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ABSTRACT

The recent wave of generative AI has sparked unprecedented global attention,
with both excitement and concern over potentially superhuman levels of artifi-
cial intelligence: models now take only seconds to produce outputs that would
challenge or exceed the capabilities even of expert humans. At the same time,
models still show basic errors in understanding that would not be expected even
in non-expert humans. This presents us with an apparent paradox: how do we rec-
oncile seemingly superhuman capabilities with the persistence of errors that few
humans would make? In this work, we posit that this tension reflects a divergence
in the configuration of intelligence in today’s generative models relative to intel-
ligence in humans. Specifically, we propose and test the Generative AI Paradox
hypothesis: generative models, having been trained directly to reproduce expert-
like outputs, acquire generative capabilities that are not contingent upon—and can
therefore exceed—their ability to understand those same types of outputs. This
contrasts with humans, for whom basic understanding almost always precedes the
ability to generate expert-level outputs. We test this hypothesis through controlled
experiments analyzing generation vs. understanding in generative models, across
both language and image modalities. Our results show that although models can
outperform humans in generation, they consistently fall short of human capabili-
ties in measures of understanding, showing weaker correlation between generation
and understanding performance, and more brittleness to adversarial inputs. Our
findings support the hypothesis that models’ generative capability may not be con-
tingent upon understanding capability, and call for caution in interpreting artificial
intelligence by analogy to human intelligence.

1 INTRODUCTION

“What I cannot create, I do not understand.” – Richard Feynman

The recent wave of generative AI, from ChatGPT to GPT4 to DALL-E 2/3 to Midjourney, has
sparked unprecedented global attention—with equal parts excitement about the expansive potential
applications, and deep concern about the dangers of “intelligence1” that seems even to exceed that of
humans. Indeed, in both language and visual domains, current generative models take only seconds
to produce outputs that could challenge experts with years of skill and knowledge, providing com-
pelling motivation for claims that models have surpassed human intelligence (Bubeck et al., 2023;
Surameery & Shakor, 2023). At the same time, probing of models’ outputs continues to uncover ba-
sic errors in understanding that would be unexpected even for non-expert humans (Dziri et al., 2023;
Arkoudas, 2023; Qin et al., 2023). This presents us with an apparent paradox: how do we reconcile

∗ First co-authors.
1“Intelligence” and “understanding” here refer particularly to demonstrable aspects of models and technol-

ogy (as in “Artificial Intelligence” or “Natural Language Understanding”).

1



Published as a conference paper at ICLR 2024

The story only mentions  
one design being sketched […]B. Go to the bar

Write a two paragraph story  
about 3 people building a house

a blue backpack  
and a red orange

Austin had a rough day at work  
and decided to go to the bar.  
 Austin had a drink that night.  

Why did Austin do this?

[…] Finally, after years of saving 
money and sketching designs, they 

decided to build their dream house. 
Bob with his architectural expertise, 
sketched a breathtaking design of a 

two storied country house.

Austin likely went to the bar and had 
a drink because he had a rough day 
at work and wanted to relax, unwind, 
or temporarily escape from the stress 

and frustrations he experienced 
during the day.
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Figure 1: Generative AI in language and vision can produce high-quality generations. Paradoxically, however,
models have trouble demonstrating selective (A,C) or interrogative (B,D) understanding of these modalities.

the seemingly superhuman capabilities of these models with the persistent presence of fundamental
errors that most humans could correct?

We posit that this tension arises because the configuration of capabilities in today’s generative mod-
els diverges from the configuration of intelligence in humans. Specifically, in this work we propose
and test the Generative AI Paradox hypothesis: generative models, having been trained directly to
reproduce expert-like outputs, acquire generative capabilities that are not contingent upon—and can
therefore exceed—their ability to understand those same types of outputs. This contrasts with hu-
mans, for whom basic understanding nearly always serves as a prerequisite to the ability to generate
expert-level outputs (Gobet, 2017; Alexander, 2003; Berliner, 1994).

We test this hypothesis through controlled experiments analyzing generation and understanding ca-
pabilities in generative models, across language and visual modalities. We conceptualize “under-
standing” relative to generation via two angles: 1) given a generative task, to what extent can models
select correct responses in a discriminative version of that same task? and 2) given a correct gener-
ated response, to what extent can models answer questions about the content and appropriateness of
that response? This results in two experimental settings, selective and interrogative, respectively.

Though our results show variation across tasks and modalities, a number of clear trends emerge. In
selective evaluation, models often match or even outperform humans on generative task settings, but
they fall short of human performance in discriminative (understanding) settings. Further analysis
shows that discrimination performance is more tightly linked to generation performance in humans
than in GPT4, and human discrimination performance is also more robust to adversarial inputs, with
the model-human discrimination gap increasing with task difficulty. Similarly, in interrogative eval-
uation, though models can generate high-quality outputs across tasks, we observe frequent errors in
models’ ability to answer questions about those same generations, with model understanding perfor-
mance again underperforming human understanding. We discuss a number of potential reasons for
this divergence in capability configurations for generative models versus humans, including model
training objectives, and size and nature of input.

Our findings have a number of broader implications. First, the implication that existing conceptual-
izations of intelligence, as derived from experience with humans, may not be able to be extrapolated
to artificial intelligence—although AI capabilities in many ways appear to mimic or exceed human
intelligence, the contours of the capability landscape may diverge fundamentally from expected pat-
terns in human cognition. On the flip side, our findings advise caution when studying generative
models for insights into human intelligence and cognition, as seemingly expert human-like outputs
may belie non-human-like mechanisms. Overall, the generative AI paradox encourages studying
models as an intriguing counterpoint to human intelligence, rather than as a parallel.

2 THE GENERATIVE AI PARADOX

We begin by outlining the Generative AI Paradox and an experimental design to test it.
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2.1 OPERATIONAL DEFINITIONS

Figure 1 offers examples of the seemingly paradoxical behavior of generative models. In language
(column B), GPT4 is able to generate a compelling story about 3 friends building a house, but when
pressed on details of its own generated story, fails to correctly answer a simple question: GPT4
asserts that only one design was sketched in the story despite writing about years of “sketching
designs”. In vision (column C), a generator produces a correct image beyond average human capa-
bilities, yet the understanding model is unable to single out that correct generation against plausible
alternatives, despite selection being the seemingly “easier” task. In both cases, models meet or
exceed human generation abilities but lag in understanding.

Observations such as these motivate the Generative AI Paradox:

Generative models seem to acquire generation abilities more effectively than un-
derstanding, in contrast to human intelligence where generation is usually harder.

Testing this hypothesis requires an operational definition of each aspect of the paradox. First, what
it means for generation to be “more effective” than understanding for a given generative model mg ,
understanding model mu and task t, with human intelligence as a baseline. Taking g and u to be
some performance measures of generation and understanding, we formally state the Generative AI
Paradox hypothesis as:

g(human, t) = g(mg, t) =⇒ u(human, t)− u(mu, t) > ϵ (1)

Put simply, the hypothesis holds for a task t if a human who achieves the same generation perfor-
mance g as a model mg would be expected to achieve significantly (> ϵ for a reasonably large ϵ)
higher understanding performance u than a model mu does2. In simpler terms, models perform
worse on understanding than we would expect of humans with similarly strong generative capabili-
ties. In the language domain,

Generation is straightforward to operationally define: given a task input (question/prompt), gen-
eration is the production of observable content to satisfy that input. Thus, performance g can be
evaluated automatically or by humans (e.g. style, correctness, preference). While understanding is
not defined by some observable output, it can be tested by explicitly defining its effects.Thus, we
measure performance u by asking the following questions:

1. Selective evaluation. For a given task, which can be responded to generatively, to what extent can
models also select accurate answers among a provided candidate set in a discriminative version
of that same task? A common example of this is multiple choice question answering, which
is one of the most common ways to examine both human understanding and natural language
understanding in language models (Wang et al., 2019) (Figure 1, columns A, C). This tests the
performance aspect of understanding, i.e. the ability to identify the answer to a human input.

2. Interrogative evaluation. For a given generated model output, to what extent can models accu-
rately respond to questions about the content and appropriateness of that output? This is akin to
an oral examination in education (Sabin et al., 2021). (Figure 1, columns B, D ) This tests the
explainability aspect of understanding, i.e. the ability to comprehend one’s own answer.

These definitions of understanding provide us with a blueprint for evaluating the Generative AI
Paradox, allowing us to test whether Hypothesis 1 holds across modalities, tasks, and models.

2.2 EXPERIMENTAL OVERVIEW

Here, we provide a high-level road map for experiments informed by the definitions above. We
propose 2 sub-hypotheses to test across experimental settings, and provide cross-experiment details.

2.2.1 HYPOTHESES

Evaluating whether Hypothesis 1 holds for a given task requires establishing a human baseline,
specifically, the understanding performance we expect from a human with the same generation ca-

2To clarify, the paradox hypothesis is not restricted to the use of a single model to assess both generative
and understanding capabilitites; different models can be employed to test these two aspects independently.
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pabilities as the model. We define how such a baseline is established for both kinds of understanding
above, resulting in 2 sub-hypotheses.

Selective evaluation. Here, we explicitly measure human generation and understanding perfor-
mance to establish a baseline. We say Hypothesis 1 holds if models underperform in understanding
compared to humans with equivalent generation performance (or lower generation performance, as-
suming that if humans matched model generation they would do even better at understanding. The
sub-hypothesis is simply:

sub-hypothesis 1: models meet or exceed humans at generation while lagging at discrimination.

Interrogative evaluation. For the human baseline here, we assume that humans can answer sim-
ple questions of understanding about their own generations. For a given task input, we test how
accurate models are at answering questions on AI generated outputs and as the human baseline, as-
sume near-perfect accuracy on such questions for their own generations. The sub-hypothesis in this
case is:

sub-hypothesis 2: models struggle to answer simple questions about generated content, which hu-
mans could answer for their own generations.

2.2.2 MODELS AND EXPERIMENTS

We focus our study on the strongest current generative models, i.e., those driving interest and con-
cern among experts and the public. We investigate language and vision, modalities where recent
impressive progress has been made. We test language models for both generative and understanding
capabilities given strong performance in both areas, i.e. taking mu = mg . We test GPT4 (gpt-4)
and GPT3.5 (GPT3.5-turbo) in a zero-shot setting where we instruct models to output a response
given some background information (§A). In contrast, for vision, image generators show weaker un-
derstanding (Li et al., 2023a) than dedicated understanding models, and so we assume mu ̸= mg for
vision. We use Midjourney (Inc., 2023) to generate, CLIP (Radford et al., 2021) and OpenCLIP (Il-
harco et al., 2021) as understanding models for selective evaluation, and BLIP-2 (Li et al., 2023b),
BingChat (Microsoft, 2023), and Bard (Google, 2023) for interrogative evaluation. All results on
vision models are obtained in zero-shot fashion.

We conduct experiments across both sub-hypotheses, investigating tasks with selective evaluation
of understanding (sub-hypothesis 1) in §3 and investigating tasks with interrogative evaluation of
understanding (sub-hypothesis 2) in §4. Both sections include both language and vision tasks.

3 CAN MODELS DISCRIMINATE WHEN THEY CAN GENERATE?

First, in our selective evaluation, we conduct a side-by-side performance analysis on generative
and discriminative variants of tasks to assess models’ generation and understanding capabilities in
language and vision modalities. We compare this generative and discriminative performance to that
of humans. For our tasks we draw on diverse source benchmarks, detailed below:

Language benchmarks. For dialogue, we explore two open-ended datasets—Mutual+ (Cui
et al., 2020) and DREAM (Sun et al., 2019), and a document-grounded benchmark, Faithdial (Dziri
et al., 2022). These tasks require generating coherent continuations based on conversation history
(faithful to the document in grounded dialogue). For reading comprehension, we include Topioca
(Adlakha et al. 2022; conversational QA) and RACE (Lai et al. 2017; factual QA). For summariza-
tion, we consider XSUM (Narayan et al., 2018). We also include the commonsense benchmarks
CommonSenseQA (Talmor et al., 2019), SocialIQA (Sap et al., 2019), HellaSwag (Zellers et al.,
2019), PIQA (Seo et al., 2018), and αNLG/αNLI (Bhagavatula et al., 2020). Lastly, we consider
the natural language inference tasks WaNLI (Liu et al., 2022) and δ-NLI (Rudinger et al., 2020).

Vision benchmarks. For image generation, we source text prompts from four benchmarks: these
range from descriptions of natural scenes, (likely in-domain for the model) to out-of-distribution
scenes with specific attributes and relationships that rarely exist in real images. Prompts are sourced
from: COCO (Lin et al., 2014), PaintSkill (Cho et al., 2022), DrawBench (Saharia et al., 2022)
and T2ICompBench (Huang et al., 2023). More dataset details are in §A.2.
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Generative
GPT4 GPT3.5 Human

Discriminative
GPT4 GPT3.5 Human

CSQA SocialIQA HellaSwag PIQA α-NLI/α-NLG
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DialogueNLI

Conv. QA QA

XSUM Topioca RACE

WaNLI δ-NLI FaithDial DREAM Mutual+

CSQA SocialIQA PIQA α-NLI/α-NLG

Figure 2: Discriminative and generative performance of GPT3.5 and GPT4 vs Humans. Models outperform
humans in generation but underperform them in discrimination for most of the cases. The scatter plot in the
bottom right summarizes GPT4’s performance vs. human performance (using the hard negatives from Section
3.2 to measure discriminative accuracy for XSUM and FaithDial); each point represents a different task. Hu-
mans have a larger positive slope between their discrimination and generation abilities compared to GPT4.

Midjourney (generative)
CLIP (discriminative)
OpenCLIP (discriminative)
Human (discriminative)

Figure 3: Model and human performance under the generative and discriminative settings on the vision modal-
ity. We observe models fall short of human accuracy in discriminative performance, and their generative accu-
racy also lags behind their discriminative accuracy.

Experimental setup. For each task and modality, we consider two settings: i) generative: we
prompt models to generate a response given task-specific inputs (e.g., dialogue history, document,
image caption), and ii) discriminative: we require task-specific models to select the correct answer
from a set of candidates, using existing candidates where available and otherwise generating options.

For the generative setting, we conduct human evaluations using Amazon Mechanical Turk (AMT)
to judge the correctness of the generated responses (i.e, text or image) and report percentage of
successful responses satisfying task requirements. For example, for the language domain, we present
humans with examples from the language benchmarks.

For the discriminative setting, we report the accuracy of choosing the ground-truth response among
the candidate options. To establish a human performance baseline, we ask workers to perform
all discriminative tasks and evaluate the correctness of the ground-truth responses for each task.3
Details of AMT annotations and instructions are in §D.

3.1 GENERATIVE AND DISCRIMINATIVE CAPABILITIES IN MODELS VS. HUMANS

Language. Figure 2 presents a comparison of GPT3.5, GPT4, and human generative and discrim-
inative performances. We see that for 10 of the 13 datasets, Sub-hypothesis 1 is supported in at

3Ground-truth responses were initially written by humans for the language tasks, while ground-truth images
are generated by Midjourney.
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GPT4 (discriminative)
OpenCLIP (discriminative)
Human (discriminative)

Language Vision

Figure 4: Model vs. human performance across varying levels of answer difficulty on discriminative tasks.

least one model, with models outperforming humans in generation but underperforming humans in
discrimination. For 7 of the 13 datasets, this sub-hypothesis is supported in both models.

Vision. It is not practical to ask humans to produce detailed images as we do with vision models,
but we assume that an average human could not achieve the stylistic quality of models like Midjour-
ney and thus assume human generation performance is lower. Therefore, we only compare models’
generative and discriminative accuracy to humans’ discriminative accuracy. Similar to the language
domain, Figure 3 shows that CLIP and OpenCLIP4 fall short of human accuracy in discriminative
performance. Assuming human generation is worse, this agrees with sub-hypothesis 1: Vision AI
exceeds average humans at generation but lags at understanding.

3.2 MODELS FALL FURTHER SHORT OF HUMAN PERFORMANCE WITH HARDER
DISCRIMINATION TASKS

We take a closer look at the gap in discriminative performance between humans and models by
manipulating the difficulty of the negative candidates. Two types of negatives are considered: i)
Hard negatives: challenging examples that deter models from relying on data biases and artifacts
to produce an answer. These negatives are wrong in subtle and challenging ways; recognizing
them may require profound understanding of the task. ii) Easy negatives: these candidates are
semantically distant from the topic of the question, providing a clear contrast to the correct answer.
5

Figure 4 (left) shows the comparison between GPT4 and humans6. Notably, as the complexity of
the candidate answers increases, model performance gradually declines. For instance, in the XSUM
task, GPT4 achieves 100% accuracy when selecting the correct answer from easy negatives, but
this drops to 19% when confronted with hard negatives. XSUM exhibits a substantial difference
in performance compared to FaithDial. Upon inspection, we observe that models tend to make
the most mistakes in discrimination tasks when the responses are lengthy and challenging, such
as summarizing lengthy documents. In contrast, humans can maintain a consistently high level of
accuracy across different levels of difficulty.
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Figure 5: Human’s preference scores between
human-generated vs. GPT4-generated responses

Figure 4 (right) shows the discriminative perfor-
mance of OpenCLIP, in comparison to humans,
across difficulty levels. Consistent with the language
results, and even more robustly across tasks, we
see that while humans show versatile performance
across hard and easy negative settings, model per-
formance drops substantially when confronted with
hard negatives (from 100% to ∼69%). Overall, these
results highlight that humans have the ability to dis-
cern correct answers even when faced with challeng-
ing or adversarial examples, but we see that this ca-
pability is not as robust in LMs. This discrepancy
raises questions about the true extent of these mod-
els’ understanding.

4We report the best results on CLIP (clip-vit-large-patch14) and OpenCLIP (CLIP-ViT-bigG
-14-laion2B-39B-b160k), more results can be found in §B.3.

5See §B.2 for details about the negative candidates construction. For the language domain, hard negatives
are constructed only for tasks that are originally generative in nature (i.e., FaithDial and XSUM).

6The same trend also applies for GPT3.5.
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3.3 MODEL GENERATIONS ARE PREFERRED OVER HUMAN GENERATIONS

To better understand the gap between humans and language models, we asked AMT workers to
provide their preferences between machine and human-generated answers in the language-related
tasks, along with a rationale for their choices7. While both sets of responses score high in correctness
(Figure 2), Figure 5 shows a notable trend: workers often favor responses from GPT4 over those
generated by humans. The same applies for GPT3.5 (Figure 11 in §B.3). The rationales provided by
humans often indicate a preference for GPT4 due to longer response length, more elegant writing
style, and being more informative, while human choice is preferred for brevity and conciseness
(Figure 12 in §C). This makes the divergence in capabilities–with models excelling in relative terms
at generation and humans at understanding-based tasks–even more apparent.

4 CAN MODELS UNDERSTAND WHAT MODELS GENERATE?

In the previous section, we showed that models often excel at generating accurate answers while
lagging behind humans in the discriminative task. Now, in our interrogative evaluation, we investi-
gate to what extent models can demonstrate meaningful understanding of generations—something
humans are highly capable of—by directly asking models questions about generated content.

Language experimental setup. In language, we first prompt models to generate a paragraph us-
ing task-specific background information. Then using its generation as context, we ask the model
multiple-choice questions about its own generated information.8 For example, for XSUM (Narayan
et al., 2018) (summarization) we prompt the model to generate an article based on a ground-truth
summary, and then ask the model to select the best summary (same choices as §3) for the generated
article. For Mutual+ (Cui et al., 2020) (dialogue), the model generates the conversation history that
leads to a given dialogue, and then is asked to choose the best dialogue continuing that history. In
HellaSwag (Zellers et al., 2019) (commonsense), the model generates the context preceding a given
sentence and then selects the most fitting continuation for that generated context. We only perform
selective evaluation on the correct generations verified by humans.

We use zero-shot GPT3.5 and GPT4 for all of the evaluations, both generating and question an-
swering. We report the model generation performance, the selection performance based on content
generated by the model, and human selection performance using the model’s generated content. As
an implicit baseline, we assume that humans can answer such questions about their own generations
with high accuracy, and so refrain from the complex process of eliciting these human generations.

Vision experimental setup. We conduct interrogative evaluation on image understanding models
via visual question answering in an open-ended setting. We consider TIFAv1.0 (Hu et al., 2023) as
the evaluation benchmark, with text prompts from COCO, PaintSkill, DrawBench and Parti (Yu
et al., 2022). TIFAv1.0 includes questions automatically generated by a language model, only con-
cerning the content specified in the text prompt (e.g., about existence/attributes of an object and
relative position between objects). We first ask Midjourney to generate images, based on the text
prompts. Then, we interrogate the understanding models (e.g., BLIP-2) with answerable questions
(verified by AMT workers) about the generated images. AMT is used to collect human responses,
and judge the correctness of human/model outputs. See §C.1 for more details.

Results. Results for the language modality are shown in Figure 6 (left). We observe that while
the models excel at generation, they make frequent errors in answering questions about their own
generations, indicating failures in understanding. Humans, who we assume could not generate such
text at the same speed or scale, consistently achieve higher accuracy in QA compared to the model,
despite the fact that questions are about the model’s own output. As stated in sub-hypothesis 2,
we expect humans would achieve even higher accuracy for their own generations. We note that the
humans in this study are not experts; producing text as sophisticated as the model’s output could be a
significant challenge. We anticipate that the performance gap in understanding one’s own generation
would widen even more when comparing the model to human experts, who are likely to answer such
questions with near-perfect accuracy.

7See Figure 12 in § B.3 for details.
8Unlike §3, questions here are about the generation, rather than taking the generation as a potential answer.
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Figure 6: Models vs. human performance on language/visual QA based on model generated texts/images.

Figure 6 (right) shows the interrogative results in the visual modality.9 We see that image under-
standing models still fall short of human accuracy in answering simple questions about elements
in the generated images. At the same time, state-of-the-art image generation models can generate
images at a quality and speed beyond most average humans (who we expect will have trouble gen-
erating comparable realistic images), indicating a relative gap between generation (stronger) and
understanding (weaker) in vision AI compared to humans. Surprisingly, the performance gap be-
tween models and humans is smaller for simpler models than advanced multimodal LLMs (i.e.,
Bard and BingChat), which have some intriguing visual understanding abilities, but still struggle to
answer simple questions about generated images.

5 DISCUSSION

Assessing the generative AI paradox. Broadly, we find significant experimental evidence of the
Generative AI Paradox: though models can regularly outperform humans in text and image genera-
tion, they fall short of human performance in discriminative versions of generative tasks, and when
answering questions about generated content. Furthermore, our analyses show that discrimination
performance is more tightly linked to generation performance in humans than in GPT4, and that
human discrimination performance is also more robust to challenging inputs. These trends vary
across tasks and modalities, but in general our results robustly support the hypothesis that generative
capability can outstrip understanding capability in models, especially compared with humans.

Proposed explanations and points of future study. Given the above evidence in support of the
Generative AI Paradox, the next question is: what factors could lead to models that excel at gen-
eration even when they cannot demonstrate strong understanding? We propose some hypotheses
below, and encourage future work to explore this question.

Generative AI is defined by the generative learning objective, explicitly encouraging reconstruc-
tion/generation of the training distribution, while only implicitly encouraging understanding if it
furthers this goal. Human learning, while not completely understood, likely diverges from this by
encouraging behavior beyond pure reconstruction of stimuli.

Although we often query generative models as if they were individuals, they typically model a
medium (e.g. text over many authors in language models). Providing context may push models
closer to emulating a specific individual (Andreas, 2022), but they tend towards behavior that looks
distributionally correct rather than individually correct, prioritizing stylistic and document-wide
features over details necessary for understanding tasks. Training on many documents (e.g. huge
swaths of internet text) also contrasts with humans: it would take an average human reader e.g.
over 32 years just to read all the pages of Wikipedia (contributors; Brysbaert, 2019). This obvious
discrepancy in not only quantity, but also diversity of knowledge could encourage models to use
existing solutions to problems, which they have seen already, whereas humans have not and therefore
need to exercise understanding and reasoning to answer the same questions correctly.

Evolutionary and economic pressures can affect the way that AI develops. For instance, popular
language model architectures have shown a preference for languages like English (Ravfogel et al.,
2019) which has seen the most attention in NLP (Bender, 2019) and thus the most reward for im-

9We report performance of BingChat, Bard and the best BLIP-2 model (BLIP2-flan-t5-xxl) on two
subsets, more results can be found in §C.2
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provement. Similar pressures could encourage architectures, training paradigms, and other deci-
sions that favor generation over understanding, as generation is harder for humans and thus more
useful/valuable. Designing systems that are not affected by the Generative AI Paradox will require
understanding its cause. Given the potential explanations above, promising paths forward may in-
volve alternative optimization objectives, limiting the memorization in models to force reasoning,
and even incentivizing stronger understanding at a field level.

Limitations. Dataset/benchmark contamination is a potential limitation with proprietary models,
but this should have similar effects on generation and discriminative evaluation in §3, and our eval-
uation in §4 uses novel generations which would not be seen at training time. Also, we focus on a
small set of the most popular/widely used models. Future work should investigate a wider range of
models, including smaller or weaker models, for which we hypothesize the paradox may be even
more pronounced as we often saw with GPT3.5 vs GPT4 (§3).

While our evaluation of human performance is focused, future work can explore more extensive
comparisons between model and human performance. We also advocate for adopting comparison to
humans as a widespread practice, to carefully judge when model capabilities extrapolate with human
capabilities, and when they do not. Finally, we only investigate one divergence between humans and
models. Proposing and testing other points of divergence between artificial and natural intelligence
exceeds our scope but will be imperative to calm concerns and calibrate excitement.

6 RELATED WORK

Generative paradoxes in large language model behavior. Prior work paradoxically employs
large language models to improve their own generations, finding that models successfully identify
mistakes (despite these mistakes being generated by the models themselves). Madaan et al. (2023)
prompt models to critique and improve their own generations. Agrawal et al. (2023) find that models
can identify hallucinated content in their own generations, and Gero et al. (2023) show that models
can identify erroneously omitted elements in generated in clinical extraction data.

Inconsistencies in large language models. Past work suggests that large language models (LMs)
lack a robust concept representation. Dziri et al. (2023) show that strong models often struggle at
solving basic tasks like multiplication. Elazar et al. (2021) and Ravichander et al. (2020) show that
LMs make inconsistent predictions when prompted with similar statements. Ribeiro et al. (2019)
find that QA systems often generate contradictory answers. Kassner & Schütze (2020) and Ettinger
(2020) find that models can generate correct facts but also their negations. Jang et al. (2022) con-
struct a benchmark showing large LMs often make inconsistent predictions. Berglund et al. (2023)
demonstrate that while models can correctly recognize factual knowledge present in their training
data, they fail to make inferences related to those facts.

Generative models and human cognitive mechanisms. While the reasoning mechanism of mod-
els is unknown, prior work has investigated if models possess similar competencies with humans.
Stojnić et al. (2023) evaluate commonsense psychology, finding that while infants can reason about
the causes of actions by an agent, models are not capable cannot emulating this. Sap et al. (2022) find
that language models fail to demonstrate Theory-of-Mind. Storks et al. (2021) and Bisk et al. (2020)
show discrepancies between human and model capacities in physical commonsense reasoning.

7 CONCLUSIONS

In this work, we propose the Generative AI Paradox hypothesis, which posits that impressive gener-
ation abilities in generative models, by contrast to humans, may not be contingent upon commensu-
rate understanding capabilities. We test this through controlled experiments in language and vision
modalities, and though our results show variation depending on task and modality, we find robust
support for this hypothesis. Our findings have a number of broader implications. In particular,
they imply that existing conceptualizations of intelligence, as derived from experience with humans,
may not be applicable to artificial intelligence—although AI capabilities may resemble human in-
telligence, the capability landscape may diverge in fundamental ways from expected patterns based
on humans. Overall, the generative AI paradox suggests that the study of models may serve as an
intriguing counterpoint to human intelligence, rather than a parallel.
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A MODELS AND DATASETS

A.1 MODELS

For the language domain, We evaluate the performance of 2 LLMs: GPT4 (gpt-4) (OpenAI, 2023)
and GPT3.5 (GPT3.5-turbo) (OpenAI, 2022). The evaluations were conducted from July 2023
to September 2023 using the OpenAI API. During inference, we set nucleus sampling p to 1 and
temperature to 1. For each task, we evaluate the performance of each model on 500 test examples.

For the vision domain, we choose the strongest model available to us (i.e., Midjourney (Inc., 2023))
as the image generator. In practice, Midjourney generates 4 images for each text prompt. For image
understanding, we evaluate a wide spectrum of models, including variations of CLIP (Radford et al.,
2021), OpenClip (Ilharco et al., 2021) for selective evaluation, and BLIP (Li et al., 2022), BLIP-
2 (Li et al., 2023b), Instruct-BLIP (Dai et al., 2023), Bard (Google, 2023) and BingChat (Google,
2023) for interrogative evaluation. For all open-source models, we adopt the implementation and
model weights available on HuggingFace (Wolf et al., 2019).

Given the dialogue history and the knowledge snippet, kindly generate a
response that is faithful to the provided knowledge. In this context,
"faithful" implies that every piece of information in the response can
be verified as true based on the given knowledge.

Knowledge: Waves suitable for surfing are primarily found in the ocean,
but can also be found in lakes or in rivers in the form of a standing
wave or tidal bore.

Dialogue History:
Speaker A: Sorry to hear you’re terrified from sharks. However, did you
know that a surfer is someone who can ride on either the forward or
deep face of a wave which typically sends her/him close to the shore?
Speaker B: Yeah, what scares me is the sharks, is there any non-ocean
waves out there?

Response: Speaker A:

Figure 7: Example prompt for the FaithDial benchmark used for the zero-shot generative setting.

A.2 DATASETS

Language. We examined tasks across five categories: commonsense, NLI, dialogue, summariza-
tion, and reading comprehension. For tasks inherently discriminative, where the model chooses
from a predetermined list of candidates, we omit the construction of negative examples. In gener-
ative tasks, we create a list of candidates that includes the groundtruth answer. Specifically, only
FaithDial Dziri et al. (2022) and XSUM Narayan et al. (2018) fall under the generative category,
while the remaining benchmarks are designed in a discriminative manner. Refer to §B.2 for details
on negative candidate constructions.

Here, we delve into how we evaluate the dialogue tasks, noting that the same procedure applies to
the rest of the tasks. Within the dialogue tasks, our focus spans three benchmarks: DREAM Sun
et al. (2019), Mutual+ Cui et al. (2020), where the objective is to generate a coherent continuation
based on the conversation history, and FaithDial Dziri et al. (2022), where the goal is to produce a
faithful response using both the document and the conversation history.

For the generative evaluation in the dialogue task, we input the model with the dialogue history, and
if applicable, the knowledge snippet. We instruct the model to generate a response that is coherent
or faithful, depending on the provided knowledge. For the discriminative evaluation for the same
objective, we prompt the model to select the correct response from a list of answers, considering the
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Given the dialogue history and the knowledge snippet, please select the
response from the options below that is faithful to the provided
knowledge. In this context, "faithful" indicates that every piece of
information in the response can be verified as true based on the given
knowledge.

Knowledge: Waves suitable for surfing are primarily found in the ocean,
but can also be found in lakes or in rivers in the form of a standing
wave or tidal bore.

Dialogue History:
Speaker A: Sorry to hear you’re terrified from sharks. However, did you
know that a surfer is someone who can ride on either the forward or
deep face of a wave which typically sends her/him close to the shore?
Speaker B: Yeah, what scares me is the sharks, is there any non-ocean
waves out there?

Option 1: For sure there is. An alternative to ocean waves could be
lakes and rivers which have a phenomenon called standing waves. Have
you ever watched people surf?
Option 2: Sure, keep in mind that it is a type of courting. You and
your girl participate in social activities, but you don't have to be
alone, as others can be there as well.
Option 3: Oh no that is terrible and I am sorry to hear that.
Option 4: That's cool, do you know who the first person to climb it
was?

Response:

Figure 8: Example prompt for the FaithDial benchmark used for the zero-shot discriminative setting.

conversation history and knowledge. Please refer to Figure 7 for the prompt in the generative setting
and Figure 8 for the prompt in the discriminative setting for the FaithDial benchmark.

Vision. For selective evaluation, we source text prompts from 4 datasets, COCO (Lin et al., 2014),
Paintskill (Cho et al., 2022), DrawBench (Saharia et al., 2022) and T2ICompBench (Huang et al.,
2023). COCO prompts are human-written captions on real images. PaintSkill features text prompts
that examine image generation on specific object categories, object counts and spatial relations be-
tween objects. DrawBench additionally test for long-form text, rare words, and challenging prompts.
T2ICompBench is designed to test models on open-world, compositional text-to-image generation,
with text prompts covering 3 categories, attribute binding, object relationships, and complex com-
positions. For interrogative evaluation, we consider TIFAv1.0 (Hu et al., 2023) as the evaluation
benchmark. The text prompts in TIFAv1.0 are originally from COCO, Paintskill, DrawBench and
Parti (Yu et al., 2022). For each text prompt, TIFAv1.0 includes questions automatically generated
by a language model, only concerning the content specified in the text prompt (e.g., about exis-
tence/attributes of an object and relative position between objects).

B CAN MODELS DISCRIMINATE WHEN THEY CAN GENERATE?

B.1 SETUP

Language. The basic setup for this evaluation is shown in Figure 9 (left).

Vision. We follow the setup on language tasks and consider two settings on each dataset for eval-
uation: i) generative: we prompt Midjourney to generate images given the text descriptions, and ii)
discriminative: we require the image understanding models to select the image, that better matches
the text description, from two candidates. For the generative setting, we conduct human evaluations
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🤖

Selective Evaluation

Prompt
Q: What is the capital of

Canada?

Generation
Ottawa 

Understanding
a. Washington DC
b. Toronto
c. Ottawa
d. London

🤖

Interrogative Evaluation
Prompt

Q: Write a story about about
3 characters baking a cake

Generation
Story: Once upon a

time, Tim, Sally, and
Steve decided …

Understanding
Q: In the story, did Tim 

add frosting before
or after the cake was 

baked?
A: Tim added frosting after

Figure 9: Diagram illustrating the two evaluation settings on language modality, selective evalua-
tion (left) and interrogative evaluation with the model output in each case highlighted in orange.
In selective evaluation, we compare generated responses to selected responses for the same prompt.
For interrogative evaluation, we test the ability of models to answer questions about their own gen-
erations.

Figure 10: GPT3.5 vs. Humans. Humans
show a larger positive correlation between
their discrimination and generation abilities
compared to GPT3.5.
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Figure 11: Quality scores of human-generated re-
sponses vs. GPT3.5 response scores

on AMT to judge whether the generated image matches the text prompt. In total, we randomly
sample 100 text prompts per dataset. As Midjourney generates 4 images for each text prompt and
users of Midjourney in practice would pick the best image among the four, we report the success
rate per prompt as the evaluation metric. For the discriminative setting, we construct the candidates
with a negative image for each positive image from the successful generations verified by human
workers of a given prompt. We report accuracy as the evaluation metric. Human performance on
discriminative setting is measured by comparing the majority of 3 human responses to a 4th one.

B.2 NEGATIVE CANDIDATES CONSTRUCTION

Language. To construct the negative examples for the FaithDial and XSUM datasets, we explore
two corruptions processes:

1. Easy negatives: we compile responses that are unrelated to the information provided in the
knowledge snippet K (such as a dialogue or summary document). For a given context, we
randomly select a gold response that was based on a different K.

2. Hard negatives: To generate examples that are likely hallucinations but sufficiently chal-
lenging to distinguish from correct answers, we directly perturb the knowledge spans K
and then feed them to GPT4. We replace up to two entities in the original K with entities
of the same type from the same document to avoid easy-to-detect off-topic entities. The re-
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sponse generated by GPT4 will be a hallucination, containing subtle alterations that render
it incorrect when compared to the groundtruth response. For each task, we consider three
negative candidates.

Vision. To examine the discriminative performance gap of image understanding models across dif-
ferent difficulty levels, we similarly construct hard and easy negatives in the image space to evaluate
image understanding models: i) Hard negative: a negative image that is generated based on the
same text prompt as the positive image, such that it is semantically close to the text prompt, but con-
tains subtle mistakes identifiable by humans. ii) Easy negative: a negative image that is randomly
sampled from the successful generations of a different prompt in the same dataset (as the positive
image), such that it is semantically distant from the positive image and can be easily distinguishable.
For both cases, we use AMT to verify the negative samples and only retain the ones with agreeable
judgments among 3 workers. In the end, we have 345 instances with hard negatives, including 52,
72, 100 and 42 instances for COCO, PaintSkill, CompBench and DrawBench, respectively; and
372 instances with easy negatives, comprising 82, 72, 100 and 42 instances for COCO, PaintSkill,
CompBench and DrawBench, respectively.

B.3 ADDITIONAL RESULTS

Language. In Figure 10, we show humans exhibit a larger positive correlation between their dis-
crimination and generation abilities compared to GPT3.5. Figure 11 illustrates that workers often
favor responses from GPT3.5 over those generated by humans. Figure 12 shows the rationales
provided by humans on their preferences for GPT4 responses compared to groundtruth human re-
sponses.

Vision. We include additional results from different model variants of CLIP and OpenCLIP in
Table 1. These models consistently fall short of human accuracy in discriminative performance. In
Table 2, we observe the gap between model and human performance becomes larger as the difficulty
level of the task increases with easy and hard negatives.

Table 1: Additional results on selective evaluation for vision modality.

COCO PaintSkill T2ICompBench DrawBench

Midjourney (Generative) 85.00% 80.41% 71.15% 62.63%

Discriminative

Human 92.86% 99.30% 97.00% 100.00%

CLIP
clip-vit-base-patch16 79.81% 75.00% 79.00% 76.19%
clip-vit-base-patch32 83.66% 72.39% 77.50% 77.38%
clip-vit-large-patch14 85.58% 81.95% 84.50% 78.57%
clip-vit-large-patch14-336 87.50% 78.47% 81.50% 76.19%

OpenCLIP
CLIP-ViT-bigG-14-laion2B-39B-b160k 81.73% 85.28% 84.50% 84.53%
CLIP-VIT-g-14-laion2B-s12B-b42k 82.70% 85.41% 83.50% 77.38%
CLIP-VIT-g-14-laion2B-s34B-b88K 83.66% 81.25% 88.00% 79.76%
CLIP-ViT-H-14-laion2B-s32B-b79K 82.69% 85.41% 83.50% 77.38%

C CAN MODELS UNDERSTAND WHAT MODELS GENERATE?

The basic setup for this evaluation is shown in Figure 9 (right).

C.1 EXPERIMENTAL SETUP.

Language. We additionally explore constrained generation in which models are given lexical con-
straints for generation. In the constrained setting, we use a compositional task that covers diverse
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Table 2: Additional results on model vs. human performance across varying levels of answer diffi-
culty for vision tasks.

COCO PaintSkill T2ICompBench DrawBench

Hard Easy Hard Easy Hard Easy Hard Easy

Human 85.71% 100% 98.61% 100% 94.00% 100% 100% 100%

CLIP
clip-vit-base-patch16 59.62% 100% 50.00% 100% 58.00% 100% 52.38% 100%
clip-vit-base-patch32 67.31% 100% 45.83% 98.95% 55.00% 100% 54.76% 100%
clip-vit-large-patch14 71.15% 100% 63.89% 100% 69.00% 100% 57.14% 100%
clip-vit-large-patch14-336 75.00% 100% 56.94% 100% 63.00% 100% 52.38% 100%

OpenCLIP
CLIP-ViT-bigG-14-laion2B-39B-b160k 63.46% 100% 70.83% 99.74% 69.00% 100% 69.05% 100%
CLIP-VIT-g-14-laion2B-s12B-b42k 65.39% 100% 70.83% 100% 67.00% 100% 54.76% 100%
Clip-VIT-g-14-laion2B-s34B-b88K 67.31% 100% 62.50% 100% 76.00% 100% 59.52% 100%
CLIP-ViT-H-14-laion2B-s32B-b79K 65.38% 100% 70.83% 100% 67.00% 100% 54.76% 100%

Figure 12: AMT Workers rationals on their preferences for GPT4 responses compared to
groundtruth human responses.
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Table 3: Example of tasks in Collie Benchmark covering several generation levels including word,
sentence, paragraph and passage.

Task Example
word01 Generate a word with at least 15 letters.
word02 Generate a word with 10 letters, where letter 1 is ‘s’, letter 3 is ‘r’, letter 9 is ‘e’.
word03 Generate a word with at most 10 letters and ends with ‘r’.
sent01 Please generate a sentence with exactly 82 characters. Include whitespace into your character

count.
sent02 Generate a sentence with 10 words, where word 3 is “soft” and word 7 is “beach” and word 10

is “math”.
sent03 Generate a sentence with at least 20 words, and each word less than six characters.
sent04 Generate a sentence but be sure to include the words “soft”, “beach” and “math”.
para01 Generate a paragraph where each sentence begins with the word “soft”.
para02 Generate a paragraph with at least 4 sentences, but do not use the words “the”, “and” or “of”.
para03 Generate a paragraph with exactly 4 sentences, each with between 10 and 15 words.
para04 Generate a paragraph with at least 3 sentences, each with at least 15 words.
para05 Generate a paragraph with 2 sentences that end in “math” and “rock” respectively.
pass01 Generate a passage with 2 paragraphs, each ending in “I sit.” and “I cry.” respectively.

Paragraph

Sentence Passage

Word
Gen. Acc.

Disc. Acc. (overall)

Disc. Acc. (incorrect gen.)

Disc. Acc. (correct gen.)

word01 word02 word03

sent01 sent02 sent04sent03

para01 para02 para04para03 para05

pass01

Figure 13: GPT4 Generative Constraint Satisfaction on Collie along with discriminative accuracy
on its Generations.

generation levels, i.e., word, sentence, paragraph, and passage: COLLIE-v1 (Yao et al., 2023), which
contains 2,080 constraint instances across 13 different task types shown in Appendix Table 3. We
generate outputs for 50 examples per task. We then ask models about their generations, specifically
querying about whether the generations satisfy the given constraints.

Vision. For interrogative evaluation on vision modality, we randomly sample 25 prompts from
each subset of TIFAv1.0, resulting in 100 prompts in total. For evaluation of image understanding
models, we include all answerable questions on the generated images (verified by AMT workers)
from the original dataset, and collect the groundtruth answers on this questions from human anno-
tators. Note that even when the generated image does not strictly align with the text prompt, we still
include the image-question pairs that are considered answerable by human annotators to interrogate
understanding models. In the end, we gather 1,871 image-question pairs, with 533, 482, 422 and
434 instances on COCO, Paintskill, DrawBench and Parti subset, respectively. Human performance
is measured by comparing the majority of 3 human responses and the 4th one.
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Figure 14: A comparison of interrogative and selective understanding in GPT-4 on the 3 tasks they
are both tested for: XSUM, Mutual+, and HellaSwag. They generally seem to correlate, but this will
require further study.

C.2 ADDITIONAL RESULTS

Language We report on the constrained setting. Figure 13 shows GPT4’s constraint satisfaction
rate across 13 tasks in Collie . Certain tasks with simple constraints such as word01 (generating a
word with a minimum number of letters), and sent04 (generating a sentence containing three spe-
cific words) are less challenging for models. However, we observe a significant drop in performance
when posed with arbitrary position constraints and strict counting requirements (e.g., sent02, gen-
erating a sentence with x words, where the 3rd word is A, and the 7th word is B, ...), suggesting that
current models cannot handle generations when faced with rich compositional constraints. Unlike
the open-ended setting, we find models are often better at answering questions about their genera-
tions than generating. We propose that more precise constraints like this are easier to judge (trivial
for humans) while being much harder for models to exercise flexible generation over.

Further, we compare performance between interrogative and selective understanding for GPT-4
across the 3 tasks they are both tested on, finding a possible correlation (Figure 14). This lends
some support to the overall difficulty of task understanding being related between different notions
of understanding, possibly due to general attributes of the task such as complexity of the underlying
text, relationship between input and output, as well as the difficulty of the underlying style of the
text.

Vision Table 4 shows the full results from different model variants of BLIP, BLIP-2, Instruct-BLIP,
Bard and BingChat on all 4 subsets of TIFAv1.0. Note that Bard and BingChat can occasionally
refuse to answer the question, when the image contains people. The results from these models are
on a subset when they can provide a reasonable answer. The model performance is consistently
lower than human performance, acorss different models.

C.3 QUALITATIVE EXAMPLES

Here, we include a small-scale study we conducted on GPT-4, of the model’s ability to answer
questions about stories it generates. Prompts are constructed by the paper authors, and questions
are constructed by hand to allow probing of specific details of the generated content not specifically
depending on the prompt. We specifically focus on simple questions that the model nonetheless gets
wrong. These examples are in Tables 5, 6, 7.

Moreover, we add more qualitative examples on vision modality in addition to what have been shown
in Figure 1. Examples of model outputs for selective setting are shown in Figure 15, and those for
interrogative setting are in Figure 16.
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Table 4: More results on interrogative evaluation for vision modality.

COCO PaintSkill DrawBench Parti

Midjourney (Generative) 84.00% 52.00% 72.00% 84.00%

Questiong Answering

Human 95.88% 97.72% 96.32% 96.83%

blip-vqa-base 89.68% 83.82% 82.23% 84.56%
blip-vqa-capfilt-large 89.68% 83.82% 82.23% 84.56%

BLIP2-flan-t5-xl 89.49% 83.20% 81.52% 85.25%
BLIP2-flan-t5-xxl 91.18% 88.59% 85.31% 90.56%
BLIP2-opt-2.7b 81.99% 82.16% 72.75% 79.03%
BLIP2-opt-6.7b 84.05% 77.39% 72.99% 75.81%

instructblip-flan-t5-xl 88.56% 81.54% 81.99% 88.25%
instructblip-flan-t5-xxl 91.93% 84.02% 84.83% 88.02%
instructblip-vicuna-7b 92.50% 83.20% 81.75% 87.10%
instructblip-vicuna-13b 88.74% 80.71% 78.67% 76.04%

Bard 74.02% 66.28% 56.33% 59.42%
BingChat 80.49% 87.20% 80.68% 87.20%

D HUMAN ANNOTATION ON AMT

All human annotations were conducted on the Amazon Mechanical Turk (AMT). Through a paid
qualification round, we qualify 130 best performing workers that consistently provide conscientious,
high-quality annotations. This project paid the Mturk workers between $15-25 per hour in median
pay depending on the difficulty of the task. We report on the pairwise agreement rate 10 : the
agreement levels range from 90-97% over the datasets.

Human Discrimination Evaluation. For the language modality, we obtain human discrimination
numbers by prompting the AMT worker with the appropriate context and question for the given task,
and ask them to choose the correct response among a list of choices. For vision modality, the set
up is the same with one exception: the workers are asked to choose the best matching image for the
caption. Each examples were annotated by 3 workers and majority vote was taken for the reported
results. An example of discriminative human evaluation is found in Figure 17.

Generation Evaluation. For model generation evaluation in the language modality, the worker
is given the context, question, and the model generation and is asked to say if the generation is
an acceptable response. In the vision modality, the same evaluation is conducted by prompting the
worker with a caption (the input prompt) and the generated image and asked if the image matches the
caption. Each examples were annotated by 3 workers and majority vote was taken for the reported
results. Evaluation of groundtruth also uses this template. Template used is found in Figure 18.

Comparative Evaluation. For language modality only, we conduct the comparative evaluation.
The worker is prompted with the appropriate context and question, and given model generation and
groundtruth answer, asked to choose which is the preferred answer. In this setup, they are also asked
to choose from 3-5 checklist that seeks to ascertain the rationale for the choice (e.g., “The response
is shorter and so more to the point” or “The style is better”). Template used is found in Figure 19.

Human Writing. For vision modality only, we conduct a writing task where the worker is
prompted with a generated image and a question, and asked to briefly answer the question. Each ex-
amples were annotated by 2 workers: 1 to establish groundtruth answers for generated images based

10Our data is skewed to a single label. Measures like kappa or Krippendorf’s alpha are affected by label
imbalance and can lower the score even when the agreement is high Feinstein & Cicchetti (1990). This makes
them unsuitable for interannotator reliability measures in such conditions Xie (2013).
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Table 5: Qualitative questioning of GPT-4 about its own generated stories

Prompt
Write a two paragraph story about 3 people building a house

GPT-4
Once upon a time, in the heart of the serene countryside, lived three close friends: Bob, an architect; Allen,
a handyman; and Chris, a carpenter. They were always dreaming about creating something exceptional
and finally, after years of saving money and sketching designs, they decided to build their dream house.
Bob, with his architectural expertise, sketched a breathtaking design of a two-storied country house with a
wooden porch. Allen collected all the necessary tools, and Chris with his woodworking skills, pledged to
make every single piece of furniture unique.
Weeks turned into months, and the three friends tirelessly worked day and night to build the house. Bob
and Chris constructed the wooden framework, walls, and roof; Allen managed the plumbing and electri-
cal fittings. During their breaks, they would sit together on the raw framework, overlooking the rolling
green hills, discussing the interior decoration and envisaging the fulfilment of their dream. Despite the
challenges, disagreements, and exhaustion, they never gave up and encouraged one another to keep going.
After several months of strenuous efforts, the house was finally built to match their grand blueprint. It was
a testament to the trio’s diligent work, creativity, and friendship, and they named it ’The Bond House’.

Question
How many times did Bob sketch the house?

GPT-4
The story mentions that Bob sketched the house once.

Error
We know Bob sketched many designs over the years.

Question
Was the very first sketch of the house two stories?

GPT-4
Yes, the very first sketch of the house was two stories.

Error
We know Bob sketched designs before the first one described, so we actually don’t know about the very
first sketch.

Question
Was plumbing added before or after the walls and roof were constructed?

GPT-4
The story suggests that the plumbing was added after the walls and roof were constructed.

Error
Plumbing is typically added before the walls, as plumbing is inside of the walls.

Question
What did they likely do on the last break before the house was done?

GPT-4
They likely sat together on the raw framework, overlooking the rolling green hills, discussing the interior
decoration and envisaging the fulfilment of their dream.

Error
The raw framework was unlikely to be exposed by the time they took their last break.

on majority vote (expert adjudication was used in case of disagreement) and 1 to gauge human
performance on the task. Template used is found in Figure 20.
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Which image matches the caption?

A green bus and a yellow tree

Which image matches the caption?

[selected]

A sheep on the left of a lamp

[selected]
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Which image matches the caption?Which image matches the caption?

A photo of 3 fire hydrants

[selected]

A plate topped with a piece of cake and sausage

[selected]
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Figure 15: Qualitative examples of selective setting on vision modality.
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Table 6: Qualitative questioning of GPT-4 about its own generated stories

Prompt
Write a 5 paragraph story about 3 friends finding treasure

GPT-4
Once upon a time, in the small, peaceful town of Verdi, three friends- Tom, Max, and Sara lived. Tom was
the most adventurous and curious in the group. Max, the tallest among them, was the most athletic and
helped Tom in their ventures. Sara, the most sensible, constantly discouraged their dangerous adventures
but couldn’t resist tagging along. One day, Tom, investigating an old myth about hidden treasure, decided
to persuade his friends to join him in his hunt.
The trio cautiously made their way through the dense woods that bordered the town in the direction of the
hill as stated in the legend. Thick webs of strong vines and thorny bushes were a challenge, but Max’s
strength and Sara’s whittled down hiking stick bore a path for them. As they reached the clearing at the
top of the hill, they saw a decrepit stone structure, obscured by overgrown foliage and moss. The friends
couldn’t contain their excitement – it was very likely the location of the treasure according to the myth.
Inside the crumbling stone structure, there were ancient carvings and paintings along the dusty walls.
Although time-worn, they could still make out the drawings. The walls told the story of a mighty king and
his beloved, resplendent treasure. Sara, with her keen eyes, discovered a hidden passage in the corner of the
room. The friends entered the passage with bated breath, their flashlight rays cutting through the darkness.
A dusty chest lay quietly in the musty air, the very image of the treasure chest Tom had described from the
legend. Anticipation crackled in the air as they all held their breath while Tom painstakingly opened the
heavy lid.
The sight that greeted them was beyond their wildest dreams. The chest was filled with gold, silver, and
precious gems of every color. There were ornate arm bands, necklaces, and coins - glimmering in the
torchlight, waiting for centuries to be discovered. They looked at each other, their faces mirroring the
shock and ecstasy of their incredible discovery.
The trio didn’t let their triumph consume their logic. They understood such a treasure was part of their
town’s history, and stealing it would be morally wrong. Keeping their excitement at bay, they informed
the town authorities about their finding. The town celebrated the discovery, but the greatest joy was in the
hearts of Tom, Max, and Sara. While they may not have gained materialistic wealth, their bond strength-
ened, and they discovered the true treasure of friendship and adventure. This adventure was a tale they
would reminisce fondly about, well into their old age. The friends garnered respect and admiration from
the townsfolk, but they remained humble, attributing their discovery more to luck than skill. Their friend-
ship had always been cherished, but now it was legendary. The tale of their adventure became a cherished
lore, passed down generations, speaking of a time long ago, when three friends discovered a hidden treasure
but chose their friendship and integrity over greed.

Question
Did Sara discourage their adventure to find the treasure?

GPT-4
Yes, Sara initially discouraged their adventure to find the treasure.

Error
The story does not say this explicitly.

Question
Who would a reader expect the trio to inform about the treasure once they found it?

GPT-4
A reader would expect the trio to inform the town authorities about the treasure once they found it.

Error
This is actually a surprising part of the story. Generally, a reader would expect them to keep the treasure.

Question
What is the most surprising part of the story?

GPT-4
The most surprising part of the story is when the friends, after finding the treasure, decide not to keep it for
themselves but instead inform the town authorities about their discovery.

Error
Although this is a correct answer, it contradicts what the model responded to the previous question.
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Table 7: Qualitative questioning of GPT-4 about its own generated stories

Prompt
Write a 2 paragraph story about 3 scientists building a space ship

GPT-4
Once upon a time in the outskirts of London, three brilliant scientists, Dr. Benjamin, Dr. Amelia, and
Dr. Max, dreamt of launching a spaceship to enter the vast, uncharted universe. Their burning ambition
and unparalleled intellect dumped them in countless sleepless nights, where they poured over blueprints,
mathematical equations, and stacks of astronomical data. The trio envisioned building a state-of-the-art
spaceship powered by a revolutionary plasma propulsion technology. Not only would their ship be faster
than any mankind had ever built, but it would also have the capability of sustaining life for centuries,
hinting at the prospect of interstellar travel.
After years of relentless effort and dedication, their dream finally transformed into a magnificent spaceship
named Exodus. It was unlike anything the world had ever seen before. Spanning more than two hun-
dred feet in length, the ship looked like a cosmic shark decked with arrays of communication antennae
and numerous high-tech observational instruments. The generous interior boasted a miniature ecosystem,
advanced cryogenic facilities, and fully automated systems designed to withstand the extremities of deep
space. As the world applauded the triumphant spectacle, the three scientists stood smiling, gazing at their
incredible creation and dreaming of the extraordinary journeys it would soon embark upon.

Question
Did the trio pour over blueprints, mathematical equations, and stacks of astronomical data before or after
deciding to build a state-of-the-art spaceship?

GPT-4
The trio poured over blueprints, mathematical equations, and stacks of astronomical data before deciding
to build a state-of-the-art spaceship.

Error
The story actually seems to imply that they did this because they wanted to build a state-of-the-art space-
ship, which would imply it happened after.

Question
Why did the trio pour over blueprints, mathematical equations, and stacks of astronomical data?

GPT-4
The trio poured over blueprints, mathematical equations, and stacks of astronomical data because they
were planning to build a state-of-the-art spaceship for interstellar travel.

Error
While correct, this contradicts the previous answer.

Question
Can we say anything about how long the three brilliant scientists knew each other before Exodus was built?

GPT-4
The story does not provide information on how long the three brilliant scientists knew each other before
Exodus was built.

Error
We can say at least “years” because the trio were working together on the ship for years.
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No, the image you sent is not a pizza. A pizza is 
typically made of a round, flat base of leavened 

wheat-based dough topped with tomatoes, cheese 
and often various other ingredients. The image you 
sent shows a rectangular object with a brown crust 

and some white and green toppings […] 

No, this is not a batter. A batter is a mixture of flour, 
fluid, and other ingredients used for cooking, 

especially for making cakes or for coating food 
before frying […] 

Is this a pizza?

Expected answer: Yes

A baseball game showing a batter waiting for a 
pitch.

Is this a batter?

Expected answer: Yes

A blue-colored pizza.
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Figure 16: Qualitative examples of interrogative setting on vision modality.

Figure 17: Human discrimination template.
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Figure 18: Model generation evaluation template.

Figure 19: Comparative evaluation template.
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Figure 20: Human writing template
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