistic interpretation. This anal-
ysis provides concrete examples of how BioBO’s enrichment-informed acquisition can reveal bio-
logically meaningful, underexplored targets, complementing standard BO approaches.

O ADDITIONAL RELATIONAL ANALYSIS BETWEEN BO PERFORMANCE AND
SURROGATE MODELING

We measure global LL across all genes and observe a weak or even negative correlation with BO
performance. This arises because global LL is dominated by the dense region of low-response
genes, whereas BO only depends on the surrogate in a small neighborhood of the maximizer. In
our CRISPR datasets, only a small fraction of genes have a high IFN-γ/IL-2 response. A surrogate
that fits the bulk region extremely well (high global LL) but underestimates the tails can perform
worse in BO than one that slightly sacrifices global LL but better resolves the local geometry near
the optimum. When we restrict LL to the top-k genes (in terms of ground truth response), the
correlation with BO performance becomes positive and substantially stronger (see Appendix X),
confirming that local surrogate quality near the optimum, rather than global goodness-of-fit, is what
drives BO.

Table 10: Conditional correlation analysis for IFN-γ across fusion strategies and acquisition func-
tions.

Fusion Method LL Global LL@10% LL@5% LL@1%

None EI 0.051 0.211 0.202 0.212
TS 0.038 0.038 0.059 0.153
UCB -0.065 0.285 0.315 0.356
Random 0.181 0.008 -0.009 -0.035

Input concat. EI -0.018 0.313 0.292 0.298
TS 0.096 0.163 0.169 0.198
UCB -0.054 0.362 0.357 0.355
Random 0.209 0.037 0.003 -0.037

Latent concat. EI 0.005 0.246 0.244 0.282
TS 0.078 0.140 0.145 0.205
UCB -0.067 0.273 0.299 0.364
Random 0.181 0.008 -0.009 -0.035

Latent attention EI -0.021 0.216 0.219 0.262
TS 0.070 0.151 0.178 0.270
UCB -0.135 0.285 0.314 0.382
Random 0.181 0.008 -0.009 -0.035

Table 11: Conditional correlation analysis for IL-2 across fusion strategies and acquisition functions.
Fusion Method LL Global LL@10% LL@5% LL@1%

None EI -0.152 0.455 0.471 0.479
TS 0.007 0.325 0.362 0.386
UCB -0.139 0.493 0.515 0.515
Random 0.088 0.224 0.233 0.208

Input concat. EI -0.173 0.572 0.581 0.568
TS -0.023 0.439 0.457 0.441
UCB -0.217 0.540 0.559 0.546
Random 0.088 0.274 0.278 0.248

Latent concat. EI -0.197 0.524 0.542 0.526
TS -0.026 0.375 0.404 0.402
UCB -0.192 0.479 0.506 0.500
Random 0.088 0.224 0.233 0.208

Latent attention EI -0.153 0.552 0.568 0.559
TS -0.058 0.419 0.449 0.451
UCB -0.171 0.514 0.532 0.530
Random 0.088 0.224 0.233 0.208
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P ADJUSTED CUMULATIVE TOP-K RECALL WITH ± 1.96 S.E.M.

Table 12: Cumulative top-k recall with 1.96 s.e.m. of each acquisition function on different
datasets. We observe that BioBO achieves the best performance on 23/24 different settings, and
BioUCB-HM with surrogate function using fused features achieves the best performance for both
IFN-γ and IL-2. The best performance (with the smallest standard error) is bold.

Phenotype: IFN-γ Fusion Achilles GenePT Gene2Vec
EI 0.093 (0.002) 0.072 (0.002) 0.077 (0.008) 0.071 (0.011)

BioEI-GO (ours) 0.098 (0.001) 0.085 (0.001) 0.095 (0.010) 0.079 (0.008)
BioEI-HM (ours) 0.096 (0.002) 0.076 (0.002) 0.096 (0.014) 0.079 (0.004)

TS 0.083 (0.002) 0.068 (0.002) 0.088 (0.004) 0.073 (0.004)
BioTS-GO (ours) 0.095 (0.002) 0.073 (0.001) 0.097 (0.008) 0.095 (0.009)
BioTS-HM (ours) 0.097 (0.002) 0.097 (0.009) 0.093 (0.010) 0.081 (0.008)

UCB 0.100 (0.002) 0.077 (0.002) 0.086 (0.008) 0.093 (0.010)
BioUCB-GO (ours) 0.102 (0.002) 0.098 (0.004) 0.092 (0.010) 0.098 (0.004)
BioUCB-HM (ours) 0.109 (0.002) 0.085 (0.006) 0.101 (0.002) 0.103 (0.008)

Random 0.050 (0.002) 0.050 (0.002) 0.050 (0.002) 0.050 (0.002)

Phenotype: IL-2 Fusion Achilles GenePT Gene2Vec
EI 0.148 (0.004) 0.130 (0.006) 0.107 (0.010) 0.109 (0.004)

BioEI-GO (ours) 0.147 (0.006) 0.138 (0.006) 0.107 (0.010) 0.115 (0.004)
BioEI-HM (ours) 0.153 (0.003) 0.130 (0.005) 0.107 (0.009) 0.109 (0.004)

TS 0.142 (0.002) 0.119 (0.002) 0.113 (0.027) 0.113 (0.004)
BioTS-GO (ours) 0.147 (0.005) 0.142 (0.004) 0.119 (0.021) 0.119 (0.002)
BioTS-HM (ours) 0.153 (0.004) 0.123 (0.007) 0.139 (0.025) 0.124 (0.004)

UCB 0.174 (0.002) 0.143 (0.006) 0.118 (0.022) 0.123 (0.001)
BioUCB-GO (ours) 0.169 (0.002) 0.158 (0.002) 0.131 (0.015) 0.133 (0.004)
BioUCB-HM (ours) 0.178 (0.002) 0.163 (0.002) 0.138 (0.023) 0.127 (0.001)

Random 0.049 (0.002) 0.048 (0.002) 0.049 (0.002) 0.046 (0.003)
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