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Abstract

Recent advances in inverse problem solving have increasingly adopted flow priors
over diffusion models due to their ability to construct straight probability paths
from noise to data, thereby enhancing efficiency in both training and inference.
However, current flow-based inverse solvers face two primary limitations: (i) they
operate directly in pixel space, which demands heavy computational resources for
training and restricts scalability to high-resolution images, and (ii) they employ
guidance strategies with prior-agnostic posterior covariances, which can weaken
alignment with the generative trajectory and degrade posterior coverage. In this
paper, we propose LFlow (Latent Refinement via Flows), a training-free frame-
work for solving linear inverse problems via pretrained latent flow priors. LFlow
leverages the efficiency of flow matching to perform ODE sampling in latent space
along an optimal path. This latent formulation further allows us to introduce a
theoretically grounded posterior covariance, derived from the optimal vector field,
enabling effective flow guidance. Experimental results demonstrate that our pro-
posed method outperforms state-of-the-art latent diffusion solvers in reconstruction
quality across most tasks. The code will be publicly available at GitHub.

1 Introduction

Linear inverse problems are fundamental to a variety of significant image processing tasks, such as
super-resolution [1], inpainting [2], deblurring [3], and denoising [4]. Solving such problems involves
inferring an unknown image x0 ∈ Rn, which is assumed to follow an unknown prior distribution
q(x0), from incomplete and noisy observations y ∈ Rm, commonly modeled as:

y = Ax0 + n, n ∼ N (0, σ2
yI), (1)

where A ∈ Rm×n represents a known linear operator and n denotes additive i.i.d. Gaussian noise.
When the operatorA is singular (e.g., if m < n), the inverse problem becomes ill-posed [5], hindering
the unique or stable recovery of x0 from y. Consequently, accurate and plausible inferences demand
strong priors that effectively integrate domain-specific knowledge to constrain the solution space.

Deep generative models that perform progressive refinement via stochastic differential equations
(SDEs), particularly diffusion models [6–8], have solidified their role as powerful priors for solving
a broad spectrum of inverse problems [9, 10]. Specifically, these models have proven effective
for zero-shot inference of images from partially acquired and noisy measurements, with extensive
research focusing on the design of guidance mechanisms to inject data consistency into the generative
process [11–32]. Building on these advancements, diffusion-based inverse solvers have been further
extended to operate in latent spaces [33–39] rather than raw pixel spaces, aiming to reduce the
computational cost of training and improve generalization [40]. However, these approaches often
neglect posterior variability by assuming zero covariance in likelihood-based guidance, which can
lead to unstable sampling and reduced coverage of the posterior distribution [21, 30].
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Recently, flow matching [41, 42] has gained prominence as a compelling alternative for generative
modeling. By parameterizing transformation dynamics with ordinary differential equations (ODEs),
these models can generate arbitrary probability paths, including those grounded in optimal transport
(OT) principles [41]. This flexibility enables the design of straight-line generative trajectories, leading
to more efficient training and sampling compared to diffusion-based approaches [43, 44]. Motivated
by these capabilities, several recent works have explored the use of flow-based priors for inverse
problems, achieving faster and higher-quality solutions across diverse tasks [45–50]. Nevertheless,
existing methods still suffer from two key drawbacks: (1) they operate in pixel space, which restricts
scalability to high-dimensional data and limits generalizability across different types of inverse
problems; and (2) they adopt guidance techniques originally developed for diffusion models, which
estimate posterior covariances independently of the learned prior. This disconnect may steer the
sampling trajectory away from high-probability regions, leading to degraded sample quality and
reduced fidelity, with slower convergence often observed when adaptive ODE solvers are employed.

To address these limitations, we propose LFlow (Latent Refinement via Flows), a framework that
utilizes latent flow matching to solve linear inverse problems without additional training. By applying
flow matching in latent space, LFlow achieves enhanced computational efficiency and enables more
scalable and effective inverse solutions in reduced-dimensional domains. Additionally, we introduce
a well-founded, time-dependent variance for the latent identity posterior covariance, formulated using
Tweedie’s covariance formula and the optimal vector field under the assumption of a Gaussian latent
representation. This posterior covariance is explicitly informed by the pretrained optimal vector field,
ensuring that guidance remains consistent with the generative dynamics. Our empirical evaluations
demonstrate that images inferred via latent ODE sampling along conditional OT paths exhibit superior
perceptual quality compared to those generated through latent diffusion-based probability paths.

Our primary contributions are as follows:

• Methodological: We propose a training-free framework based on latent flow matching and
posterior-guided ODE sampling for solving linear inverse problems, significantly outper-
forming latent diffusion-based approaches in both efficiency and reconstruction quality.

• Analytical: We derive a principled correction to the pretrained latent flow using the measure-
ment likelihood gradient and introduce an analytically justified, time-dependent posterior
covariance to improve sampling accuracy and convergence speed.

• Empirical: We validate the performance of LFlow through extensive experiments on
image reconstruction tasks, including deblurring, super-resolution, and inpainting, achieving
state-of-the-art results without requiring substantial problem-specific hyperparameter tuning.

2 Overview of Related Work

Training-free inverse problem solvers that exploit diffusion or flow priors can be generally categorized
into four methodological classes: (1) Variable splitting methods decompose inference into two
alternating steps: one enforces data fidelity and the other imposes regularization [51, 36, 20]; (2)
Variational Bayesian methods introduce a parameterized surrogate posterior distribution, typically
Gaussian, whose parameters are optimized using a variational objective [27, 52, 53]; (3) Asymptot-
ically exact methods combine generative priors with classical samplers—such as MCMC, SMC,
or Gibbs sampling—to approximate the true posterior with convergence guarantees as the sample
size grows [54–57]; and (4) Guidance-based methods correct the generative trajectory using an
approximate likelihood gradient to steer samples toward the posterior [12, 21–23]. Our work centers
on the fourth category and further elaborates on related methods built on various types of priors.

Diffusion Guidance Approximation refers to estimating the likelihood score ∇xt
log p(y|xt)

during the reverse-time diffusion process governed by an SDE of the form:

dxt ≈
[
f(xt, t)− g(t)2 (sθ(xt, t) +∇xt

log p(y|xt))
]
dt+ g(t) dwt, (2)

where f(·, ·) is the drift, g(·) the diffusion coefficient, wt standard Brownian motion, and sθ(·, ·) a pre-
trained score network. Notable methods such as DPS [21], ΠGDM [22], TMPD [23], OPC [29], and
MMPS [30] define the likelihood score as∇xt log p(y|xt) = ∇xt log

∫
p(y|x0)p(x0|xt) dx0. The

main challenge lies in computing the expectation over all possible denoised states x0 given xt, which
requires sampling from p(x0|xt) at every reverse step—posing significant computational demands. A
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common remedy is a local Gaussian approximation p(x0|xt) ≈ N
(
E[x0|xt], Cov[x0|xt]

)
, reducing

the problem to estimating posterior moments. These approaches differ mainly in how they specify
Cov[x0|xt]. For instance, DPS sets it to zero, and ΠGDM obtains a prior-agnostic, time-scaled
identity matrix derived from the forward process under a Gaussian data assumption. OPC performs
a post hoc constant variance optimization for each step. TMPD approximates the covariance by
replacing the Jacobian in the Tweedie relation Cov[x0|xt] =

σ(t)2

α(t) ∇
⊤
xt
E[x0|xt] with a diagonal row-

sum surrogate, whereas MMPS evaluates the full Jacobian via automatic differentiation and solves
the induced linear system with Conjugate Gradients [58]. Estimating the full covariance, however,
remains computationally expensive in high dimensions, with prohibitive memory and runtime costs.

Inference in Latent Space has become feasible with latent diffusion models (LDMs) [59], allowing
inverse solvers to reduce training costs and improve scalability [33, 36–38]. As an initial attempt,
PSLD [33] augments DPS with a “gluing” objective to enforce posterior mean consistency under the
autoencoder mapping, aiming to mitigate encoder–decoder nonlinearity. However, this constraint
remains empirically ineffective under noisy measurements, and reconstruction artifacts persist [34].
Other approaches avoid explicit nonlinearity correction: In particular, Resample [36] constructs a
Gaussian posterior by fusing a supposedly Gaussian prior on the unconditional reverse sample with a
Gaussian pseudo-likelihood centered at a forward-projected measurement-consistent posterior mean.
Similarly, DAPS [37] enhances posterior sampling by decoupling consecutive diffusion steps through
a two-step procedure: first drawing z0 ∼ p(z0|zt,y), then re-noising zt−∆t ∼ N (z0, σ

2
t−∆tI),

which provides global corrections—particularly effective in non-linear tasks, though at the expense
of weaker local guidance in low-noise or linear settings. SITCOM [60] enforces three consistency
conditions—data, forward, and backward diffusion—at each step, thereby enabling sampling with
fewer steps. Nevertheless, these methods largely assume zero covariances, limiting posterior coverage.

Flow Matching in Inverse Problems has recently proven effective for achieving fast and high-
quality solutions across various tasks [45–50]. A prime example is OT-ODE [45], which adopts
ΠGDM [22] gradient correction within the flow regime and employs an ODE solver scheme based
on the conditional OT path. C-ΠGFM [48] introduces a plug-and-play framework that projects
conditional flow dynamics into a more amenable space, accelerating inference. PnP-Flow [61] solves
imaging inverse problems by alternating a data-fidelity gradient step, a re-projection onto the flow
path via latent-noise interpolation, and a time-dependent FM denoiser, all without backpropagating
through the ODE. However, each of these methods typically (1) borrows guidance strategies from
diffusion models that assume either zero or prior-agnostic posterior covariances, and (2) operates in
pixel space, which limits their scalability and applicability to high-dimensional problems.

3 Preliminaries

Continuous Normalizing Flow (CNF) [62] constructs a smooth probability path {pt(xt)}t∈[0,1]

that transports samples from a data distribution q(x0), with x0 ∈ Rd, to a standard GaussianN (0, I)
at t = 1. This evolution follows a time-varying vector field v : Rd × [0, 1] → Rd, governed by
the ODE dxt = v(xt, t) dt. In practice, v(·, t) is approximated by a learnable field vθ, trained via
maximum likelihood, which requires expensive ODE simulations.

Flow Matching (FM) [41] avoids inefficient likelihood-based training for CNFs by directly regress-
ing a learnable vector field toward an analytically defined target field. In particular, Conditional Flow
Matching (CFM) [41] introduces a time-dependent conditional vector field v(xt | x0) that governs
the evolution of samples xt conditioned on an initial point x0. This field induces a conditional
probability path pt(xt | x0) satisfying the boundary conditions p0 = δ(x0) and p1 = N (0, I). The
training objective then becomes:

LCFM(θ) = Et,x0∼q,xt∼pt(xt|x0)

∥∥vθ(xt, t)− v(xt | x0)
∥∥2. (3)

Using Gaussian paths, we define pt(xt|x0) = N (α(t)x0, σ(t)
2I) with interpolation xt = α(t)x0 +

σ(t)x1, where x1 ∼ N (0, I). Differentiating xt with respect to t gives α̇(t)x0+σ̇(t)x1. Substituting
the inversion x0 = [xt − σ(t)x1]/α(t) yields the true vector field:

v(xt | x0) =
α̇(t)

α(t)
xt + σ(t)

(
σ̇(t)

σ(t)
− α̇(t)

α(t)

)
x1, (4)

where α̇(t) and σ̇(t) denote time derivatives. In particular, choosing α(t) = 1 − t and σ(t) = t
recovers the OT path, which induces straight trajectories and improves efficiency.
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Figure 1: (Top) LFlow pipeline: A VAE encoder maps the observation y to a latent z, from which a noisy start
zts is formed. During VAE pre-training, the KL term encourages the encoder’s approximate posterior qϕ(z0|x0)
to approach the Gaussian prior pr(z0) = N (0, I). A pretrained flow field vθ(zt, t) defines the unconditional
trajectory zt. At inference, orange arrows (→) denote likelihood-based guidance that corrects the prior field,
yielding the conditional latent path zt |y toward p(z0|y). Decoding with Dφ produces x̂0. (Bottom) Gaussian
deblurring snapshots along the conditional path as t decreases from 0.8 to 0.

4 Method

To address the ill-posedness of linear inverse problems, we adopt a Bayesian view and target the
posterior p(x0 |y) ∝ p(y |x0) p(x0), where p(y |x0) is the likelihood and p(x0) is a learned prior
induced by a pretrained latent flow (via the decoder). Our goal is to generate samples from this
posterior without retraining a task-specific model.

4.1 Latent Refinement via Flows (LFlow)

We represent the prior distribution p(x0) implicitly via a latent prior p(z0) and the decoder push-
forward p(x0) = Dφ# p(z0). Specifically, let Eϕ : Rd→Rk and Dφ : Rk→Rd be a pretrained
autoencoder. The latent z0 = Eϕ(x0) follows p(z0), modeled by a flow-matching velocity vθ(zt, t)
defining the ODE

dzt = vθ(zt, t) dt, t ∈ [0, 1]. (5)

This flow transports latent samples from z0 ∼ p(z0) to a noise distribution z1 ∼ N (0, I). At
inference, we integrate backward from z1 to ẑ0, adding measurement-driven guidance to follow the
conditional trajectory, then decode x̂0 = Dφ(ẑ0). Figure 1 illustrates the overall inference pipeline
and provides a visual example of decoded reconstructions along the conditional trajectory, offering
intuition for how the flow progresses in practice.

Posterior Sampling via Conditional Flows in Latent Space We aim to sample from the posterior
p(z0 | y) by simulating a reverse-time ODE characterized by a conditional velocity field. The
following proposition provides the theoretical foundation for this procedure, ensuring that if the
conditional density evolves according to a continuity equation, then the reverse-time flow recovers
samples from the posterior. A formal proof is deferred to Appendix A.1.
Proposition 4.1 (Posterior Sampling via Reverse-Time Conditional Flows). Let pt(zt | y) denote
the conditional distribution of latent variables zt ∈ Rk at time t ∈ [0, 1], with terminal condition
p1(z1) = N (0, I). Suppose this distribution evolves over time according to the reverse-time
continuity equation:

∂tpt(zt | y) = ∇zt · [pt(zt | y)vt(zt | y)] , (6)
for some conditional velocity field vt(zt | y). Then, the solution to the reverse-time ODE

dzt = −vt(zt | y) dt, z1 ∼ N (0, I), (7)

yields samples from the posterior p(z0 | y) as t→ 0.

Conditional Vector Field Estimation Having established that posterior samples can be obtained
by integrating the reverse-time ODE in Eq. (7), it remains to estimate the corresponding conditional
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vector field vt(zt|y). Under Gaussian latent dynamics, this field takes the form:

vt(zt | y) =
α̇(t)

α(t)
zt + λ(t)∇zt

log pt(zt | y), λ(t) =
d

dt

(
σ(t)

α(t)

)
. (8)

By applying Bayes’ rule, we obtain a principled decomposition of the velocity field, which leads to
the following practical approximation via the pretrained flow and a likelihood correction.

vt(zt | y) ≈ vθ(zt, t)−
t

1− t
∇zt

log pt(y | zt), (9)

where the additional term∇zt
log pt(y |zt), commonly referred to as guidance, steers the flow toward

consistency with the measurements y. A complete proof of the results in Eq. (8) and Eq. (9) in the
latent domain is provided in Appendix A.2.

Likelihood Approximation A key challenge in Eq. (9) arises from approximating the gradient of
the noise-conditional distribution, which we define as

∇zt log p(y | zt) = ∇zt log

∫
p(y | x0, zt)p(x0 | zt)dx0 = ∇zt logEx0∼p(x0|zt)[p(y|x0)]. (10)

Here, the likelihood term can be expressed as p(y |x0) = N (y;ADφ(z0), σ
2
yI), which is a Gaussian

distribution with a nonlinear mean induced by the decoder Dφ. Due to the nonlinearity of Dφ, the
marginal likelihood p(y |zt) deviates from Gaussianity. To facilitate the computation of its gradient,
we approximate Dφ(z0) via a first-order Taylor expansion around z̄0 := E[z0 |zt] as:

Dφ(z0) ≈ Dφ(z̄0) + JD(z0 − z̄0), (11)

where JD := JD(z̄0) is the Jacobian of Dφ at z̄0. Assuming the posterior p(z0 |zt) ∼ N (z̄0,Σz),
the distribution of the image x0 = Dφ(z0) becomes approximately Gaussian as well:

x0 ∼ N (E[x0|zt], Cov[x0|zt]), where E[x0|zt] ≈ Dφ(z̄0), Cov[x0 |zt] ≈ JD Σz J
⊤
D . (12)

Using this approximation, we estimate the gradient of the log-likelihood in latent space based on the
decoded mean and the propagated covariance (see Appendix A.4):

∇zt log p(y | zt) ≈ (∇zt z̄0)
⊤
J⊤
D︸ ︷︷ ︸

J

A⊤ (σ2
yI +AJD Σz J

⊤
D A⊤)−1

(y −ADφ(z̄0))︸ ︷︷ ︸
v

, (13)

which involves a Jacobian-vector product (J · v), and can be efficiently computed using automatic
differentiation (Appendix B). Furthermore, the Gaussian posterior assumption enables the application
of Tweedie’s formula [63], which connects the pretrained vector field vθ(zt, t) to the posterior
moments E[z0|zt] and Cov[z0|zt]. Specifically, we have (refer to Appendix A.3):

E[z0 | zt] = zt − tvθ(zt, t), (14)

Cov[z0 | zt] =
t2

1− t
(I − t∇ztvθ(zt, t)) . (15)

Latent Posterior Covariance Computing the posterior covariance Cov[z0|zt] in low-dimensional
latent spaces is more tractable and can be efficiently estimated via automatic differentiation. However,
inverting the matrix

(
σ2
yI +AJD Σz J

⊤
DA⊤) in Eq. (13) remains a significant computational bottle-

neck. To avoid explicit inversion, one may solve the corresponding linear system using the Conjugate
Gradient (CG) method. Yet, CG’s convergence crucially depends on the symmetry and positive
definiteness of the system matrix—conditions that may be violated in practice due to imperfections
in the pretrained velocity field vθ , potentially leading to instability or divergence. To address this, we
further analyze the structure of the posterior covariance and the Jacobian ∇ztvθ(zt, t), under certain
regularity assumptions on the latent prior p(z0).
Assumption 4.2 (Strong Log-Concavity of the Latent Prior [64]). Let p(z0) = exp(−Φ(z0)) be the
latent prior over Rd, where Φ is a twice continuously differentiable potential function. We assume
that p(z0) is γ-strongly log-concave for some γ > 0; that is, ∇2Φ(z0) ⪰ γ Id, for all z0 ∈ Rd.

(1) Log-concave Prior: This assumption imposes a uniform lower bound on the Hessian of the prior’s
potential function, which translates to a lower bound on the Jacobian of the vector field.
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Proposition 4.3 (Bound on the Jacobian of the Vector Field). Let vθ(zt, t) denote the velocity
field of the interpolant zt = α(t)z0 + σ(t)z1 between a standard Gaussian prior and a target
distribution p(z0), defined via coefficients α(t), σ(t) ∈ R. Under Assumption 4.2, the Jacobian of
the vector field satisfies the following bound:

d

dt

(
1
2 log

(
α(t)2 + γ σ(t)2

))
· Idz

⪯ ∇zt
vθ(zt, t) ≺

d

dt
log σ(t) · Idz

∀t∈(0,1], z∈Rd. (16)

The proof is provided in Appendix A.5. The resulting sandwich bound ensures the Jacobian remains
well-behaved—the upper bound guarantees valid and stable posterior covariance, while the lower
bound prevents overestimated uncertainty during posterior-guided inference.

(2) Gaussian Special Case: For practical inference and efficient computation, we now consider a
tractable special case where the latent prior is Gaussian, z0 ∼ N (0, σ2

latrI), a choice that is both
theoretically justified and widely used in practice—for instance, in variational autoencoders (VAEs),
where the latent prior is regularized toward a standard Gaussian via KL divergence [65]. This enables
us to derive the optimal velocity field and its Jacobian in closed form, which is characterized in the
next proposition, whose proof can be found in Appendix A.6.
Proposition 4.4 (Optimal Vector Field). Let z0 ∼ N (0, σ2

latrIdz
) and z1 ∼ N (0, Idz

) be indepen-
dent random variables. Define zt = (1− t)z0 + tz1 for t ∈ [0, 1]. The optimal vector field v⋆(zt, t)

that minimizes the expected squared error argminv E
[
∥v(zt, t)− (z0 − z1)∥2

]
is given by

v⋆(zt, t) =
(1− t)σ2

latr − t

(1− t)2σ2
latr + t2

zt. (17)

Remark 4.5 (Tightness of Bound). When z0 ∼ N (0, σ2
latrI), the optimal vector field v⋆(zt, t)

achieves the Jacobian lower bound in Proposition 4.3. This follows from the potential function
Φ(z0) = 1

2σ2
latr
∥z0∥2, yielding γ = σ−2

latr , and interpolation coefficients α(t) = 1 − t, σ(t) = t.
Substituting into the bound confirms it matches the exact Jacobian of v⋆, making the bound tight.

Plugging the Jacobian of the optimal vector field into Eq. (15) yields:

Cov[z0 |zt] = r2(t) · Idz
, with r2(t) =

t2
[
(1− t)(1− 2t) + 2t2

]
(1− t) [(1− t)2 + t2]

, (18)

where we assumed σlatr = 1. As a result, the propagated covariance can also be simplified as

Cov[x0 |zt] ≈ JD · Cov[z0 |zt] · J⊤
D ≈ r2(t) · JDJ⊤

D . (19)

Computing the full Jacobian JD ∈ Rdx×dz is often infeasible in practice. To simplify, we assume
that the decoder acts approximately as a local isometry near z̄0 [66], such that JDJ⊤

D ≈ ·P , where P
is the orthogonal projector onto the image of JD. For computational convenience, we approximate
this behavior as isotropic in the full space, resulting in:

Cov[x0 |zt] ≈ r2(t) · Idx . (20)

Comparison with ΠGDM and OT-ODE The posterior covariance in ΠGDM is derived solely
from the forward process under the strong assumption of Gaussian data space, resulting in a
variance for the identity covariance as r2(t) = σ(t)2

α(t)2+σ(t)2 I . Please see Appendix A.7 for details.

0.0 0.2 0.4 0.6 0.8
t

0
1
2
3
4
5
6
7
8
9

r2 (
t)

LPIPS: 0.102

LPIPS: 0.139

LFlow
OT-ODE

Figure 2: Posterior covariance
values across t ∈ [0, 0.9] for our
method and OT-ODE, along with
reconstructed images for a sin-
gle FFHQ sample in the super-
resolution task.

Additionally, ΠGDM leverages the inverse of this posterior covari-
ance as Fisher information for natural gradient [67] updates on sam-
ples during the guidance step, thereby enhancing performance. OT-
ODE can be regarded as a flow-based extension of ΠGDM, where
it adopts the same covariance expression but replaces the diffusion
forward process with a flow-specific noise scheduler, specifically
setting α(t) = 1− t and σ(t) = t. Therefore, both methods rely on
an identity posterior covariance that is independent of the learned
score or vector field. In contrast, our proposed covariance explicitly
incorporates information from the pre-trained vector field. This in
turn allows for more effective guidance during flow-based ODE sam-
pling, ultimately improving reconstruction quality. Figure 2 visually
illustrates how our time-dependent variance differs in magnitude and
effect from the simpler identity-based covariance used in OT-ODE.
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Initiating the Flow Sampling Process Inspired by prior works in pixel spaces [68, 45], we propose
initializing the reverse ODE—across all tasks—from a partially corrupted version of the encoding of
y in the latent space. Specifically, rather than starting from pure noise z1 ∼ N (0, I) at t = 1, we
initialize at ts < 1:

zts = (1− ts) Eϕ(y) + ts z1, z1 ∼ N (0, I). (21)

This initialization ensures that zts is closer to the posterior mode z0 | y, making the subsequent
backward integration more stable and likely to remain on a plausible manifold.

We summarize the complete sampling algorithm via latent ODE flows in Algorithm 1 (Appendix C).

5 Experiments

Datasets and Tasks We evaluate our method on three datasets: FFHQ [69], ImageNet [70], and
CelebA-HQ [71], each containing images with a resolution of 256 × 256 × 3 pixels. We use 200
randomly selected validation samples per dataset. All images are normalized to the range [−1, 1]. We
present our findings on several linear inverse problem tasks, including Gaussian deblurring, motion
deblurring, super-resolution, and box inpainting. The measurement operators are configured as
follows: (i) Gaussian deblurring convolves images with a Gaussian blurring kernel of size 61×61 and
a standard deviation of 3.0 [29]; (ii) Motion Deblurring uses motion blur kernels that are randomly
generated with a size of 61 × 61 and an intensity value of 0.5 [29]; (iii) Super-Resolution (SR)
involves bicubic downsampling by a factor of 4; and (iv) Box Inpainting simulates missing data
by masking a 128× 128 pixel box, which is randomly positioned around the center with a margin
of [16, 16] pixels, following the methodology of [21]. All measurements in these experiments are
corrupted by Gaussian noise with a standard deviation of σy = 0.01, ensuring that the reconstruction
methods are evaluated under realistic noisy conditions.

Baselines and Metrics Since the primary goal of this study is to improve solving inverse problems
in the latent space, we focus on comparing our proposed method against state-of-the-art latent
diffusion solvers—specifically, PSLD [33], MPGD [38], Resample [36], DMplug [51], DAPS [37],
and SITCOM [60] through both quantitative and qualitative analyses. Additionally, we include
results from the pixel-based ΠGDM [22], OT-ODE [45], and C-ΠGFM [48], when reported, for
a more comprehensive comparison. Following the evaluation protocols of prior works, we report
quantitative metrics including Learned Perceptual Image Patch Similarity (LPIPS) [72], Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Fréchet Inception Distance (FID)
[73] (Appendix D.3).

Architecture, Training, and Sampling In contrast to previous latent diffusion inverse solvers,
which rely on the LDM-VQ-4 or Stable Diffusion (SD) v1.5 models [59] built on U-Net [74], we
adopt the LFM-VAE framework [75] based on DiT transformer architectures [76] for all datasets.
Following the methodology outlined in [75], we leverage their pre-trained model. It is important to
note that, despite our architectural differences, the quality of our prior does not exceed that of SDs
or LDMs. This limitation may partly arise from using a lower-dimensional latent space of 32× 32.
After evaluating various numerical ODE integration methods, we selected adaptive_heun as the
default solver, utilizing its reliable implementation from the open-source torchdiffeq library [62].
All experiments were conducted on a single NVIDIA 3090 GPU with a batch size of 1. Further
details on baselines, model configurations, and other hyper-parameters are provided in Appendix C.

5.1 Results

For clarity, the quantitative results for the four tasks on both FFHQ and ImageNet are presented in
Tables 1 and 2, while qualitative comparisons are shown in Figures 3 and 4. The following subsections
provide a detailed discussion of each task. Due to space constraints, results for CelebA-HQ are
included in Table 5 and Figure 7 in Appendix D. Additional results are also presented in this section.

Gaussian Deblurring LFlow achieves the best perceptual quality across both datasets, attaining
the lowest LPIPS and highest SSIM—surpassing the second-best method by approximately 8.8%
in LPIPS on FFHQ. While PSLD slightly leads in PSNR, LFlow closes the gap within 1.18 dB
and avoids the over-smoothing and loss of fine detail often observed in PSLD outputs (e.g., blurred
backgrounds and softened skin textures). On ImageNet, LFlow similarly excels in perceptual quality,
restoring structures like the dog’s snout, fur, and facial wrinkles more faithfully. The reconstructions

7



Table 1: Quantitative evaluation of inverse problem solving on FFHQ samples of the validation dataset. Bold
and underline indicates the best and second-best respectively. The methods shaded in gray are in pixel space.

Deblurring (Gaussian) Deblurring (Motion) SR (×4) Inpainting (Box)

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LFlow (ours) 29.10 0.837 0.166 30.04 0.849 0.168 29.12 0.841 0.176 23.85 0.867 0.132

SITCOM [60] 30.42 0.828 0.237 28.78 0.828 0.183 29.26 0.833 0.191 24.12 0.839 0.198
DAPS [37] 28.52 0.789 0.231 29.00 0.831 0.252 29.38 0.826 0.197 24.83 0.819 0.191
DMplug [51] 27.43 0.784 0.240 27.95 0.817 0.243 29.45 0.838 0.183 22.55 0.807 0.220
Resample [36] 28.73 0.801 0.201 29.19 0.828 0.184 28.90 0.804 0.189 20.40 0.825 0.243
MPGD [38] 29.34 0.815 0.308 27.98 0.803 0.324 27.49 0.788 0.295 20.58 0.806 0.324
PSLD [33] 30.28 0.836 0.281 29.21 0.812 0.303 29.07 0.834 0.270 24.21 0.847 0.169
OT-ODE [45] 29.73 0.819 0.198 28.15 0.792 0.238 28.56 0.823 0.198 25.77 0.751 0.225
ΠGDM [22] 28.62 0.809 0.182 27.18 0.773 0.223 27.78 0.815 0.201 26.82 0.767 0.214

Figure 3: Qualitative results on FFHQ test set. Row 1: Deblur (gaussian), Row 2: Deblur (motion), Row 3:
SR×4, Row 4: Inpainting. Our approach better preserves fine image details than latent-based diffusion methods.

remain sharp and natural, free from the spurious high-frequency artifacts or texture distortions that
affect other approaches.

Motion Deblurring LFlow reconstructs motion-blurred scenes with strong structural consistency
and minimal artifacts, effectively preserving sharp transitions along motion boundaries. Fine de-
tails—such as hair contours, facial edges, and accessories—are recovered with smooth gradients
and natural appearances. Without introducing ringing or over-enhancement, LFlow balances fidelity
and realism across both FFHQ and ImageNet, achieving state-of-the-art performance on all met-
rics. Notably, LFlow improves LPIPS by a clear margin of 0.015 over the second-best method,
SITCOM, on FFHQ, reflecting its ability to retain high-frequency content while maintaining spatial
coherence—qualities that are visually evident in the restored hair and facial structures.

Super-Resolution High-frequency structures such as hair strands, floral patterns, and facial details
are reconstructed with remarkable clarity by our method, without the over-sharpening or softness
often observed in competing approaches. On FFHQ, it achieves a perceptual gain of 0.021 LPIPS
over the next-best method, while also maintaining competitive PSNR. On ImageNet, it establishes
a clear lead across all metrics, with an LPIPS margin of 0.018. These improvements translate to
visually cleaner textures and more coherent spatial gradients. Unlike MPGD, which may produce
overly synthetic details, or PSLD and Resample, which occasionally yield hazy regions, our approach
preserves the natural appearance of fine structures while avoiding haloing and texture overshoot.

Inpainting When completing missing regions, LFlow excels in producing semantically coherent
and perceptually consistent content that blends naturally with surrounding areas. On FFHQ, it
surpasses the second-best method in LPIPS by a margin of 0.037 while also achieving the highest
SSIM, reflecting both perceptual sharpness and structural accuracy. On ImageNet, it continues
to lead in LPIPS and SSIM, recovering fine textures and edges with minimal boundary artifacts.
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Table 2: Quantitative results of inverse problem solving on ImageNet samples of the validation dataset. Bold
and underline indicates the best and second-best respectively. The methods shaded in gray are in pixel space.

Deblurring (Gaussian) Deblurring (Motion) SR (×4) Inpainting (Box)

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LFlow (ours) 25.55 0.697 0.328 26.10 0.711 0.344 25.29 0.696 0.338 21.92 0.772 0.227

SITCOM [60] 25.38 0.672 0.388 24.78 0.686 0.382 25.62 0.687 0.374 20.34 0.698 0.291
DAPS [37] 24.12 0.681 0.413 25.97 0.706 0.362 25.18 0.667 0.356 21.13 0.701 0.286
Resample [36] 25.04 0.665 0.408 24.32 0.623 0.390 24.81 0.683 0.404 19.42 0.663 0.305
MPGD [38] 24.27 0.695 0.397 24.81 0.662 0.404 25.50 0.648 0.398 17.05 0.672 0.324
PSLD [33] 26.79 0.721 0.372 25.45 0.692 0.351 26.16 0.692 0.363 20.58 0.687 0.274
ΠGDM [22] 25.27 0.636 0.332 23.03 0.617 0.347 24.73 0.629 0.359 22.13 0.589 0.361

Figure 4: Qualitative results on ImageNet test set. Row 1: Deblur (gaussian), Row 2: Deblur (motion), Row 3:
SR×4, Row 4: Inpainting. Our method reconstructs fine image details more faithfully than the baselines.

In contrast to methods that may introduce visible seams, blotchy patterns, or inconsistent colors,
LFlow reconstructs faces, objects, and natural scenes with smoother transitions and well-aligned
local details—resulting in reconstructions that appear complete and visually seamless.

Perceptual–Fidelity Trade-off While LFlow occasionally reports slightly lower PSNR than pixel-
fidelity-oriented baselines such as PSLD, this reflects the well-known trade-off between distortion
and perception. Our approach consistently achieves substantially lower LPIPS and sharper, more
natural reconstructions, indicating that it prioritizes perceptual realism and fine-detail preservation
over pixel-wise averaging effects that often inflate PSNR.

5.2 Ablation Study

Posterior Covariance To examine how the time-dependent posterior covariance influences overall
performance, we conducted a series of ablation studies. As shown in Table 3, adapting the posterior
covariance (labeled Cov_LFlow) provides systematic gains over the baseline “Cov_ΠGDM”. Across
both FFHQ and ImageNet, Cov_LFlow yields higher PSNR and lower LPIPS for deblurring and ×4
SR, indicating that LFlow helps reduce perceptual artifacts while preserving fine details. Figure 6
presents qualitative comparisons between Cov_LFlow and Cov_ΠGDM on FFHQ. Across both motion
deblurring and inpainting, Cov_LFlow yields sharper facial structures, cleaner textures, and fewer
artifacts. For motion deblurring, it better restores contours and eye details without ringing, while
inpainting results show improved shading consistency and reduced boundary errors. These visual
observations align with the quantitative improvements reported in Table 3.

Starting Time ts We also investigated the impact of the starting time ts on the results. Figure 5
illustrates the impact of varying the start time ts for the flow process (SR task). We see that overly
large ts values tend to slightly degrade perceptual quality, whereas overly small ts values can cause
excessive smoothing or artifacts. The plot indicates that an intermediate choice of ts (around 0.7–0.8)
strikes a favorable balance, leading to consistently lower LPIPS on both FFHQ and ImageNet.
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Table 3: Ablations on the effect of Cov[z0|zt]. Bold indicates the best.

Dataset FFHQ ImageNet

Deblur (G) Inpainting Deblur (M) SR (×4)

PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

Cov_LFlow 29.10 0.166 23.85 0.132 26.10 0.344 25.29 0.338

Cov_ΠGDM 29.04 0.179 22.69 0.151 25.22 0.363 24.80 0.351
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Figure 5: Ablation study on the
start time ts.

Table 4: Average inference time (seconds per image)
for latent-based inverse solvers on ImageNet samples.
Timings are measured on an NVIDIA 3090 GPU.

Method Gaussian Deblur SR × 4

Resample [36] 550.26s 410.68s
MPGD [38] 566.58s 548.96s
PSLD [33] 705.31s 675.85s
SITCOM [60] 345.60s 328.12s

LFlow 267.76s 227.92s
LFlow (Cov_ΠGDM) 477.95s 406.02s

Figure 6: Visual results on the effect of Cov[z0|zt].

Inference Time To highlight the practical advantages of posterior covariance modeling beyond
standard evaluation metrics, we report the average inference time per image in Table 4. Despite using
an adaptive ODE solver with potentially higher NFE, LFlow achieves significantly faster inference
than prior latent-based solvers. This efficiency stems from faster convergence and more accurate
trajectory estimation. The variant Cov_ΠGDM, which employs a less accurate covariance, converges
more slowly—demonstrating the importance of proper covariance modeling. Notably, PSLD runs for
1000 iterations and Resample for 500, yet both are slower than LFlow.

6 Discussions

In this paper, we present LFlow, which efficiently addresses linear inverse problems by utilizing flow
matching in the latent space of pre-trained autoencoders without additional training. Based on a
justified latent Gaussian representation assumption, our approach introduces a theoretically sound,
time-dependent latent posterior covariance that enhances gradient-based inference. Experimental
results across such tasks as deblurring, super-resolution, and inpainting demonstrate that LFlow
outperforms current latent diffusion models in reconstruction quality.

Limitation. One limitation of LFlow lies in its runtime: the current implementation can require
approximately 3:30–10 minutes to solve inverse problems on an NVIDIA RTX 3090 GPU, with
Gaussian deblurring and super-resolution averaging 2:30–6 minutes, and motion deblurring and
inpainting taking around 3:30–10 minutes. While this is more efficient than existing latent diffusion
solvers, as demonstrated in our ablation studies, it may still pose challenges in time-sensitive
applications. Nonetheless, the improved reconstruction quality and the efficiency gains achieved
during training help mitigate this drawback.

Future work. Future work will focus on optimizing the solver and investigating alternative numerical
integration schemes to further reduce inference time. In addition, we plan to extend LFlow to improve
its robustness under distributional shifts, enabling broader applicability to real-world scenarios and
downstream tasks.
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A Proofs

Lemma A.1 (Tweedie’s Mean Formula ). Suppose the joint distribution of z0 and zt factors as

pt(z0, zt) = p(z0) pt(zt | z0)

with

pt(zt | z0) = N
(
zt | α(t) z0, σ(t)2 I

)
.

Then

E
[
z0 | zt

]
=

1

α(t)

(
zt + σ(t)2∇zt log pt(zt)

)
. (22)

Proof. Starting from the definition of the score,

∇zt
log pt(zt) =

∇zt
pt(zt)

pt(zt)
=

1

pt(zt)
∇zt

∫
pt(z0, zt) dz0

=
1

pt(zt)

∫
∇zt

(
pt(z0, zt)

)
dz0 =

1

pt(zt)

∫
pt(z0, zt)∇zt log pt(z0, zt) dz0

=

∫
pt(z0 | zt)∇zt

log pt(zt | z0) dz0 =

∫
pt(z0 | zt)

1

σ(t)2
(
α(t) z0 − zt

)
dz0

=
1

σ(t)2

(
α(t)E

[
z0 | zt

]
− zt

)
.

Rearranging completes the proof.

Lemma A.2 (Tweedie’s Covariance Formula). For any distribution p(z0) and

pt(zt | z0) = N
(
zt | α(t) z0, σ(t)2 I

)
,

the posterior pt(z0 | zt) is also Gaussian with mean E[z0 | zt] and covariance Cov[z0 | zt]. These
are connected to the score function ∇zt

log pt(zt) via

Cov[z0 | zt] =
σ(t)2

α(t)2

(
I + σ(t)2∇2

zt
log pt(zt)

)
. (23)

Proof. We start with the Hessian of log pt(zt):

∇2
zt

log pt(zt) = ∇zt

(
∇⊤

zt
log pt(zt)

)
=

∂

∂ztj

(∂ log pt(zt)

∂zti

)
= ∇zt

(α(t)E[z0 | zt]− zt
σ(t)2

)⊤
=

1

σ(t)2
∇zt

(
α(t)E[z0 | zt] − zt

)⊤
=

α(t)

σ(t)2
∇zt

(
E[z0 | zt]⊤

)
− 1

σ(t)2
I

=
α(t)

σ(t)2

∫
pt(z0 | zt)∇zt

log
(pt(zt | z0)

pt(zt)

)
z⊤0 dz0 −

1

σ(t)2
I

=
( α(t)

σ(t)2

)2 ∫
pt(z0 | zt)

(
z0 − E[z0 | zt]

)
z⊤0 dz0 −

1

σ(t)2
I

=
( α(t)

σ(t)2

)2 (
E[z0 z⊤0 | zt] − E[z0 | zt]E[z0 | zt]⊤

)
︸ ︷︷ ︸

Cov[z0|zt]

− 1

σ(t)2
I.

Solving for Cov[z0 | zt] yields the stated formula.
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Lemma A.3 (Connection between Posterior Mean and Vector Field). Let zt = α(t) z0 + σ(t) z1 be
a one-sided interpolant, where z0 ∼ pdata and z1 ∼ N (0, I). Then the vector field v(zt, t) satisfies

v(zt, t) =
σ̇(t)

σ(t)
zt +

(
α̇(t) − σ̇(t)α(t)

σ(t)

)
E[z0 | zt]. (24)

Proof. Starting from the definition,

v(zt, t) = E
[
α̇(t) z0 + σ̇(t) z1

∣∣ zt] = α̇(t)E[z0 | zt] + σ̇(t)E[z1 | zt].

where σ̇(t), α̇(t) represent the first-order time derivatives of σ(t) and α(t), respectively. Noting that

E[z1 | zt] =
zt − α(t)E[z0 | zt]

σ(t)
,

we obtain

v(zt, t) = α̇(t)E[z0 | zt] + σ̇(t)
zt − α(t)E[z0 | zt]

σ(t)
=

σ̇(t)

σ(t)
zt +

(
α̇(t) − σ̇(t)α(t)

σ(t)

)
E[z0 | zt].

Lemma A.4 (Cramér–Rao inequality). Let µ(dx) = exp(−Φ(x))dx be a probability measure on
Rd, where Φ : Rd → R is twice continuously differentiable 1. Then for any f ∈ C1(Rd),

Varµ(f) ≥
〈
Eµ[∇f ],

(
Eµ[∇2Φ]

)−1 Eµ[∇f ]
〉
. (25)

Proof. For comprehensive proofs of the Cramér–Rao inequality, we refer readers to [77], and the
references cited therein.

Lemma A.5 (Posterior Covariance Lower Bound via Cramér–Rao). Let zt = α(t)z0+σ(t)z1, where
z0 ∼ p(z0) ∝ exp(−Φ(z0)) with Φ ∈ C2(Rd), and z1 ∼ N (0, Id) are independent. Suppose:

(i) The likelihood is Gaussian: p(zt | z0) = N (α(t)z0, σ(t)
2Id).

(ii) Φ is γ-strongly convex, i.e., ∇2Φ(z0) ⪰ γId,

Then the posterior satisfies:

Cov(z0 | zt) ⪰
(
γ +

α(t)2

σ(t)2

)−1

Id. (26)

Proof. Consider assumption (i). By applying Bayes’ rule, the negative log-posterior is:

− log p(z0 | zt) = − log p(zt | z0)− log p(z0) + const.

Taking second derivatives yields:

∇2
z0
[− log p(z0 | zt)] =

α(t)2

σ(t)2
Id +∇2Φ(z0).

Using assumption (ii), ∇2Φ(z0) ⪰ γId, we obtain:

∇2
z0
[− log p(z0 | zt)] ⪰

(
γ +

α(t)2

σ(t)2

)
Id.

Finally, applying Lemma A.4, the Cramér–Rao bound gives:

Cov[z0 | zt] ⪰
(
Ez0|zt

[
∇2

z0
(− log p(z0 | zt))

])−1 ⪰
(
γ +

α(t)2

σ(t)2

)−1

Id.

1We write Φ ∈ C2(Rd) to denote that Φ has continuous first and second derivatives on Rd. Likewise,
f ∈ C1(Rd) means that f has a continuous gradient.
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A.1 Proof of Proposition 4.1

Proof. The proof follows from Appendix C of [78]. We assume that the time-dependent latent
variable zt ∈ Rd is generated by a known forward process of the form:

zt = α(t) z0 + σ(t) ε, ε ∼ N (0, I),

where z0 is the initial (clean) latent sample and α(t), σ(t) are scalar functions of time.

This process induces a time-indexed family of conditional distributions p̄t(z | y), where the expecta-
tion is taken over the joint distribution of z0 | y and the noise ε.

We define the characteristic function of the marginal at time t as:

p̂t(k) :=

∫
eik

⊤z p̄t(z | y) dz = Ẽ
[
eik

⊤zt

]
, (27)

where Ẽ denotes expectation over the conditional joint distribution of z0 | y and ε.

We now differentiate this characteristic function with respect to time:

∂tp̂t(k) = ∂t Ẽ
[
eik

⊤zt

]
= Ẽ

 d

dt
eik

⊤zt︸ ︷︷ ︸
=ik⊤żt·eik⊤zt

 = Ẽ
[
ik⊤żt · eik

⊤zt

]
.

Since zt is a deterministic function of z0 and ε, we may condition on zt and write:

∂tp̂t(k) = Ep̄t(z)

[
Ẽ
[
ik⊤żt | zt = z

]
· eik

⊤z
]

= ik⊤
∫

Ẽ [żt | zt = z]︸ ︷︷ ︸
:= ṽt(z)

·eik
⊤z p̄t(z | y) dz.

On the other hand, by the definition of the characteristic function:

∂tp̂t(k) = ∂t

∫
eik

⊤z p̄t(z | y) dz

=

∫
eik

⊤z ∂tp̄t(z | y) dz.

Equating the two expressions for ∂tp̂t(k), we obtain:∫
eik

⊤z ∂tp̄t(z | y) dz = ik⊤
∫

ṽt(z) e
ik⊤z p̄t(z | y) dz.

We now use the identity ∇ze
ik⊤z = ik · eik⊤z and integration by parts to move the gradient from

eik
⊤z to the density term:∫

eik
⊤z ∂tp̄t(z | y) dz = −

∫
eik

⊤z∇z · (ṽt(z) p̄t(z | y)) dz.

Finally, since both expressions match for all k, their inverse Fourier transforms must be equal. Hence,
we conclude:

∂tp̄t(z | y) = −∇z · (ṽt(z) p̄t(z | y)) .

This is the continuity (Fokker–Planck) equation with drift field ṽt. Therefore, integrating the ODE:

dzt
dt

= −ṽt(zt),

backward in time from z1 ∼ N (0, I), yields samples z0 ∼ p̄0(z | y), as desired.
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A.2 Conditional Vector Field

Proof. From Lemma A.3, the unconditional vector field is

v(zt, t) =
σ̇(t)

σ(t)
zt +

(
α̇(t) − σ̇(t)α(t)

σ(t)

)
E[z0 | zt].

By Lemma A.1, we have

E[z0 | zt] =
1

α(t)

(
zt + σ(t)2∇zt

log pt(zt)
)
.

Substituting this in,

v(zt, t) =
α̇(t)

α(t)
zt +

σ(t)

α(t)

(
α̇(t)σ(t) − σ̇(t)α(t)

)
∇zt

log pt(zt).

Conditioning on y, the score becomes

∇zt log pt(zt | y) = ∇zt log pt(zt) + ∇zt log pt(y | zt).

Hence, the conditional vector field is

v(zt,y, t) = v(zt, t) +
σ(t)

α(t)

(
α̇(t)σ(t) − σ̇(t)α(t)

)
∇zt log pt(y | zt).

Finally, choosing the linear schedule α(t) = 1− t and σ(t) = t simplifies this to

v(zt,y, t) = v(zt, t) −
t

1− t
∇zt

log pt(y | zt).

Approximating the unconditional velocity v(zt, t) by a parametric estimator vθ(zt, t) gives

v(zt,y, t) ≈ vθ(zt, t) −
t

1− t
∇zt log pt(y | zt).

A.3 Derivation of Posterior Mean (Eq. (14)) and Posterior Covariance (Eq. (15))

Proof. From Lemma A.3, we know

v(zt, t) =
σ̇(t)

σ(t)
zt +

(
α̇(t) − σ̇(t)α(t)

σ(t)

)
E[z0 | zt].

With α(t) = 1− t and σ(t) = t, one obtains

E[z0 | zt] = zt − tv(zt, t).

Meanwhile, from Lemmas A.1 and A.2, one can show

Cov[z0 | zt] =
σ(t)2

α(t)
∇T

zt
E[z0 | zt].

Thus,

Cov[z0 | zt] =
t2

1− t

(
I − t∇zt

vθ(zt, t)
)
.

A.4 Proof of Noise Conditional Score Approximation in Latent Space

Proof. We assume the likelihood and posterior over x0 are Gaussian:

p(y | x0) = N (Ax0, σ
2
yIm), p(x0 | xt) = N (m, Σ)

with:

x0,xt ∈ Rn, y ∈ Rm, A ∈ Rm×n, m := E[x0 | xt], Σ := Cov[x0 | xt]
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Define:
S := σ2

yIm +AΣA⊤ ∈ Rm×m, r := y −Am ∈ Rm

Then:
p(y | xt) =

∫
p(y | x0) p(x0 | xt) dx0 = N (Am, S)

The log-likelihood becomes:

log p(y | xt) = −
m

2
log(2π)− 1

2
log detS− 1

2
r⊤S−1r

We compute its gradient w.r.t. xt ∈ Rn in two parts:

(1) Log-determinant term:

∇xt
log detS = Tr

(
S−1∇xt

S
)
,

∂S

∂xt,i
= A ∂Σ

∂xt,i
A⊤

So,

∇xt
log detS =


Tr(A⊤S−1A · ∂Σ

∂xt,1
)

...
Tr(A⊤S−1A · ∂Σ

∂xt,n
)

 ∈ Rn

(2) Quadratic term:

∇xt

(
r⊤S−1r

)
= −2(∇xt

m)⊤A⊤S−1r−


Tr
(
S−1rr⊤S−1 · ∂S

∂xt,1

)
...

Tr
(
S−1rr⊤S−1 · ∂S

∂xt,n

)
 ∈ Rn

Putting both together:

∇xt
log p(y | xt) = −(∇xt

m)⊤A⊤S−1r−1

2


Tr
(
A⊤S−1A · ∂Σ

∂xt,1

)
+Tr

(
S−1rr⊤S−1 · ∂S

∂xt,1

)
...

Tr
(
A⊤S−1A · ∂Σ

∂xt,n

)
+Tr

(
S−1rr⊤S−1 · ∂S

∂xt,n

)


Assuming Cov[x0 | xt] is slowly varying w.r.t. xt, we neglect its gradient, yielding the approximation:

∇xt log p(y | xt) ≈ (∇xtm)
⊤A⊤S−1r

= (∇xt
E[x0 | xt])

⊤A⊤ (σ2
yIm +AΣA⊤)−1

(y −AE[x0 | xt])

Now, we aim to derive a principled extension of this formula to the latent space. Let z0 and zt
be latent variables, and Dφ be a (generally nonlinear) decoder such that x0 = Dφ(z0). Then the
likelihood can be written as:

p(y | z0) = N (y;ADφ(z0), σ
2
yI)

which is a Gaussian with nonlinear mean. We further assume:

p(z0 | zt) = N (z̄0,Σz), where z̄0 := E[z0 | zt], Σz := Cov[x0 | zt]

Since Dφ is nonlinear, p(y | zt) is not Gaussian. However, we approximate Dφ(z0) via a first-order
Taylor expansion around z̄0:

Dφ(z0) ≈ Dφ(z̄0) + JD(z̄0)(z0 − z̄0)

where JD(z̄0) is the Jacobian of Dφ at z̄0.
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Using this approximation, the distribution over x0 becomes approximately Gaussian:

E[x0 | zt] ≈ Dφ(z̄0), Cov[x0 | zt] ≈ JD(z̄0)Σz JD(z̄0)
⊤

We now apply the same posterior score approximation used in pixel space, but using the decoded
mean and propagated covariance:

∇zt log p(y | zt) ≈ (∇zt z̄0)
⊤
JD(z̄0)

⊤A⊤ (σ2
yI +AJD(z̄0)Σz JD(z̄0)

⊤A⊤)−1
(y −ADφ(z̄0))

This expression is now a well-defined and justified approximation to the posterior score in latent
space, based on first-order decoder linearization and Gaussian propagation.

A.5 Proof of Proposition 4.3

Proof. We aim to compute the Jacobian ∇zt
v(zt, t). From Lemma A.3, we have:

v(zt, t) =
σ̇(t)

σ(t)
zt +

(
α̇(t)− σ̇(t)α(t)

σ(t)

)
E[z0 | zt].

Taking the gradient with respect to zt, we obtain:

∇zt
v(zt, t) =

σ̇(t)

σ(t)
I +

(
α̇(t)− σ̇(t)α(t)

σ(t)

)
∇zt

E[z0 | zt].

From Lemma A.1, the posterior mean is given by:

E[z0 | zt] =
1

α(t)

(
zt + σ(t)2∇zt

log pt(zt)
)
,

and therefore its gradient is:

∇zt
E[z0 | zt] =

1

α(t)

(
I + σ(t)2∇2

zt
log pt(zt)

)
.

Substituting this into the expression for the Jacobian, we get:

∇zt
v(zt, t) =

σ̇(t)

σ(t)
I +

(
α̇(t)− σ̇(t)α(t)

σ(t)

)
· 1

α(t)

(
I + σ(t)2∇2

zt
log pt(zt)

)
.

Applying Lemma A.2, the Hessian of the log-density can be expressed as:

σ(t)2∇2
zt
log pt(zt) =

α(t)2

σ(t)2
Cov[z0 | zt]− I,

which implies:

I + σ(t)2∇2
zt
log pt(zt) =

α(t)2

σ(t)2
Cov[z0 | zt].

Therefore, the Jacobian becomes:

∇zt
v(zt, t) =

σ̇(t)

σ(t)
I +

(
α̇(t)− σ̇(t)α(t)

σ(t)

)
· α(t)
σ(t)2

Cov[z0 | zt].

By Lemma A.4, if p(z0) is γ-semi-log-convex, then the Cramér–Rao inequality yields:

Cov[z0 | zt] ⪰
(
γ +

α(t)2

σ(t)2

)−1

Id.

Substituting this bound into the Jacobian expression gives:

∇ztv(zt, t) ⪰

(
σ̇(t)

σ(t)
+

(
α̇(t)− σ̇(t)α(t)

σ(t)

)
· α(t)
σ(t)2

·
(
γ +

α(t)2

σ(t)2

)−1
)
Id. (28)

21



This expression simplifies to:

∇zt
v(zt, t) ⪰

(
γ σ(t) σ̇(t) + α(t) α̇(t)

γ σ(t)2 + α(t)2

)
Id. (29)

Finally, observe that the right-hand side can be written as:

η(t) :=
d

dt

(
1
2 log

(
α(t)2 + γ σ(t)2

))
=

γ σ(t) σ̇(t) + α(t) α̇(t)

γ σ(t)2 + α(t)2
,

∇zt
v(zt, t) ⪰ η(t)Id.

Now, assume the posterior covariance is positive semidefinite:

Cov[z0 | zt] ⪰ 0.

Define the scalar coefficient

c(t) :=

(
α̇(t)− σ̇(t)α(t)

σ(t)

)
· α(t)
σ(t)2

.

Then the Jacobian simplifies to

∇zt
v(zt, t) =

σ̇(t)

σ(t)
· I + c(t) · Cov[z0 | zt].

Since Cov[z0 | zt] ⪰ 0, the sign of c(t) determines the direction of the inequality:

• If c(t) ≥ 0, then c(t) · Cov[z0 | zt] ⪰ 0, and

∇ztv(zt, t) ⪰
σ̇(t)

σ(t)
· I.

• If c(t) < 0, then c(t) · Cov[z0 | zt] ⪯ 0, and

∇zt
v(zt, t) ⪯

σ̇(t)

σ(t)
· I.

In particular, for the common case where α(t) = 1 − t and σ(t) = t, we have c(t) < 0 for all
t ∈ (0, 1], and thus the Jacobian is upper bounded. This completes the proof.

A.6 Proof of Proposition 4.4

Proposition A.6 (Optimal Vector Field). Let z0 ∼ N (0, σ2
latr I) and z1 ∼ N (0, I) be independent.

Define zt = (1− t) z0 + t z1 for t ∈ [0, 1]. The optimal vector field v⋆(zt, t) that minimizes

argmin
v

E
[
∥v(zt, t)− (z0 − z1)∥2

]
is

v⋆(zt, t) =
(1− t)σ2

latr − t

(1− t)2 σ2
latr + t2

zt.

Proof. Since the loss function is quadratic and v⋆(zt, t) depends only on zt and t, the optimal vector
field is the conditional expectation:

v⋆(zt, t) = E [z0 − z1|zt] .

Given that z0 and z1 are independent Gaussian random variables, and zt is a linear combination of
z0 and z1, the joint distribution of z0, z1, and zt is multivariate Gaussian. We will compute E [z0|zt]
and E [z1|zt] using the properties of multivariate normal distributions.

First, we identify the covariance matrices:

Σz0z0
= σ2

latrI, Σz1z1
= I, Σz0z1

= 0,
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since z0 and z1 are independent.

Next, compute the covariance between z0 and zt:

Σz0zt
= E

[
z0z

⊤
t

]
= (1− t)E

[
z0z

⊤
0

]
+ tE

[
z0z

⊤
1

]
= (1− t)σ2

latrI.

Similarly, the covariance between z1 and zt:

Σz1zt = E
[
z1z

⊤
t

]
= (1− t)E

[
z1z

⊤
0

]
+ tE

[
z1z

⊤
1

]
= tI.

The variance of zt is:

Σztzt = (1− t)2Σz0z0 + t2Σz1z1 = (1− t)2σ2
latrI + t2I =

(
(1− t)2σ2

latr + t2
)
I = s2I,

where s2 = (1− t)2σ2
latr + t2.

The joint covariance matrix of z0, z1, and zt is:

Σw =

[
Σz0z0

Σz0z1
Σz0zt

Σz1z0
Σz1z1

Σz1zt

Σztz0 Σztz1 Σztzt

]
=

 σ2
latrI 0 (1− t)σ2

latrI
0 I tI

(1− t)σ2
latrI tI s2I

 .

Using the properties of conditional expectations for multivariate normals, we compute the conditional
expectations:

E [z0|zt] = Σz0zt
(Σztzt

)
−1

zt =
(1− t)σ2

latr

s2
zt,

E [z1|zt] = Σz1zt
(Σztzt

)
−1

zt =
t

s2
zt.

Therefore, the optimal vector field is:

v⋆(zt, t) = E [z0 − z1|zt] = E [z0|zt]−E [z1|zt] =
(
(1− t)σ2

latr

s2
− t

s2

)
zt =

(1− t)σ2
latr − t

(1− t)2σ2
latr + t2

zt.

A.7 Proof of Covariance in ΠGDM

(ΠGDM [22]). Let x0 ∼ N (0, σ2
data I), and consider the forward process

xt = α(t)x0 + σ(t)x1, x1 ∼ N (0, I).

Then the conditional covariance Cov[x0 | xt] is

Cov[x0 | xt] =
σ2

data σ(t)
2

α(t)2 σ2
data + σ(t)2

I. (30)

Proof. Again x0 and x1 are independent Gaussians, and xt is a linear combination. Thus x0,xt are
jointly Gaussian with

Cov[xt] = α(t)2 σ2
data I + σ(t)2 I,

and

Cov[xt,x0] = E
[
(xt − E[xt])(x0 − E[x0])

⊤] = α(t)Cov[x0] = α(t)σ2
dataI.

Using the standard formula for conditional covariances in a Gaussian,

Cov[x0 | xt] = Cov[x0] − Cov[x0,xt]Cov[xt]
−1 Cov[xt,x0].

Since Cov[x0] = σ2
data I , one obtains

Cov[x0 | xt] = σ2
data I −

(
α(t)σ2

data I
) (

α(t)2 σ2
data + σ(t)2

)−1 (
α(t)σ2

data I
)
,

which simplifies to

Cov[x0 | xt] =
σ2

data σ(t)
2

α(t)2 σ2
data + σ(t)2

I.
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B Closed-form Solutions for computing vector V in Eq. (13)

In this section, we derive efficient closed-form expressions for computing the vector v under the
assumption of isotropic posterior covariance, i.e. Cov[z0 | zt] = r(t)2 I . We begin by introducing
essential notation.

Notations.

• Let m ∈ {0, 1}d×1 represent the sampling positions in an image or signal.

• The downsampling operator associated with m is Dm ∈ {0, 1}∥m∥0×d. It selects only those
rows (i.e. entries) of a vector or matrix corresponding to the non-zero entries of m. For
example, s-fold downsampling with evenly spaced ones is denoted D↓s.

• D⇓s represents a distinct block downsampler, which averages s blocks (each of size d/s)
from a vector.

• F is the (unitary) Fourier transform matrix of dimension d× d, and F↓s is the analogous
transform matrix for signals of dimension d/s.

• v̂ denotes the Fourier transform of the vector v, and v̄ denotes its complex conjugate.

• The notation ⊙ refers to element-wise (Hadamard) multiplication. Divisions such as ‘/ ’ or
‘÷’ also apply element-wise when the vectors/matrices match in dimension.

Lemma B.1 (Downsampling Equivalence). Standard s-fold downsampling in the spatial domain is
equivalent to s-fold block downsampling in the frequency domain. Concretely,

D⇓s = F↓s D↓s F−1.

Proof. Please see [79, 29] for details.

B.1 Image Inpainting

The observation model for image inpainting can be written as

y = Dm︸︷︷︸
= A

x0 + n, (31)

where n is noise. A convenient zero-filling version of y can be defined as

ỹ = D⊤
m y = m ⊙ (x0 + ñ), ñ ∼ N (0, I).

The closed-form solution for v in image inpainting is then

v =
ỹ −

(
m⊙Dφ(E[z0 | zt])

)
σ2
y + r(t)2

.

Proof. Starting with the more general form,

v = D⊤
m

(
σ2
y I + r(t)2 DmD⊤

m

)−1(
y − DmDφ

(
E[z0 | zt]

))
.

Since DmD⊤
m = I on the support of y and

(
σ2
y I + r(t)2 I

)−1
= 1/(σ2

y + r(t)2), it simplifies to

v =
D⊤

m

(
y − DmDφ(E[z0 | zt])

)
σ2
y + r(t)2

=
ỹ − m⊙Dφ

(
E[z0 | zt]

)
σ2
y + r(t)2

.

Recalling that ỹ = D⊤
m y = m⊙ (x0 + ñ), we arrive at the stated closed-form solution.
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B.2 Image Deblurring

For image deblurring, the observation model is

y = x0 ∗ k + n, (32)

where k is the blurring kernel and ∗ is the circular convolution operator. Using the Fourier transform,
this can be written as

y = F−1 diag
(
k̂
)
F︸ ︷︷ ︸

= A

x0 + n,

where k̂ is the DFT of k. Under isotropic-covariance assumption, the closed-form solution for v is

v = F−1
(
¯̂
k ⊙

F
[
y −ADφ

(
E[z0 | zt]

)]
σ2
y + r(t)2 |k̂|2

)
.

Proof. Because A is a real linear operator of convolution type, we have AT = AH . Thus,

v = A⊤
(
σ2
y I + r(t)2AA⊤

)−1[
y − ADφ

(
E[z0 | zt]

)]
.

SubstitutingA = F−1diag(k̂)F and simplifying in the Fourier domain (using the diagonal structure
in frequency space), one obtains

v = F−1
(
¯̂
k ⊙

F
[
y −ADφ(·)

]
σ2
y + r(t)2 |k̂|2

)
.

B.3 Super-Resolution

Following [79], the super-resolution observation model is approximately

y =
(
x0 ∗ k

)
↓s + n, (33)

which, in “canonical form,” can be written as

y = D↓s F−1 diag
(
k̂
)
F x0 + n.

Hence, A = D↓s F−1diag(k̂)F . The closed-form solution under the isotropic assumption is

v = F−1
(
¯̂
k ⊙s

F↓s

[
y − ADφ

(
E[z0 | zt]

)]
σ2
y + r(t)2

(¯̂
k⊙ k̂

)
⇓s

)
,

where ⊙s denotes block-wise Hadamard multiplication.

Proof. Since AT = AH and
A = D↓s F−1 diag

(
k̂
)
F ,

we get A⊤ = F⊤ diag
(¯̂
k
) (
F−1

)⊤
D⊤

↓s. Applying Lemma B.1, namely D↓s F−1 = F−1
↓s D⇓s, and

its conjugate-transpose version, reduces the inverse
(
σ2
y I + r(t)2AA⊤

)−1

to diagonal form in the
“downsampled” Fourier domain. One obtains

v = F−1
(
¯̂
k ⊙s

F↓s
[
y − ADφ(·)

]
σ2
y + r(t)2

(
k̂⊙ ¯̂

k
)
⇓s

)
.

25



C Implementation details

Algorithm 1 LFlow Sampling: Posterior-Guided Latent ODE Inference for Linear Inverse Problems

1: Input: measurements y, encoder Eϕ, decoder Dφ, forward operator A, pre-trained vector field
vθ(·, t) for t ∈ [ts, 0], ts = 0.8, and K = 2.

2: Initialize. zts ← (1− ts) Eϕ(y) + ts z1, z1 ∼ N (0, I)

3: for t = ts down to 0 do
4: z̄0 ← zt − tvθ(zt, t) ▷ Posterior mean prediction Eq. (14)

5: r2(t)← t2

1−t (1− t∇zt
v⋆(zt, t)) ▷ Posterior covariance estimation Eq. (18)

6: ∇zt
log p(y | zt)← (∇zt

Dφ(z̄0))
⊤A⊤ (y−ADφ(z̄0))

(σ2
yI+ r2(t)AA⊤)

▷ Eq. (13)

7: for k = 1 to K do
8: vθ(zt,y, t)← vθ(zt, t)− t

1−t ∇zt log p(y | zt) ▷ K-step update of vector field Eq. (9)
9: end for

10: zt−∆t ← ODESolverStep (zt,vθ(zt,y, t))
11: end for
12: Return: x0 ← Dφ(z0)

C.1 LFlow

• For the solver parameters, we set the absolute and relative tolerances (atol and rtol) to
10−3 for inpainting and motion deblurring tasks, and to 10−5 for Gaussian deblurring and
super-resolution tasks.

• We set the hyperparameters to K = 2 and ts = 0.8 for all tasks. These values were selected
via ablation on validation performance and were found to balance guidance strength and
reconstruction fidelity across tasks.

• To ensure dimensional compatibility, the measurement y is upsampled (e.g., via bicubic
interpolation) to match the input size of the latent encoder. For consistency, we adopt the
same super-resolution and deblurring operators as in [29] across both our method and the
relevant baselines.

• For inpainting tasks, we incorporate the strategy proposed in the PSLD method [33] into our
LFlow algorithm. This strategy reconstructs missing regions that align seamlessly with the
known parts of the image, expressed as x0 = ATAx0+(I−ATA)Dφ(z0). Unlike the DPS
sampler, which generates the entire image and may lead to inconsistencies with the observed
data, this approach ensures that observations are directly applied to the corresponding parts
of the generated image, leaving unmasked areas unchanged [80]. For other tasks, such as
motion deblurring, Gaussian deblurring, and super-resolution, this extra step is unnecessary
since no box inpainting is involved, i.e., x0 = Dφ(z0).

C.2 Comparison methods

PSLD [33] applies an orthogonal projection onto the subspace of A between decoding and encoding
to enforce fidelity:

zt−1 = DDIM(zt)− ρ∇zt

(
∥y −ADφ (E[z0 | zt])∥22 + γ ∥E[z0 | zt]− Eϕ (Dφ (E[z0 | zt]))∥22

− Eϕ
(
A⊤y +

(
I −A⊤A

)
Dφ (E[z0 | zt])

) )
. (34)

We use a fixed step size of ρ and select γ as recommended in [36]. For our experiments, we rely on
the official PSLD implementation 2 with its default configurations. Specifically, we conduct ImageNet
experiments using Stable Diffusion v1.5, which is generally considered more robust compared to the
LDM-VQ4 models.

PSLD aims to ensure that latent variables remain close to the natural manifold by enforcing them
to be fixed points after autoencoding. While this approach seems to be theoretically justified, it has
proven empirically ineffective [34].

2https://github.com/LituRout/PSLD
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Resample [36] estimates first a clean latent prediction zest
0 (zt+1) from the previous sample zt+1

using Tweedie’s formula, as described in Eq. (22). This prediction is then used to update the latent
state via DDIM:

z′t = DDIM
(
zest
0 (zt+1) , zt+1

)
. (35)

The updated sample z′t is then projected back to a measurement-consistent latent variable zproj
t via:

N

(
zproj
t ;

σ2
t

√
ᾱtz

cond
0 + (1− ᾱt)z

′
t

σ2
t + (1− ᾱt)

,
σ2
t (1− ᾱt)

σ2
t + (1− ᾱt)

Ik

)
, (36)

where zcond
0 is a latent vector that satisfies the measurement constraint, obtained by solving the

following optimization problem:

zcond
0 ∈ argmin

z

1

2
∥y −A (Dφ(z))∥22 , initialized at zest

0 (zt+1) . (37)

Here, σ2
t is a tunable hyperparameter controlling the trade-off between the prior and the data fidelity,

and ᾱt is a predefined DDIM noise schedule parameter. For our experiments, we adopt the publicly
available implementation provided by the authors 3, using the pre-trained LDM-VQ4 models on
FFHQ and ImageNet [59], along with their default hyperparameters and a 500-step DDIM sampler.

Resample refines latent diffusion sampling by balancing the reverse-time prior from the unconditional
model with a measurement-informed likelihood centered on a consistent latent—ensuring the sample
aligns with both the data manifold and observed measurements.

MPGD [38] accelerates inference by computing gradients only with respect to the clean latent
estimate instead of the noisy input, thus avoiding heavy chain-rule expansions. Their gradient update
in latent space is as follows:

zt−1 = DDIM(zt)− η∇E[z0|zt] ∥y −A (Dφ(E[z0|zt]))∥2 . (38)

Note that in MPGD, we leveraged Stable Diffusion v1.5 as for PSLD. For more information, please
refer to the GitHub repository 4.

DAPS [37] 5 refines latent estimates via Langevin dynamics guided by a latent prior and a measure-
ment likelihood. The initial estimate z

(0)
0 is obtained by solving a probability flow ODE from zt

using the latent score model. At each inner iteration j = 0, . . . , N−1, the latent estimate z
(j)
0 ∈ Rd

is updated as follows:

z
(j+1)
0 = z

(j)
0 + ηt

(
∇

z
(j)
0

log p(z
(j)
0 | zt) +∇z

(j)
0

log p(y | z(j)0 )
)
+
√

2ηt ϵj , ϵj ∼ N (0, I).

(39)
Here, ηt denotes the Langevin step size. The first term reflects prior guidance via the latent score
model, while the second enforces consistency with the measurement through decoding and evaluating
the likelihood.

DAPS avoids the limitations of local Markovian updates in diffusion models by decoupling time steps
and directly sampling each noisy state zt from the marginal posterior p(zt | y). It performs posterior
sampling by alternating between posterior-guided denoising via MCMC and noise re-injection,
enabling large global corrections and improved inference in nonlinear inverse problems.

SITCOM (Step-wise Triple-Consistent Sampling) [60] enforces three complementary consistency
conditions—measurement, forward diffusion, and step-wise backward diffusion—allowing diffusion
trajectories to remain measurement-consistent with fewer reverse steps. By optimizing the input
of a pre-trained diffusion model at each step, SITCOM ensures triple consistency across the data
manifold, measurement space, and diffusion process, leading to efficient inverse problem solving.

At each step t, SITCOM enforces three consistencies:

3https://github.com/soominkwon/resample
4https://github.com/KellyYutongHe/mpgd_pytorch/
5https://github.com/zhangbingliang2019/DAPS
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(S1) Measurement-consistent optimization:

v̂t := argmin
v′
t

∥∥∥A
 1√

αt

C2︷ ︸︸ ︷[
v′
t −
√
1− ᾱt ϵθ(v

′
t, t)
]− y

∥∥∥2
2︸ ︷︷ ︸

C1

+λ ∥zt − v′
t∥22︸ ︷︷ ︸

C3

. (40)

(S2) Denoising:
ẑ′0 = 1√

αt

[
v̂t −

√
1− ᾱt ϵθ(v̂t, t)

]
, (41)

(S3) Sampling (Forward step):

zt−1 =
√
ᾱt−1 ẑ

′
0 +

√
1− ᾱt−1 ϵ. (42)

Together, these steps enforce C1: measurement, C2: backward trajectory, and C3: forward diffu-
sion consistency. For implementation details and hyperparameters, we rely on the official GitHub
repository 6.

SITCOM nudges the input to the denoiser at each diffusion step so its denoised output matches the
measurements while staying close to the current state. It then computes the clean estimate (Tweedie)
and re-noises via the forward kernel to keep the next input in distribution.

DMPlug [51] 7 views the entire reverse diffusion process R(·) as a deterministic function mapping
seeds to objects, and solves the inverse problem by optimizing directly over the seed z:

z∗ ∈ argmin
z

ℓ
(
y,A(R(z))

)
+Ω(R(z)), x∗ = R(z∗). (43)

Most existing DM-based methods for inverse problems interleave reverse diffusion with measurement
projections in a step-wise manner, but this often breaks both manifold feasibility (staying on the data
manifoldM) and measurement feasibility (satisfying {x | y = A(x)}). In contrast, DMPlug is not
step-wise: it preserves manifold feasibility by keeping the pretrained reverse process intact while
promoting y ≈ A(x) via global optimization.

ΠGDM [22] considers the following gradient update scheme

xt−1 = DDIM(xt)− η

(
(y −A (E [x0 | xt]))

⊤ (
r2tAA⊤ + σ2

yI
)−1A ∂E [x0 | xt]

∂xt

)⊤

. (44)

where η controls the step size, σy represents the noise level of the measurement, and rt is the time-
dependent scale for identity posterior covariance. For this method, we utilize the official, reliable
code provided by [29].

OT-ODE [45] extends the gradient guidance of ΠGDM [22] to ODE sampling via an optimal
transport path, resulting in a variance for the identity covariance as r2(t) = σ(t)2

α(t)2+σ(t)2 I . Moreover,
the conditional expectation E[x0 | xt] is computed from the velocity field vθ(xt, t), according to the
relation in A.3. For a fair comparison, we used the same solver as LFlow, i.e., the adaptive Heun.

6https://github.com/sjames40/SITCOM
7https://github.com/sun-umn/DMPlug
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D Additional Experiments and Ablations

D.1 CelebA-HQ (256 × 256 × 3).

Table 5: Quantitative results of linear inverse problem solving on CelebA-HQ samples of the validation dataset.
Bold and underline indicate the best and second-best respectively. The method shaded in gray is in pixel space.

Deblurring (Gauss) Deblurring (Motion) SR (×4) Inpainting (Box)

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LFlow (ours) 29.06 0.825 0.164 30.14 0.845 0.167 28.92 0.830 0.170 24.82 0.876 0.123

SITCOM [60] 28.74 0.792 0.275 28.05 0.776 0.324 28.45 0.812 0.208 21.45 0.733 0.216
DAPS [37] 26.66 0.773 0.314 27.22 0.766 0.251 28.29 0.798 0.227 21.15 0.807 0.202
Resample [36] 28.07 0.742 0.239 28.37 0.804 0.232 29.84 0.806 0.193 19.49 0.797 0.237
PSLD [33] 29.47 0.833 0.310 29.75 0.821 0.313 31.65 0.829 0.246 24.03 0.812 0.165
MPGD [38] 29.85 0.821 0.302 29.09 0.792 0.348 29.01 0.760 0.280 23.80 0.773 0.198
OT-ODE [45] 27.83 0.789 0.292 26.15 0.758 0.326 28.95 0.784 0.251 22.37 0.790 0.225
C-ΠGFM [48] 28.26 0.801 0.280 27.18 0.743 0.335 29.52 0.805 0.226 22.84 0.798 0.219

Figure 7: Qualitative results on CelebA-HQ test set. Row 1: Deblur (gauss), Row 2: Deblur (motion), Row 3:
SR×4, Row 4: Inpainting.

CelebA-HQ LFlow attains the lowest LPIPS across all four tasks and the highest SSIM in three of
four tasks. It reports LPIPS values of 0.164 (Gaussian deblurring), 0.167 (motion deblurring), 0.170
(super-resolution), and 0.123 (inpainting), surpassing the second-best method by 0.042 in inpainting.
PSNR remains competitive throughout, ranking first in two tasks and remaining close elsewhere.
These quantitative gains are reflected in the visual results: for both deblurring tasks, LFlow restores
sharper eye contours, facial edges, and skin textures while avoiding ringing or oversharpening seen in
MPGD and PSLD. In super-resolution, it preserves fine details such as eyelashes and lips with smooth
transitions, maintaining natural gradients without introducing artifacts. In the inpainting task, LFlow
offers semantically consistent completions with coherent tone and geometry—whereas other methods
exhibit mismatched shading, seams, or patchy textures. These results highlight LFlow’s ability to
recover fine structures while maintaining perceptual realism across diverse facial reconstructions.
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D.2 CelebA-HQ (512 × 512 × 3).

We further tested and evaluated our method on the high-resolution CelebA-HQ dataset (512 × 512 ×
3), demonstrating its robust capabilities in handling complex image processing tasks. In Figure 8, we
showcase the effectiveness and versatility of our approach in enhancing image quality across various
tasks.

Figure 8: Additional results on CelebA-HQ 512 × 512 dataset. Row 1: Deblur (gaussian), Row 2: Deblur
(motion), Row 3: SR×4, Row 4: Inpainting.
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D.3 FID Score Results

Table 6: FID ↓ scores across four inverse problems on FFHQ, CelebA-HQ, and ImageNet.
Deblurring (Gaussian) Deblurring (Motion) SR (×4) Inpainting (Box)

Method FFHQ CelebA ImageNet FFHQ CelebA ImageNet FFHQ CelebA ImageNet FFHQ CelebA ImageNet

LFlow (ours) 52.48 47.79 88.76 57.11 48.53 82.89 58.49 51.07 92.28 34.40 30.78 117.45

SITCOM [60] 74.80 76.72 72.95 70.18 70.26 68.64 67.30 62.58 90.55 45.25 50.05 123.62
DAPS [37] 72.45 65.58 75.51 76.23 67.23 89.17 65.78 48.47 83.42 51.28 45.59 126.36
DMplug [51] 78.50 —— —— 75.35 —— —— 80.86 —— —— 60.36 —— ——
Resample [36] 59.64 52.47 63.35 69.74 63.12 85.90 78.62 59.47 105.25 55.60 68.31 138.84
MPGD [38] 64.20 61.37 102.58 70.32 88.7 146.58 90.55 84.43 119.12 84.53 53.15 154.28
PSLD [33] 62.49 57.92 87.39 68.94 75.21 124.73 66.22 70.66 80.58 43.89 40.18 119.12
OT-ODE [45] 56.72 62.23 —— 53.55 58.12 —— 60.71 47.83 —— 40.31 37.92 ——
C-ΠGFM [48] —— 56.85 —— —— 50.54 —— —— 45.10 —— —— 34.96 ——

PSNR and SSIM are commonly used recovery metrics that quantify pixel-level fidelity, while LPIPS
and FID are considered perceptual metrics that assess high-level semantic similarity or perceptual
quality. In this paper, we focus on image reconstruction tasks from noisy measurements. In such
settings, perceptual metrics like FID—although effective for evaluating generative models that
prioritize visual realism—primarily measure distribution-level similarity and may overlook structural
details, especially when fine-grained information is critical. Moreover, FID can be misleading when
reconstructed images appear perceptually plausible but deviate significantly from the ground truth
[49]. In contrast, PSNR and SSIM offer objective evaluations of noise suppression and content
preservation, which are crucial in our experiments. That said, we report FID scores across all three
datasets considered above for four different tasks. As shown in Table 6, our algorithm achieves a
balanced trade-off between recovery and perceptual metrics. In the task of noisy image reconstruction,
it not only delivers the best recovery metrics but also achieves strong perceptual scores.

D.4 Ablation on hyperparameter K

To evaluate the effect of hyperparameter K, we conducted an ablation study on the FFHQ dataset. As
shown in Table 7, setting K=2 yields slightly better average performance across tasks compared to
K=1. Although we also tested K ≥ 3, the results showed negligible improvements while incurring
higher computational costs. For this reason, we adopt K=2 as it provides consistent gains while
maintaining reasonable inference time.

Table 7: Ablation of parameter K on FFHQ. Increasing K offers marginal gains with higher cost; K = 2
achieves the best trade-off between performance and efficiency.

GDB MDB SR BIP

K PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

1 28.72 0.829 0.172 29.71 0.842 0.173 28.80 0.834 0.183 23.59 0.859 0.136
2 29.10 0.837 0.166 30.04 0.849 0.168 29.12 0.841 0.176 23.85 0.867 0.132

D.5 Comparing LFlow with supervised methods

We incorporated supervised results obtained using a conditional diffusion model. Our method offers
several key advantages over supervised inverse approaches such as SR3 [81] and InvFussion [82]:

• LFlow is a zero-shot method that generalizes across diverse tasks without retraining, whereas
supervised methods require training a separate model for each specific task.

• LFlow is robust to varying degradation types, while supervised methods often exhibit poor
generalization when faced with distribution shifts.

• LFlow achieves significantly better performance on certain datasets and resolutions— for
example, FFHQ at 256× 256.

These advantages are clearly demonstrated in the results presented in Table 8.
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Table 8: Comparison of LFlow with supervised baselines on two tasks: super-resolution and box inpainting.
For super-resolution, we compare against SR3, trained on the ImageNet dataset. For box inpainting, we compare
against InvFussion, trained on the FFHQ dataset.

Method SR Inpainting (Box)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

SR3 [81] 24.65 0.708 0.347 – – –
InvFussion [82] – – – 20.12 0.827 0.215
LFlow (ours) 25.29 0.696 0.338 23.85 0.867 0.132

D.6 Pretrained Models and Algorithm Conversion

Conversion of Pretrained Models. Conversion from discrete-time diffusion model to continuous-
time flow model was first introduced in [45] by aligning the signal-to-noise ratio (SNR) of the two
processes. In principle, this enables mapping discrete diffusion steps {τ} to continuous flow times
t and rescaling the noise accordingly. However, this mapping is practically valid under restrictive
assumptions—namely, that both trajectories follow the same distributional path (e.g., Gaussian) and
employ a linear noise schedule. While such conversion is feasible for pretrained models with similar
linear schedules, it becomes non-trivial for discrete-time latent diffusion models (e.g., LDMs, Stable
Diffusion). Their custom nonlinear schedules break the clean SNR alignment, often requiring the
solution of nonlinear or even cubic equations to infer consistent flow times.

Algorithmic Conversion. Beyond converting the pretrained model itself, one must also consider the
sampling algorithm. Several baselines are inherently discrete-time: their update rules depend on the
availability of a finite noise grid and stepwise re-noising kernels. Such designs do not always admit a
continuous-time analogue, and therefore direct conversion is not universally possible. Nevertheless,
we successfully extended two representative methods, PSLD and MPGD, to the continuous-time
flow setting. By reformulating their projection–correction steps as infinitesimal updates within an
ODE sampler, we obtain continuous-time counterparts that closely follow the spirit of the original
algorithms while operating with a pretrained flow prior. In contrast, algorithms that fundamentally
rely on discrete re-noising (e.g., DAPS) cannot be faithfully mapped without substantial redesign.

Table 9: Quantitative comparison of LFlow results on FFHQ dataset against continuous-time versions of
CT-MPGD and CT-PSLD across four inverse problems. Bold and underline indicate the best and second-best
respectively.

Deblurring (Gaussian) Deblurring (Motion) SR (×4) Inpainting (Box)

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LFlow (ours) 29.10 0.837 0.166 30.04 0.849 0.168 29.12 0.841 0.176 23.85 0.867 0.132

PSLD [33] 30.28 0.836 0.281 29.21 0.812 0.303 29.07 0.834 0.270 24.21 0.847 0.169
CT-PSLD 27.11 0.783 0.332 25.98 0.770 0.356 26.53 0.772 0.331 20.60 0.790 0.252
MPGD [38] 29.34 0.815 0.308 27.98 0.803 0.324 27.49 0.788 0.295 20.58 0.806 0.324
CT-MPGD 24.96 0.765 0.343 24.30 0.751 0.375 24.69 0.740 0.338 20.01 0.780 0.353

Discussion. The results in Table 9 clearly show that algorithmic conversion is non-trivial. Although
we successfully reformulated PSLD and MPGD into their continuous-time counterparts (CT-PSLD
and CT-MPGD), both suffer a significant performance drop compared to their original discrete-time
versions. Importantly, we kept the comparison fair by employing the same ODE solver (adaptive
Heun) as used in LFlow. This indicates that simply replacing the diffusion prior with a flow prior,
while retaining the algorithmic structure, does not guarantee competitive performance in continuous
time. Instead, the gap highlights the necessity of designing sampling strategies that are intrinsically
compatible with ODE-based flow formulations, as achieved in our proposed LFlow framework.
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D.7 Additional Visual Results (Best Viewed When Zoomed in)

Figure 9: Additional Gaussian deblurring results on the FFHQ dataset.

Figure 10: Additional Gaussian deblurring results on the CelebA-HQ dataset.
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Figure 11: Additional motion deblurring results on the CelebA-HQ dataset.

Figure 12: Additional motion deblurring results on the ImageNet dataset.
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Figure 13: Additional Super-resolution results on the FFHQ dataset.

Figure 14: Additional Super-resolution results on the CelebA-HQ dataset.
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Figure 15: Additional Inpainting results on FFHQ dataset.
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Figure 16: Additional Inpainting results on CelebA-HQ dataset.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We only claim to present a new method, which we describe in Section 4. We
compare our method against previous ones in Sections 5.1 and 5.2.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitations in Section 2.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: For each theoretical result presented in the paper, we provide the full set
of assumptions explicitly and include complete, step-by-step proofs. All derivations are
checked for mathematical correctness, with no steps omitted. Where appropriate, we include
formal statements of assumptions (e.g., regularity or convexity conditions), and provide full
proofs either in the main text or in the appendix to ensure transparency and reproducibility.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: The manuscript describes all methods and experiments. Algorithms are
provided for the methods. The code will be available in a future update.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We plan to publicly release the full codebase and instructions to reproduce
all experimental results upon acceptance. At submission time, we are unable to share the
code due to anonymity requirements and ongoing cleanup of the repository. We confirm
that all experiments are reproducible and will be documented with detailed scripts and setup
instructions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experiment details are provided in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Computing error bars for Table 1, 2, and 7 would require retraining every
model several times for different datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: All experiments were conducted on a local machine equipped with a single
NVIDIA RTX 3090 GPU. Experiment details are provided in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed and agree with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The FFHQ, ImageNet and CelebA datasets are used under their respective
non-commercial research licenses and cited appropriately.
Any third-party code or pretrained models (e.g., for flow matching) are used under compati-
ble open-source licenses (e.g., MIT) and are cited in the main paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: : The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not involve large language models (LLMs) in any part of the
core methodology. LLMs were not used for designing algorithms, generating model outputs,
or conducting any experiments. They were only used for minor writing support and clarity
improvement, which does not impact the scientific originality or rigor of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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