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ABSTRACT

Test-time adaptation in open-world scenarios (OWTTA), which addresses both
domain discrepancy and semantic variance, has gained increasing attention for en-
abling models to adapt dynamically during inference. Existing approaches mainly
rely on discriminative models, whose over-specialized knowledge restricts their
adaptability in open-world settings. In contrast, vision-language models (VLMs),
trained on diverse large-scale data, provide broader and more transferable knowl-
edge, yet their role in OWTTA remains underexplored. In this work, we propose
a framework empowered by vision-language models, termed Vision-Language
knowledge Boosted Open-world test-time adaptation (VLBO). Specifically, by
casting OWTTA into a probabilistic perspective, we first propose agreement-
boosted filtering (AF), in which the discriminative model assumes the primary
role of filtering out out-of-distribution samples, while the VLM provides a rein-
forcing signal to refine this process based on its agreement with the discrimina-
tive model. We then introduce semantics-boosted adaptation (SA), where VLM-
extracted representations serve as semantic guidance to enhance the discriminative
model’s adaptation to target domains. This unified framework leverages the com-
plementary strengths of vision-language models and discriminative counterparts,
enabling robust and effective adaptation in open-world scenarios. Extensive ex-
periments across multiple benchmarks demonstrate the consistent effectiveness of
the proposed method.

1 INTRODUCTION

Deep learning has witnessed rapid advances and demonstrated strong performance in diverse appli-
cations. These achievements are typically realized under the assumption that the training and test
data follow the same i.i.d. distribution (Gong et al., 2022). In open-world scenarios, however, this
assumption is often violated, as domain discrepancy (Qu et al., 2024) and semantic variance (Zhao
& Lee, 2024) coexist, leading to performance degradation and rendering models unreliable in prac-
tice. For instance, in medical image analysis, domain discrepancy may arise from differences in
imaging equipment, while semantic variance can occur when the testing data include novel or un-
seen disease categories. This dual challenge implies that models should not only adapt to domain
shifts among in-distribution (ID) samples but also mitigate the negative impact introduced by out-of-
distribution (OOD) samples. To address this challenge, open-world test-time adaption (OWTTA) (Li
et al., 2023) has been proposed as a promising paradigm, enabling models to adapt to the target do-
main without requiring label data or source statistics.

Conventional OWTTA methods (Gao et al., 2024) often rely on discriminative models, which can
learn task-specific representations but remain constrained by their limited adaptability. Recently,
vision-language models (VLMs) (Radford et al., 2021), pre-trained on large-scale and diverse data,
have been widely recognized for their zero-shot ability. By jointly modeling vision and language,
they learn powerful representations that capture rich semantics and establish effective alignment
between visual inputs and textual class names. This property inherently mitigates the impact of
domain discrepancy and makes VLMs a strong backbone for TTA (Shu et al., 2022; Karmanov
et al., 2024), providing richer semantic cues that enhance generalization across domains. Despite
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these advantages, their potential in open-world scenarios remains largely underexplored, since most
existing studies fail to consider domain discrepancy and semantic variance simultaneously.

In this paper, we focus on the critical yet underexplored challenge of empowering OWTTA with vi-
sion–language models. Specifically, we propose Vision-Language knowledge Boosted Open-world
test-time adaptation (VLBO) method, which formulates OWTTA as a probabilistic modeling prob-
lem. Based on similarity measures, we propose an agreement-boosted filtering (AF) module to
improve the effectiveness of data filtering. Building on this, we further leverage the product-of-
experts principle to harness the zero-shot capability of vision–language models, thereby facilitating
the adaptation of discriminative models through semantic-boosted adaptation (SA). By working in
synergy, AF and SA enable vision–language models to act as a powerful backbone for OWTTA,
effectively bridging zero-shot priors with the demands of open-world adaptation. The contributions
of this paper are summarized as follows:

• We investigate the challenging yet underexplored problem of empowering open-world test-
time adaptation with vision–language models. Building on a series of empirical observations,
we reveal the potential of vision–language models in this setting and introduce a probabilistic
formulation that serves as the foundation of our framework.

• We develop an agreement-boosted filtering (AF) module that performs data filtering based
on both discriminative feature–prototype similarity and vision–language image–text similar-
ity, where the latter is incorporated as weighted auxiliary evidence, providing a more reliable
strategy to mitigate the negative impact of OOD samples.

• We propose a semantic-boosted adaptation (SA) module that leverages the rich semantic knowl-
edge embedded in vision–language models as an auxiliary signal to reinforce and boost the
adaptation of discriminative models, thereby enabling more robust performance under open-
world scenarios.

2 RELATED WORK

Test-Time Adaptation. Test-time adaptation (TTA) (Su et al., 2024a; 2022) has received increas-
ing attention as it enables models to adapt to target domains using only the source model and un-
labeled target data. A variety of strategies have been explored for test-time adaptation, including
entropy minimization (Liang et al., 2020; Bar et al., 2024; Zhang et al., 2025; Wu et al., 2025),
distribution alignment (Wang et al., 2024b; Zhang et al., 2024; Su et al., 2024b), and continual adap-
tation (Wang et al., 2022; Niu et al., 2022; Han et al., 2025), which have shown strong effectiveness
in the closed-world setting. These methods, however, typically assume that the source and target
domains share the same label space, which restricts their applicability in more realistic scenarios.

Open-World Test-Time Adaptation. In open-world scenarios, domain discrepancy and semantic
variance coexist, making the adaptation task considerably more challenging. Recent attempts to
extend TTA into this setting often formulate the problem as a two-step process of OOD detection and
adaptation, typically relying on distribution alignment (Li et al., 2023) or entropy-based criteria (Gao
et al., 2024; Gong et al., 2023). While these studies still mainly rely on task-specific representations
learned by discriminative models, which limits their robustness and generalization ability under
open-world conditions.

Open-Set Domain adaptation. Compared with open-world test-time adaptation, open-set domain
adaptation (OSDA) (Busto & Gall, 2017; Pham et al., 2025; Choe et al., 2024) assumes access to the
entire target batch during adaptation and allows the target domain to contain novel categories absent
from the source. Recent advances in open-set source-free domain adaptation (OS-SFDA) (Yu et al.,
2025; Liu et al., 2025; Wan et al., 2024) further enable adaptation without accessing source data
or source statistics. However, under limited target data accessibility, these techniques may face
challenges in fully satisfying the needs of open-world scenarios.

Pre-trained Vision-Language Models. Large-scale vision–language models (VLMs), including
CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021), and GroupViT (Xu et al., 2022), are trained
on massive and diverse image–text pairs through self-supervised contrastive learning (Chen et al.,
2020). Benefiting from the broad coverage of their pre-training data, these models exhibit strong
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Figure 1: Illustration of the open-world test-time adaptation setting, characterized by the joint pres-
ence of domain discrepancy and semantic variance under a single-pass constraint.

generalization ability across a wide range of downstream tasks. Building on this observation, several
works investigate their potential within test-time adaptation settings (Osowiechi et al., 2024; Wang
et al., 2024a; Phan et al., 2024). In parallel, some recent studies have also explored leveraging
VLMs for OOD detection by finetuning the text encoder (Wang et al., 2023), introducing additional
prompts (Jiang et al., 2024), or training a linear classifier (Cao et al., 2025).

3 BACKGROUND AND KEY OBSERVATIONS

In this section, we first introduce the protocol of open-world test-time adaptation to clarify the prob-
lem formulation and describe the zero-shot classification capability of CLIP. Then, through three
empirical observations, we reveal the respective advantages of discriminative models and vision-
language models.

3.1 BACKGROUND

Open-World Test-Time Adaptation. In open-world scenarios, models may encounter not only
domain discrepancy but also semantic variance. This requires them to adapt to domain shifts while
mitigating the negative impact of OOD samples, all within a single-pass test-time setting. An illus-
tration of this setting is shown in Fig. 1.

Formally, let YS = {1, 2, . . . ,K} denote the label space of known classes, i.e., in-distribution (ID)
classes, and YO denote the label space of unknown classes, i.e., out-of-distribution (OOD) classes.
Given a discriminative OWTTA model hθ = {fθ, w, b}, where fθ denotes the encoder and (w, b)
parameterize the linear classifier, the goal is to adapt the model to the target distribution while
reliably separating ID samples from OOD ones:

p (y, β | x;hθ) = p (y, β = 1 | x;hθ) + p (y, β = 0 | x;hθ)

= p (β = 1 | x;hθ) p (y | x, β = 1;hθ) ,
(1)

where y ∈ YS is the ID class label variable and β ∈ 0, 1 is an indicator variable distinguish-
ing between ID and OOD samples, i.e., β = 1 for ID and β = 0 for OOD. It is trivial
to have p (y, β = 0 | x, ;hθ) = 0 since OOD samples cannot be classified into YS . The first
term p (β = 1 | x;hθ) corresponds to data filtering and the second term p (y, β = 1 | x;hθ) models
the ID adaptation process.

Zero-Shot Classification with CLIP. By leveraging its dual-encoder architecture, CLIP can per-
form zero-shot classification directly with only class names. Let F = {fI , fT } denotes CLIP with
image encoder fI and text encoder fT . Given a set of candidate categories, we first construct de-
scriptive text prompts ej for each class using a collection of natural language templates. These
prompts are encoded by the text encoder fT to obtain the textual representation fT (ej). For an input
image x, its visual representation is extracted with the image encoder fI(x). Zero-shot classification
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is then performed by computing the similarity between the visual and textual representations, i.e.,

p(y = j | x;F ) =
exp

(
fT (ej)

⊤fI(x)/κ
)∑K

i=1 exp (fT (ei)
⊤fI(x)/κ)

, (2)

where κ stands for the temperature. Finally, the predicted label is obtained by selecting the class
with the maximum probability.

(a) Observation 1 (b) Observation 2 (c) Observation 3

Figure 2: (a) Observation 1 shows the t-SNE visualization of ResNet on the CIFAR10-C & MNIST
open-world dataset, revealing that the discriminative model has captured task-specific information.
(b) Observation 2 reports the classification accuracy on ID datasets, where CLIP consistently out-
performs ResNet under domain discrepancy, highlighting its superior semantic representations for
bridging domain gaps. (c) Observation 3 is derived from the cosine similarity analysis of CLIP on
the CIFAR10-C & MNIST open-world dataset, which reveals its ability to capture semantic devia-
tions.

3.2 KEY OBSERVATIONS IN OPEN-WORLD TEST-TIME ADAPTATION

In this section, we present empirical observations that characterize the behavior of discriminative
model ResNet (He et al., 2016) and the vision-language model CLIP under the open-world test-time
adaptation setting, with the corresponding text prompts provided in Appendix A.1.

• Observation 1: Discriminative Model Encodes Task-Specific Features. We empirically
observe that discriminative models, such as ResNet pre-trained on the source domain, preserve
a well-formed geometric structure in the target domain, even under domain discrepancy and
semantic variance. As shown in Fig. 2a, the learned representations of ID samples cluster
around the classifier weights, which serve as prototypes of the source classes. In contrast,
OOD samples are located far from all prototypes. It indicates that discriminative models retain
task-specific features and provide a reliable backbone for open-world adaptation.

• Observation 2: Vision-Language Model Preserves ID Accuracy under Discrepancy. CLIP
is well known for its strong zero-shot classification ability, relying solely on class names to
generalize across diverse tasks. As shown in Fig. 2b, it outperforms the fully supervised ResNet
under domain discrepancy, suggesting that large-scale vision–language models offer superior
robustness and semantic generalization, enabling strong ID classification even in challenging
conditions.

• Observation 3: Vision-Language Model Captures Semantic Deviations. Benefiting from
pre-training on large-scale image–text pairs, CLIP acquires robust semantic representations
that help distinguish ID from OOD samples. As illustrated in Fig. 2c, OOD samples tend to
receive lower confidence scores, indicating that CLIP can partially capture semantic deviations
and thus contributes to OOD detection.

According to these observations, ResNet can serve as a task-specific backbone for OWTTA, while
CLIP exhibits strong generalization ability in both ID classification and OOD detection. This moti-
vates us to leverage the vision–language knowledge of CLIP to empower the adaptation of discrim-
inative models, achieving more effective open-world test-time adaptation.
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Figure 3: The overall framework of VLBO. Agreement-Boosted Filtering couldshib make OOD
samples more distinguishable; Semantic-Boosted Adaptation could corrects false predictions by
the VLM and the task-specific discriminative model through their agreement on the input image
semantics. See Fig. 5, Fig. 6, Fig. 7, Fig. 8, and Fig. 9 for empirical support.

4 METHODOLOGY

In this section, we propose Vision-Language knowledge Boosted Open-world Test-Time Adapta-
tion (VLBO), which is composed of two complementary components: agreement-boosted filter-
ing (AF) and semantic-boosted adaptation (SA). As shown in Fig. 3, VLBO extends the conven-
tional OWTTA framework with discriminative models by incorporating vision–language knowledge
from CLIP. Formally, the VLBO objective decomposes into the two complementary components:

p
(
y, β | x;hθ, F

)
= p

(
β = 1 | x;hθ, F

)︸ ︷︷ ︸
AF

· p
(
y | x, β = 1;hθ, F

)︸ ︷︷ ︸
SA

, (3)

where F is the CLIP model. The AF module enhances OOD filtering by integrating task-specific
features from ResNet with auxiliary semantic cues from the vision-language model CLIP, enabling
more reliable separation of ID and OOD samples. The SA module further adapts ResNet to the
target domain using the filtered ID data, leveraging semantic guidance of CLIP to boost classification
accuracy and reinforce robustness against domain discrepancy.

4.1 AGREEMENT-BOOSTED FILTERING

In the following, we present the agreement-boosted filtering (AF) module, defined by:
p (β | x;hθ, F ), where the discriminative model primarily performs OOD filtering, while the vi-
sion–language model provides auxiliary semantic signals that reinforces the process through agree-
ment with the discriminative model.

Confidence Aware Filtering. We start by estimating p(β | x;hθ) using the discriminative model,
which serves as the baseline for filtering OOD samples. According to Observation 1, the ID features
generated by the discriminative model tend to be distributed closer to their class prototypes than
OOD samples. This property motivates us to model the two types of samples with Gaussian-shaped
distributions, providing a principled way to filter out OOD samples.

To model p(β | x;hθ), we first define the confidence score s based on x and hθ as the maximum
cosine similarity between a feature and the class prototypes:

s = max
j

z⊤cj
∥z∥∥cj∥

, (4)

where z = fθ(x) is the feature embedding extracted from discriminative model and c =
[c1, c2, . . . , cK ]⊤ ∈ RK×d denotes the prototypes initialized by the classifier weights w.

Based on Observation 1, we utilize the confidence score to distinguish ID and OOD. With its
unsupervised manner, we formulate a simple 1D clustering task with two classes. Specifically,
s is viewed as drawn from a mixture of two Gaussian distributions with the same variance σ:
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s ∈ π+N (µ+, σ2) + π−N (µ−, σ2), where π+ and π− are the mixing coefficients, µ+ is the mean
for ID samples and µ− is the mean for OOD samples. Consequently,

p(β = 1 | s;µ+, µ−, π+, π−, σ) =
π+ exp

(
− 1

2σ (s− µ+)2
)

π+ exp(− 1
2σ (s− µ+)2) + π− exp(− 1

2σ (s− µ−)2)
, (5)

p(β = 0 | s;µ+, µ−, π+, π−, σ) =
π+ exp(− 1

2σ (s− µ−)2)

π+ exp(− 1
2σ (s− µ+)2) + π− exp(− 1

2σ (s− µ−)2)
. (6)

Based on the connection between k-means and mixtures of Gaussians (Kulis & Jordan, 2012), when
σ → 0, we can have the following k-means based clustering loss:

argmin
S+,S−

1

N+

∑
i∈S+

(si − µ̂+)2 +
1

N−

∑
i∈S−

(si − µ̂−)2, (7)

where i is the index of the sample xi and si is its confidence score, S+ = {i | βi = 1} is denoted as
the ID cluster with N+ = |S+| and S− = {i | βi = 0} as the OOD cluster with N− = |S−|, µ̂+

and µ̂− are the corresponding means, namely µ̂+ = 1
N+

∑
i∈S+ si, µ̂− = 1

N−

∑
i∈S− si.

Agreement-Boosted Filtering. To improve OOD filtering, we propose the agreement-boosted fil-
tering module p(β | x;hθt , F ), which augments the discriminative model’s confidence with seman-
tic cues from CLIP. Following Observation 2, CLIP can capture semantic deviations between ID and
OOD samples. We therefore define its confidence as the maximum cosine similarity between image
and text features:

ŝ = max
j

fT (ej)
⊤fI(x)

∥fT (ej)∥ ∥fI(x)∥
. (8)

Since the two confidence scores, s from ResNet and ŝ from CLIP, are not directly comparable in
scale, we transform them into calibrated evidences to ensure a consistent contribution via a weighted
average:

s̃ =
s+ αŝ

1 + α
, (9)

where α is instantiated as α =
|S+∩S+

c |
|S+| to quantify the consistency between the discriminative

model and CLIP on ID predictions. The boosted confidence score s̃ can then be directly substituted
into Eq. (7) to improve the estimation of β.

4.2 SEMANTIC-BOOSTED ADAPTATION

In this subsection, we introduce the semantic-boosted adaptation (SA) module, which leverages
vision–language knowledge to enhance the discriminative model’s adaptation to the target domain.
Formally, SA is modeled as: p

(
y | x, β = 1;hθ, F

)
, where F provides semantic guidance from

vision–language models to boost classification performance and improve robustness against domain
discrepancy.

Specifically, for the discriminative model, the likelihood for class k is given by the exponential of
the model output:

p
(
y = k | x, β = 1;hθ

)
∝ exp

(
w⊤

k fθ(x) + bk
)
, (10)

where wk and bk denote the weight and bias of the classifier for class k. For the vision–language
model, we define its knowledge of class k as the exponential of the similarity between the corre-
sponding text and image embeddings:

p(y = k | x, β = 1;F ) ∝ exp
(
fT (ek)

⊤fI(x)
)
. (11)

Unlike the discriminative model in Eq. (10), restricted to knowledge learned from a specific source
domain, the vision-language knowledge originates from large-scale vision–language pre-training.
As a result, it encodes broad semantic knowledge and exhibits stronger generalization ability under
domain discrepancy, thereby providing complementary guidance to the discriminative model.
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In order to boost the adaptation process of the discriminative model, we employ the product-of-
experts (PoE) (Hinton, 2002) principle, where the vision-language model provides semantic knowl-
edge to strengthen mutually reinforcing predictions and suppress conflicting ones. Correspondingly,
the semantic-boosted adaptation module is defined as:

p
(
y = k | x, β = 1;hθ, F

)
=

p
(
y = k | x, β = 1;hθ

)
· p

(
y = k | x, β = 1;F

)∑
j p

(
y = j | x, β = 1;hθ

)
· p

(
y = j | x, β = 1;F

)
= σ

(
w⊤

k fθ(x) + bk + fT (ek)
⊤fI(x)

)
.

(12)

In this way, the discriminative model contributes task-specific decision boundaries, while the vi-
sion–language model empowers the adaptation process with complementary semantic knowledge
derived from its strong zero-shot generalization capability, leading to more robust performance un-
der distribution shifts.

Let t ∈ {1, 2, . . . , T} denote the time index. The overall training objective is defined as:

L = LCE + LMSE + λLDiv, (13)

where cross-entropy loss drives adaptation with pseudo-labels over S+:

LCE = − 1

N+

∑
i∈S+

log p(y = ŷti | xt
i, β = 1;hθt , F ), (14)

where ŷti = argmaxj p(y = j | xt
i, β = 1;hθt , F ) denotes the pseudo-labels of xi, ∀i ∈ S+ at

time t.

The second term encourages feature compactness of the discriminative model with prototypes up-
dated in an exponential moving average (EMA) manner (Pan et al., 2024):

LMSE =
1

N+

∑
i∈S+

K∑
j=1

ξtij∥zti − ctj∥22, (15)

where ξtij ∈ {0, 1} is a one-hot indicator that assigns each feature zti to its nearest prototype ctj .
In addition, LDiv =

∑K
k=1 p̄

t(k) log p̄t(k) serves as a regularization term to penalize collapsed
predictions, controlled by trade-off parameter λ, where p̄(k)t = 1

N+

∑
i∈S+ p(ŷti = k | xt

i, β =
1;hθt) denotes batch-averaged prediction.

The details of the proposed method are shown in Algorithm 1.

Algorithm 1 VLBO

Require: Test samples x from the target domain ST , pre-trained discriminative model hθ, vision-
language model F , test prompts e.
Initialization: Calculate text embeddings by fT (e)

1: for t← 1 to T do
2: Filter out OOD samples by (7) ▷ Agreement-boosted filtering (AF)
3: Update θ by (13), and update c by EMA ▷ Semantic-boosted adaptation (SA)
4: Obtain ŷt = argmaxj p(y = j | xt, β = 1;hθt , F ) ▷ Inference
5: end for

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets. We conduct evaluations on blur corruption and style transfer benchmarks. For blur cor-
ruption, CIFAR10-C, CIFAR100-C, and ImageNet-C (Hendrycks & Dietterich, 2019) are used as
ID datasets, while for style transfer, ImageNet-R (Hendrycks et al., 2021) and VisDA-C (Peng et al.,
2017) are adopted as ID datasets. The OOD datasets include Gaussian Noise together with five

7
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real-world datasets that exhibit distributions different from the corresponding ID datasets, including
MNIST (Deng, 2012), SVHN (Netzer et al., 2011), Tiny-ImageNet (Le & Yang, 2015), CIFAR100-
C, and CIFAR10-C. The open-world datasets are constructed by maintaining an equal number of ID
and OOD samples. Further dataset specifications are provided in Appendix A.2.

Evaluation Settings. Following recent OWTTA studies (Li et al., 2023), we evaluate the models
using three complementary metrics: ACCI , ACCO, and ACCH . Specifically, ACCI denotes the
classification accuracy on ID samples, ACCO measures the detection accuracy on OOD samples,
and ACCH is their harmonic mean. Formal metric definitions are given in Appendix A.3.

Baselines. We introduce two-types of baselines for comparison: discriminative model-based base-
lines and vision-language model-based baselines. The discriminative model-based baselines adopt
ResNet50 as the representative architecture, which includes: TEST, BN (Ioffe & Szegedy, 2015),
TENT (Wang et al., 2021), SHOT (Liang et al., 2020), OSTTA (Lee et al., 2023), EATA (Niu
et al., 2022), CoTTA (Wang et al., 2022), UniEnt (Gao et al., 2024), OWT3 (Li et al., 2023). The
vision–language model baselines are constructed upon CLIP, including CLIP-ViT-B/16 (Radford
et al., 2021), C-TPT (Yoon et al., 2024), CLIPN (Wang et al., 2023), NegLabel (Jiang et al., 2024),
WATT (Osowiechi et al., 2024). More baseline details can be found in Appendix A.4.

5.2 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we conduct extensive experiments on five open-world datasets to validate the ef-
fectiveness of the proposed method under the OWTTA setting. The results are summarized in Ta-
bles 1,2,3, and 4, with the best performance highlighted in bold and the second best underlined.
From these tables, we can draw the following key observations:

Table 1: Open-world test-time adaptation results on CIFAR10-C and CIFAR100-C.

CIFAR10-C Noise MNIST SVHN Tiny CIFAR100-C
ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH

TEST 69.19 99.96 81.78 63.61 91.11 74.92 63.54 90.91 74.80 61.09 77.48 68.32 61.27 76.58 68.07
BN 39.44 60.57 47.77 60.19 69.56 64.54 69.21 80.17 74.29 69.02 75.15 71.95 68.83 73.33 71.01
TENT 42.75 61.99 50.60 63.21 72.80 67.67 70.84 82.92 76.41 69.70 76.23 72.82 69.22 74.07 71.56
SHOT 42.71 60.72 50.15 64.57 73.51 68.75 71.12 84.37 77.18 69.51 77.06 73.09 69.10 74.76 71.82
OSTTA 53.43 13.69 21.80 53.88 36.94 43.83 62.76 41.20 49.74 74.85 32.38 45.20 76.39 29.80 42.87
EATA 40.65 64.14 49.76 58.04 72.63 64.52 66.62 82.29 73.63 66.72 77.37 71.65 66.83 75.00 70.68
CoTTA 35.89 68.20 47.03 60.20 69.25 64.41 69.20 80.11 74.26 69.07 75.14 71.98 68.67 73.65 71.07
UniEnt 39.29 59.97 47.48 59.70 69.79 64.35 68.47 80.33 73.93 68.58 75.46 71.86 68.80 73.50 71.07
OWT3 69.41 99.96 81.93 63.89 91.10 75.11 63.72 90.97 74.94 61.05 77.56 68.32 61.37 76.47 68.09
CLIP-ViT-B/16 57.82 99.97 73.27 62.31 99.69 76.69 66.05 96.70 78.49 72.76 81.27 76.78 65.17 75.68 70.03
+C-TPT 68.36 99.97 81.20 61.89 99.69 76.37 65.50 96.70 78.10 71.32 81.27 75.97 65.22 75.68 70.06
+CLIPN 20.39 74.72 32.04 20.41 78.84 32.42 20.48 77.15 32.37 20.52 79.97 32.66 20.53 79.38 32.62
+NegSample 45.52 100.00 62.56 45.52 99.86 62.53 45.52 96.08 61.77 45.52 94.47 61.44 45.52 91.29 60.75
+WATT 57.49 99.97 73.00 62.23 99.69 76.63 66.69 96.70 78.94 72.70 81.27 76.75 65.71 75.68 70.34
+Ours 85.83 100.00 92.37 86.69 97.52 91.79 83.98 95.45 89.35 71.03 84.76 77.92 71.41 78.78 74.91

CIFAR100-C Noise MNIST SVHN Tiny CIFAR10-C
ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH

TEST 25.30 99.99 40.38 24.76 46.81 32.39 26.34 91.65 40.92 26.20 86.68 40.24 25.79 87.86 39.88
BN 21.22 93.29 34.58 26.09 93.21 40.77 30.60 95.42 46.34 31.41 89.69 46.53 31.95 89.93 47.15
TENT 24.45 95.75 38.95 27.50 91.49 42.29 32.05 95.17 47.95 31.33 89.64 46.43 32.08 89.93 47.29
SHOT 25.98 96.62 40.95 28.26 87.36 42.71 32.42 95.14 48.36 31.18 89.71 46.28 32.07 90.10 47.30
OSTTA 12.20 40.58 18.76 17.97 46.56 25.93 33.33 62.59 43.50 36.81 52.15 43.16 42.75 43.67 43.21
EATA 22.73 94.06 36.61 25.58 92.08 40.04 29.57 96.20 45.24 30.35 90.03 45.40 31.44 89.79 46.57
CoTTA 20.93 93.25 34.19 25.23 92.85 39.68 30.09 95.26 45.73 31.17 89.85 46.28 31.86 89.90 47.05
UniEnt 20.05 94.48 33.08 25.54 92.86 40.06 31.36 94.48 47.09 31.20 89.19 46.23 32.52 89.03 47.64
OWT3 25.54 99.99 40.69 24.51 45.51 31.86 26.48 91.70 41.09 26.34 86.68 40.40 25.93 87.82 40.04
CLIP-ViT-B/16 33.67 2.99 5.49 31.14 99.29 47.41 31.57 94.88 47.38 37.81 66.30 48.16 31.13 68.01 42.71
+C-TPT 6.21 2.99 5.62 21.33 99.29 35.12 21.63 94.88 35.23 29.86 66.30 41.18 21.80 68.01 33.02
+CLIPN 12.55 74.95 21.51 12.79 76.43 21.91 12.80 73.87 21.82 12.77 74.48 21.80 12.80 73.63 21.81
+NegSample 28.33 96.19 43.77 28.33 92.19 43.34 28.33 51.53 36.56 28.33 79.01 41.71 28.33 64.74 39.41
+WATT 37.07 2.99 5.53 33.25 99.29 49.82 33.27 94.88 49.27 41.38 66.30 50.96 33.21 68.01 44.63
+Ours 53.78 99.91 69.92 46.82 95.68 62.87 44.44 81.66 57.56 39.84 74.37 51.89 35.92 76.02 48.79

(1) The proposed VLBO consistently outperforms all baselines, validating its effectiveness for
OWTTA. In particular, on the ImageNet-C open-world dataset as shown in Table 2, our method
achieves consistently higher ACCH , with a margin of at least 11% over the second-best method,
demonstrating its robustness and reliability.

(2) The discriminative model effectively captures task-specific information. In particular, the TEST
method employs a pre-trained ResNet-50 for OWTTA. As reported in Table 1, its performance can
even surpass certain vision-language model-based baselines. This is attributed to the task-specific
knowledge learned in the source domain, which enables the model to maintain a degree of stability
under domain discrepancy, consistent with our Observation 1.
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Table 2: Open-world test-time adaptation
results on ImageNet-C.

ImageNet-C Noise MNIST SVHN
ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH

TEST 11.79 40.85 18.30 11.33 59.57 19.04 11.62 82.04 20.36
BN 9.73 66.50 16.98 15.20 74.24 25.23 16.24 77.93 26.88
TENT 9.31 68.49 16.39 15.26 72.67 25.22 17.28 78.79 28.34
SHOT 9.70 64.57 16.87 14.76 71.69 24.48 17.70 79.63 28.96
OSTTA 13.90 65.34 22.92 20.54 57.34 30.25 21.93 59.43 32.04
EATA 15.92 88.86 27.00 20.72 93.21 33.90 20.69 93.14 33.86
CoTTA 8.75 67.48 15.49 13.78 82.82 23.63 14.13 74.66 23.76
UniEnt 8.29 73.44 14.90 14.13 79.71 24.00 14.81 82.88 25.13
OWT3 9.76 68.03 17.07 15.41 75.29 25.58 16.45 78.67 27.21
CLIP-ViT-B/16 27.88 100.00 43.61 29.94 99.96 46.08 29.75 96.39 45.47
+C-TPT 15.62 100.00 27.02 11.85 99.96 21.19 13.22 96.39 23.25
+CLIPN 7.76 74.91 14.07 7.76 77.07 14.11 7.76 75.24 14.08
+NegSample 34.57 99.88 51.36 34.57 60.70 44.05 34.57 21.86 26.78
+WATT 28.73 100.00 44.64 30.99 99.96 47.31 30.80 96.39 46.68
+Ours 46.01 100.00 63.03 46.85 99.00 63.60 45.58 98.20 62.26

Table 3: Open-world test-time adaptation
results on ImageNet-R.

ImageNet-R Noise MNIST SVHN
ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH

TEST 24.71 100.00 39.63 23.60 99.81 38.17 22.46 98.89 36.61
BN 16.38 89.76 27.70 18.70 82.97 30.52 19.03 86.08 31.17
TENT 16.87 93.23 28.57 19.81 84.72 32.11 20.09 87.99 32.71
SHOT 17.27 96.24 29.28 19.70 81.43 31.72 20.44 89.61 33.29
OSTTA 25.46 58.59 35.50 22.46 49.67 30.93 25.66 58.02 35.58
EATA 16.21 91.71 27.55 18.95 86.24 31.07 18.95 88.37 31.21
CoTTA 15.58 85.41 26.35 17.40 86.71 28.98 17.51 83.04 28.92
UniEnt 10.56 72.46 18.43 15.01 79.59 25.26 15.84 83.72 26.64
OWT3 16.56 92.13 28.07 19.13 83.75 31.15 19.42 86.93 31.75
CLIP-ViT-B/16 46.43 100.00 63.42 55.14 99.85 71.05 60.98 99.16 75.52
+C-TPT 43.86 100.00 60.98 52.66 99.85 68.95 59.20 99.16 74.14
+CLIPN 16.75 92.83 28.38 19.16 87.04 31.41 19.20 85.32 31.35
+NegSample 63.29 100.00 77.52 63.29 96.32 76.39 63.29 89.98 74.31
+WATT 45.91 100.00 62.93 54.84 99.85 70.80 60.65 99.16 75.27
+Ours 66.48 99.04 79.56 64.30 97.63 77.53 64.83 97.76 77.96

Table 4: Open-world test-time adaptation
results on VisDA-C.

VisDA-C Noise MNIST SVHN
ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH

TEST 41.27 100.00 58.43 43.12 97.41 59.78 42.06 99.46 59.12
BN 45.48 99.64 62.45 42.06 79.96 55.12 42.80 88.77 57.75
TENT 51.57 100.00 68.05 41.50 79.96 54.64 44.57 88.40 59.26
SHOT 42.39 99.94 59.53 42.69 68.08 52.48 43.45 72.69 54.33
OSTTA 39.60 54.33 45.81 46.41 29.81 36.30 44.91 45.55 45.23
EATA 43.12 99.68 60.20 41.49 81.13 54.90 41.75 89.25 56.89
CoTTA 44.01 99.56 61.04 40.71 83.91 54.82 40.89 89.86 56.20
UniEnt 54.84 95.99 69.80 41.92 80.13 55.04 42.83 88.53 57.73
OWT3 46.12 99.99 63.12 42.14 77.39 54.57 43.04 91.60 58.56
CLIP-ViT-B/16 48.51 100.00 65.33 59.81 99.71 74.77 60.08 97.35 74.30
+C-TPT 65.15 100.00 78.90 60.16 99.71 75.04 60.17 97.35 74.37
+CLIPN 21.64 72.88 33.37 21.66 72.61 33.37 21.64 77.04 33.79
+NegSample 39.50 100.00 56.63 39.50 99.97 56.63 39.50 99.40 56.54
+WATT 48.60 100.00 65.41 59.93 99.71 74.86 60.06 97.35 74.29
+Ours 75.09 99.63 85.64 71.44 99.49 83.16 77.88 98.70 87.06

(3) The proposed agreement-boosted filtering
module effectively mitigates unreliable out-
comes. For instance, as reported in Table 1, CLIP
alone exhibits limited reliability in distinguishing
Noise OOD samples on the CIFAR100-C open-
world dataset. In contrast, our method reduces
the influence of disagreements between models,
thereby ensuring more stable and reliable adapta-
tion.

(4) The update of vision representations is es-
sential. Existing CLIP-based baselines primar-
ily rely on the image–text alignment property of
CLIP. Most of them focus on modifying the text
encoder, such as introducing additional prompts,
calibrating prompt embeddings, or adding extra
branches, while leaving the vision representation unchanged. Consequently, the absence of visual
representation update limits their robustness under domain discrepancy. In contrast, our method em-
ploys CLIP as auxiliary semantic guidance to enhance the discriminative model, explicitly updating
its representation and thereby enabling more reliable adaptation.

In conclusion, our approach introduces a vision–language–empowered paradigm that effectively
exploits the complementary strengths of CLIP and discriminative models, yielding consistently su-
perior performance on open-world datasets.

5.3 ABLATION STUDY

In this subsection, we conduct comprehensive ablation studies to assess the contributions of
agreement-boosted filtering (AF), semantic-boosted adaptation (SA), the MSE loss LMSE, and the
regularization term LDiv. Specifically, experiments are performed across all open-world datasets,
with performance evaluated using the ACCH metric. The results on ImageNet-C and VisDA-C
open-world datasets are summarized in Table 5, while the remaining results are deferred to Ap-
pendix A.6. From these tables, we draw three main observations: (1) The proposed SA module
brings substantial performance gains. For example, as reported in Table 5, ACCH improves by
26.73%, 55.77%, and 28.6% on Noise, MNIST, and SVHN, respectively. These results highlight
that leveraging vision–language knowledge significantly strengthens the adaptation ability of dis-
criminative models in open-world scenarios. (2) The incorporation of the MSE loss encourages
features to align more closely with their class prototypes, yielding compact and well-structured fea-
ture spaces. This alignment stabilizes adaptation and enhances the robustness of the discriminative
model. (3) The complete VLBO framework consistently achieves superior results across all open-
world datasets, validating the soundness of our overall design.

5.4 COMPUTATIONAL OVERHEAD ANALYSIS

In this subsection, we evaluate the computational overhead of CLIP-based methods. We use a
batch size of 128 and measure both the average running time (s) and the average memory consump-
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Table 5: Ablation study on ImageNet-C
open-world dataset.

AF SA LMSE LDiv Noise MNIST SVHN

× × × ✓ 5.24 4.57 5.91
× × ✓ ✓ 35.25 6.79 33.28
✓ × ✓ ✓ 55.34 12.83 55.20
× ✓ ✓ ✓ 61.98 62.56 61.88
✓ ✓ ✓ ✓ 63.03 63.60 62.26

Table 6: Ablation study on VisDA-C
open-world dataset.

AF SA LMSE LDiv Noise MNIST SVHN

× × × ✓ 14.58 51.78 51.86
× × ✓ ✓ 70.20 63.63 71.00
✓ × ✓ ✓ 71.02 66.59 71.78
× ✓ ✓ ✓ 83.93 82.21 86.77
✓ ✓ ✓ ✓ 85.64 83.16 87.05

tion (MB) on all the open-world datasets. The results on ImageNet-C are reported in Table 7, while
the remaining results are provided in Appendix A.8. As shown in these results, the proposed method
achieves a more favorable trade-off between computational overhead and adaptation performance.

Table 7: Computational overhead comparison on ImageNet-C open-world dataset.

ImageNet-C Noise MNIST SVHN
Time Memory ACCH Time Memory ACCH Time Memory ACCH

CLIP-ViT-B/16 0.2031 595.91 43.61 0.1965 595.91 46.08 0.1961 595.91 45.47
+C-TPT 1.3012 1387.16 27.02 1.2929 1387.16 21.19 1.0890 1387.15 23.25
+CLIPN 0.3053 408.46 14.07 0.3054 408.46 14.11 0.3060 408.46 14.08
+NegSample 0.1262 598.33 51.36 0.1246 598.33 44.05 0.1177 598.33 26.78
+WATT 17.8515 1102.08 44.64 18.3008 1102.08 47.31 18.7525 1102.08 46.68
+Ours 1.0993 1349.36 63.03 0.9591 1337.59 63.60 0.9623 1353.19 62.26

5.5 PARAMETER ANALYSIS

In this subsection, we analyze the effect of the trade-off parameter λ, which controls the
weight of the regularization loss LDiv. The LDiv term encourages prediction diversity and pre-
vents the model from collapsing to trivial solutions. Specifically, we vary λ over the range
{1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2, 1e-1, 5e-1} and report the results in Fig. 4. As shown in the
figure, VLBO maintains stable performance across all open-world datasets, demonstrating its ro-
bustness to the choice of λ.

(a) CIFAR10-C (b) CIFAR100-C (c) ImageNet-C (d) ImageNet-R (e) VisDA-C

Figure 4: Ablation study on the trade-off parameter λ, showing that VLBO maintains stable perfor-
mance across all open-world datasets.

5.6 CONCLUSION

In this paper, we tackled the challenging problem of open-world test-time adaptation (OWTTA),
where both domain discrepancy and semantic variance coexist. We proposed Vision-Language
knowledge Boosted OWTTA (VLBO), a unified framework that leverages the complementary
strengths of discriminative models and vision–language models (VLMs). VLBO integrates two
key components: agreement-boosted filtering (AF), which refines OOD detection by reinforcing
discriminative predictions with VLM guidance, and semantic-boosted adaptation (SA), which ex-
ploits semantic representations from VLM to improve the adaptation of discriminative models. This
paradigm empowers discriminative models with transferable vision–language knowledge, leading
to more robust and effective adaptation under open-world conditions. Extensive experiments across
diverse benchmarks verify the effectiveness of the proposed VLBO framework.
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A APPENDIX

A.1 LIST OF PROMPTS

The text prompts utilized in our experiments are directly adapted from the template collection intro-
duced in CLIP (Radford et al., 2021):

List of prompts utilized in this paper

a bad photo of a {class}, a photo of many {class}, a sculpture of a {class}, a photo of the
hard to see {class}, a low resolution photo of the {class}, a rendering of a {class}, graffiti of
a {class}, a bad photo of the {class}, a cropped photo of the {class}, a tattoo of a {class}, the
embroidered {class}, a photo of a hard to see {class}, a bright photo of a {class}, a photo of
a clean {class}, a photo of a dirty {class}, a dark photo of the {class}, a drawing of a {class},
a photo of my {class}, the plastic {class}, a photo of the cool {class}, a close-up photo of
a {class}, a black and white photo of the {class}, a painting of the {class}, a painting of a
{class}, a pixelated photo of the {class}, a sculpture of the {class}, a bright photo of the
{class}, a cropped photo of a {class}, a plastic {class}, a photo of the dirty {class}, a jpeg
corrupted photo of a {class}, a blurry photo of the {class}, a photo of the {class}, a good
photo of the {class}, a rendering of the {class}, a {class} in a video game, a photo of one
{class}, a doodle of a {class}, a close-up photo of the {class}, a photo of a {class}, the
origami {class}, the {class} in a video game, a sketch of a {class}, a doodle of the {class},
a origami {class}, a low resolution photo of a {class}, the toy {class}, a rendition of the
{class}, a photo of the clean {class}, a photo of a large {class}, a rendition of a {class}, a
photo of a nice {class}, a photo of a weird {class}, a blurry photo of a {class}, a cartoon
{class}, art of a {class}, a sketch of the {class}, a embroidered {class}, a pixelated photo
of a {class}, itap of the {class}, a jpeg corrupted photo of the {class}, a good photo of a
{class}, a plushie {class}, a photo of the nice {class}, a photo of the small {class}, a photo
of the weird {class}, the cartoon {class}, art of the {class}, a drawing of the {class}, a photo
of the large {class}, a black and white photo of a {class}, the plushie {class}, a dark photo
of a {class}, itap of a {class}, graffiti of the {class}, a toy {class}, itap of my {class}, a
photo of a cool {class}, a photo of a small {class}, a tattoo of the {class},

A.2 DATASETS

Our experimental setup follows OWT3 (Li et al., 2023), using the same set of datasets. The details
of the ID datasets, including test-set size, number of classes, and corresponding target domains, are
summarized in Table 8:

Table 8: In-distribution Datasets Information.

Datasets #Images #Classes Target Domain

CIFAR10-C 10,000 10 Corruption
CIFAR100-C 10,000 100 Corruption
ImageNet-C 50,000 1,000 Corruption
ImageNet-R 30,000 200 Style Transfer

VisDA-C 55,388 12 Style Transfer

A.3 EVALUATION METRIC

Since the OWTTA task consists of both domain discrepancy and semantic variance, we adopt three
complementary evaluation metrics, ACCI , ACCO, and ACCH , to provide a more precise assess-
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ment of performance. Their definitions are as follows:

ACCI =

∑
{i|yi∈YS} 1 (ŷi = yi)

|{i|yi ∈ YS}|
,

ACCO =

∑
{i|yi∈YO} 1(ŷi ∈ YO)
|{i|yi ∈ YO}|

,

ACCH = 2 · ACCI ·ACCO

ACCI +ACCO
.

Here, YS denotes the set of in-distribution (ID) classes and YO the out-of-distribution (OOD) class.
ACCI evaluates classification accuracy on ID samples, ACCO measures OOD detection accuracy,
and ACCH provides a balanced evaluation through their harmonic mean.

A.4 DETAILS OF BASELINES

In the main text, we compare our approach against nine representative baselines built upon dis-
criminative models and four recent methods based on vision–language models. Their details are
summarized as follows:

• TEST: Direct inference with the pre-trained discriminative model, without any adaptation to the
target distribution. This baseline reflects the model’s raw generalization ability under OWTTA.

• BN (Ioffe & Szegedy, 2015): Batch normalization statistics are updated online during inference,
while the rest of the network parameters remain frozen. This allows the model to partially adjust
to distribution shifts.

• TENT (Wang et al., 2021): The affine parameters (scale and bias) of batch normalization layers
are optimized by minimizing the entropy of predictions on test samples, enabling lightweight
adaptation through confident predictions.

• SHOT (Liang et al., 2020): SHOT fix its classifier during the adaptation, while the feature en-
coder, pre-trained by source domain data, is updated with self-supervised objectives. It promotes
transferable and discriminative representations on target data.

• OSTTA (Lee et al., 2023): Low-confidence predictions are filtered as potential OOD samples,
and adaptation is performed by entropy minimization on confident ID data, which reduces the
risk of error propagation.

• EATA (Niu et al., 2022): High-confidence target samples are chosen for adaptation, while Fisher
information regularization constrains drastic parameter changes. Together, these mechanisms
balance adaptation plasticity and stability.

• CoTTA (Wang et al., 2022): Pseudo-labels are averaged across augmentations and weight trajec-
tories to stabilize adaptation, and stochastic restoration of source weights periodically anchors the
model to its pre-trained state.

• UniEnt (Gao et al., 2024): A Gaussian mixture model is applied to feature–prototype similarities
to separate ID and OOD samples. Adaptation is guided by minimizing entropy for ID predictions
and maximizing entropy for OOD predictions.

• OWT3 (Li et al., 2023): Originally designed to align target distributions with source statistics and
construct new OOD prototypes. In the OWTTA setting, it is adapted by replacing prototypes with
normalized classifier weights and removing the source-alignment loss.

For vision-language model-based baselines, we have:

• CLIP (Radford et al., 2021): A vision–language model trained on large-scale image–text pairs
with contrastive learning. It performs zero-shot classification by matching image features with
text embeddings of class names, providing a strong foundation for open-world adaptation.

• C-TPT (Yoon et al., 2024): Builds upon CLIP by refining textual prompts at test time. It opti-
mizes context tokens to better align with target-domain distributions, thereby improving zero-shot
generalization under distribution shifts.
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• CLIPN (Wang et al., 2023): Extends CLIP by introducing an additional text encoder trained with
noise-injected supervision on large-scale data. This design explicitly enhances CLIP’s capacity
for OOD detection, enabling it to better separate in-distribution and out-of-distribution samples.

• NegSample (Jiang et al., 2024): Augments CLIP with negative sampling in the joint feature
space, where mismatched image–text pairs are explicitly penalized. By enforcing stronger con-
trast between matched and mismatched pairs, it sharpens the decision boundary between ID and
OOD data, thereby enhancing OOD detection capability.

• WATT (Osowiechi et al., 2024): Performs test-time adaptation for CLIP by leveraging multiple
prompt templates to generate diverse text embeddings. For each template, CLIP produces pseudo
labels that are used to update the model. The resulting parameters from different templates are
then consolidated through weight averaging, which stabilizes the adaptation process.

In our experiments, some discriminative model baseline methods are not originally tailored for the
OWTTA setting. To ensure fair comparison, we follow the protocol in OWT3 (Li et al., 2023).
Specifically, we employ ResNet-50 and use Eq. (7) to distinguish ID samples. The compared meth-
ods are then applied to the filtered ID subset for subsequent adaptation.

CLIP-based adaptation methods, which were originally developed for the TTA setting, are extended
to OWTTA by first detecting OOD samples using CLIP-derived confidence scores and then apply-
ing adaptation only to the identified ID subset. CLIP-based OOD detection methods are evaluated
in their original form. We report their OOD detection performance directly and compute the ID
classification accuracy using either the corresponding trained encoder or the zero-shot CLIP model
with updated prompts, depending on the design of each method.

All baseline methods are implemented following the settings and recommended hyperparameters
provided in their original papers to ensure a fair and consistent comparison.

A.5 IMPLEMENTATION DETAILS

All experiments are conducted on a workstation with Ubuntu 22.04.5, Python 3.7.16, and PyTorch
1.13 (Paszke et al., 2019), equipped with an NVIDIA RTX 6000 Ada Generation GPU (48GB
memory) and an AMD Ryzen Threadripper PRO 5965WX 24-core CPU. In the proposed VLBO
framework, ResNet-50 serves as the backbone and SGD is used as the optimizer. We use SGD op-
tiomizer. For CIFAR10-C and CIFAR100-C open-world datasets, we use a learning rate of 1e − 3
with λ = 0.1. For ImageNet-C, ImageNet-R, and VisDA-C open-world datasets, the learning rate is
reduced to 1e− 4 with λ = 1e− 3.

A.6 ABLATION STUDY

The main text reports ablation results on the ImageNet-C and VisDA-C open-world datasets. For
completeness, we additionally provide the ablation results across all open-world datasets in this
section.

Table 9: Ablation study on CIFAR10-C open-world dataset.

AF SA LMSE LDiv Noise MNIST SVHN Tiny CIFAR100-C

× × × ✓ 86.09 78.47 82.48 74.00 72.71
× × ✓ ✓ 90.34 89.35 80.51 70.56 72.71
✓ × ✓ ✓ 90.33 89.73 87.71 76.51 74.51
× ✓ ✓ ✓ 92.33 91.44 84.48 71.00 72.95
✓ ✓ ✓ ✓ 92.37 91.79 89.35 77.92 74.91

Table 10: Ablation study on CIFAR100-C open-world dataset.

AF SA LMSE LDiv Noise MNIST SVHN Tiny CIFAR10-C

× × × ✓ 49.11 43.39 46.39 46.13 46.79
× × ✓ ✓ 61.43 52.47 51.35 47.28 45.78
✓ × ✓ ✓ 62.15 55.05 53.82 49.44 48.09
× ✓ ✓ ✓ 68.04 61.21 50.47 48.93 48.24
✓ ✓ ✓ ✓ 69.92 62.87 57.56 51.89 48.79
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Table 11: Ablation study on ImageNet-R open-world dataset.

AF SA LMSE LDiv Noise MNIST SVHN

× × × ✓ 44.41 40.39 37.02
× × ✓ ✓ 55.37 33.17 56.95
✓ × ✓ ✓ 55.99 44.12 57.05
× ✓ ✓ ✓ 78.66 75.04 76.89
✓ ✓ ✓ ✓ 79.56 77.53 77.96

A.7 BOOST WITH DIFFERENT BACKBONES

In this subsection, we evaluate the proposed method with different backbone architectures to verify
the general effectiveness of the VLBO paradigm. Results are reported in Table 12, Table 13, Ta-
ble 14, Table 15, and Table 16. From these tables, we observe that VLBO consistently outperforms
existing methods when using CLIP with a ResNet-50 backbone. Moreover, as shown in Table 12
and Table 13, the vanilla CLIP method fails to reliably filter OOD samples, leading to degraded
performance, whereas our method remains effective. These results demonstrate the robustness and
effectiveness of VLBO across different architectures.

Table 12: OWTTA results on CIFAR10-C with CLIP ResNet-50 backbone.

CIFAR10-C Noise MNIST SVHN Tiny CIFAR100-C
ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH

CLIP-RN50 32.36 0.04 0.08 29.96 72.49 42.40 32.66 84.68 47.14 50.26 68.88 58.11 33.54 76.47 46.63
+C-TPT 31.34 0.04 0.08 29.99 72.49 42.43 31.44 84.68 45.85 48.24 68.88 56.74 31.76 76.47 44.88
+NegSample 26.01 99.99 41.28 26.01 77.95 39.00 26.01 75.86 38.74 26.01 92.66 40.62 26.01 89.75 40.33
+Ours 82.41 100.00 90.36 82.42 96.67 88.98 79.89 90.87 85.03 67.70 82.32 74.30 69.80 77.19 73.31

Table 13: OWTTA results on CIFAR100-C with CLIP ResNet-50 backbone.

CIFAR100-C Noise MNIST SVHN Tiny CIFAR10-C
ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH

CLIP-RN50 5.26 0.00 0.00 12.56 58.80 20.70 13.64 62.70 22.41 18.72 58.89 28.41 13.87 57.48 22.35
+C-TPT 19.80 0.00 0.00 8.70 58.80 15.16 8.81 62.70 15.45 18.30 58.89 27.92 9.75 57.48 16.67
+NegSample 10.68 0.00 0.00 10.68 21.56 14.28 10.68 24.17 14.81 10.68 80.58 18.86 10.68 67.45 18.44
+Ours 46.65 99.94 63.61 35.91 91.96 51.65 39.36 81.43 53.07 37.31 74.32 49.68 34.39 74.25 47.01

Table 14: OWTTA results on ImageNet-C with CLIP ResNet-50 backbone.

ImageNet-C Noise MNIST SVHN
ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH

CLIP-RN50 9.26 100.00 16.95 12.87 99.70 22.80 13.75 98.20 24.13
+C-TPT 7.38 100.00 13.75 14.79 99.70 25.76 17.07 98.20 29.08
+NegSample 14.94 3.52 5.70 14.94 73.91 24.86 14.94 44.10 22.32
+Ours 39.83 99.57 56.9 38.01 98.99 54.93 39.36 98.31 56.22

Table 15: OWTTA results on ImageNet-R with CLIP ResNet-50 backbone.

ImageNet-R Noise MNIST SVHN
ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH

CLIP-RN50 41.12 100.00 58.28 43.11 99.94 60.24 46.42 99.49 63.31
+C-TPT 33.62 100.00 50.32 25.51 99.66 40.62 19.17 76.21 30.63
+NegSample 44.12 100.00 61.23 44.12 99.94 61.22 44.12 97.41 60.73
+Ours 46.02 98.71 62.78 45.30 98.64 62.09 47.30 99.56 64.13

Table 16: OWTTA results on VisDA-C with CLIP ResNet-50 backbone.

VisDA-C Noise MNIST SVHN
ACCI ACCO ACCH ACCI ACCO ACCH ACCI ACCO ACCH

CLIP-RN50 39.77 99.97 56.90 48.67 98.22 65.09 50.60 94.04 65.80
+C-TPT 37.64 99.97 54.69 34.81 64.14 45.13 32.21 92.37 47.76
+NegSample 31.23 100.00 47.60 31.23 99.99 47.59 31.23 99.38 47.53
+Ours 60.59 99.63 75.35 55.45 99.12 71.12 62.73 98.36 76.61
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A.8 COMPUTATIONAL OVERHEAD ANALYSIS

The main text reports the computational overhead analysis on the ImageNet-C open-world dataset.
For completeness, we further provide the corresponding comparisons on CIFAR10-C, CIFAR100-C,
ImageNet-R, and VisDA.

Table 17: Computational overhead comparison on CIFAR10-C open-world dataset.

CIFAR10-C Noise MNIST SVHN Tiny CIFAR100-C
Time Memory ACCH Time Memory ACCH Time Memory ACCH Time Memory ACCH Time Memory ACCH

CLIP-ViT-B/16 0.1549 507.26 73.27 0.1611 507.26 76.69 0.1573 507.26 78.49 0.1530 507.26 76.78 0.1593 507.26 70.03
+C-TPT 0.4697 1220.96 81.20 0.4789 1220.96 76.37 0.4843 1220.96 78.10 0.4948 1220.79 75.97 0.4899 1220.79 70.06
+CLIPN 0.3066 403.25 32.04 0.3184 403.25 32.42 0.3171 403.25 32.37 0.3197 403.25 32.66 0.3187 403.25 32.62
+NegSample 0.1297 578.93 62.56 0.1130 578.93 62.53 0.1152 578.93 61.77 0.1153 578.93 61.44 0.1137 578.93 60.75
+WATT 7.8918 1099.38 73.00 8.8878 1099.38 76.63 10.0848 1099.38 78.94 13.8435 1099.38 76.75 13.0855 1099.38 70.34
+Ours 1.0102 877.44 92.37 0.6569 782.32 91.79 1.0926 880.54 89.35 1.2972 940.21 77.29 0.9442 878.05 74.91

Table 18: Computational overhead comparison on CIFAR100-C open-world dataset.

CIFAR100-C Noise MNIST SVHN Tiny CIFAR10-C
Time Memory ACCH Time Memory ACCH Time Memory ACCH Time Memory ACCH Time Memory ACCH

CLIP-ViT-B/16 0.1555 508.36 5.49 0.1569 508.36 47.41 0.1573 508.36 47.38 0.1556 508.36 48.16 0.1588 508.36 42.71
+C-TPT 0.5701 1235.24 5.62 0.4925 1235.68 35.12 0.5178 1235.68 35.23 0.5527 1235.53 41.18 0.5387 1235.66 33.02
+CLIPN 0.3161 403.69 21.51 0.3154 403.69 21.91 0.3188 403.69 21.82 0.3186 403.69 21.80 0.3191 403.69 21.81
+NegSample 0.1185 579.33 43.77 0.1147 579.33 43.34 0.1142 579.33 36.56 0.1168 579.33 41.71 0.1114 579.33 39.41
+WATT 21.5565 1099.60 5.53 7.0037 1099.60 49.82 7.4444 1099.60 49.27 13.5017 1099.60 50.96 10.9796 1099.60 44.63
+Ours 0.6530 863.94 69.92 0.5425 912.22 62.87 0.5227 774.92 57.56 0.5583 824.13 51.89 0.5483 813.94 48.79

Table 19: Computational overhead comparison ImageNet-R open-world dataset.

ImageNet-R Noise MNIST SVHN
Time Memory ACCH Time Memory ACCH Time Memory ACCH

CLIP-ViT-B/16 0.2026 593.34 63.42 0.1877 593.34 71.05 0.1924 593.34 75.52
+C-TPT 0.5452 1260.39 60.98 0.5438 1260.39 68.95 0.5496 1260.39 74.14
+CLIPN 0.3019 404.49 28.38 0.3079 404.49 31.41 0.3087 404.49 31.35
+NegSample 0.1025 596.75 77.52 0.1195 596.75 76.39 0.1160 596.75 74.31
+WATT 7.5363 1100.16 62.93 9.0740 1100.16 70.80 10.3173 1100.16 75.27
+Ours 1.2607 1156.20 79.56 0.9742 1172.48 77.53 0.9894 1175.29 77.96

Table 20: Computational overhead comparison on VisDA open-world dataset.

VisDA Noise MNIST SVHN
Time Memory ACCH Time Memory ACCH Time Memory ACCH

CLIP-ViT-B/16 0.1829 580.69 65.33 0.1913 580.69 74.77 0.1964 580.69 74.30
+C-TPT 0.4648 1221.33 78.90 0.4686 1221.33 75.04 0.4734 1221.33 74.37
+CLIPN 0.3049 403.56 33.37 0.3041 403.56 33.37 0.3043 403.56 33.79
+NegSample 0.1197 596.27 56.63 0.1143 596.27 56.63 0.1253 596.27 56.54
+WATT 6.7990 1099.68 65.41 8.8650 1099.68 74.86 8.1327 1099.68 74.29
+Ours 0.6973 780.56 85.64 0.6106 770.25 83.16 0.6254 772.57 87.06

A.9 VISUALIZATIONS

In this subsection, we present the visualization results of the proposed VLBO method. To intuitively
demonstrate the effect of AF, we plot the confidence scores before and after boosting. The corre-
sponding results are shown in Fig. 5, Fig. 6, Fig. 7, Fig. 8, and Fig. 9. As ImageNet-C comprises
1000 classes, we plot a subset of 50 classes to ensure clearer visualization. These figures indicate
that AF substantially enlarges the margin between ID and OOD samples, thereby improving their
separability. In addition, heatmap visualizations of logits from ResNet and VLBO demonstrate that
SA effectively suppresses irrelevant classes while emphasizing the correct class. Overall, these vi-
sualizations confirm that AF and SA collaboratively enhance the reliability of adaptation under the
OWTTA setting.
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(a) Confidence score of ResNet (b) Confidence score of VLBO

(c) Heatmap of ResNet (d) Heatmap of VLBO

Figure 5: Visualization of OWTTA results on CIFAR10-C & MNIST open-world datasets.

(a) Confidence score of ResNet (b) Confidence score of VLBO

(c) Heatmap of ResNet (d) Heatmap of VLBO

Figure 6: Visualization of OWTTA results on CIFAR100-C & MNIST open-world datasets.
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(a) Confidence score of ResNet (b) Confidence score of VLBO

(c) Heatmap of ResNet (d) Heatmap of VLBO

Figure 7: Visualization of OWTTA results on ImageNet-C & MNIST open-world datasets.

(a) Confidence score of ResNet (b) Confidence score of VLBO

(c) Heatmap of ResNet (d) Heatmap of VLBO

Figure 8: Visualization of OWTTA results on ImageNet-R & MNIST open-world datasets.
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(a) Confidence score of ResNet (b) Confidence score of VLBO

(c) Heatmap of ResNet (d) Heatmap of VLBO

Figure 9: Visualization of OWTTA results on VisDA-C & MNIST open-world datasets.

A.10 ANALYSIS UNDER DIFFERENT OOD RATIOS

In this subsection, we evaluate the robustness of our method under different OOD ratios. Specifi-
cally, we vary the OOD ratio NOOD

NID
from 0.1 to 1. The corresponding results, including both ACCH

and standard deviation, are presented in Table 21, Table 22, Table 23, Table 24, and Table 25. We
observe slight fluctuations when the OOD ratio becomes extremely low, which is expected since
ACCO is particularly sensitive in the rare-OOD regime where only a few OOD samples are avail-
able. Overall, across all datasets and OOD ratios, the proposed method maintains consistently stable
performance, demonstrating strong robustness under varying OOD proportions in open-world sce-
narios.

Table 21: Performance under different OOD ratios on the CIFAR10-C open-world dataset.

CIFAR10-C 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 STD

Noise 86.87 91.01 91.69 91.88 92.14 92.17 92.44 92.46 92.26 92.37 1.6947
MNIST 91.13 92.33 91.39 92.65 92.59 92.93 92.38 91.27 92.47 91.79 0.6437
SVHN 85.68 90.09 90.93 90.94 91.09 91.18 91.55 91.34 91.51 89.35 1.7814
Tiny 76.40 75.49 73.94 75.14 75.84 77.18 78.30 78.89 79.48 77.92 1.7919

CIFAR100-C 74.31 75.43 75.30 75.52 75.76 75.73 75.66 75.95 75.93 74.91 0.5075

Table 22: Performance under different OOD ratios on the CIFAR100-C open-world dataset.

CIFAR100-C 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 STD

Noise 60.65 63.46 64.97 64.88 68.38 64.96 67.41 63.37 64.44 69.92 2.6900
MNIST 58.37 61.8 63.26 60.82 63.99 64.59 64.19 63.68 63.46 62.87 1.8982
SVHN 52.75 54.7 51.87 53.97 56.4 58.38 56.3 55.89 56.81 57.56 2.0966
Tiny 47.46 48.93 48.99 49.65 50.01 51.16 51.03 52.03 52.2 51.89 1.5831

CIFAR10-C 45.65 46.42 47.34 47.83 48.19 48.55 48.22 48.82 49.18 48.79 1.1283
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Table 23: Performance under different OOD ratios on the ImageNet-C open-world dataset.

ImageNet-C 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 STD

Noise 62.05 62.99 62.74 62.93 62.51 62.74 62.76 62.74 62.75 63.06 0.2846
MNIST 62.90 63.08 60.01 63.62 63.75 63.68 63.72 63.61 63.87 63.60 1.1564
SVHN 62.28 62.42 62.45 62.62 62.46 62.63 62.60 62.64 62.76 62.26 0.1645

Table 24: Performance under different OOD ratios on the ImageNet-R open-world dataset.

ImageNet-R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 STD

Noise 77.98 78.08 78.39 78.91 78.42 79.00 79.33 79.36 79.45 79.56 0.5894
MNIST 74.78 75.88 76.00 76.36 76.14 76.63 76.59 76.96 76.95 77.53 0.7530
SVHN 76.47 77.27 77.18 77.37 77.52 77.75 77.60 78.01 77.72 77.96 0.4502

Table 25: Performance under different OOD ratios on the VisDA open-world dataset.

VisDA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 STD

Noise 79.43 79.06 80.60 81.37 82.23 80.35 80.84 80.93 80.98 85.64 1.8202
MNIST 79.78 79.66 79.32 80.31 80.62 81.10 80.89 81.53 81.96 83.16 1.1709
SVHN 84.74 85.10 86.88 86.05 85.94 85.78 85.49 84.76 86.93 87.06 0.8725

B THE USAGE OF LARGE LANGUAGE MODEL

This paper was polished with the assistance of a large language model for language refinement. The
research content and conclusions are original contributions of the authors.
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