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Abstract

Surrogate models, or machine learning based emulators of
simulators, have been shown to be a powerful tool for accel-
erating simulations. However, capturing the system response
of general nonlinear systems is still an open area of inves-
tigation. In this paper we propose a new surrogate architec-
ture which is capable of capturing the input/output response
of causal models to automatically replace large aspects of
block model diagrams with neural-accelerated forms. We
denote this technique the Nonlinear Response Continuous-
Time Echo State Network (NR-CTESN) and describe a train-
ing mechanism for it to accurately predict the simulation
response to exogenous inputs. We then describe a science-
guided or physics-informed surrogate architecture based on
Cellular Neural Networks to enable the NR-CTESN to ac-
curately reproduce discontinuous output signals. We demon-
strate this architecture on an inverter circuit and a Sky130
Digital to Analog Converter (DAC), showcasing a 9x and
300x acceleration of the respective simulations. These re-
sults showcase that the NR-CTESN can learn emulate the
behavior of components within composable modeling frame-
works and thus be reused in new applications without requir-
ing retraining. Together this showcases a machine learning
technique that can be used to generate nonlinear model or-
der reductions of model components in SPICE simulators,
Functional Markup Interface (FMI) representations of causal
model components, and beyond.

Keywords: nonlinear system response, surrogate model-
ing, causal modeling, composable abstractions

Introduction
Optimization of system designs commonly requires thou-
sands to millions of expensive model simulations in order
to identify to global or local minimums (Du et al. 2018;
Yildiz, Abderazek, and Mirjalili 2020). To address this com-
putational cost, reduced order and surrogate models (Willard
et al. 2020) have become standard practice in many do-
mains to accelerate simulations (Chatterjee, Chakraborty,
and Chowdhury 2019; Han et al. 2017). Surrogates, and in
particular physics-informed surrogates (White et al. 2019),
are popular as stand-ins for full order simulations. They
are also widely used in optimization (Stern, Song, and
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Work 2017), uncertainty quantification (Tripathy and Bilio-
nis 2018), and control design (Peitz and Dellnitz 2018).

Training surrogate models presents two difficulties. First,
many systems used in engineering practice exhibit stiff-
ness and have dynamics that are multi-scale in time (Wan-
ner and Hairer 1996), which makes training accurate surro-
gates that capture all timescales a difficult task (Hadjinico-
laou and Goussis 1998; Anantharaman et al. 2021b). Most
data-driven methods for generating surrogates fail on this
task without the use of problem-specific assumptions, vari-
able transformations (Qian et al. 2020; Kramer and Willcox
2019) or specialized training procedures (Kim et al. 2021; Ji
et al. 2021). Prior work demonstrated that implicitly-trained
continuous time frameworks, such as the Continuous-Time
Echo State Networks (CTESN), are viable surrogate archi-
tectures for accurately learning such multi-scale dynamics
(Anantharaman et al. 2021b; Rackauckas et al. 2021).

A second challenge is the difficulty of developing surro-
gates which do not require retraining when used in new sce-
narios. For instance, in design optimization as well as opti-
mal control, many surrogates directly approximate the ob-
jective function (Peitz and Dellnitz 2018; Marzat and Piet-
Lahanier 2012; Wang, He, and Liu 2017), which necessi-
tates retraining whenever the choice of objective function
changes. Most other surrogate architectures reproduce the
behavior of a full model (Anantharaman et al. 2021b; Raissi,
Perdikaris, and Karniadakis 2019; Benner, Gugercin, and
Willcox 2015). The downside this presents is that if the
causal connections between components in a model are even
slightly changed then the entire expensive training procedure
must be repeated.

To alleviate this issue, we sought to develop surrogate
architectures that would be suitable as components within
composable modeling frameworks. These causal frame-
works such as Simulink, ASPEN, and ModelingToolkit
(Karris 2006; Luyben 2013; Ma et al. 2021), are block-
diagram system modelers where mechanistic models are
composed together. These types of simulation environments
provide pre-built model components of commonly reused
structures, such as HVAC models (Tian et al. 2017), build-
ings (Wetter 2011; Wetter et al. 2019), circuit components
(Cellier, Clauß, and Urquı́a 2007), and more, to allow en-
gineers to easily re-purpose quantums of mechanistic mod-
els towards different applications. If such component mod-



els could automatically be reduced to an accelerated form,
then all future applications which would have used the li-
brary components could instead use the same neural surro-
gate without requiring retraining. It is this composable and
reusable formulation that we wish to target.

Block models in such modeling systems are ordinary dif-
ferential equations which allow for arbitrary input functions.
This can be written as:

u′ = φ(u, p, t, f(t)) (1)
y = ψ(u) (2)

where u are the states of the component, f is the input func-
tion, and y are the output observables. In such a mechanistic
system modeling context, systems are composed by defin-
ing the f(t) by the output observables y(t) of another block.
Developing a surrogate architecture capable of being used
in such a context thus boils down to developing continuous-
time surrogates capable of capturing the system response of
non-linear systems.

The problem of learning reduced system response models
has been extensively studied in the context of control theory.
A common case is where systems are linearized (Charlet,
Lévine, and Marino 1989) about a certain operating point,
after which linear model order reduction methods (Antoulas
2005; Benner, Gugercin, and Willcox 2015) or system iden-
tification methods (Ljung, Chen, and Mu 2020; Schoukens
and Ljung 2019) are used to generate stand-ins for the full
order model. Then, the literature on designing controllers
for linear systems can then be drawn upon (Skogestad and
Postlethwaite 2007). The limitation of this approach is that
beyond a certain operating region, this reduced order form’s
system response may no longer be representative of the orig-
inal system response. One method that has been used to cap-
ture nonlinear system response is the Volterra series (Cheng
et al. 2017), and have been used to control multi degree of
freedom systems (Feijoo et al. 2010) but the method requires
the system to be time-invariant. In this work, we present
a fully nonlinear machine learning based method to cap-
ture the system response of arbitrary nonlinear systems in
a continuous-time architecture and show its ability to accu-
rately accelerate causal models.

Nonlinear Response Continuous-Time Echo
State Networks (NR-CTESN)

This section first summarizes the CTESN surrogate method
and then describes the Nonlinear Response CTESN exten-
sion. CTESNs are a continuous-time analogue of Echo State
Networks, which are a form of reservoir computing (Grigo-
ryeva and Ortega 2018; Lukoševičius 2012). This surrogate
consists of two parts: a reservoir Ordinary Differential Equa-
tion (ODE), which is cheap to simulate by design, and a pro-
jection operator from this reservoir to the reference system.
While the reservoir ODE is designed by the user based on
various considerations, the projection operator is trained us-
ing a linear least-squares solve. A typical formulation for the
CTESN is the following:

r′ = g(Ar +Whybx(p
∗, t)) (3)

x(p, t) =Woutr(t) (4)

Time (μs)
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Figure 1: Rich response dynamics of a domain-specific
reservoir used in the NR-CTESN, used to generate the sur-
rogate of the inverter. Each line represents an output from
every cell in the cellular neural network.

where Equation 3 is an example of a simple, non-parametric
reservoir ordinary differential equation, written as a neural
ordinary differential equation(Chen et al. 2018). A is re-
ferred to as the weight matrix in the literature (Kawai, Park,
and Asada 2019), Whybx(p

∗, t) is a “hybrid” term used to
drive the reservoir, and x(p∗, t) is a candidate solution at
some point in the chosen parameter space. g is an activa-
tion function, which, in addition to the weight matrix A, is
chosen to control the behaviour of the full derivative term.

The CTESN is conventionally trained as follows: first, a
parameter space P is chosen, which is a cross product of
ranges of the system parameters. This space is then sampled,
yielding {p1, . . . , pn} ∈ P . The system is simulated at each
of these parameters, yielding a training set of time series.
Equation 4 refers to the second step in the training. Projec-
tions {W p1

out, . . . ,W
pn

out} are computed from the simulated
reservoir r to each time series in the training set, using a QR
decomposition or the singular value decomposition. Finally,
an interpolating function p −→ Wout(p) is then fit. Predic-
tion from the CTESN now follows three steps: simulation of
the reservoir, constructing the projection, and then matrix-
vector multiplication, as shown below.

x̂(p̂, t) =Wout(p̂)r(t) (5)

The CTESN has been trained to produce surrogate models of
Heating, Ventilation and Air Conditioning (HVAC) systems
(Rackauckas et al. 2021) and quantitative systems pharma-
cology models (Anantharaman et al. 2021a).

There are several important considerations whilst train-
ing the CTESN. The reservoir should be always be chosen
strategically. In particular, the time series from this reservoir
should match key characteristics of the output time series,
while being cheap to simulate. The above basic formulation
may not be amenable to train systems that exhibit complex
behaviour. For instance, this reservoir is largely continuous,
and may not accurately capture discontinuities. If the out-
put time series contains a discontinuity at a point in time,
the reservoir should also contain it. In the next section, we
shall examine a domain specific choice of reservoir which
can accurately handle semi-discontinuous components seen
in circuit simulations.
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Figure 2: Prediction of surrogate to unseen test input se-
quence. The red line refers to the ground truth output from
the inverter and blue line is the prediction. The surrogate is
able to predict the transition from high to low at the correct
times and is able to match the reference output.

The NR-CTESN incorporates external forcing into the
formulation and training. While external forcing can also
be handled by a vanilla CTESN by simply appending the
function parameters to the list of physical parameters, the
resulting surrogate does not distinguish between these two
classes of parameters. This treatment is incorrect because the
forcing parameters affect system dynamics differently than
physical parameters. The NR-CTESN thus treats these pa-
rameters differently by incorporating the forcing term into
the reservoir. Using this modification, discontinuities can
also be incorporated into the reservoir formulation, provided
they are known in advance of training.

While training the NR-CTESN, we do not simply sample
a larger Cartesian space, like in the vanilla CTESN. Instead,
we sample the cross product of two Cartesian spaces, cor-
responding to the physical parameters and forcing parame-
ters. This allows the NR-CTESN to train over many different
combinations of physical and forcing parameters, thus pro-
viding a more accurate and robust surrogate. The following
section describes this training procedure in more detail.

Training with External Forcing
In this section, we describe a modification to the structure
and the training procedure of the CTESN Now we present a
variant of the CTESN formulation that incorporates external
forcing, which can then be used to capture system response
to external forcing or internal disturbance. This training pro-
cedure not only trains on a bounded parameter space P like
the conventional CTESN, but also on a space of external
forcing functions.

Consider a bounded space of forcing functions F , such
as a Fourier series or polynomials with a finite number of
terms and a predefined range of coefficients. In other words,
we mean to consider a bounded space of coefficients that
describe a bounded space of functions. Let forcing func-
tions {f1, . . . , fn} be sampled from this space. To incorpo-
rate forcing functions, Equation 3 may thus be modified as
follows:

r′ = g(Ar +Whybx(p
∗, t) +Wff(t)) (6)

Time (μs)

Figure 3: Relative error of surrogate prediction at test
input sequence. The error is highest at the points of discon-
tinuity: the places where the square signal transition from 0
to 1 and vice versa.

whereWf is constant and f(t) is the additional forcing term.
The reservoir r from Equation 6 is excited using each forc-
ing function, resulting in a collection of reservoir response
time series {r1, . . . rn}. We also excite the original system
with the same forcing functions, resulting in the time series
collection {d1, . . . dn}. We can now solve the least squares
problem

argmin
Wout

∑
i

(Woutri − di)
2

To solve this numerically, we can concatenate all the system
responses like in Equation 7, and solve the following directly
with a QR decomposition or the singular value decomposi-
tion:

Wout[r1|r2| . . . |rn] = [d1|d2| . . . |dn] (7)

We dub the resultant surrogate the NR-CTESN. This idea
composes naturally with the conventional CTESN training
to learn a parametric surrogate. Namely, we can sample sev-
eral sets of parameters at pre-defined parameter space P ,
compute several projections from the reservoir system re-
sponses to the original system responses, and then learn the
interpolating object Wout(p). This procedure is summarized
in Algorithm 1. We also note that system response to inter-
nal disturbances and events can be learnt in the same way.
Once the event in question is parametrized, a space of event
parameters can be bounded and sampled, after which a pro-
jection can be fit in exactly the same fashion as above.

Circuit Simulation Applications: Inverter and
Digital to Analog Converter (DAC)

In this section, we shall discuss how the Nonlinear Response
CTESN is used to generate a surrogate of an inverter circuit.
The inverter is designed using two Berkeley Short-channel
IGFET Mode-4 (BSIM4) transistor models (Dunga et al.
2006) in CMOS inverter configuration. The input to this
model is a 9-bit digital input with a fixed bit-width and the
output is the flipped bitstream.

The first step in training a NR-CTESN is to design the
reservoir. In general, the reservoir should exhibit a rich set



Algorithm 1: Training the Nonlinear Response CTESN
Input: parameter space P, space of forcing functions F,
pre-designed reservoir r
Output:

1: Sample {p1, . . . pn} ∈ P , {f1, . . . fn} ∈ F
2: for p in {p1, . . . pn} do
3: Compute reservoir responses {r1, . . . rn} and

system responses {d1, . . . dn} using {f1, . . . fn}.
4: Fit projection matrix Wout at parameter p using Eq. 7
5: end for
6: Fit interpolator ψ : p −→Wout

7: return ψ, r

Figure 4: Histogram of test errors. The X axis denotes the
relative error and Y axis denotes the number of test samples
with the same prediction error. The majority of relative er-
rors for the test dataset is less than 0.05.

of dynamics when excited by the digital inputs. The inverter
is a mixed-signal circuit (Gielen and Rutenbar 2000), and
can output both analog and digital signals depending on its
physical parameters. The reservoir must also follow this be-
haviour.

This was achieved by use of a domain-specific reservoir
in the form of a Cellular Neural Network (Chua and Yang
1988a), which consists of a grid of cells. Each cell is a
circuit with an RC element, with additional controlled cur-
rent sources denoting coupling with its neighbors. The state
equations are as follows:

Cv′ij = − 1

Rx
vij +

∑
C(k,l)∈Nr(i,j)

A(i, j; k, l)vykl

+
∑

C(k,l)∈Nr(i,j)

B(i, j; k, l)vukl (8)

vyij = g(vij) (9)

where vij is the state of each cell C(i, j), the resistances
Rx and capacitances C in each cell are randomly initialized,
which allows them to create a range of responses. The output
from each cell is the state of the cell vij filtered by an activa-
tion function g, chosen to be tanh in this example. Each cell
also interacts with its neighbors via two template variables
A and B, which dictate the weighted contribution from the

neighbors’ outputs vykl and inputs vukl respectively (Chua
and Yang 1988b; Hunt et al. 1992). The size of the neigh-
borhood Nr(i, j) controls the size of the two template vari-
ables. This coupling in the system produces a rich response
shown in Figure 1. For more details on the implementation,
the reader is referred to the basic cellular neural network for-
mulation in (Chua and Yang 1988b).

Since the input is 9-bit digital, there exist only 29 = 512
possible discontinuous input signals to this system. The lo-
cation of the discontinuity is controlled by inverter’s sys-
tem parameters, and the surrogate is trained on multiple sets
of system parameters sampled using Latin Hypercube sam-
pling. Additionally, it is trained with 100 inputs sampled
from the possible 512. A 10 × 10 cellular network is ran-
domly initialized and excited with the training inputs, and a
neighborhood of 3× 3 was chosen. The simulation time un-
der consideration for training is 20 micro-seconds. A least
squares projection is then calculated between the reservoir
system responses and the system responses of the original
system. Figure 2 shows a prediction plot of the surrogate at
a test input while Figure 3 shows the relative error, which
is less than 2% over the whole time series. Additionally, a
histogram of relative errors was plotted in Figure 4.

On the inverter example of 44 equations a 9x acceleration
of the simulation was achieved by the NR-CTESN. How-
ever, as demonstrated in previous work the CTESN archi-
tecture’s acceleration increases as the size of the approxi-
mated system increases (Anantharaman et al. 2021b,a). This
is true of the NR-CTESN architecture as well. To demon-
strate this, we trained a surrogate using the same architecture
on a Sky130 Digital to Analog Converter (DAC) simulated
by Ngspice (Nenzi and Vogt 2011). This 1,200 equation sys-
tem saw similar accuracy results but achieved a 274x accel-
eration, changing the simulation time from 7.3 hours to 1.6
minutes.

Discussion & Conclusion
This paper presents a method to learn the response of ar-
bitrary systems to external forcing or internal events. The
method presented is generalizable in that it is data-driven
and places no constraints on the nature of the system be-
ing approximated. Science-guided or physics-informed pri-
ors are shown to be incorporated by the choice of reservoir.
Yet, the technique is, in general, agnostic to the system be-
ing learned. The resulting surrogate is capable of generat-
ing nonlinear model order reductions of casual modeling
blocks that match the reusable component architecture. This
allows the NR-CTESN to automatically accelerate models
from these types of modeling frameworks. When applied to
the Functional Markup Interface (FMI) standard for causal
models (Blochwitz et al. 2011), a widely used binary form
describing models in a way that matches Equation 1, the NR-
CTESN can thus be used as an FMU-accelerator, taking in
FMU binary descriptions of causal components and gener-
ating new FMU binaries which reproduce the behavior at a
fraction of the cost. Given the hundreds of widely used tools
throughout industry engineering which use this standard1,

1https://fmi-standard.org/tools



this technique has the potential to make a large impact on
the modeling industry.

In future work, we plan to use this surrogate in order to
design controls. We anticipate that the ability of the surro-
gate to respond to control signals at a fraction of the com-
putational cost can accelerate design significantly. In addi-
tion, we note that the original discrete-time echo state net-
works have been demonstrated to be universal adaptive fil-
ters (Grigoryeva and Ortega 2018), suggesting a potential
universality for the NR-CTESN. Follow up work should in-
vestigate this property or suggest variants to the NR-CTESN
to correct for this ability. Finally, we note that this technique
requires knowing the input states of the system and thus can-
not capture the fully acasual modeling space of many system
modelers such as Modelica (Mattsson, Elmqvist, and Otter
1998), Dymola (Brück et al. 2002), or SimScape (Miller and
Wendlandt 2010). Extensions to the technique which cover
the acausal space would expand its applicability.
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