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Abstract001

Data visualization has evolved from a purely002
human-centric craft to a dual-purpose tool con-003
sumed by both humans and machine-driven004
models. However, most existing evaluations005
focus primarily on aesthetics and clarity for hu-006
man users, overlooking machine interpretabil-007
ity. To bridge this gap, this study introduces008
HyVis (A Hybrid Visualization assessment for009
balancing human readability and machine com-010
prehension), a framework for evaluating visual-011
ization quality by combining human preference012
criteria and model interpretability. Unlike prior013
studies focused on human perception, HyVis014
integrates model readability, ensuring visual-015
izations are interpretable for machine-driven016
analysis. Experimental results demonstrate that017
HyVis improves human preference-based eval-018
uations by up to 16% and achieves a 3.14%019
higher accuracy in machine-readable assess-020
ments compared to large-scale models.021

1 Introduction022

Data visualization has been essential in science023

and other fields, helping people understand com-024

plex data and share insights(Yu and Silva, 2019;025

Ouyang, 2024). Recently, multimodal Large Lan-026

guage Models (LLMs) have made it possible to027

automatically create various types of charts and028

graphs (Hu et al., 2024; Han et al., 2023). This029

advancement has changed how we create and un-030

derstand visualizations.031

Traditional frameworks for evaluating visualiza-032

tions are based on how humans see and understand033

visual information(Munzner, 2014), focusing on034

making visuals easy to read and visually appeal-035

ing(Barcellos et al., 2022; Andreou et al., 2023).036

These guidelines have become standard in the037

field(Tufte and Graves-Morris, 1983; Schwabish,038

2021). However, with the rise of advanced LLMs,039

we can no longer assume that visualizations are040

consumed solely by humans. Recent studies (Wu041
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Figure 1: Illustration of our method’s contributions:
We propose an evaluation approach that assesses data
visualization quality based on human preferences and
machine performance.

et al., 2021; Yuan et al., 2021), show that many 042

visualizations are now processed and interpreted 043

by machines, meaning that the "end user" of a vi- 044

sualization isn’t always human. 045

Given this change, we need to update our vi- 046

sualization standards to consider both human and 047

machine interpretation. To address this, we present 048

the HyVis (A Hybrid Visualization assessment for 049

balancing human readability and machine compre- 050

hension) framework, which combines criteria for 051

both human and machine understanding. Our goal 052

is to help create visualizations that communicate 053

effectively to both human and machine audiences, 054

leading to better visualization practices overall. 055

As illustrated in Figure 1, HyVis takes chart im- 056

ages and analytical objective descriptions as inputs, 057

diagnosing whether the charts meet predefined cri- 058
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Figure 2: Human preference and machine readable dataset construction. (a) The human preference dataset (Hd)
consists of two categories: golden charts that satisfy all preference criteria and partial charts derived from golden
charts that fail to satisfy certain human preferences. (b) The machine readable dataset (Md) is designed to evaluate
chart understanding based on goal instructions. It comprises query/response pairs(T k) for FactCheck (FC) and
Analysis (Anls) tasks. The generated chart inference labels are used for evaluator training, while table inference
labels are utilized for scoring machine readable task results.

teria and scoring their alignment with the model’s059

goals. This approach defines chart evaluation crite-060

ria, including model readability, and enables HyVis061

to automatically assess chart quality.062

To address this, our study introduces a frame-063

work comprising:064

• Human Preference Evaluation: Assessing065

how clear and useful a chart is from a human066

viewpoint.067

• Machine Readable Evaluation: Introduces068

new criteria to evaluate model understanding069

of charts and their ability to achieve goals,070

shifting from human-centered approaches.071

• Hybrid Score Calculation: Combining both072

scores to provide a comprehensive evaluation073

of visualization quality for both humans and074

machines.075

This approach aims to enhance the effectiveness076

of data visualizations in environments where hu-077

mans and machine systems co-work, ensuring that078

visual information is accessible and interpretable079

by both.080

2 Related Works 081

This research is grounded in three key areas: vision- 082

language models (VLMs) for chart understanding, 083

a multi-LLM collaborative framework, and ma- 084

chine readability assessment. The relevant liter- 085

ature is reviewed, highlighting the problems this 086

study aims to address. 087

2.1 Vision-Language Model For Chart 088

Understanding 089

Recent advances in chart QA systems demonstrate 090

the potential of VLMs in multimodal reasoning. 091

ChartInstruct(Masry et al., 2024) proposed a hy- 092

brid evaluation combining human preference and 093

machine readability scores, establishing new chart 094

analysis standards. Based on UniChart (Masry 095

et al., 2023), it leverages visual element extraction 096

and data table reconstruction for state-of-the-art 097

performance. 098

DePlot+FlanPaLM (Liu et al., 2023a) pioneered 099

chart-to-table conversion for numerical reasoning, 100

while MatCha (Liu et al., 2023b) enhanced visual 101

encoding through derendering pretraining. How- 102

ever, recent evaluations (Moritz et al., 2019a; Li 103
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Figure 3: Framework of a hybrid visualization assessment for balancing human readability and machine comprehen-
sion (HyVis). The preprocessing stage constructs datasets Hd and Md, consisting of chart images and seed data for
training the human preference and machine readable evaluator. The trained evaluator produces Human preference
Score (Sh) and Machine readable Score (Sm) ranging from 0 to 1, which are then combined to compute the Hybrid
Score(Shy).

et al., 2023) indicate that existing VLMs struggle104

with complex numerical operations and maintain-105

ing consistency across diverse chart types.106

2.2 Multi-LLM Collaboration Framework107

Recent studies on multi-LLM systems suggest that108

collaboration among specialized agents can en-109

hance performance on complex tasks. (Cao, 2024)110

introduced cooperative interactions between anal-111

ysis and execution agents, while the Multi-Agent-112

Debate framework (Liang) improved reasoning ca-113

pabilities through iterative debate processes.114

2.3 Machine Readable Evaluation115

Interpretability research offers essential methods116

for evaluating model reasoning. The CLEAR cor-117

pus (Munzner, 2014) established readability met-118

rics based on human judgment, while contrastive119

explanations (Moritz et al., 2019a) highlighted the120

value of comparative analysis. For chart evaluation,121

(Masry et al., 2023) introduced a hybrid score com-122

bining factual consistency (Sf
m) and explanation123

quality (Se
m).124

3 HyVis: A Hybrid Visualization 125

Assessment for Balancing Human 126

Readability and Machine 127

Comprehension 128

In this study, we propose a Chart data quality as- 129

sessment framework that considers both human 130

preferences and model readable evaluator. To 131

achieve this, the framework is structured into three 132

components: (1) the Human Preference Evalua- 133

tor, which assesses human preferences for chart 134

visualization, (2) the Machine Readable Evaluator, 135

which evaluates the analytical suitability of charts 136

based on task-specific requirements, and (3) the 137

Hybrid Score Calculation, which integrates both 138

evaluations. 139

3.1 Human Preference Evaluator 140

The Human preference evaluator quantifies 141

whether a chart’s components align with intuitive 142

human evaluation criteria, ensuring ease of inter- 143

pretation. 144

Human Preference Criteria The core evaluation 145

criteria for chart visualization are derived from ex- 146

isting research on visualization quality assessment 147

(Munzner, 2014; Borkin et al., 2016). To reflect 148

effective user preferences in data analysis, we se- 149

lected the following five criteria: 150

• Completeness: Ensuring that all necessary 151
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visual elements (axes, legends, titles, etc.) rep-152

resent the table categories effectively.153

• Optimization: Structuring the chart effec-154

tively to align with the analytical purpose.155

• Emphasis: Highlighting key information rel-156

evant to the analysis goal.157

• Representation: Accurately representing158

chart data without distortion or confusing vi-159

sual elements.160

• Numericalization: Using intuitive chart la-161

bels and item value representation.162

Human Preference Data Generation As illus-163

trated in Figure 2-(a), the Human Preference164

Dataset (Hd) is created using table data and goal165

instructions for criteria classification training. Hd166

consists of two primary datasets: the golden dataset167

(ckg ) and the partial dataset (ckp). The golden dataset168

is generated by inputting prompts containing hu-169

man preference criteria into an LLM, which then170

produces chart generation code. A feedback loop171

incorporating human evaluation based on the cri-172

teria ensures that the golden dataset meets all the173

specified criteria, as shown in Figure 4.174

The partial dataset is generated using a similar175

process but with specific criteria deliberately re-176

stricted at the prompt input stage. Human feedback177

then verifies whether the exclusion conditions have178

been met. Ultimately, the golden dataset and partial179

dataset are combined to form Hd.180

Human Preference Evaluator Training The hu-181

man preference evaluator consists of a vision en-182

coder and a text decoder model, which takes a chart183

image and instruction as input to predict compli-184

ance with each criterion. The model is trained using185

the golden dataset and partial dataset, with criteria186

treated as multi-class classification labels. During187

inference, the trained model assigns a Human Pref-188

erence Score (Sh), where each criterion contributes189

0.2 points, yielding a total score between 0 and 1.190

The model’s learning and evaluation structure is191

illustrated in Figure 3.192

3.2 Machine Readable Evaluator193

The machine readable evaluator assesses a chart’s194

analytical suitability from the perspective of mod-195

els that analyze and interpret charts.196

Machine Readable Criteria The machine read-197

able evaluator aims to assess a model’s ability to198

Golden Data Generation Prompt
Based on the **TUBULAR** data mentioned
below, create a chart in a format that effectively
represents the **KEY_CONTEXT** information.
When visualizing, ensure that the chart satisfies
all the **CONDITIONS** listed below.
The following content outlines the conditions that
must be met to create a structure conducive to
effective analysis when performing visualization
using charts.
Additionally, provide the Python code for
generating the chart.
===
### TUBULAR###
{tubular}

### KEY_CONTEXT###
{instruction}

### CONDITIONS###
{Human Preferance Criteria}

Figure 4: Golden data generation prompt configuration.

understand and analyze data. To evaluate visu- 199

alization quality based on goal instructions, we 200

selected two tasks as machine-readable criteria: 201

Chart FactCheck(Liu et al., 2023b) and Chart Anal- 202

ysis(Hu et al., 2024). These tasks verify the accu- 203

racy of information required by the goal instruction 204

and assess whether the chart structure is appropri- 205

ate for analysis. The factcheck task verifies whether 206

the chart accurately reflects table data and instruc- 207

tions, while the analysis task involves summarizing 208

the chart’s key contents. These tasks are commonly 209

used to evaluate chart generation models, enabling 210

a quantitative assessment of visualization quality 211

(Masry et al., 2023; Liu et al., 2023b). 212

Machine Readable Data Generation The ma- 213

chine readable evaluator should be dependent 214

on input data quality rather than model perfor- 215

mance. To ensure this quality, we construct a Posi- 216

tive/Negative task dataset as shown in Figure 2-(b). 217

In addition, for robust task scoring, we generate 218

table-based task responses for each input chart. For- 219

mally, let be the golden, partial, and augmented 220

charts(ckg , ckp ,cka) for the k-th instance, respectively. 221

We define a machine readable task generator func- 222

tion: 223

Gtask(·), 224

which transforms the input charts into machine- 225

readable tasks: 226

tkp = Gtask
(
ckg
)
, tkn = Gtask

(
ckp, c

k
a

)
. 227

Here, tkp represents the positive response derived 228
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Type Complexity Tables Golden chart Partial chart
Continuous Low 18 36 3,531

high 11 22 2,246
Time-series Low 21 42 4,124

high 8 16 1,503
Total - 58 116 11,404

Table 1: Example Table Data and Human Preference
Dataset Composition.

from the golden chart ckg , whereas tkn is a nega-229

tive response constructed from the partial and aug-230

mented charts {ckp, cka}. Similarly, label response231

(e.g., tkℓ ) can be generated as needed.232

As a result of this process, an evaluation task233

dataset Tk containing the task query is generated,234

and the entire set Md is constructed as follows:235

T k = { tkp, tkn, tkℓ , tkq}236

237
Md = {Hk

d , c
k
a, T

k}238

Machine Readable Evaluator Training The ma-239

chine readable evaluator is a VLM-based structure240

designed to analyze and evaluate charts. During241

training, the model is fed with chart images, task242

queries, and golden answers. The training data is243

derived from Md, including labels for FactCheck244

and Analysis tasks.245

During evaluation, the model generates task246

queries based on table and instruction inputs and247

uses them to compute the FactCheck Score (Sf
m)248

and Analysis Score (Sa
m). The final Machine Read-249

able Score (Sm) is then calculated as the average250

of these two scores. Sm serves as a quantitative251

measure of how well the model aligns chart data252

with table information and interprets it according253

to the analytical objective.254

3.3 Hybrid Score Calculation255

Hybrid score calculation is the stage that integrates256

the evaluation results from the Human preference257

evaluator and the machine readable evaluator to258

compute the overall chart assessment score (Shy).259

The overall score is calculated as the product of Sh260

and Sm, ensuring that both human intuitive evalua-261

tion and the model’s interpretative capabilities are262

considered simultaneously. This metric serves as263

a quantitative measure of how well a chart aligns264

with the intended analytical objectives. Through265

this approach, Hybrid Critics establishes a compre-266

hensive evaluation framework that considers both267

human and model-based criteria for assessing over-268

all chart quality.269

Parameters HP Evaluator
MR Evaluator

(FC / Anls)
Epochs 10 12
Batch Size 32 32
Learning Rate 3× 10−5 5× 10−5

Optimizer AdamW AdamW
Mixed Precision FP16 FP16

Table 2: Implementation Details of Evaluators

4 Experimental Setup 270

In this section, we outline the experimental setup 271

designed to evaluate the effectiveness of the HyVis 272

framework. 273

4.1 Dataset 274

The chart generation data used for training and eval- 275

uating the proposed evaluator was obtained from 276

the TATQA dataset (Zhu et al., 2021) and table data 277

extracted from ArXiv. Subsequently, we performed 278

data augmentation using LLMs to enhance the 279

dataset, ensuring greater diversity and robustness 280

in the evaluation process. The table data collection 281

was based on two primary criteria as outlined in Ta- 282

ble 1: (1) Data type (continuous, time-series), and 283

(2) Data complexity (Single/Multi-head, Error rate, 284

Data scale). The appropriate visualization method 285

differs based on the type of data, which has a direct 286

relationship with human preference (Wongsupha- 287

sawat et al., 2015), (Moritz et al., 2019b). Addi- 288

tionally, when visualizing complex data within the 289

same type, it is essential to apply methods that miti- 290

gate visual confusion (Rougier et al., 2014). Using 291

these two criteria, we conducted experiments to 292

evaluate chart quality across diverse chart types. 293

To account for variations in visualization based 294

on analytical objectives, we created golden charts 295

aligned with two randomly chosen analytical pur- 296

poses. Additionally, to construct the partial dataset, 297

we generated five charts that fail to meet one of the 298

five criteria per analytical purpose and 20 charts 299

that fail to meet two criteria. This resulted in a total 300

dataset of 11,404 chart data samples. 301

4.2 Model Configuration 302

HyVis is built upon the Qwen/Qwen2-VL-7B- 303

Instruct model, utilizing LoRA adapters to train 304

both the human preference and machine-readable 305

evaluation models. The model training and evalua- 306

tion were conducted using eight NVIDIA A6000 307

GPUs, with hyperparameter settings detailed in Ta- 308
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Figure 5: Example results of the Human preference evaluator. The highlighted criteria indicate evaluations that do
not match the label.

Models
Criterias (Acc ↑)

Completeness Optimization Emphasis Representation Numericalization
Prompt-based eval
GPT-4o 0.72 0.68 0.62 0.65 0.65
Claude-3.5-sonnet 0.75 0.64 0.66 0.70 0.71
Trained eval
Ours 0.91 0.88 0.74 0.70 0.86

Table 3: Comparison of accuracy for each criterion of human preference. GPT-4o and Claude-3.5-sonnet use
prompt-based evaluation, while our model is specifically trained for evaluation.

ble 2. To compare the performance of the trained309

model, we evaluated chart quality using open-310

source models capable of chart analysis (UniChart,311

ChartInstruct, TinyChart (Zhang et al., 2024) as312

well as closed-source models (GPT-4o, Claude-3.5-313

sonnet).314

5 Experimental Results315

In this section, we introduce the experiments de-316

signed to validate the effectiveness of the HyVis317

framework in assessing the quality of data visual-318

ization. The objectives of our experiments are as319

follows:320

• Demonstrate the reflection of human prefer-321

ence by evaluating the rank exact match be-322

tween the Human preference evaluator and323

human rankings.324

• Compare baseline VLM performance with Sm 325

to verify the superiority of the machine read- 326

able evaluator. 327

• Analyze the correlation between the Hybrid 328

Score, Sh, and Sm. 329

• Investigate the relationship between Chart 330

type, complexity, and Sm to validate the relia- 331

bility of the Machine Readable Score. 332

5.1 Performance of the Human Preference 333

Evaluator 334

To evaluate the HyVis framework’s capacity for 335

quality determination, it is essential to compare 336

human preference assessments alongside model- 337

based metrics. As shown in Table 3, the human 338

preference evaluator effectively classifies charts 339

based on user-oriented criteria. Figure 5 compares 340
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Figure 6: Comparison of machine readable scores across models and error differences with Multi-LLMs’ label
scores. The bold scores indicate the lowest error values.
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Figure 7: Comparison of the performance between the
machine readable evaluator and baseline models.

the evaluation results across different criteria for341

the baseline models. While all models accurately342

classified the golden dataset, partial data assess-343

ments revealed shortcomings in evaluating the Em-344

phasis and Numericalization criteria. Across both345

the human preference dataset and augmented data,346

our proposed model achieved the highest alignment347

with human evaluations, outperforming the closed-348

model baseline. Details of the evaluation prompts349

are provided in Appendix A.350

5.2 Performance of Machine Readable351

Evaluator352

The machine readable evaluator was assessed by353

measuring the agreement between responses to354

Shy 0.3 0.3 < Shy < 0.7 Shy 0.7
Hybrid Score Range (Shy)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0.17
0.23

0.55
0.58

0.83 0.95

Sh Sm

Figure 8: Verification of the proportional relation-
ship between the hybrid score(Shy) and the human
preference(Sh)/machine readable(Sh) scores.

FC/Anls task queries generated by GPT-4o and 355

the original table data. As shown in Figure 7, our 356

model achieved the lowest mean squared error 357

(MSE) at 3.14%, outperforming other models by 358

up to 3.53%. Figure 6 illustrates the Sm scores 359

across different data structures. While the closed- 360

LLM models exhibited the lowest error rates for 361

high-label-score datasets (a) and (b), our proposed 362

model outperformed them in dataset (c), where 363

both closed-LLM models produced higher errors. 364

This result confirms that our model’s ability to learn 365

negative factors enables more precise evaluations 366
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Models Parameters ∆=0.6 ∆=0.2
ChartQA Chart-to-Text ChartQA Chart-to-Text

Close-source models
GPT-4o - 0.7729 0.9138 0.7762 0.8629
Claude-3.5-sonnet - 0.7972 0.8664 0.7695 0.8021

Open-source models
Unichart 1B 0.6123 0.7112 0.5983 0.7051
ChartInstruct 7B 0.6234 0.9324 0.6357 0.8073
Qwen2-VL 2B 0.7105 0.9487 0.6902 0.8260
ChartGemma 3B 0.7356 0.8932 0.7123 0.8305
TinyChart 3B 0.7321 0.9621 0.7158 0.8378

Table 4: Exact matching of aligned machine-readable scores with chart understanding task performance. The
symbol ∆ denotes the difference in the machine-readable score.

in machine-readable chart quality assessment.367

5.3 Hybrid Evaluation Analysis368

Finally, the hybrid score must demonstrate that it369

produces chart outputs which are both easily inter-370

preted by models and comprehensible to humans.371

In Figure 8, we quantitatively show that Shy is pro-372

portional to both Sh and Sm, confirming that data373

points with high human preference also possess374

high machine-readable quality. This underscores375

the synergy between human interpretability and376

machine interpretability in chart design.377

5.4 Validity of the Machine Readable Score378

Our experimental results reveal a strong correla-379

tion between the machine-readable score and over-380

all performance on the chart understanding task,381

thus validating the ‘machine readable’ metric pro-382

posed under the HyVis framework. The dataset383

constructed through this experiment, along with the384

evaluation tasks used to assess machine readabil-385

ity, confirms that this scoring approach effectively386

captures meaningful differences.387

In the experiment summarized in Table 4, when388

the difference in Sm reached 0.8, all models389

achieved an Exact Match score of at least 70%.390

Notably, ChartQA recorded a lower match rate391

compared to Chart-to-Text, likely because it at-392

tained high accuracy for simpler questions regard-393

less of variations in Sm, resulting in an overall394

lower match rate.395

6 Conclusion396

This study proposed HyVis, a novel framework for397

evaluating data visualization quality. Unlike tradi-398

tional human-centered chart evaluation approaches,399

HyVis incorporates both human interpretability and 400

machine readability, focusing on how AI models 401

analyze charts. By leveraging a multi-LLM collab- 402

orative structure, HyVis provides a comprehensive 403

assessment of chart quality and calculates a hybrid 404

score to verify whether the chart aligns with the 405

data analysis objectives. 406

Experimental results show that HyVis outper- 407

forms existing chart evaluation methods using 408

LLMs, offering higher quality assessments from 409

both human preference and model interpretation 410

perspectives. The framework ensures that charts 411

provide optimal visual information for both hu- 412

mans and AI models. Furthermore, the hybrid score 413

was validated as a meaningful metric, integrating 414

human evaluation standards and machine analytical 415

performance. 416

Future research could explore expanding HyVis 417

to generate and evaluate charts optimized for hu- 418

man preferences using generative AI. This study 419

offers a new direction for improving the quality 420

of visual information that AI models can use, con- 421

tributing to the expansion of the data visualization 422

paradigm from human-centered to AI-human col- 423

laborative models. 424

Limitation 425

Although the HyVis framework evaluates visualiza- 426

tion quality by integrating both human preference 427

and machine-readable criteria, its reliance on exist- 428

ing chart understanding models restricts the range 429

of chart types it can effectively assess. Specifi- 430

cally, the machine-readable component is derived 431

from the performance of models on predetermined 432

tasks, limiting adaptability to novel or less com- 433

mon visualization formats. One promising avenue 434
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for expanding chart coverage involves adopting a435

reinforcement learning approach to validate task436

queries and labels. Future work should therefore437

explore the development of reinforcement learning-438

based machine-readable evaluators, aiming to both439

broaden the array of chart types and enhance over-440

all evaluation performance.441

References442

Panayiotis Andreou, Christos Amyrotos, Panagiotis443
Germanakos, and Irene Polycarpou. 2023. Human-444
centered information visualization adaptation engine.445
In Proceedings of the 31st ACM Conference on User446
Modeling, Adaptation and Personalization, pages 25–447
33.448

Raissa Barcellos, José Viterbo, and Flavia Bernardini.449
2022. A process for improving the quality and inter-450
pretability of data visualizations. Univers. Access Inf.451
Soc., 23(2):779–794.452

Michelle A. Borkin, Zoya Bylinskii, Nam Wook Kim,453
Constance May Bainbridge, Chelsea S. Yeh, Daniel454
Borkin, Hanspeter Pfister, and Aude Oliva. 2016. Be-455
yond memorability: Visualization recognition and456
recall. IEEE Transactions on Visualization and Com-457
puter Graphics, 22(1):519–528.458

Yue; Chen Xuanjing; Huang Xuanjing Cao,459
Yixin; Zhang. 2024. Llm-collab: Cooperative460
ai agents for complex task solving. In Proceedings461
of the Conference on Empirical Methods in Natural462
Language Processing (EMNLP), page TBD.463

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang,464
Zhibin Wang, Gang Yu, Bin Fu, and Hanwang465
Zhang. 2023. Chartllama: A multimodal llm for466
chart understanding and generation. arXiv preprint467
arXiv:2311.16483.468

Linmei Hu, Duokang Wang, Yiming Pan, Jifan Yu,469
Yingxia Shao, Chong Feng, and Liqiang Nie. 2024.470
Novachart: A large-scale dataset towards chart un-471
derstanding and generation of multimodal large lan-472
guage models. In Proceedings of the 32nd ACM473
International Conference on Multimedia, pages 3917–474
3925.475

Zijie Li, Yifei Zhang, Yifan Wei, Yixuan Wu, and Qian-476
wen Yang. 2023. Towards automatic data visualiza-477
tion: A survey of generative models. arXiv preprint478
arXiv:2305.02618.479

Wu;MingChen Liang, YaoBo;Tong. Multi-agent debate480
for complex reasoning tasks. In NAACL Conference481
Proceedings, page TBD.482

Fangyu Liu, Julian Eisenschlos, Francesco Piccinno,483
Syrine Krichene, Chenxi Pang, Kenton Lee, Man-484
dar Joshi, Wenhu Chen, Nigel Collier, and Yasemin485
Altun. 2023a. Deplot: One-shot visual language rea-486
soning by plot-to-table translation. In Findings of487

the Association for Computational Linguistics: ACL 488
2023, pages 10381–10399, Toronto, Canada. 489

Fangyu Liu, Francesco Piccinno, Syrine Krichene, 490
Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin 491
Altun, Nigel Collier, and Julian Eisenschlos. 2023b. 492
Matcha: Enhancing visual language pretraining with 493
math reasoning. In Proceedings of the 61st An- 494
nual Meeting of the Association for Computational 495
Linguistics (Volume 1: Long Papers), pages 12756– 496
12770. 497

Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do, Ena- 498
mul Hoque, and Shafiq Joty. 2023. Unichart: A 499
universal vision-language model for chart compre- 500
hension. In Proceedings of the 2023 Conference on 501
Empirical Methods in Natural Language Processing, 502
pages 14662–14684, Singapore. 503

Ahmed Masry, Mehrad Shahmohammadi, Md Rizwan 504
Parvez, Enamul Hoque, and Shafiq Joty. 2024. 505
Chartinstruct: Instruction tuning for chart compre- 506
hension. In Findings of the Association for Computa- 507
tional Linguistics: ACL 2024, pages 10387–10409, 508
Bangkok, Thailand. 509

Dominik Moritz, Chenglong Wang, Greg L. Nelson, 510
Halden Lin, Adam M. Smith, Bill Howe, and Jef- 511
frey Heer. 2019a. Formalizing visualization design 512
knowledge as constraints: Actionable and extensible 513
models in draco. IEEE Transactions on Visualization 514
and Computer Graphics, 25(1):438–448. 515

Dominik Moritz, Chenglong Wang, Gregory Nelson, 516
Halden Lin, Adam Smith, Bill Howe, and Jef- 517
frey Heer. 2019b. Formalizing visualization design 518
knowledge as constraints: Actionable and extensible 519
models in draco. IEEE Trans. Visualization & Comp. 520
Graphics (Proc. InfoVis). 521

Tamara Munzner. 2014. Visualization Analysis and 522
Design. CRC Press. 523

Wenyi Ouyang. 2024. Data visualization in big data 524
analysis: Applications and future trends. Journal of 525
Computer and Communications, 12(11):76–85. 526

Nicolas P Rougier, Michael Droettboom, and Philip E 527
Bourne. 2014. Ten simple rules for better figures. 528

Jonathan Schwabish. 2021. Better data visualiza- 529
tions: A guide for scholars, researchers, and wonks. 530
Columbia University Press. 531

Edward R Tufte and Peter R Graves-Morris. 1983. The 532
visual display of quantitative information, volume 2. 533
Graphics press Cheshire, CT. 534

Kanit Wongsuphasawat, Dominik Moritz, Anushka 535
Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 536
2015. Voyager: Exploratory analysis via faceted 537
browsing of visualization recommendations. IEEE 538
transactions on visualization and computer graphics, 539
22(1):649–658. 540

9

https://doi.org/10.1007/s10209-022-00955-y
https://doi.org/10.1007/s10209-022-00955-y
https://doi.org/10.1007/s10209-022-00955-y
https://doi.org/10.1109/TVCG.2015.2467732
https://doi.org/10.1109/TVCG.2015.2467732
https://doi.org/10.1109/TVCG.2015.2467732
https://doi.org/10.1109/TVCG.2015.2467732
https://doi.org/10.1109/TVCG.2015.2467732
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240


Aoyu Wu, Yun Wang, Xinhuan Shu, Dominik Moritz,541
Weiwei Cui, Haidong Zhang, Dongmei Zhang, and542
Huamin Qu. 2021. Ai4vis: Survey on artificial in-543
telligence approaches for data visualization. IEEE544
Transactions on Visualization and Computer Graph-545
ics, 28(12):5049–5070.546

Bowen Yu and Cláudio T Silva. 2019. Flowsense: A547
natural language interface for visual data exploration548
within a dataflow system. IEEE transactions on visu-549
alization and computer graphics, 26(1):1–11.550

Jun Yuan, Changjian Chen, Weikai Yang, Mengchen551
Liu, Jiazhi Xia, and Shixia Liu. 2021. A survey552
of visual analytics techniques for machine learning.553
Computational Visual Media, 7:3–36.554

Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan,555
Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang.556
2024. TinyChart: Efficient chart understanding with557
program-of-thoughts learning and visual token merg-558
ing. In Proceedings of the 2024 Conference on Em-559
pirical Methods in Natural Language Processing,560
pages 1882–1898, Miami, Florida, USA. Association561
for Computational Linguistics.562

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao563
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-564
Seng Chua. 2021. TAT-QA: A question answering565
benchmark on a hybrid of tabular and textual con-566
tent in finance. In Proceedings of the 59th Annual567
Meeting of the Association for Computational Lin-568
guistics and the 11th International Joint Conference569
on Natural Language Processing (Volume 1: Long570
Papers), pages 3277–3287, Online. Association for571
Computational Linguistics.572

A Closed-LLM Evaluation Prompt573

This appendix provides the detailed prompt struc-574

ture used in the evaluation tasks described in the575

main text. Each prompt is designed to capture576

both human preference criteria and machine in-577

terpretability aspects, ensuring consistency across578

different dataset splits.579

By incorporating these elements, the evaluator580

consistently measures the extent to which a chart581

meets the human-centered requirements outlined582

in Section 5.1. In combination with the model583

interpretability prompts, these instructions form584

the basis of the Hybrid Score discussed throughout585

the paper.586
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HumanPreference EvaluationPrompt

For data analysis using the **CHART**, the following five requirements must be
satisfied:
1.Completeness: Reflect all categories from the **TABLE** data in the necessary
chart elements (axes, legend, title, etc.).
2.Optimization: Design a chart structure that effectively addresses the objective of the
data analysis.
3.Emphasis: Highlight the key information related to the **GOAL_INSTRUCTION**.
4.Representation: Accurately represent the chart data without distortion or confusing
visual elements.
5.Numericalization: Present chart labels and item values in an intuitive form.
Please evaluate whether the attached **CHART** image meets each of these five
criteria.
===
###TABLE###
{table}

###CHART###
{chart_image}

###GOAL_INSTRUCTION###
{goal_instruction}

Figure 9: Human preference evaluation prompt configuration.
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