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Abstract

Why does a phenomenon occur? Addressing this
question is central to most scientific inquiries and
often relies on simulations of scientific models.
As models become more intricate, deciphering
the causes behind phenomena in high-dimensional
spaces of interconnected variables becomes
increasingly challenging. Causal Representation
Learning (CRL) offers a promising avenue to
uncover interpretable causal patterns within
these simulations through an interventional lens.
However, developing general CRL frameworks
suitable for practical applications remains an
open challenge. We introduce Targeted Causal
Reduction (TCR), a method for condensing
complex intervenable models into a concise set
of causal factors that explain a specific target
phenomenon. We propose an information theoretic
objective to learn TCR from interventional data of
simulations, establish identifiability for continuous
variables under shift interventions and present a
practical algorithm for learning TCRs. Its ability
to generate interpretable high-level explanations
from complex models is demonstrated on toy
and mechanical systems, illustrating its potential
to assist scientists in the study of complex
phenomena in a broad range of disciplines.1

1 INTRODUCTION

Numerical models are indispensable in science for sim-
ulating real-world systems and generating etiological ex-
planations—identifying the causes of specific phenomena.
General circulation models, for example, shed light on
the causes of global warming (Grassl, 2000), while com-

1Code is available at: https://github.com/akekic/targeted-
causal-reduction.git.

putational brain models explore the origins of neurologi-
cal pathologies (Breakspear, 2017; Deco and Kringelbach,
2014). These examples illustrate the increasing complex-
ity of numerical scientific models, designed to faithfully
capture the large number of mechanisms at play in these sys-
tems. However, this complexity comes at a cost: expanding
parameter spaces and heightened computational demands.
This trend, in turn, impacts the ability to generate high-level
explanations, understandable by scientists and decision mak-
ers (Reichstein et al., 2019; Safavi et al., 2023).

Effective human explanations are often based on under-
standing a few causal relations between a limited number of
variables. While the simulation of complex systems might
rely on numerous simple mechanisms, extracting overar-
ching causal relations between fewer relevant high-level
variables remains largely unaddressed. In particular, while
causal representation learning tries to explain data based on
a learned latent causal graph (Wendong et al., 2023; Squires
et al., 2023; von Kügelgen et al., 2023a), it currently has
theoretical and practical limitations. CRL largely relies on
preserving all information in the data to provide recoverabil-
ity guaranties for the latent causes, while the idea of a high-
level representation is precisely to discard irrelevant data.

In contrast, Causal Model Reduction (CMR), which aims to
map a low-level causal model to a simpler high-level model
with fewer or lower-dimensional variables, embraces the
purpose of eliminating irrelevant information. However, ex-
isting CMR approaches, such as causal abstractions (Geiger
et al., 2023; Zennaro et al., 2023) and Causal Feature Learn-
ing (CFL) (Chalupka et al., 2016) are not well-suited to
causally describe many scientific models: they use discrete
variables and typically rely on hard interventions, discon-
necting causal variables from their parents. The following
example shows, however, that simpler high-level causal
models for continuous variables and soft interventions are
natural and useful in domains such as physics.

Consider a system of point masses connected by springs
shown in Fig. 1a, where each mass is influenced by random

https://github.com/akekic/targeted-causal-reduction.git
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Figure 1: Targeted Causal Reduction. (a) Example targeted model reduction: a model of the dynamics of a system of point masses
connected by springs can be reduced to the trajectory of its center of mass. (b) Overview of TCR. Low-level variables 𝑿 (simulation) are
mapped to high-level variables (𝒁, 𝑌 ) with a fixed causal structure. The target 𝑌 is known, while the causes 𝒁 and the high-level causal
mechanism are learned. Additionally, we learn a mapping from low-level shift interventions 𝒊 to high-level shift interventions 𝝎(𝒊).

external forces. Its trajectory under the intervention of exter-
nal forces can be accurately predicted by simulating the cou-
pled equations of motion of individual point masses. How-
ever, if we are only interested in a particular macroscopic
“target” variable of this system: the horizontal speed of the
system’s center of mass at the end of an experiment, a key
result from classical physics is that its motion will depend
only on the sum of all horizontal components of external
forces applied over time. We thus obtain a form of CMR: a
much simpler system that accurately accounts for the effect
of interventions in the system on the target variable.

This highlights the core elements needed for CMR in scien-
tific models: (1) there is a clearly defined macroscopic target
variable, (2) continuous low-level variables are reduced to
a smaller set of continuous high-level variables, and (3)
low-level interventions are soft: exerted forces modify the
future trajectory but do not suppress the influence of other
factors such as the past state of the system. Moreover, it is
the combination of many low-level soft interventions across
time that corresponds to a relevant high-level intervention.
These three aspects are commonly found characteristics of
studied real-world systems, motivating the development of
CMR algorithms adapted to this setting.

In this paper, we introduce Targeted Causal Reduction
(TCR), depicted in Fig. 1b, a novel approach designed to
simplify complex low-level models into high-level models,
focused on explaining causal influences on an observable
target variable 𝑌 . The key signal we use for learning are
interventions applied to the low-level variables, which are
mapped to high-level interventions in a way that captures
the causal influences on𝑌 in a concise and interpretable way.
We formulate this learning objective as a Kullback-Leibler
divergence between the fitted high-level interventional
model and the reduced low-level interventional distribution,
leading to a practical learning algorithm for the case
of linear reductions. Applications to high-dimensional
synthetic and scientific models demonstrates accuracy and

interpretability of our approach. We refer to the appendix
for more related work (A) and proofs (C).

2 BACKGROUND

2.1 STRUCTURAL CAUSAL MODELS

Causal dependencies between variables can be described
using Structural Causal Models (SCM) (Peters et al., 2017).

Notation. We use boldface for column vectors, and 𝒊𝑆 for
the subvector of 𝒊 restricted to the components in set 𝑆.

Definition 2.1 (SCM). An 𝑛-dimensional structural causal
model is a tripletM = (G, S, 𝑃𝑼 ) consisting of:

• a joint distribution 𝑃𝑼 over exogenous variables
{𝑈 𝑗 } 𝑗≤𝑛,

• a directed graph G with 𝑛 vertices,
• a set S = {𝑋 𝑗 B 𝑓 𝑗 (Pa 𝑗 ,𝑈 𝑗 ), 𝑗 = 1, . . . , 𝑛} of struc-

tural equations, where Pa 𝑗 are the variables indexed
by the set of parents of vertex 𝑗 in G,

such that for almost every 𝒖, the system {𝑥 𝑗 B 𝑓 𝑗 (pa 𝑗 , 𝑢 𝑗 )}
has a unique solution 𝒙 = 𝒈(𝒖), with 𝒈 measurable.

The unique solvability condition is included in this definition
because we consider a general class of SCMs by allowing
cycles, that is, G may not be a DAG. Moreover, we allow
hidden confounding through the potential lack of indepen-
dence between the exogenous variables {𝑈 𝑗 }. See Bongers
et al. (2021) for a thorough study of these models. Under
these conditions, the distribution 𝑃𝑼 entails a well-defined
joint distribution over the endogenous variables 𝑃(𝑿).

Interventions in SCMs involve replacing one or more struc-
tural equations, potentially modifying exogenous distribu-
tions, and adding or removing arrows in the original graph
to reflect changes in dependencies between variables. An



intervention transforms the original modelM = (G, S, 𝑃𝑼 )
into an intervened modelM (𝒊) = (G (𝒊) , S(𝒊) , 𝑃 (𝒊)𝑼 ), where 𝒊
is the vector parameterizing the intervention. The base prob-
ability distribution of the unintervened model is denoted
𝑃
(0)
M (𝑿) or simply 𝑃M (𝑿) and the interventional distribu-

tion associated withM (𝒊) is denoted 𝑃
(𝒊)
M (𝑿).

Classical 𝑑𝑜-interventions set a structural equation to a con-
stant, removing all influences of the parents on the inter-
vened variable. This can be problematic for studying how
the influence of low-level variables is propagated to the
target, since for simultaneous interventions, the effects of
some interventions can be masked by others. The probability
of such masking increases as the number of low-level vari-
ables grows. Soft interventions, on the other hand, modify an
equation while keeping the set of parents unchanged. This is
more appropriate in our setting, since it propagates the infor-
mation from all interventions to the target simultaneously.

Large classes of soft interventions can be designed to
match domain knowledge (Besserve and Schölkopf, 2022).
Notably, shift interventions modify the structural equation
of endogenous variable 𝑙 through shifting it by a scalar
parameter 𝑖

{𝑋𝑙 B 𝑓𝑙 (Pa𝑙 ,𝑈𝑙)} ↦→ {𝑋𝑙 B 𝑓𝑙 (Pa𝑙 ,𝑈𝑙) + 𝑖} . (1)

These can be combined to form multi-node interventions
with vector parameter 𝒊.

2.2 SIMULATIONS AND CAUSAL MODELS

We use the term scientific model to refer to a generative
model that relies on a set of equations to represent a phe-
nomenon. What distinguishes such models from genera-
tive models in machine learning is their decomposability
into elementary functions, encoding domain knowledge
about the mechanisms being investigated. Simulations based
on the numerical solution of scientific models can often
be expressed as SCMs; This notably includes Ordinary
(ODE) (Mooij et al., 2013) and Stochastic Differential Equa-
tions (SDE) (Hansen and Sokol, 2014). A simulator can thus
be seen as a low-level causal model, from which samples of
unintervened and intervened distributions can be generated.
This forms the basis of the causal framework for learning
high-level explanations for simulators developed in Sec. 3.1.

2.3 CAUSAL MODEL REDUCTIONS (CMR)

We consider as CMR any (possibly approximate) mapping
from a low-level SCM L to a simpler high-level SCM H .
An example is CFL (Chalupka et al., 2015, 2016), which
achieves a CMR by merging values of a large observation
space to yield discrete high-level variables taking values in
a small finite set. Consider:

• L has a vector of endogenous variables 𝑿 with range
X and a set of interventions I,

• H has a vector of endogenous variables 𝒁 with range
Z and a set of interventions J .

Starting from the distribution of the low-level model 𝑃L (𝑿),
a deterministic mapping 𝜏 : X → Z generates a joint distri-
bution on the high-level variables that is the push-forward
distribution of 𝑃L (𝑿) by 𝜏, denoted 𝜏# [𝑃L (𝑿)] such that

𝜏(𝑿) ∼ 𝜏# [𝑃L (𝑿)] .

The low-level interventional distributions can be pushed
forward to the high-level in the same way.

A general framework for CMR is based on the notion of
exact transformation, which ensures interventional consis-
tency by matching the push-forward low-level distributions
to the high-level ones.

Definition 2.2 (Exact transformation (Rubenstein et al.,
2017)). A map 𝜏 : X → Z is an exact transformation
from L toH if it is surjective, and there exists a surjective
intervention map 𝜔 : I → J such that for all 𝒊 ∈ I

𝜏# [𝑃 (𝑖)L (𝑿)] = 𝑃
(𝜔 (𝑖) )
H (𝒁) .

The set of possible 𝜏 can be restricted to constructive trans-
formations, where high-level variables depend only on non-
overlapping subsets of low-level variables. This eases inter-
pretability of CMR and comes with characterization results
(Beckers and Halpern, 2019; Geiger et al., 2023).

Definition 2.3. 𝜏 : X → Z is a constructive transformation
between model L andH if there exists an alignment map 𝜋

relating indices of each high-level endogenous variable to
a subset of indices of low-level endogenous variables such
that for all 𝑘 ≠ 𝑙, 𝜋(𝑘) ∩ 𝜋(𝑙) = ∅ and for each component
𝜏𝑘 of 𝜏 it exists a function 𝜏𝑘 such that for all 𝒙 in X,

𝜏𝑘 (𝒙) = 𝜏𝑘 (𝒙𝜋 (𝑘 ) ) .

The intervention map 𝜔 of constructive exact transforma-
tions are required to be constructive as well, such that acting
on high-level variable 𝑘 depends only on low-level interven-
tions acting on variables in 𝜋(𝑘) (see App. B).

3 THEORETICAL ANALYSIS

As described in Fig. 1b, we consider endogenous variables
of a low-level model gathered in a (high-dimensional) ran-
dom vector 𝑿. A target scalar variable 𝑌 = 𝜏0 (𝑿) quantifies
a property of interest of this model, and can be thought of as
quantifying the presence or magnitude of a phenomenon
in the data, using detector 𝜏0. To generate a high-level
causal explanation of this phenomenon, we learn a high-
level SCM with a fixed causal structure, where the known ef-
fect variable𝑌 is caused by 𝑛 learned independent high-level



variables 𝑍𝑘 . The low-level variables 𝑿 are approximately
mapped to the high-level variables 𝒁 using a constructive
transformation and an associated constructive interventional
map with the same alignment 𝜋.

3.1 TCR FRAMEWORK

Our reduction framework has the following elements:

(1) A low-level SCM L with 𝑁 endogenous variables
{𝑋1, . . . , 𝑋𝑁 } and corresponding exogenous variables
{𝑈𝑘}𝑘=1..𝑁 equipped with joint distribution 𝑃(𝑼). A set
of low-level shift interventions parameterized by vector 𝒊∈I
with distribution 𝑃(𝒊), with each component 𝑖𝑘 acting on
one endogenous variable 𝑋𝑘 . We only assume we can sam-
ple from unintervened and interventional distributions of L.

(2) A class of high-level SCMs {H𝜸}𝛾∈Γ with (n+1) endoge-
nous variables {𝑌, 𝑍1, . . . , 𝑍𝑛} and associated exogenous
variables {𝑅𝑘}𝑘=0..𝑛, equipped with a factorized distribu-
tion 𝑃(𝑹) = ∏

𝑃𝑅𝑘
. A set of high-level shift interventions

parametrized by vector 𝒋∈J , with each component 𝑗𝑘 af-
fecting a single node 𝑍𝑘 . In contrast to the (fixed) low-level
model, the high-level model parameters 𝜸 are learned.

These two levels are linked by a constructive transforma-
tion with two deterministic surjective maps 𝜏 and 𝜔 from
low- to high-level endogenous variables and interventions,
respectively, which decompose as

𝜏 = (𝜏0, 𝜏1, 𝜏2, . . . , 𝜏𝑛) with 𝜏𝑘 : 𝑥 ↦→ 𝜏𝑘 (𝑥𝜋 (𝑘 ) ) (2)
𝜔 = (𝜔0, 𝜔1, 𝜔2, . . . , 𝜔𝑛) with 𝜔𝑘 : 𝒊 ↦→ �̄�𝑘 (𝒊𝜋 (𝑘 ) ) (3)

where 𝜋 is a so-called alignment function from [0 .. 𝑛] to
non-overlapping subsets of [1 .. 𝑁]. Importantly, 𝜏0 (and
thus (𝜏0, 𝜋(0))) are assumed fixed and known. Additionally,
𝜔0 is assumed to be a trivial constant map 𝒊 → 0, to en-
sure that the high-level target variable cannot be directly
intervened upon, as we want to explain the changes in 𝑌

exclusively through changes of its high-level causes.

A high-level model involves the following mechanisms,
which need to be learned: (1) The marginal distribution
of each high-level cause 𝑃 ( 𝒋 ) (𝑍𝑘) in all high-level inter-
ventional settings 𝒋. (2) The mechanism 𝑃(𝑌 |𝒁) mapping
high-level causes to 𝑌 , comprised of the distribution of the
exogenous variable 𝑅0 and the structural equation

(𝑍1, ..., 𝑍𝑛, 𝑅0) ↦→ 𝑓𝜸 (𝑍1, ..., 𝑍𝑛, 𝑅0) C 𝑌 .

3.2 CAUSAL CONSISTENCY LOSS

It is not always possible to achieve an exact transformation
that guarantees consistency of low- and high-level models
for almost all interventions. As a consequence, we allow
for the consistency between models to be approximate. To
ensure that this approximation is as accurate as possible, we

minimize the expected KL divergence between the pushfor-
ward by the transformation 𝜏 of the low-level interventional
distributions that we denote 𝑃

(𝒊)
𝜏 (𝑌, 𝒁) = 𝜏# [𝑃 (𝒊)L (𝑿)], and

the corresponding interventional distribution of the high-
level model 𝑃 (𝜔 (𝒊) ) , leading to the consistency loss

Lcons = E𝒊∼𝑃 (𝒊)

[
KL

(
𝑃
(𝒊)
𝜏 (𝑌, 𝒁)∥𝑃 (𝜔 (𝒊) ) (𝑌, 𝒁)

)]
. (4)

Other losses have been previously suggested to enforce con-
sistency. Beckers et al. (2020) propose to take a maximum
over interventions, whereas we take the expectation in our
loss, thus focusing the CMR on the average performance
rather than the worst case. Rischel and Weichwald (2021)
and Zennaro et al. (2023) use the Jensen-Shannon (JS) diver-
gence in the context of finite models. Instead, we choose the
KL divergence because, contrary to JS, it leads to a tractable
expression under Gaussian assumptions. Moreover, the pro-
posed consistency loss (4) has the following properties.

Proposition 3.1 (Consistency loss). The consistency loss
is positive, invariant to invertible reparametrizations (see
Def. D.1), and vanishes if and only if the transformation is
exact for almost all interventions. It decomposes as

Lcons=E𝑖∼𝑃 (𝒊)

[
KL

(
𝑃
(𝒊)
𝜏 (𝒁) | |𝑃 (𝜔 (𝒊) ) (𝒁)

)
+E

𝒛∼𝑃 (𝒊)𝜏 (𝒁 )

[
KL

(
𝑃
(𝒊)
𝜏

(
𝑌 |𝒛)

)
| |𝑃 (0)

(
𝑌 |𝒛

) )] ]
, (5)

and is an upper bound of the causal relevance loss

Lrel=E𝒊∼𝑃 (𝒊)

[
KL

(
𝑃 (𝒊) (𝑌 ) | |𝑃 (𝜔 (𝒊) ) (𝑌 )

)]
≤Lcons . (6)

Reparametrization invariance (see Def. D.1) refers to trans-
formations of the pairs (𝜏, 𝑓𝜸) that leave the composition
𝑓𝜸 ◦𝜏 invariant. In the 𝑛 = 1 linear setting (see Sec. 3.3), this
corresponds to invariance by multiplicative rescaling. This
guarantees that equivalent high-level causal descriptions are
treated equally by the loss.

We call Eq. (5) a Cause-Mechanism Decomposition
because the first term quantifies the cause consistency
and the second term can be thought of as the mechanism
consistency. This latter term assesses the similarity between
the outputs of the learned high-level mechanism 𝑃 (0) (𝑌 |𝑧)
and the corresponding conditional distribution computed by
push-forward of the low-level variables 𝑃 (𝒊)𝜏 (𝑌 |𝑧). Since we
prevent the high-level mechanism from being intervened on,
only its unintervened conditional appears in the expression.

Lastly, the causal relevance loss L𝑟𝑒𝑙 assesses whether the
variations of the target 𝑌 due to low-level interventions are
well-captured by high-level interventions, on average over
the prior 𝑃(𝒊). Its upper bounding by Lcons ensures that by
optimizing for consistency, we also indirectly promote ef-
fective “explanations” of the variations in the target density



resulting from low-level interventions. We can thus choose
𝑃(𝒊) to make the most relevant interventions more likely
according to domain knowledge, such that optimizing the
loss will steer towards a solution capturing the most domain-
relevant variations of the target.

3.3 LINEAR REDUCTION WITH SHIFT
INTERVENTIONS

We further constrain the setting to be able to study the solu-
tion minimizing Lcons analytically and get insights into the
properties of TCR.

Notation. When a vector, say 𝝉𝑘 , is associated to a high-
level SCM component 𝑘 of a constructive transformation
with alignment 𝜋, �̄�𝑘 indicates the restriction of 𝝉𝑘 to com-
ponents in 𝜋(𝑘). The number of elements in a set 𝑆 is #𝑆.

Tau map. To maximize interpretability, we assume a lin-
ear 𝜏-map, represented as a vector 𝝉 such that:

𝑿 ↦→
[
𝑌

𝒁

]
=


𝝉⊤0
...,

𝝉⊤𝑛

 𝑿 =
[
�̄�⊤0 𝑿𝜋 (0) , . . . �̄�⊤𝑛 𝑿𝜋 (𝑛)

]⊤
.

Omega map. We focus on shift interventions and map the
vector 𝒊 of low-level interventions on the nodes in 𝜋(𝑘) to a
scalar shift intervention on the mechanism of each 𝑍𝑘 . We
assume each map 𝜔𝑘 to be linear with vector 𝝎𝑘 such that

𝜔𝑘 (𝒊) = 𝝎⊤𝑘 𝒊 = �̄�⊤𝑘 𝒊𝜋 (𝑘 ) .

Because high-level causes are root nodes, intervening
amounts to shifting the marginal distribution from 𝑃 (0) (𝑍𝑘)
to 𝑃 (𝜔𝑘 (𝒊) ) (𝑍𝑘) = 𝑃 (0) (𝑍𝑘 − 𝜔𝑘 (𝒊)).

Choice of alignment 𝜋. There are potential degrees of
freedom for 𝜋, and users may want to incorporate domain
knowledge as well as interpretability constraints to reduce
the variables included in ∪𝑘≠0𝜋(𝑘). In practice, we learn
the distribution of the low-level variables among the 𝜋(𝑘)
using regularization (see Sec. 4).

High-level mechanism. We use an interpretable affine
high-level causal mechanism 𝑓𝛾 , such that

𝑌 B
∑

𝑘 𝛼𝑘𝑍𝑘 + 𝑅0 + 𝛽 , 𝛼1, . . . , 𝛼𝑛, 𝛽 ∈ R . (7)

Choice of prior 𝑃(𝒊). The solutions minimizing the loss
of Eq. (4), may depend on the choice of the prior 𝑃(𝒊), and in
particular on which variables are actually intervened on. Let
Ω denote the subset of indices of low-level variables that are
intervened on with non-zero probability. The components
of 𝒊 whose index does not belong to Ω thus take value 𝑖 = 0
with probability one. We provide identifiability guaranties
under two kinds of assumptions.

Assumption 3.2. 𝑃(𝒊Ω) has a density with respect to the
Lebesgue measure, with support covering a neighborhood
of zero (i.e. the unintervened case).

Assumption 3.3. The unintervened setting 𝒊Ω = 0 occurs
with non-zero probability. Additionally there are at least #Ω
distinct interventions happening with non-zero probability,
corresponding to a family of values of the vector of 𝒊Ω with
full rank #Ω.

While Assum. 3.2 depicts a practical setting where interven-
tions are drawn from prior densities that reflect the prior
knowledge on how likely those are, Assum. 3.3 allows ad-
dressing a classical question in causal representation learn-
ing: How many distinct interventions are needed to learn
the representation?

3.4 IDENTIFIABILITY RESULTS

If we assume the low-level model is linear Gaussian of
the form 𝑿Ω → 𝑿𝜋 (0) , we can show the existence and
uniqueness of the solution.

Proposition 3.4. Assume the low-level SCM follows

𝑿 B 𝐴𝑿 +𝑼 + 𝒊 , 𝒊 ∼ 𝑃(𝒊) , 𝑈𝑘 ∼ N(𝜇𝑘 , 𝜎
2
𝑘 ) , 𝜎𝑘 > 0 ,

such that 𝑿 and 𝐴 take the block forms

𝑿 =

[
𝑿𝜋 (0)
𝑿Ω

]
, 𝐴 =

[
𝐴00 𝐴0Ω
0 𝐴ΩΩ

]
.

Given an arbitrary choice of linear scalar target of the form
𝑌 = 𝜏⊤0 𝑿 = 𝜏⊤0 𝑿𝜋 (0) and under Assum. 3.2 or Assum. 3.3,
there is a unique linear 1-cause TCR (up to a multiplicative
constant) satisfying Lcons = 0. It is given by

𝜋(1) =Ω , (8)
�̄�1 = 𝐴⊤0Ω (𝐼#𝜋 (0) − 𝐴00)−⊤�̄�0 , (9)

and �̄�1 = (𝐼#Ω − 𝐴ΩΩ)−⊤�̄�1 . (10)

Moreover, let 𝑛𝑚𝑎𝑥 be the maximum number 𝑛 such that a
linear 𝑛-cause TCR can achieve Lcons = 0. If there are no
cancellations2 among causal pathways from each node in
supp(�̄�1) of Eq. (10) towards 𝑌 , then the 𝑛𝑚𝑎𝑥-cause TCR
is unique up to rescaling and permutation of the causes.

This result provides guaranties for having a unique ground-
truth solution in case exact transformations can be achieved.
The main assumption is the absence of feedback influ-
ences from the target set 𝜋(0) to candidate causes. How-
ever, cycles and confounding are allowed in the low-level

2Causal pathways cancel if the linear coefficients quantifying
the influence of a node on 𝑌 along different directed paths of the
low-level SCM sum to zero. Assuming no cancellations is akin
to assuming no faithfulness violations and generically satisfied
(Sprites et al., 2001, Theorem 3.2).



model, contrary to the learned high-level model. The 1-
cause solution is easiest to obtain. The study of simple
SCMs (App. D.2 and App. D.3) provides some insights on
the form of the analytical solution. Additional results show
that we lose identifiability of the TCR if we drop the as-
sumption that not all variables in 𝜋(1) are intervened on
(see App. D.4). The 𝑛-cause solution is essentially a par-
tition of the 1-cause solution that enforces independence
between them.

Under the same model assumptions, the resulting construc-
tive transformation can be associated with a constructive
causal abstraction, as shown in Proposition D.3. This corre-
sponds to a particular case of low soft abstraction introduced
by Massidda et al. (2023, Def. 9).

Example 3.5 (Linear chain). To illustrate the solutions in
Prop. 3.4, we consider a linear chain

𝑋1 → 𝑋2 → 𝑋3︸              ︷︷              ︸
𝑋Ω

→ 𝑋4︸︷︷︸
𝑋𝜋 (0)

with adjacency 𝐴𝑖 𝑗 = {1 for 𝑗=𝑖+1; 0 else} and target
𝑌 = 𝑋4, such that �̄�0 = 𝐼1. The 1-cause solution (up to a
multiplicative constant) achieving Lcons = 0 is

�̄�1 =

(
0 0 1

)⊤
and �̄�1 =

(
1 1 1

)⊤
. (11)

�̄�0 puts all its weight on the direct parent of target 𝑋4 be-
cause it mediates all causal influences. In contrast, �̄�1 puts
weight on all variables in Ω because interventions on any
of them influence 𝑋4

4 LINEAR TCR ALGORITHM

In this section, we introduce an algorithm to learn a linear
targeted causal reduction with shift interventions.

Algorithm 1 Linear TCR (LTCR)
Input 𝜆: learning rate, 𝑃(𝒊): intervention prior, Simu-
late(𝜽 , 𝒊, 𝑛sim): function returning 𝑛sim paths, 𝑁ite: No.
epochs, 𝐵, 𝐵𝒊 : simulation/intervention batch size.
Initialize 𝝉1,𝝎, 𝜸

for 𝑚 = 1..𝑁ite do
𝑋,𝑌 ← []
for 𝑙 = 1..𝐵𝒊 do

𝒊𝑙 ← 𝑆𝑎𝑚𝑝𝑙𝑒(𝑃(𝒊))
𝑋𝑙 = (𝒙1, .., 𝒙𝐵); 𝑌𝑙 ← 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒(𝜽 , 𝒊𝑙 , 𝐵)
𝑋 ← [𝑋 [:], 𝑋𝑙]; 𝑌 ← [𝑌 [:], 𝑌𝑙]; 𝐼 ← [𝐼 [:], 𝒊𝑙]

𝐿tot ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐿𝑜𝑠𝑠(𝑋,𝑌, 𝐼, 𝝉1, 𝜔1, 𝜸)
∇𝜸,∇𝝉 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐿𝑜𝑠𝑠𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 (𝐿tot)
(𝜸, 𝝉1,𝝎1) ← (𝜸 − 𝜆∇𝜸, 𝝉1 − 𝜆∇𝝉1 ,𝝎1 − 𝜆∇𝝎1 )

Output Estimated parameters (𝝉1,𝝎1, 𝜸).

Gaussian approximation of consistency loss. Since the
KL divergence is challenging to compute in non-parametric
settings, we make a Gaussian assumption on the densities.
This allows us to obtain an analytic expression for the loss
based on second order statistics (see expression in App. E.1).

Overlap loss. To ensure differentiability of the reduction
maps we do not implement the alignment 𝜋 explicitly, but en-
courage non-overlapping reduction maps via the regularizer

Lov =
∑︁
𝑘<𝑙

(〈
|𝝉𝑘 |
∥𝝉𝑘 ∥

,
|𝝉𝑙 |
∥𝝉𝑙 ∥

〉
+

〈
|𝝎𝑘 |
∥𝝎𝑘 ∥

,
|𝝎𝑙 |
∥𝝎𝑙 ∥

〉)
, (12)

where | · | is the element-wise absolute value.

Balancing loss. Minimizing the Gaussian approximation
of the consistency loss together with overlap regulariza-
tion (12) there is nothing preventing the solution from at-
tributing all non-zero weights in the 𝜏- and 𝜔 maps to one
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(b) Two-branch linear model. Learned 𝜏- and 𝜔 parameters for a
TCR with two high-level variables for a linear Gaussian low-level
model with 𝑁=10. The solid lines show the parameters for 𝑍1
and the dashed lines those for 𝑍2. The parameters are averaged
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matrix parameters. The inlay shows the causal structure of the
low-level model, where two groups of variables 𝐺1 and 𝐺2 form
two independent chains causing the target 𝑋10=𝑌 .

Figure 2: Toy example experiments.
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Figure 3: Double well experiment. (a) Experimental setup with a ball moving in a double well potential subject to linear friction. (b)
Pushforward density of the high-level cause for the two settings: one where no intervention is applied (unintervened), and the other with an
applied shift intervention. (c, d) Learned parameters, 𝜏 and 𝜔, respectively. The learned high-level mechanism is 𝑓 (𝑍1) ≈ 1.37𝑍1 + 0.45
(e) Samples in phase space (position vs. velocity) for the first 20 time points. The color indicates whether the high-level model predicts the
ball to end up in the right (pink) or right well (turquoise). (f, g) Samples from the unintervened setting and the corresponding estimated
density. (h) Estimated density for one intervened setting.

high-level variable while ignoring all others. In order to pre-
vent such a collapse, we minimize stark differences between
the high-level variables through the balancing term

Lbal =

( √︃∑
𝑘 ∥𝛼𝑘𝝉𝑘 ∥22∑

𝑘 ∥𝛼𝑘𝝉𝑘 ∥2
+

√︃∑
𝑘 ∥𝛼𝑘𝝎𝑘 ∥22∑

𝑘 ∥𝛼𝑘𝝎𝑘 ∥2

)
, (13)

where 𝛼𝑘 is the coefficient in the linear high-level mecha-
nism corresponding to variable 𝑍𝑘 .

Gathering the losses, we get the total objective

minimize
𝜸,𝝉,𝝎

Ltot = Lcons + 𝜂ovLov + 𝜂balLbal . (14)

The learning procedure is described in Algorithm 1.

5 EXPERIMENTS

5.1 TOY EXAMPLES: LINEAR GAUSSIAN
LOW-LEVEL CAUSAL MODELS

Linear low-level causal models. We first test TCR by
sampling from a linear Gaussian low-level model, rather
than a simulation. We construct linear models of the form
shown in Prop. 3.4 by drawing the non-zero entries in the
adjacency matrix uniformly from the interval [−1, 1]. We
learn a targeted causal reduction with two high-level vari-
ables: the target 𝑌 and its single cause 𝑍 . Fig. 2a compares
the learned 𝝉1 and 𝝎1 to the analytical solutions (9) and
(10). We observe that, for these low-level models meeting
the linear Gaussian assumption in Section 3, the learning
algorithm converges to the global optimum.

Two-branch model. To investigate the behavior of TCR
with multiple high-level variables, we consider a low-level
model with two branch causal structure (Fig. 2b). With reg-
ularization for overlap (12) and balancing (13), the learned
high-level variables correspond to the two branches. Within
each branch, the reduction behaves as described for the
linear chain in Ex. 3.5, where 𝜏 focusses on the direct parent
of the target and 𝜔 is spread across all variables in the chain.
Comprehensive experimental details are given in App. F.

5.2 DOUBLE WELL

For a simulation based on an ODE system, we learn
a targeted reduction of a ball moving in a double well
potential under linear friction, as shown in Fig. 3. The
state vector 𝑿 encodes the 𝑥-position and velocity in
𝑥-direction of the ball at each time steps of the simulation.
As shift-interventions, we apply small random shifts of
the ball’s velocity at each simulation time step, mimicking
an applied external force. Initially, the ball starts on the
left-hand side of the potential and starts oscillating. Since
the ball experiences friction, it ends up in either the left or
right minimum of the potential. The friction is relatively
strong, such that, depending on the initial conditions and
applied shift interventions, the ball either stays in the left
well or crosses the middle hump once and stays in the right
well (see Fig. 3(f)). We learn a simple TCR with a single
cause 𝑍 that explains the target 𝑌 . Further details about the
nonlinear ODE system and training are given in App. F.2.

The learned TCR parameters are shown in Fig. 3(c, d). The



1

2 3

4

(a) 0 5 10 15
Time Steps

1

0

1 W
eig

ht
s (b)

0

1

2 W
eig

ht
s (c)

0 5 10 15
Time Steps

1.0

0.5

0.0

1 W
eig

ht
s(d)

0

1

2 W
eig

ht
s(e)

Mass index & dimension (b-e)
1_x
1_y

2_x
2_y

3_x
3_y

4_x
4_y

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Mass index

1

2

3

M
as

s (f)

0.5

1.0

M
ea

n 
Ab

s.
Om

eg
a 

W
eig

ht

1 (x-dir) 2 (y-dir)

(g) t = 0.00 (h) t = 31.58 (i) t = 68.42 (j) t = 100.00

Figure 4: Spring-mass system experiment. (a) Simulated system of four point masses with different weights connected by springs and
with random initial velocity (blue arrows). The target of the simulation is the center of mass speed in (1, 1)-direction. (b-e) Learned 𝝉- and
𝝎-weights corresponding to velocity components in 𝑥- and 𝑦-direction for a TCR with two high-level variables. The learned high-level
mechanism is 𝑓 (𝒁) ≈ −0.226𝑍1 + 0.220𝑍2. (f) Comparison between masses and learned omega weights. For the first high-level variable
the mean omega weights corresponding to the 𝑥-direction are shown and for the second variable those for the 𝑦-direction. (g-j) Example
trajectory for an unintervened system.

𝝉1 and 𝝎1 parameters for velocity are such that the larger the
velocity is to the right, the higher 𝑍 and therefore the higher
the predicted target 𝑌 , where positive 𝑌 correspond to the
right well and negative to the left. Similarly, for the position
parameter: the more negative the position just before the
critical point of the ball crossing the hump, the higher the
probability of predicting to stay in the left well. This corre-
sponds to the correct dynamics of the system and also identi-
fies the main drivers that influence the outcome 𝑌 . Fig. 3(e)
shows how the learned TCR separates the phase space into
simulations with enough momentum to the right to make it
over the hump (pink) and those without (turquoise).

Note that TCR does not focus on the part of 𝑿 which best
predicts the final state of the system—like the position just
before the end of the simulation. It rather highlights the vari-
ables which have the most impact on the target when they are
intervened on, emphasizing the decisive time span when the
ball either crosses the middle hump or stays in the left well.

5.3 SPRING-MASS SYSTEM

We simulate a two-dimensional system of four point masses
with different weights connected by springs to their respec-
tive nearest neighbors, similar to the motivating example
introduced in Sec. 1. Initially, the masses are arranged in a
rectangle in space such that the springs are at rest length. The
masses have a random initial velocity, as shown in Fig. 4(a).
As interventions, we apply random shifts to the velocities
in 𝑥- and 𝑦-direction of each mass. The target of the simula-
tion is the center of mass speed in (1, 1)-direction. We learn
a TCR with two high-level causes. The full experimental
details are given in App. F.3.

While the velocities of the individual masses are coupled,

the center of mass velocities in 𝑥- and 𝑦-direction of
the system as a whole are independent, since the system
is freely moving in space. The learned TCR correctly
identifies these as the two independent causes of the target,
with variable 𝑍1 corresponding to the 𝑦-direction and 𝑍2
to the 𝑥-direction. On average, each mass receives a similar
shift in velocity through the applied interventions. However,
since the masses are different, the shifts correspond to
different contributions to the momentum of the system
as a whole impacting the target. This is reflected in the
relative weights of the learned maps being proportional to
the weight of each point mass, as shown in Fig 4(f).

A second experimental setting with two groups of intercon-
nected masses is shown in App. F.4.2, demonstrating a TCR
learning independent causes along the mass index.

6 DISCUSSION

We introduce a novel approach for understanding complex
simulations by learning high-level causal explanations from
low-level models. Our Targeted Causal Reduction (TCR)
framework leverages interventions to obtain simplified, high-
level representations of the causes of a target phenomenon.
We formulate the intervention-based consistency constraint
as an information theoretic learning objective, which fa-
vors the most causally relevant explanations of the target.
Under linearity and Gaussianity assumptions, we provide
analytical solutions and study their uniqueness, which pro-
vides insights into TCR’s governing principles. One key
assumption to obtain identifiability is that the leaf node,
the target, is observed. However, this is to the best of our
knowledge the first identifiability proof for a general class
of CMR for which the high-level variables are continuous



and partially unknown. Notably, the 𝑛-cause TCR provides
a form of causal independent component analysis akin to
the work of Wendong et al. (2023) but in a non-invertible
setting and with a one dimensional target. We provide an al-
gorithm for linear TCR and show it can effectively uncover
the key causal factors influencing a phenomenon of interest.
We demonstrate TCR on both synthetic models and scien-
tific simulations, highlighting its potential for addressing
the challenges posed by increasingly complex systems in
scientific research.

While we develop a CMR framework to learn high-level
explanations for simulations, the simulation itself does not
have to be explicitly formulated as a causal model and the
causal relationships between variables in 𝑿 do not have to
be known a priori. The only additional element needed to
learn TCR is a notion of shift-interventions. We think that
most scientific simulations based on differential equations
naturally allow for a reasonable notion of shift interventions.

Limitations and future work. To foster interpretability
and tractability, we made Gaussian approximations and used
linear 𝝉 and 𝝎 maps. While this has clear benefits, this may
be too limiting for some complex simulations, and future
work should explore more flexible approaches. Additionally,
our method relies on performing a large number of interven-
tions in simulation runs, which represents an additional cost
in the context of large-scale simulation. How to make the
algorithm scale to this setting is left to future work.
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A SUPPLEMENTAL RELATED WORK

Desiderata for CMR have been addressed theoretically by several works, in particular in the context of CFL (Chalupka
et al., 2015, 2016), and subsequently with the notion of exact transformations (Rubenstein et al., 2017) and a more strongly
constrained subclass: causal abstractions (Beckers and Halpern, 2019). An alternative framework for composing abstractions
of finite models has been proposed by Rischel and Weichwald (2021). However, only few works have addressed how to
build high-level representations from the low-level system data only. A line of works focuses on language models (Geiger
et al., 2021, 2023), where high-level variables and interpretations are readily available.

We start from the opposite direction and develop a general approach to build the high-level abstraction from the ground-up.
Such a construction is done in CFL (Chalupka et al., 2015, 2016), where high-dimensional microscopic variables are turned
into discrete high-level variables. Zennaro et al. (2023) addressed this question in the context of finite and discrete domains,
by minimizing the maximum Jensen-Shannon divergence over a finite set of perfect intervention distributions. In contrast
with most works on CMR, our framework is fully compatible with imperfect (soft intervention) at the low level, which
are more realistic and interpretable perturbations of many real-world systems than hard interventions. Soft interventions
have been used for language model alignment (Geiger et al., 2024), and their theoretical compatibility with the abstraction
framework has been investigated by Massidda et al. (2023). Our approach aims at approximating an exact transformation,
and is thus a relaxation of this setting.

Other theoretical frameworks for approximate abstractions have been proposed (Beckers et al., 2020; Rischel and Weichwald,
2021). Our work differs by providing an explicit loss well-suited to continuous causal models, that can be optimized
efficiently and provide interpretable outcomes thanks to a cause-mechanism decomposition, a lower bound, and analytic
solutions.

The way we relax constraints on low-level interventions shares also similarities with the views of Zhu et al. (2024) who
consider stochastic low-level do-interventions sampled according to the observational distribution, our work is instead
focused on soft-interventions, for which we impose a prior distribution, reflecting the relative importance that we put on
them. Our optimization objective is averaged over this prior, such that it plays a role in the final solution.

Our approach also relates to the search for optimal interventional or counterfactual manipulations to steer the output of
a system to a particular value or distribution (Amos et al., 2018; Besserve et al., 2020) or to best explain an observation
(Budhathoki et al., 2022; von Kügelgen et al., 2023b). We are in a way also selecting particular manipulations, but through
the choice of dimensionality reduction 𝜔, such that they are interpretable at a high level.

Finally, our approach relates to several works in causal representation learning, which have addressed identifiability of latent
causal models from observational data, with (Wendong et al., 2023) or without (Squires et al., 2023; von Kügelgen et al.,
2023a) assumptions on the latent causal graph. In contrast to those works, TCR does not assume an injective mapping of the
mapping of the observations to the latent variables, such that the high-level model typically losses information relative to the
low-level model.



B SUPPLEMENTAL BACKGROUND

B.1 NUMERICAL SCHEMES FOR SIMULATIONS

Methods for the numerical approximations of scientific models is a broad area spanning multiple fields. We provide here a
few elements based on a 1D example to justify how these models relate to SCMs. The Euler method (Euler, 1794), can be
used to approximate a 1D ODE of the form {

𝑥(𝑡0) = 𝑥0 ,
𝑑𝑥
𝑑𝑡

= 𝐹 (𝑥(𝑡)) ,

with 𝐹 smooth real-valued function, using a discretized time grid with time step Δ𝑡. The finite difference approximation of
the derivative

𝑥(𝑡 + Δ𝑡) − 𝑥(𝑡) ≈ Δ𝑡 · 𝑑𝑥
𝑑𝑡

,

leads to the iterative numerical scheme for the approximation 𝑥(𝑘Δ𝑡):{
𝑥(𝑡0) = 𝑥0 ,

𝑥(𝑡0 + (𝑘 + 1)Δ𝑡) = 𝑥(𝑡0 + 𝑘Δ𝑡) + Δ𝑡 · 𝐹 (𝑥(𝑡0 + 𝑘Δ𝑡)) , 𝑘 > 0 .

This scheme is called explicit because future values depend explicitly on past ones. In that case, one may define the 𝑁

low-level endogenous variables as 𝑿 = [𝑥(𝑡0 + Δ𝑡), . . . , 𝑥(𝑡0 + 𝑁Δ𝑡)]⊤. They can be seen as pertaining to a chain SCM
with structural equations {

𝑋1 B 𝑥0 + Δ𝑡 · 𝐹 (𝑥0)
𝑋𝑘+1 B 𝑋𝑘 + Δ𝑡 · 𝐹 (𝑋𝑘) , 𝑘 > 1.

Because the ODE describes deterministic dynamics, the corresponding SCM is deterministic as well, i.e. exogenous variables
can be taken as trivial zero constants. However, if we turn this ODE into the following 1D SDE{

𝑋 (𝑡0) = 𝑥0 ,

𝑑𝑋 = 𝐹 (𝑋 (𝑡))𝑑𝑡 + 𝜎𝑊 · 𝑑𝑊 ,

where 𝑊 is a standard Brownian motion, then the Euler-Murayama method generalizes the previous approximation (Sauer,
2013), and leads to an updated SCM with structural equation{

𝑋1 B 𝑥0 + Δ𝑡 · 𝐹 (𝑥0) +𝑈1

𝑋𝑘+1 B 𝑋𝑘 + Δ𝑡 · 𝐹 (𝑋𝑘) +𝑈𝑘+1 , 𝑘 > 1 ,

where the exogenous variables 𝑈𝑘 represent the increments of the scaled Brownian motion 𝜎𝑊 ·𝑊 between successive time
steps, and are thus jointly independent Gaussian due to fundamental properties of Brownian motion.

This approach generalizes to explicit numerical schemes for multivariate ODE and SDEs where the state variable 𝑿 is an
element of R𝑛. As an illustration, we can take the following class of SDE models{

𝑿 (𝑡0) = 𝒙0 ,

𝑑𝑿 = 𝑭(𝑿 (𝑡))𝑑𝑡 + 𝝈𝑊 · 𝑑𝑾 ,

with 𝑭 : R𝑛 → R𝑛, 𝝈𝑊 = R(𝑛×𝑛) , and 𝑾 a 𝑛-dimensional standard Brownian motion. This leads to the scheme{
𝑿1 B 𝒙0 + Δ𝑡 · 𝑭(𝒙0) +𝑼1

𝑿𝑘+1 B 𝑿𝑘 + Δ𝑡 · 𝑭(𝑋𝑘) +𝑼𝑘+1 , 𝑘 > 1 ,

where the 𝑼𝑘 are now multivariate Gaussian variables, whose components may or may not be independent depending on the
choice of the matrix 𝝈𝑊 . If the exogenous components are independent, the variables can be described by a standard SCM
as introduced in the main text. If the exogenous components are dependent, the variables can be described by a more general
notion of SCM, allowing hidden confounding (Bongers et al., 2021).

Further generalization to numerical schemes for Stochastic Partial Differential Equations (SPDEs) using finite difference
approximations for partial derivatives with respect to other variables than time are also possible (Millet and Morien, 2005).



B.2 REDUCTION OF THE EULER SCHEME FOR A SYSTEM OF POINT MASSES

In the context of the main text example, we assume each point mass is submitted to a fluid friction force opposing its
movement with fixed coefficient 𝜆. Masses are moreover intervened on via additional external forces { 𝒇𝑘}. Finally, internal
forces are exerted on mass 𝑘 by other point masses of the system, summing up to 𝒈𝑘 . Newton’s second law applied to
individual masses results in the following system of 2D vector equations

𝑚𝑘

𝑑𝒗𝑘
𝑑𝑡

= −𝜆𝒗𝑘 (𝑡) + 𝒇𝑘 (𝑡) + 𝒈𝑘 (𝑡) .

We can approximate each equation to iteratively estimate the 𝑥 and 𝑦 components of the speed of individual point
masses in the system, using a small time-step Δ𝑡, such that we get the discrete time estimates �̂�𝑥,𝑘 [𝑛] ≈ 𝑣𝑥,𝑘 (𝑛Δ𝑡) and
�̂�𝑦,𝑘 [𝑛] ≈ 𝑣𝑦,𝑘 (𝑛Δ𝑡) satisfying

𝑚𝑘 · �̂�𝑥,𝑘 [𝑛 + 1] B (1 − Δ𝑡𝜆) · 𝑚𝑘 · �̂�𝑥,𝑘 [𝑛] + Δ𝑡 · 𝑓𝑥,𝑘 (𝑛Δ𝑡) + Δ𝑡 · 𝑔𝑥,𝑘 (𝑛Δ𝑡) ,
𝑚𝑘 · �̂�𝑦,𝑘 [𝑛 + 1] B (1 − Δ𝑡𝜆) · 𝑚𝑘 · �̂�𝑦,𝑘 [𝑛] + Δ𝑡 · 𝑓𝑦,𝑘 (𝑛Δ𝑡) + Δ𝑡 · 𝑔𝑦,𝑘 (𝑛Δ𝑡).

Here, 𝑓 represents external forces, 𝜆 is a viscous damping coefficient, and 𝑔 denotes internal forces. We consider 𝒊 to be the
vector of all components of external forces, and the target variable to be the final horizontal speed of the center of mass
at iteration 𝑁 . From the physics of freely moving systems of points, it is clear that the target variable can be predicted by
considering only the horizontal dynamics of the center of mass. More precisely, we integrate the sum of external forces over
the time span of the experiment, and use the last intervened time point 𝑛 𝑓 to predict the final outcome of the simulation,
leading to the reduction

𝑍
(𝜔 (𝒊) )
1 =

©­«
∑︁
𝑘

𝑚𝑘
ª®¬ 𝑣𝑥,𝐺 [𝑛 𝑓 ] =

∑︁
𝑘

𝑚𝑘𝑣𝑥,𝑘 [𝑛 𝑓 ] = Δ𝑡

𝑛 𝑓∑︁
𝑛=0
(1 − Δ𝑡𝜆) (𝑛 𝑓 −𝑛)

∑︁
𝑘

𝑓𝑥,𝑘 (𝑛Δ𝑡)) ,

𝑌 = 𝑣𝑥,𝐺 [𝑁] B (1 − Δ𝑡𝜆) (𝑁−𝑛 𝑓 ) 𝑍1 +
𝑁∑︁

𝑛=𝑛 𝑓 +1

∑︁
𝑘

𝑓𝑥,𝑘 (𝑛Δ𝑡)) .

To make the notation compatible with that used in our TCR framework, we can gather all speed variables in a high-
dimensional vector 𝑿 and all external force variables in a vector 𝒊, the high-level causal model is thus generated by a linear
𝜏-map and linear 𝜔 map for shift interventions, taking the form of the exact transformation

𝑍1 = 𝝉⊤1 𝑿 + 𝝎⊤1 𝒊 , 𝑌 = 𝝉⊤0 𝑿 + 𝝎⊤0 𝒊 B 𝑓 (𝑍1) .

where the term 𝝎⊤0 𝒊 accounts for interventions happening between discrete times 𝑛 𝑓 + 1 and 𝑁 and thus affect 𝑌 without
being mediated by 𝑍1. In our framework, only interventions mediated by the cause, reflected in the term 𝝎⊤1 𝒊, are accounted
for in the high-level model.

B.3 CONSTRUCTIVE TRANSFORMATIONS

We complete the main text definition to include the constraint on the intervention map 𝜔

Definition B.1. (𝜏, 𝜔) : (X → Z,I → J) is a constructive (𝜏 − 𝜔)-transformation between model L and H if there
exists an alignment map 𝜋 mapping each high-level endogenous variable to a subset of low-level endogenous variables such
that for all 𝑘 ≠ 𝑙, 𝜋(𝑘) ∩ 𝜋(𝑛) = ∅ and we have both

• for each component 𝜏𝑘 of 𝜏 there exists a function 𝜏𝑘 such that for all 𝒙 in X,

𝜏𝑘 (𝒙) = 𝜏𝑘 (𝒙𝜋 (𝑘 ) ) ;

• for each component 𝜔𝑘 of 𝜔 there exists a function �̄�𝑘 such that for all 𝒊 in I,

𝜔𝑘 (𝒊) = �̄�𝑘 (𝒊𝜋 (𝑘 ) ) .



C PROOF OF MAIN TEXT RESULTS

C.1 PROOF OF PROPOSITION 3.1

We first reformulate Proposition 3.1 more formally as follows.

Proposition C.1. The consistency loss is positive, invariant to invertible reparametrizations as defined in Definition D.1,
and vanishes if and only if the transformation is exact for almost all interventions. It admits the following decomposition:

Lcons=E𝑖∼𝑃 (𝒊)

[
KL

(
𝑃
(𝒊)
𝜏 (𝒁) | |𝑃 (𝜔 (𝒊) ) (𝒁)

)
+ E

𝒛∼𝑃 (𝒊)𝜏 (𝒁 )

[
KL

(
𝑃
(𝒊)
𝜏

(
𝑌 |𝒛)

)
| |𝑃 (0)

(
𝑌 |𝒛

) )] ]
, (15)

and is an upper bound of the causal relevance loss

Lrel=E𝒊∼𝑃 (𝒊)

[
KL

(
𝑃 (𝒊) (𝑌 ) | |𝑃 (𝜔 (𝒊) ) (𝑌 )

)]
≤Lcons . (16)

Proof. Positivity of the loss comes from the positivity of the KL-divergence. Taking the expectation of this divergence with
respect to 𝑃(𝒊) thus must be positive too.

Invariance to reparameterizations. We assume a reparametrization 𝜌 designed according to the framework introduced
in Appendix 𝐷.1. By invariance of the KL divergence to invertible transformations, we have equality between the KL
associated to the two different reductions (𝜏, 𝜔) and (𝜌 ◦ 𝜏, 𝜓 ◦ 𝜔):

KL
(
𝑃
(𝒊)
𝜏 (𝑌, 𝒁) | |𝑃 (𝜔 (𝒊) )H,𝜸

(𝑌, 𝒁)
)
= KL

(
�̃�# [𝑃 (𝒊)𝜏 (𝑌, 𝒁)] | | �̃�# [𝑃 (𝜔 (𝒊) )H,𝜸

(𝑌, 𝒁)]
)
= KL

(
𝑃
(𝒊)
𝜌◦𝜏 (𝑌, 𝒁) | |𝑃

(𝜓◦𝜔 (𝒊) )
H,𝜸′ (𝑌, 𝒁)

)
.

The transformation (𝜌, 𝜓) thus leaves Lcons invariant.

Cause-mechanism decomposition. Under our setting (see Sec. 3.1), the interventional distribution of the high-level causal
model factorizes as

𝑃 (𝜔 (𝒊) ) (𝑌, 𝒁) = 𝑃 (0)
(
𝑌 |𝒁

)
𝑃 (𝜔 (𝒊) ) (𝒁) .

The pushforward (by reduction) of the interventional distribution of the low-level model factorizes as

𝑃 (𝒊) (𝑌, 𝒁) = 𝑃 (𝒊)
(
𝑌 |𝒁

)
𝑃 (𝒊) (𝒁) ,

with 𝑃 (𝒊) (𝒁) = 𝜏1,# [𝑃 (𝒊) (𝑿𝜋 (1) )] and 𝑃 (𝒊)
(
𝑌 |𝒁

)
=

𝜏#

[
𝑃 (𝒊) (𝑿𝜋 (0) ,𝑿𝜋 (1) )

]
𝜏1,# [𝑃 (𝒊) (𝑿𝜋 (1) ) ]

.

Thus, the KL divergence can be decomposed as

KL
(
𝑃 (𝒊) (𝑌, 𝒁) | |𝑃 (𝜔 (𝒊) ) (𝑌, 𝒁)

)
=

∫
Y

∫
Z
𝑃 (𝒊) (𝑌, 𝒁) log

𝑃 (𝒊) (𝑌, 𝒁)
𝑃 (𝜔 (𝒊) ) (𝑌, 𝒁)

𝑑𝒁𝑑𝑌

=

∫
Y

∫
Z
𝑃 (𝒊)

(
𝑌 |𝒁

)
𝑃 (𝒊) (𝒁) log

𝑃 (𝒊)
(
𝑌 |𝒁

)
𝑃 (𝒊) (𝒁)

𝑃 (0)
(
𝑌 |𝒁

)
𝑃 (𝜔 (𝒊) ) (𝒁)

𝑑𝒁𝑑𝑌

= KL𝑍

(
𝑃 (𝒊) (𝒁) | |𝑃 (𝜔 (𝒊) ) (𝒁)

)
+ E

𝑧∼𝑃 (𝒊) (𝒁 )

[
KL𝑌

(
𝑃 (𝒊)

(
𝑌 |𝒁 = 𝑧

)
| |𝑃 (0)

(
𝑌 |𝒁 = 𝑧

) )]
= KL𝑍

(
𝑃 (𝒊) (𝒁) | |𝑃 (𝜔 (𝒊) ) (𝒁)

)
+ KL𝑌,𝑍

(
𝑃 (𝒊)

(
𝑌, 𝒁

)
| |𝑃 (0)

(
𝑌 |𝒁

)
𝑃 (𝒊) (𝒁)

)
.

We call the first term cause consistency loss, as it matches the definition of a consistency loss but for cause variables only. The
second term can be thought of as a mechanism consistency loss, where we use the ground truth low-level cause distribution
to probe the similarity of the outputs of the “true” (in fact, the conditional distribution) and approximate mechanism. Our
interpretability choice prevents the high-level mechanism from being intervened on, so a single stochastic map (i.e. a Markov
kernel) must fit at best all the sampled experimental conditionals.



Lower bounding by causal relevance We may ask the question of causal relevance of high-level causes. One way to
quantify this is to assess whether the variations of the target due to low-level interventions are well captured by high-level
interventions, which can be measured by a KL divergence on the target’s marginal

Lrel = E𝒊∼𝑝 (𝒊)

[
KL𝑌

(
𝑃 (𝒊) (𝑌 ) | |𝑃 (𝜔 (𝒊) ) (𝑌 )

)]
.

Note: In the Gaussian 1D case, the formula for the causal relevance loss is

Lrel =
1
2
E𝒊∼𝑝 (𝒊)


(𝜇𝑌 + 𝛼𝝎⊤ 𝒊 − 𝜇

(𝒊)
𝑌
)2

𝜎2
𝑌

+ 𝜎2
(𝒊)
𝑌

𝜎2
𝑌

− ln
©­­«
𝜎2
(𝒊)
𝑌

𝜎2
𝑌

ª®®¬ − 1

 .

Interestingly, we can break down this term using

KL
(
𝑃 (𝒊) (𝑌, 𝒁) | |𝑃 (𝜔 (𝒊) ) (𝑌, 𝒁)

)
= KL𝑌

(
𝑃 (𝒊) (𝑌 ) | |𝑃 (𝜔 (𝒊) ) (𝑌 )

)
+ E

𝑦∼𝑃 (𝒊) (𝑌 )

[
KL𝑌

(
𝑃 (𝒊)

(
𝒁 |𝑌 = 𝑦

)
| |𝑃 (𝜔 (𝒊) )

(
𝒁 |𝑌 = 𝑦

) )]
where both terms are positive by positivity of the KL divergence. As a consequence,

KL𝑌

(
𝑃 (𝒊) (𝑌 ) | |𝑃 (𝜔 (𝒊) ) (𝑌 )

)
= KL

(
𝑃 (𝒊) (𝑌, 𝒁) | |𝑃 (𝜔 (𝒊) ) (𝑌, 𝒁)

)
− E

𝑦∼𝑃 (𝒊) (𝑌 )

[
KL𝑌

(
𝑃 (𝒊)

(
𝒁 |𝑌 = 𝑦

)
| |𝑃 (𝜔 (𝒊) )

(
𝒁 |𝑌 = 𝑦

) )]
≤ KL

(
𝑃 (𝒊) (𝑌, 𝒁) | |𝑃 (𝜔 (𝒊) ) (𝑌, 𝒁)

)
= Lcons .

so the minimized consistency loss is an upper bound to causal relevance.

□

C.2 PROOF OF PROPOSITION 3.4

Proposition 3.4. Assume the low-level SCM follows

𝑿 B 𝐴𝑿 +𝑼 + 𝒊 , 𝒊 ∼ 𝑃(𝒊) , 𝑈𝑘 ∼ N(𝜇𝑘 , 𝜎
2
𝑘 ) , 𝜎𝑘 > 0 ,

such that 𝑿 and 𝐴 take the block forms

𝑿 =

[
𝑿𝜋 (0)
𝑿Ω

]
, 𝐴 =

[
𝐴00 𝐴0Ω
0 𝐴ΩΩ

]
.

Given an arbitrary choice of linear scalar target of the form 𝑌 = 𝜏⊤0 𝑿 = 𝜏⊤0 𝑿𝜋 (0) and under Assum. 3.2 or Assum. 3.3, there
is a unique linear 1-cause TCR (up to a multiplicative constant) satisfying Lcons = 0. It is given by

𝜋(1) =Ω , (8)
�̄�1 = 𝐴⊤0Ω (𝐼#𝜋 (0) − 𝐴00)−⊤�̄�0 , (9)

and �̄�1 = (𝐼#Ω − 𝐴ΩΩ)−⊤�̄�1 . (10)

Moreover, let 𝑛𝑚𝑎𝑥 be the maximum number 𝑛 such that a linear 𝑛-cause TCR can achieve Lcons = 0. If there are no
cancellations1 among causal pathways from each node in supp(�̄�1) of Eq. (10) towards 𝑌 , then the 𝑛𝑚𝑎𝑥-cause TCR is
unique up to rescaling and permutation of the causes.

1Causal pathways cancel if the linear coefficients quantifying the influence of a node on 𝑌 along different directed paths of the
low-level SCM sum to zero. Assuming no cancellations is akin to assuming no faithfulness violations and generically satisfied (Sprites
et al., 2001, Theorem 3.2).



Proof. Part 1: 1-cause TCR.

Overview. We exploit the positive definiteness of the KL loss and its continuity with respect to 𝒊. Since the variables are
jointly Gaussian, continuity is obvious from the analytical expression of the KL for Gaussian variables and continuity of
the shift operation applied to the parameters of the Gaussian. We exploit the cause-mechanism decomposition and the
lower-bound by Lcons to progressively identify necessary conditions on parameters to have Lcons = 0 and finally check
those conditions are sufficient.

Preliminaries. Let 𝑁0 denote the size of 𝜋(0) and 𝑁1 be the size of 𝜋(1). The SCM is assumed uniquely solvable
(Definition 2.1), such that 𝒙 = 𝐴𝒙 + 𝒖 has a unique solution for almost all values of 𝒖. Since 𝑼 has full support, this implies
that 𝐼𝑁 − 𝐴 is invertible. The low-level variables then satisfy

𝑿 (𝒊) = (𝐼𝑁 − 𝐴)−1 (𝑼 + 𝒊)

where, due to the block triangular form of 𝐴,

(𝐼𝑁 − 𝐴)−1 =

[
(𝐼𝑁0 − 𝐴00)−1 , (𝐼𝑁0 − 𝐴00)−1𝐴0Ω (𝐼𝑁1 − 𝐴ΩΩ)−1

0 (𝐼𝑁1 − 𝐴ΩΩ)−1 .

]
In the assumed model all low-level variables are either in 𝜋(0) or in Ω. Since the CMR is constructive we have 𝜋(1) ⊂ Ω.
Without loss of generality, we can impose 𝜋(1) = Ω by setting the unused components of 𝝉1 and 𝝎1 to zero. For an arbitrary
interventional setting 𝒊, this leads to the mapping of the low-level variable to the high-level cause variable, which we denote
𝑍
(𝒊)
1 = 𝜏1 (𝑿 (𝒊) ), to satisfy

𝑍
(𝒊)
1 = 𝝉⊤1 (𝐼𝑁 − 𝐴)−1 (𝑼 + 𝒊) = �̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1 (𝑼Ω + 𝒊Ω) . (17)

Moreover, because we assume also shift interventions in the high-level model, the cause 𝑍1 in this model has an interventional
distribution satisfying

𝑃 (𝜔1 (𝒊) ) (𝑍1) = 𝑃 (0)
(
𝑍1 − 𝝎⊤1 (𝒊)

)
.

Necessary conditions. We are looking for solutions satisfying Lcons = 0. By positivity of the KL divergence, this implies
that for almost all 𝒊, the distribution of 𝑍 (𝒊)1 matches the learned high-level interventional distribution of high-level cause 𝑍1,
which satisfies

𝑃 (𝜔1 (𝒊) ) (𝑍1) = 𝑃 (0)
(
𝑍1 − 𝝎⊤1 (𝒊)

)
.

Matching unintervened distributions of 𝑍1. If Assum. 3.2 holds, the prior 𝑃(𝒊Ω) has density with respect to the Lebesgue
measure with support including a neighborhood of 𝒊Ω = 0. By continuity of the KL divergence with respect to the intervention
parameters, a solution making the consistency loss vanish needs to have the KL divergence term vanish for 𝒊Ω = 0 (otherwise
we could find a neighborhood of 𝒊Ω = 0 such that the KL divergence does not vanish, by continuity of the KL divergence,
and Lcons would be non-vanishing, contradicting our assumption).

Alternatively, Assum. 3.3 also obviously implies vanishing of the KL divergence for the unintervened setting.

This vanishing of the KL divergence entails, again by positivity, that its terms, the two unintervened densities, are equal,
such that we get, using Eq. (17)

𝑃 (0) (𝑍1) = (𝜏1)#
[
𝑃(𝑿)

]
= (�̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1)#

[
𝑃(𝑼Ω)

]
(18)

=N(�̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1𝝁Ω, �̄�
⊤
1 (𝐼𝑁1 − 𝐴ΩΩ)−1ΣΩ (𝐼𝑁1 − 𝐴ΩΩ)−⊤�̄�1) , (19)

which entails the following constraints on the variance and mean of the high-level cause

𝜎2
𝑍1

= �̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1ΣΩ (𝐼𝑁1 − 𝐴ΩΩ)−⊤�̄�1 (20)

and
𝜇𝑍1 = �̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1𝝁Ω . (21)

Matching interventional distributions of 𝑍1. For the same reasons, under Assum. 3.2, we can further match the inter-
ventional distributions in an open set included in the interior of the support of 𝑃(𝒊), such that for all 𝒊 in this open set the



following distributions are the same

𝑃 (𝜔1 (𝒊) ) (𝑍1) =N(�̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1 (𝝁Ω + 𝒊Ω), �̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1ΣΩ (𝐼𝑁1 − 𝐴ΩΩ)−⊤�̄�1) and

(𝜏1)#
[
𝑃 (𝒊) (𝑿)

]
=N(𝜇𝑍1 + 𝝎⊤1 𝒊, 𝜎

2
𝑍1
) = N(𝜏⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1𝝁Ω + 𝝎⊤1 𝒊, 𝜎

2
𝑍1
) .

Indeed, otherwise the KL would not vanish in a neighborhood of non-zero measure and would contradict the assumption
that Lcons vanishes.

This implies that for all 𝒊 in this open neighborhood

�̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1 (𝝁Ω + 𝒊Ω) = �̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1𝝁Ω + �̄�⊤1 𝒊Ω ,

which simplifies to
�̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1 𝒊Ω = �̄�⊤1 𝒊Ω .

Since this equality between two linear functions of 𝒊𝜋 (1) is valid on an open set of the vector space of 𝒊𝜋 (1) , these functions
must be equal (we can reparameterize 𝒊 to show that the linear maps must match on a basis of the space, so they are equal).
This is valid if and only if, in addition to Eqs. (20-21),

�̄�1 = (𝐼𝑁1 − 𝐴ΩΩ)−⊤�̄�1 , (22)

is verified.

Alternatively, we obtain the same result by replacing Assum. 3.2 by Assum. 3.3. Indeed, the finite distribution over
interventions imposes that the KL term inside the expectation must vanish for each of them (including the unintervened
distribution). As long as the collection of finite interventions vectors forms a rank #Ω = #𝜋(1) = 𝑁1 family, we can choose a
subset of 𝑁1 such vectors {𝒊1

Ω
, . . . , 𝒊𝑁1

Ω
} such that it forms a linearly independent family. It can be used to build the matrix

equality

�̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1
[
𝒊1Ω, . . . , 𝒊

𝑁1
Ω

]
= 𝝎⊤1

[
𝒊1Ω, . . . , 𝒊

𝑁1
Ω

]
(23)

where the matrix
[
𝒊1
Ω
, . . . , 𝒊𝑁1

Ω

]
is invertible. By right-multiplying Eq. (23) by this inverse, we obtain Eq. (22) again.

Matching distributions of 𝑌 . We can move on to check the implication of consistency of the effect’s conditional. It entails
for almost all of 𝒊

𝑃 (𝒊) (𝑌 |𝑍)𝑃 (𝒊) (𝑍) = 𝑃 (𝜔 (𝒊) ) (𝑌 |𝑍)𝑃 (𝒊) (𝑍) = 𝑃 (0) (𝑌 |𝑍)𝑃 (𝒊) (𝑍) .

Introducing 𝑇 =

[
𝝉⊤0
𝝉⊤1

]
the left-hand side is obtained by using

(𝑌, 𝑍) ∼ N (𝑇𝜇𝑿 , 𝑇Σ𝑿𝑇
⊤) .

And the right-hand side by using
𝑌 = 𝑓 (𝑍1) + 𝑅0 .

Fitting first only the marginals of 𝑌 , we obtain necessary conditions. We have

𝑃 (𝒊) (𝑌 ) = 𝑃 (𝜔 (𝒊) ) (𝑌 )

where for the left-hand side

𝑌 = �̄�⊤0 (𝐼𝑁0 − 𝐴00)−1𝑼𝜋 (0) + �̄�⊤0 (𝐼𝑁0 − 𝐴00)−1𝐴0Ω (𝐼𝑁1 − 𝐴ΩΩ)−1 (𝑼𝜋 (1) + 𝒊)

and for the right-hand side
𝑌 ∼ 𝑓# [𝑃 (𝜔 (𝒊) ) (𝑍1)] ∗ 𝑃(𝑅0) .

Given the affine mechanism assumption of Eq. (7), 𝑓 (𝑍) = 𝛼𝑍 + 𝛽 and under Assum. 3.2, equality of marginal distributions
entails the following equality for all 𝒊Ω in an open neighborhood of 0 (otherwise Lrel ≤ Lcons would not vanish)

�̄�⊤0 (𝐼𝑁0 − 𝐴00)−1𝝁𝜋 (0) + �̄�⊤0 (𝐼𝑁0 − 𝐴00)−1𝐴0Ω (𝐼𝑁1 − 𝐴ΩΩ)−1 (𝝁𝑼1 + 𝒊Ω) = 𝛼�̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1 (𝜇Ω + 𝒊Ω) + 𝛽 + 𝝁𝑅0



which requires (setting 𝒊 = 0)
𝛽 + 𝝁𝑅0 = �̄�⊤0 (𝐼𝑁0 − 𝐴00)−1𝝁𝜋 (0) .

We can fix 𝝁𝑅0 to zero to avoid redundancy of additive constants, such that

𝜇𝑌 |𝑍=0 = 𝛽 = �̄�⊤0 (𝐼𝑁0 − 𝐴00)−1𝝁𝜋 (0) (24)

and consistency of non-zero shift interventions additionally entail for all 𝒊Ω in the support of 𝑃(𝒊Ω)

�̄�⊤0 (𝐼𝑁0 − 𝐴00)−1𝐴0Ω (𝐼𝑁1 − 𝐴ΩΩ)−1 𝒊Ω = 𝛼�̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1 𝒊Ω .

Since one can always choose a linearly independent family of vectors 𝒊Ω within the open neighborhood of zero for which
this equality holds, this yields

�̄�⊤0 (𝐼𝑁0 − 𝐴00)−1𝐴0Ω (𝐼𝑁1 − 𝐴ΩΩ)−1 = 𝛼�̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1 .

Then, right-multiplying by (𝐼𝑁1 − 𝐴ΩΩ), we get

𝐴⊤0Ω (𝐼𝑁0 − 𝐴00)−⊤�̄�0 = 𝛼�̄�1 . (25)

Similarly as above, the same conclusion can be drawn if we replace Assum. 3.2 by Assum. 3.3.

Sufficiency of the constraints. We have derived the expressions of the TCR parameters in Eqs. (22,24,25) from necessary
conditions for matching the marginals of high-level variables, 𝑃(𝑍1) and 𝑃(𝑌 ), to their corresponding pushforward
distributions of the low-level variables, (𝜏1)# [𝑃(𝑿)] and (𝜏0)# [𝑃(𝑿)]. Now what remains is to check the same for
conditional distributions to show those conditions are sufficient. Indeed, this implies that the joint high-level distributions of
(𝑌, 𝑍1) and (𝜏0 (𝑿), 𝜏1 (𝑿)) are matching.

Let us first note that given that the low-level model, the 𝜏 maps and the high-level mechanisms are linear or affine, and that
the low-level exogenous variables are Gaussian, the exogenous high-level variable will necessarily be Gaussian as well to
satisfy the consistency constraints.

Let us now compute the covariance matrix of the low-level variables.

𝑐𝑜𝑣(𝑿) =
[
(𝐼𝑁0 − 𝐴00)−1 (𝐼𝑁0 − 𝐴00)−1𝐴0Ω (𝐼𝑁1 − 𝐴ΩΩ)−1

0 (𝐼𝑁1 − 𝐴ΩΩ)−1

]
Σ𝑈

[
(𝐼𝑁0 − 𝐴00)−⊤ 0

(𝐼𝑁1 − 𝐴ΩΩ)−⊤𝐴⊤0Ω (𝐼𝑁0 − 𝐴00)−⊤ (𝐼𝑁1 − 𝐴ΩΩ)−⊤
]
.

Because the exogenous covariance is block diagonal, we get

=


(𝐼𝑁0 − 𝐴00)−1𝐴0Ω (𝐼𝑁1 − 𝐴ΩΩ)−1ΣΩ (𝐼𝑁1 − 𝐴ΩΩ)−⊤𝐴⊤0Ω (𝐼𝑁0 − 𝐴00)−⊤

+(𝐼𝑁0 − 𝐴00)−1Σ𝜋 (0) (𝐼𝑁0 − 𝐴00)−⊤
(𝐼𝑁0 − 𝐴00)−1𝐴0Ω (𝐼𝑁1 − 𝐴ΩΩ)−1ΣΩ (𝐼𝑁1 − 𝐴ΩΩ)−⊤

(𝐼𝑁1 − 𝐴ΩΩ)−1ΣΩ (𝐼𝑁1 − 𝐴ΩΩ)−⊤𝐴⊤0Ω (𝐼𝑁0 − 𝐴00)−⊤ (𝐼𝑁1 − 𝐴ΩΩ)−1ΣΩ (𝐼𝑁1 − 𝐴ΩΩ)−⊤

 .

Then, if we denote 𝑌 = 𝜏0 (𝑿)
𝑐𝑜𝑣((𝑌, 𝑍1)) = 𝑇𝑐𝑜𝑣(𝑿)𝑇⊤

and we can derive its conditional mean and covariance

𝜇
𝑌 | �̂�1

= 𝜇
𝑌
+�̄�⊤0 (𝐼𝑁0−𝐴00)−1𝐴0Ω (𝐼𝑁1−𝐴ΩΩ)−1Σ𝜋 (1) (𝐼𝑁1−𝐴ΩΩ)−⊤�̄�1

(
�̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1ΣΩ (𝐼𝑁1 − 𝐴ΩΩ)−⊤�̄�1

)−1 (
𝑧1 − 𝜇𝑍1

)
.

Thus using the above equation

𝜇
𝑌 | �̂�1

= 𝜇
𝑌
+𝛼

(
𝑧1 − 𝜇𝑍1

)
= �̄�⊤0 (𝐼𝑁0 − 𝐴00)−1𝝁𝜋 (0) + �̄�⊤0 (𝐼𝑁0 − 𝐴00)−1𝐴0Ω (𝐼𝑁1 − 𝐴ΩΩ)−1𝝁Ω +𝛼𝑧1−𝛼�̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1𝝁Ω ,

which further simplifies with the same equation to

𝜇
𝑌 | �̂�1

= 𝜇
𝑌
+ 𝛼

(
𝑧1 − 𝜇𝑍1

)
= �̄�⊤0 (𝐼𝑁0 − 𝐴00)−1𝝁𝑼0 + 𝛼𝑧1 .

Moreover,

var(𝑌 |𝑧1) = 𝜎2
𝑌
− 𝝉⊤0 (𝐼𝑁0 − 𝐴00)−1𝐴0Ω (𝐼𝑁1 − 𝐴ΩΩ)−1ΣΩ (𝐼𝑁1 − 𝐴ΩΩ)−⊤�̄�1

(
�̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1ΣΩ (𝐼𝑁1 − 𝐴ΩΩ)−⊤�̄�1

)−1

�̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1ΣΩ (𝐼𝑁1 − 𝐴ΩΩ)−⊤𝐴⊤0Ω (𝐼𝑁0 − 𝐴00)−⊤�̄�0



again, using the above equation this leads to the simplification

var(𝑌 |𝑧1) = 𝜎2
𝑌
− 𝛼�̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1Σ𝜋 (1) (𝐼𝑁1 − 𝐴ΩΩ)−⊤𝐴⊤0Ω (𝐼𝑁0 − 𝐴00)−⊤�̄�0

= 𝜎2
𝑌
− 𝛼�̄�⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1Σ𝜋 (1) (𝐼𝑁1 − 𝐴ΩΩ)−⊤�̄�1𝛼

= �̄�⊤0 (𝐼𝑁0 − 𝐴00)−1Σ𝜋 (0) (𝐼𝑁0 − 𝐴00)−⊤�̄�0 .

For the high-level distribution we get
𝑃(𝑌 |𝑧) = N(𝛼𝑧 + 𝛽, 𝜎2

𝑌 |𝑍 )

where we can identify all parameters, including the mean and variance of the Gaussian exogenous variable 𝑅0, with the
above Eqs (22,24,25).

Part 2: 𝑛-causes case (𝑛 > 1)

We now assume (𝜏′
𝑘
, 𝜔′

𝑘
, 𝜋′)

𝑘=1..𝑛 such that the loss vanishes, but no such solution for 𝑛 + 1 causes.

Properties of exact 𝑛-cause solutions Then such a solution can be linked to the 1-cause solution, which is guaranteed
to exist according to our set of assumptions. Indeed, the existence of the n-cause solution implies that the pushfoward
interventional distribution of the low-level causal model by 𝜏, 𝑃 satisfies

𝑃 (𝒊) (𝑌 |𝒁 = 𝒛) ∼ N ©­«
∑︁
𝑘

𝛼𝑘𝑧𝑘 + 𝛽, 𝜎2
𝑌 |𝑍

ª®¬
and

𝑃 (𝜔 (𝒊) ) (𝒁) ∼
∏
𝑘

𝑃 (0) (𝑍𝑘 − 𝜔𝑘 (𝒊𝑘))

If we define the aggregate cause �̃� =
∑

𝑘 𝛼𝑘𝑧𝑘 =
∑

𝑘 𝛼𝑘𝜏𝑘 (𝑥), then we can rewrite the above model as

𝑃 (𝒊) (𝑌 |�̃� = 𝑧) ∼ N
(
𝑧 + 𝛽, 𝜎2

𝑌 |𝑍

)
and

𝑃 (𝜔 (𝒊) ) (�̃�) ∼
∏
𝑘

𝑃 (0) (�̃� −
∑︁
𝑘

𝜔𝑘 (𝒊𝑘))

which implies that concatenating the 𝜏𝑘 with multiplicative coefficient 𝛼𝑘 leads to a valid 1-cause TCR, and must thus match
the expressions we have found for it, up to a multiplicative constant.

Moreover, the interventional consistency of the 𝑛-causes, which do not influence each other according to the assumed
high-level causal graph, entails that any low-level intervention 𝒊 affects only high-level variable 𝑍𝑘 through is components
in 𝜋(𝑘).

We define 𝐴1..𝑛,1..𝑛 by reordering the indices of Ω according to the assumed alignment 𝜋. Consistency then implies (using
the above 1 cause solution proof)

�̄�⊤1 , . . . , 0
...,

. . . ,
...

0, . . . , �̄�⊤𝑛

 (𝐼
∑

𝑘 𝑁𝑘
− 𝐴1..𝑛,1..𝑛)−1 𝒊Ω =


𝝎⊤1 𝒊𝜋1

...

𝝎⊤𝑛 𝒊𝜋𝑛

 . (26)

This implies that
�̄�⊤𝑘 (𝐼∑𝑘 𝑁𝑘

− 𝐴1..𝑛,1..𝑛)−1
𝑘 𝑗 = 0 for all 𝑗 ∈ 𝜋(𝑙), 𝑙 ≠ 𝑘 , (27)

where (.)𝑘 𝑗 indicates the matrix block corresponding to indices in 𝜋(𝑘) × 𝜋( 𝑗). Because the non-vanishing coefficients of
𝜏𝑘 reflect the influences along the causal pathways from nodes of 𝜋(𝑘) to 𝑌 , the above entails that (𝐼∑

𝑘 𝑁𝑘
− 𝐴1..𝑛,1..𝑛)−1

𝑘 𝑗

must vanish on the support of 𝜏𝑘 . Indeed, otherwise Eq. (27) would indicate that causal pathways from nodes in 𝜋(𝑘) to
𝜋(0) cancel each other, which is forbidden by our assumptions.

We thus deduce that any off-diagonal block element of (𝐼∑
𝑘 𝑁𝑘
− 𝐴1..𝑛,1..𝑛)−1 whose row component belongs to the support

of any 𝜏𝑘 and whose column component belongs to the support of any 𝜔𝑘 must vanish. Indeed, otherwise the causes would



influence each other. In essence, this means that any node influencing the target must not influence any node though some
causal pathway in another group with the same property.

Identifiability of the 𝑛-cause solution We assume 𝑛 = 𝑛𝑚𝑎𝑥 and consider a second 𝑛-cause solution, which we denote:
(𝜏′

𝑘
, 𝜔′

𝑘
, 𝜋′)

𝑘=1..𝑛.

If 𝜋′ = 𝜋 up to a permutation of the order of the causes and removal of low-level variables that do not belong to the support
of neither any 𝜔. Then identifiability of the corresponding 1-cause solution implies that each 𝜏′

𝑘
is identified with each 𝜏𝑘 up

to a multiplicative constant, because they both match the components of the 1-cause 𝜏 on their (identical) support 𝜋(𝑘) The
same goes for 𝜔′

𝑘
and 𝜔𝑘 . This corresponds to the conclusion of the Proposition.

Otherwise, 𝜋′ ≠ 𝜋 even up to a permutation of the order of the causes and removal of low-level variables that do not belong
to the support of neither any 𝜏 nor 𝜔. There should be an overlap between supports of omegas and taus of one cause of one
solution with two different causes of the other solution. Without loss of generality, because of the block-diagonal structure
of (𝐼∑

𝑘 𝑁𝑘
− 𝐴1..𝑛,1..𝑛)−1 entailed by Eqs. (26-27) for both solutions, this overlap implies that 𝜋(𝑘) for at least one 𝑘 can be

further partitioned and reordered into two subgroups, such that the corresponding diagonal block of (𝐼∑
𝑘 𝑁𝑘
− 𝐴1..𝑛,1..𝑛)−1

can be turned in a block diagonal submatrix. This can be used to build a new alignment 𝜋′′ for 𝑛+1 causes, and its associated
tau and omega maps such that Eq. (26) will be again satisfied, leading to interventional consistency of the (n+1)-causes.
Moreover, because the exogenous variables in Ω are assumed independent, the block diagonal structure of the newly
defined matrix (𝐼∑

𝑘 𝑁𝑘
− 𝐴1..𝑛+1,1..𝑛+1)−1 entails that the covariance of the 𝑛 + 1 high-level cause variable will be diagonal,

ensuring mutual independence between high-level causes. This procedure exhibits the existence of an (𝑛 + 1)-cause TCR,
contradicting the original assumption that 𝑛 = 𝑛𝑚𝑎𝑥 . This case is thus excluded. □

D ADDITIONAL THEORY

D.1 REPARAMETRIZATIONS OF REDUCTIONS

In order to study invariance properties of TCR, we define transformations compatible with a class of reductions. Let
𝜌 : Z1 × · · · × Z𝑛 →Z1 × · · · × Z𝑛 be a continuous invertible transformation of the 𝑛-dimensional high-level cause vector.
Then the transformation

�̃� :
[
𝑌

𝒁

]
↦→

[
𝑌

𝜌(𝒁)

]
is also continuous invertible. Among this class of transformations, we define an invertible reparametrization of a TCR as
follows.

Definition D.1. An invertible reparametrization of a reduction for the class T of 𝜏-maps and the class {H𝜸}𝜸∈Γ satisfies
the following properties.

• it is compatible with the class of 𝜏-maps as follows: for any map 𝜏 ∈ T , we have �̃� ◦ 𝜏 ∈ T ,
• it is compatible with the high-level model class {H𝜸} as follows: for any model parameter 𝜸, the unintervened and

intervened distributions 𝑃H,𝜸 (𝑌, 𝒁) are such that there exist a parameter 𝜸′ and a map between high-level interventions
𝜓 : J → J such that the joint distributions of the transformed variables (𝑌, 𝜌(𝒁)) is compatible with unintervened
and intervened distributions ofH𝜸′ , in the sense that

�̃�# [𝑃 ( 𝒋 )H,𝜸
(𝑌, 𝒁)] = 𝑃

(𝜓 ( 𝒋 ) )
H,𝜸′ (𝑌, 𝒁) .

D.2 THE CASE OF A SINGLE TARGET LOW-LEVEL VARIABLE

Whenever 𝜋(0) is a singleton, 𝜏0 is univariate and the target 𝑌 essentially corresponds (up to trivial rescaling) to a single
low-level variable. We elaborate on the interpretation of Proposition 3.4 in this context.

Let us set �̄�0 = 1 and fix the target index such that 𝜋(0) = {𝑁} without loss of generality. Then the DAG constraints entail
𝐴00 = 0 and the structural equations take the form

𝑿𝜋 (1) B 𝐴11𝑿𝜋 (1) +𝑼𝜋 (1) + 𝒊 , 𝑈𝑘 ∼ N(𝜇𝑘 , 𝜎
2
𝑘 ) (28)

𝑌 B 𝒂⊤01𝑿𝜋 (1) +𝑈𝑁 (29)



where 𝒂01 is a column vector of coefficients of the low-level mechanism linking the target 𝑌 to its causes in 𝜋(0). Then the
unique linear 1D TCR, up to a multiplicative constant, making the consistency loss vanish is given by

�̄�1 = 𝒂01 (30)
and �̄�1 = (𝐼𝑁−1 − 𝐴11)−⊤�̄�1 = (𝐼𝑁−1 − 𝐴11)−⊤𝒂01 . (31)

This solution is easily interpretable: �̄�1 identifies the ground truth mechanism linking 𝑿𝜋 (0) to the target, while �̄�1 traces the
contribution of interventions on each endogenous variable to the target. Indeed, this contribution is given by the “reduced
form” map between exogenous values and endogenous values (see proof of Proposition 3.4 for more insights)

𝒊 ↦→ (𝐼𝑁−1 − 𝐴11)−1 𝒊 ,

and by composing this mapping with mechanism 𝒂01 we get the (shift) influence of interventions on the target

𝒊 ↦→ 𝒂⊤01 (𝐼𝑁−1 − 𝐴11)−1 𝒊 = �̄�⊤1 𝒊 .

The mismatch between �̄�1 and �̄�1 is due to the internal causal structure of the submodel described by eq. (28). Indeed, if
there are no causal links within this subsystem, 𝐴11 is a zeros matrix and

�̄�1 = (𝐼𝑁−1)−⊤�̄�1 = �̄�1 = 𝒂01 ,

otherwise, the two maps will be different. The discrepancy between the vectors thus reflects the fact that the causal
explanation links high-level endogenous variables and interventions on them by potentially complex low-level interactions
that do not necessarily have a simple high-level interpretation. This justifies regularizing the consistency loss with an
homogeneity loss in order to focus on explanations that exhibit congruent 𝜏 and 𝜔 maps.

D.3 THE CASE OF LINEAR CHAIN SCMS

In the case of a chain SCM
𝑿1 → · · · → 𝑿𝑁−1 → 𝑿𝑁 = 𝑌

the above linear setting gets the additional constraints (using a causal ordering of the variables) that the target’s mechanism
is sparse

𝒂⊤01 = [0, . . . , 0, 𝑎𝑁 ]
and the structure matrix of 𝑿𝜋 (1) is subdiagonal

𝐴11 =


0 0 . . . 0 0
𝑎2 0 . . . 0 0
0 𝑎3 . . . 0 0
0 0 . . . 0 0
0 0 . . . 𝑎𝑁−1 0


and as a consequence, the solution writes

�̄�1 = [0, . . . , 0, 𝑎𝑁−1]⊤ (32)

and �̄�1 = (𝐼𝑁−1 − 𝐴11)−⊤�̄�1 =


𝑎2.𝑎3. . . . .𝑎𝑁−1

...

𝑎𝑁−2𝑎𝑁−1
𝑎𝑁−1


. (33)

This solution is in line with our experimental results:

• �̄�1 has all its weight on the parent of the target.
• �̄�1 has a non-sparse distribution over the chains, decaying in the upstrean direction. This reflects that structure

coefficients of 𝐴11 are selected with absolute value inferior to one, such that the influence of ancestor nodes on the
target decays with their distance to it on the graph.



Transposing the chain example to the case of Proposition D.2, we can take the case were the direct parent 𝑋𝑁−1 of the
target is left unintervened. In such a case, �̄�1 may put its weight on both 𝑋𝑁−1 and its direct parent 𝑋𝑁−2, Proposition 3.4
provides two example solutions for different choices of 𝜋(1), including or excluding 𝑋𝑁−1. In the most extreme case of
dissimilarity between 𝝉1 and 𝝎1, solution including 𝑋𝑁−1 in 𝜋(1) puts all 𝝉1’s weight on 𝑋𝑁−1, while 𝝎1 has no weight on
it (because it is unintervened). As a consequence, 𝝎1 and 𝝉1 are orthogonal and the associated homogeneity loss vanishes. In
contrast, the unique solution excluding 𝑋𝑁−1 from 𝜋(1) have a larger cosine similarity and will thus be preferred by the
homogenity-regularized loss.

D.4 LOSS OF IDENTIFIABILITY THROUGH UNINTERVENED VARIABLES

(a) (b)

Figure 5: 1-cause TCR solutions on a chain graph. Arrows indicate non-zero coefficients of each map. (a) Unique solution 𝝉1 when
interventions are performed on all nodes except the target. (b) Two solutions 𝝉1 and 𝝉′1 when only the first two nodes are intervened on.

Proposition D.2. Consider the setting of Prop. 3.4 with the exception that Ω ⫋ 𝜋(1) such that there is now a non-empty
subset 𝑆 = 𝜋(1) \Ω, such that 𝑿Ω → 𝑿𝑆 → 𝑿𝜋 (0) . Then there exist at least two different linear 1D TCR such that Lcons = 0.

This result can also be illustrated with a chain graph, as shown in Fig. 5(b). If the parent node 𝑋3 of 𝑌 = 𝑋4 is unintervened,
then one may choose either 𝑍1 = 𝑋2 or 𝑍1 = 𝑋3 (matching the solution of Fig. 5(a)) to minimize Lcons. This is because both
variables are equivalently mediating all performed interventions to 𝑋4. Note that each choice has it own benefit: 𝑍1 = 𝑋3, as
a direct parent of 𝑌 , is a better statistical predictor of the value of 𝑌 . However, if we focus on causal interpretability of the
high-level representation, 𝑍1 = 𝑋2 is preferable because it is one of the variables intervened on at the low-level as enforced
by the prior 𝑃(𝒊), and such that it will be associated to a non-zero weight in 𝝎1 for any solution satisfying Lcons = 0.

Proof. The low-level model follows the following SCM, with 𝑃(𝒊) non-trivial

𝑿 B 𝐴𝑿 +𝑼 + 𝒊 , 𝑈𝑘 ∼ N(𝜇𝑘 , 𝜎
2
𝑘 )

such that 𝑿, 𝐴 and 𝑃 take the block forms

𝑿 =


𝑿𝜋 (0)
𝑿𝑆

𝑿Ω

 , 𝐴 =


𝐴00 𝐴0𝑆 0
0 𝐴𝑆𝑆 𝐴𝑆Ω

0 0 𝐴ΩΩ

 ,

with 𝜋(0) of size 𝑁0, and 𝜋(1) of size 𝑁1 = 𝑁 − 𝑁0 and 𝑆 of size 𝑠. Then we know from the Proposition 3.4 that there is
already a valid solution using 𝜋 as alignment. The only difference is that variables in 𝑆 are unintervened, which does not
affect the ability of the solution to achieve Lcons = 0. That solution would be compatible with interventions on 𝑆, but since 𝑆

is unintervened, we do not have uniqueness guarantees for this choice of 𝜋.

Alternatively, if we choose 𝜋′ (0) = 𝜋(0) ∪ 𝑆 and 𝜋′ (1) = 𝜋(1) \ 𝑆 = Ω, then, we can again apply Propostion D.2, and
see that it provides a different solution with this alignment, which is compatible with the given problem (constructive
transformation with constraint on the mapping 𝜏0). Importantly, the key indeterminacy is for the map 𝜏1, which will either
put all its weight on elements in 𝑆 (direct parents of 𝜋(0)), or alternatively, put all its weights on elements in Ω. There is an
additional, but trivial, indeterminacy for the map 𝜔1: indeed, since 𝑋𝑆 is unintervened (as part of 𝜋(0)), the weights in 𝝎1
associated to these coefficients may take arbitrary values (since their associated component in 𝒊 remains zero). We do not
consider these trivial indeterminacies (which do not affect the mapping 𝜔1 on its domain, i.e. the support of the prior 𝑃(𝒊))
by forcing the weights of 𝝎1 associated to unintervened variables to zero. □



D.5 CONNECTION TO CAUSAL ABSTRACTIONS

Proposition D.3. Assume the low-level SCM follows

𝑿 B 𝐴𝑿 +𝑼 + 𝒊 , 𝑈𝑘 ∼ N(𝜇𝑘 , 𝜎
2
𝑘 ) , 𝜎

2
𝑘 > 0 , 𝒊 ∼ 𝑃(𝒊)

such that 𝑿 and 𝐴 take the block forms

𝑿 =

[
𝑿𝜋 (0)
𝑿𝜋 (1)

]
, 𝐴 =

[
𝐴00 𝐴01
0 𝐴11

]
.

Given an arbitrary choice of linear scalar target of the form 𝑌 = 𝜏⊤0 𝑿 = 𝜏⊤0 𝑿𝜋 (0) , under the conditions of Proposition 3.4,
the unique linear 1-cause TCR (up to a multiplicative constant) is associated to a 1-cause constructive abstraction given by

�̄�1 = 𝐴⊤01 (𝐼#𝜋 (0) − 𝐴00)−⊤�̄�0 (34)
�̄�1 = (𝐼#𝜋 (1) − 𝐴11)−⊤�̄�1 , (35)

�̄�𝑈,0 =�̄�⊤0 (𝐼𝑁0 − 𝐴00)−1 , (36)

and �̄�𝑈,1 =𝜏⊤1 (𝐼𝑁1−)−1 . (37)

Proof. To have a valid constructive causal abstraction, we need to verify the existence of an additional constructive map 𝜏𝑈
for exogenous variables such that for all realizations 𝒖 of 𝑼.

𝜏(L (𝒊) (𝒖)) = H (𝜔 (𝒊) ) (𝜏𝑈 (𝒖))

where L (𝒊) (.) and H ( 𝒋 ) (.) denote the mappings from endogenous to exogenous variable for the low- and high-level
intervened models, respectively.

Using
L (𝒊) (𝑼) = 𝑿 (𝒊) = (𝐼𝑁 − 𝐴)−1 (𝑼 + 𝒊)

we get
𝑿 (𝒊)

𝜋 (1) = (𝐼𝑁1−)−1 (𝑼𝜋 (1) + 𝒊𝜋 (1) )

and
𝑿 (𝒊)

𝜋 (0) = (𝐼𝑁0 − 𝐴00)−1𝑼𝜋 (0) + (𝐼𝑁0 − 𝐴00)−1𝐴01𝑿
(𝒊)
𝜋 (1) .

Applying the 𝜏0 map we get the solution of Prop. 3.4

𝑌 (𝒊) = �̄�⊤0 𝑿 (𝒊)
𝜋 (0) = �̄�⊤0 (𝐼𝑁0 − 𝐴00)−1𝑼𝜋 (0) + �̄�⊤0 (𝐼𝑁0 − 𝐴00)−1𝐴01𝑿

(𝒊)
𝜋 (1) = �̄�⊤0 (𝐼𝑁0 − 𝐴00)−1𝑼𝜋 (0) + �̄�⊤1 𝑿 (𝒊)

𝜋 (1)

moreover applying the 𝜏1 map to the variables in 𝜋(1) we get

𝜏⊤1 𝑿 (𝒊)
𝜋 (1) = 𝜏⊤1 (𝐼𝑁1−)−1 (𝑼𝜋 (1) + 𝒊𝜋 (1) ) = 𝜏⊤1 (𝐼𝑁1 − 𝐴ΩΩ)−1𝑼𝜋 (1) + �̄�⊤1 𝒊𝜋 (1)

So by defining the vectors �̄�⊤
𝑈,1 = 𝜏⊤1 (𝐼𝑁1−)−1 and �̄�⊤

𝑈,0 = �̄�⊤0 (𝐼𝑁0 − 𝐴00)−1 we get a valid constructive abstraction linking
the low-level map 𝒖 ↦→ L (𝒊) (𝒖) to the following high-level map (first component is 𝑌 , second is the cause 𝑍1)

𝒓 ↦→ H ( 𝒋 ) (𝒓) =
[
𝑟0 + 𝑟1 + 𝑗1
𝑟1 + 𝑗1

]
such that for all 𝒖

H (�̄�⊤1 𝒊𝜋 (1) ) ©­«
[
�̄�⊤
𝑈,0𝒖𝜋 (0)
�̄�⊤
𝑈,1𝒖𝜋 (1)

]ª®¬ = 𝜏(L (𝒊) (𝒖))

. □



E ALGORITHM DETAILS

E.1 GAUSSIAN CONSISTENCY LOSS

As the KL divergence is hard to estimate in the non-parametric setting, we make a Gaussian approximation of this loss to get
an analytical, differentiable expression. Using the general formula for two n-dimensional Gaussian densities 𝑃 and 𝑄

KL(𝑃 | |𝑄) = 1
2

[
(𝜇𝑄 − 𝜇𝑃)⊤Σ−1

𝑄 (𝜇𝑄 − 𝜇𝑃) + tr(Σ−1
𝑄 Σ𝑃) − log

|Σ𝑃 |
|Σ𝑄 |

− 𝑛
]
.

Parameters of the reduction are 𝝉𝑘 , 𝝁𝑍 , 𝜇𝑌 |𝑍 , 𝑓 : 𝑧 → 𝑓 (𝑧),𝝎𝑘 with

𝑍 (𝜔 (𝒊) ) ∼ 𝑃(𝑧) = N(𝝁𝑍 +𝑊 𝒊, Σ𝒁 , with 𝑊 = [𝝎1, ...,𝝎𝑛]⊤ and Σ𝒁 = diag(𝜎2
𝑍,1, ..., 𝜎

2
𝑍,𝑛))

𝑌 (𝜔 (𝒊) ) |𝒛 ∼ 𝑃(𝑌 |𝑧) = N( 𝑓 (𝒛), 𝜎2
𝑌 |𝒁 ) ,

�̂� (𝒊) = [𝝉1, ..., 𝝉𝑛]⊤𝑿 (𝒊) = 𝑇𝑿 (𝒊) ,

𝑌 (𝒊) = 𝝉⊤0 𝑿 (𝒊) .

Moreover, we estimate the second order properties of the simulator distribution for each intervention 𝒊

�̂� (𝒊)𝑿 = ⟨𝑿 (𝒊)⟩ ,

Σ̂
(𝒊)
𝑿 =

〈(
𝑿 (𝒊) − �̂� (𝒊)𝑿

)⊤ (
𝑿 (𝒊) − �̂� (𝒊)𝑿

)〉
,

�̂� (𝒊)𝒁 = ⟨�̂� (𝒊)⟩ = 𝑇 �̂� (𝒊)𝑿 ,

�̂�
(𝒊)
𝑌

= ⟨𝑌 (𝒊)⟩ = 𝝉⊤0 �̂� (𝒊)𝑿 ,

Σ̂
(𝒊)
𝒁 =

〈(
𝒁 (𝒊) − �̂� (𝒊)

𝑍

) (
𝒁 (𝒊) − �̂� (𝒊)

𝑍

)⊤〉
= 𝑇 Σ̂

(𝒊)
𝑿 𝑇⊤ ,

𝜎2
(𝒊)
𝑍,𝑘 =

(
Σ̂
(𝒊)
𝒁

)
𝑘,𝑘

=

〈(
𝑍
(𝒊)
𝑘
− �̂�

(𝒊)
𝑍,𝑘

)2
〉
= 𝝉⊤𝑘 Σ̂

(𝒊)
𝑿 𝝉𝑘 ,

𝜎2
(𝒊)
𝑌 =

〈(
𝑌 (𝒊) − �̂�

(𝒊)
𝑌

)2
〉
= 𝝉⊤0 Σ̂

(𝒊)
𝑿 𝝉0 ,

�̂� (𝒊)𝒁𝑌 =

〈(
𝑌 (𝒊) − �̂�

(𝒊)
𝑌

) (
�̂� (𝒊) − �̂� (𝒊)

𝑍

)〉
= 𝑇 Σ̂

(𝒊)
𝑿 𝝉0 ,

where ⟨·⟩ denotes the empirical average. Using the KL between Gaussian variables, we can rewrite the consistency loss as

Lcons = E𝒊∼𝑝 (𝒊)
[
KL𝑧 (�̂� (𝒊) (𝑧) | ˆ𝑃 (𝜔 (𝒊) ) (𝑧))

]
+ E𝑧∼�̂� (𝒊) (𝒁 )

[
KL𝑌

(
�̂� (𝒊)

(
𝑌 |𝒁 = 𝑧

)
| |𝑃 (0)

(
𝑌 |𝒁 = 𝑧

) )]
=

1
2
E𝒊∼𝑝 (𝒊)


∑︁
𝑘

©­­«
(𝜇𝑍,𝑘 + 𝝎⊤𝑘 𝒊 − �̂�

(𝒊)
𝑍,𝑘
)2

𝜎2
𝑍,𝑘

+
𝜎2
(𝒊)
𝑍,𝑘

𝜎2
𝑍,𝑘

ª®®¬ − ln ©­«
|Σ̂ (𝒊)𝒁 |∏
𝑘 𝜎

2
𝑍,𝑘

ª®¬ − 𝑛


+ 1
2
E𝒊∼𝑝 (𝒊) ,𝑧∼�̂� (𝒊) (𝑍 )



(
𝑓 (𝑧) − �̂�

(𝒊)
𝑌
−

(
�̂� (𝒊)𝒁𝑌

)⊤ (
Σ̂
(𝒊)
𝒁

)−1
(𝒛 − �̂� (𝒊)

𝑍
)
)2

𝜎2
𝑌 |𝑍

+
𝜎2
(𝒊)
𝑌 −

(
�̂� (𝒊)𝒁𝑌

)⊤ (
Σ̂
(𝒊)
𝒁

)−1
�̂� (𝒊)𝒁𝑌

𝜎2
𝑌 |𝑍

− ln
©­­­«
𝜎2
(𝒊)
𝑌 −

(
�̂� (𝒊)𝒁𝑌

)⊤ (
Σ̂
(𝒊)
𝒁

)−1
�̂� (𝒊)𝒁𝑌

𝜎2
𝑌 |𝑍

ª®®®¬ − 1

 . (38)



E.2 ADDITIONAL INFORMATION

The overall algorithm is described in the Algorithm 1 of main text, and it implementation can be found in the file
targeted_causal_reduction/model/causal_pattern_reduction.py.

F EXPERIMENTAL DETAILS

F.1 LINEAR EXPERIMENTS

Parameters Linear (Fig. 2a) Two Branch (Fig. 2b)

learning rate 𝜆 10−3 10−3

learning rate scheduler - cosine annealing
No. repeated train. runs per seed 1 10
simulation paths 𝑛sim 10, 000 10, 000
training epochs 𝑁ite 100 600
simulation batch size 𝐵 128 128
intervention batch size 𝐵𝑖 64 512
overlap reg. 𝜂ov (12) 0 0.1
balancing reg. 𝜂bal (13) 0 10−3

Table 1: Experimental parameters and settings for the linear Gaussian experiments.

Sampling linear Gaussian low-level models For the adjacency matrix, we sample all non-zero entries uniformly in the
interval [−1, 1]. For general adjacency matrices, the lower triangular elements of the adjacency matrix are non-zero, where
we assume that the target 𝑌 has only incoming edges and the variables are arranged in topological order. For the two-branch
graph, values in the adjacency are set to zero accordingly. For chain graphs, the first lower off-diagonal entries are non-zero.
The exogenous variables 𝑼 and shift interventions 𝒊 are independent Gaussian with 𝑈 𝑗 , 𝑖 𝑗 ∼ N(0, 1) for 𝑗 = 1, ..., 𝑁 .

Data and Training The data and training parameters are summarized in Table 1. All simulation data is generated before
training and reused in each epoch. We split the data into training (70%), validation and test (15% each). Since the training
of the two-variable model would occasionally get stuck in local minima, we run each training with 10 different random
initializations of the weights and select the model with the best total validation loss (14) at the end of training. Furthermore,
we use a cosine annealing learning rate scheduler with a final learning rate of 10−5.

F.2 DOUBLE WELL

Simulation We model the ball moving in a double well potential 𝑉 (𝑥) = 𝑥4 − 4𝑥2, shown in Figure 3(a), by the following
equation of motion:

𝑚 ¥𝑥(𝑡) + 𝑘 ¤𝑥(𝑡) + 𝜕

𝜕𝑥
𝑉 (𝑥(𝑡)) = 0 ⇒ 𝑚 ¥𝑥(𝑡) + 𝑘 ¤𝑥(𝑡) + 4𝑥(𝑡)3 − 8𝑥(𝑡) = 0 , (39)

where 𝑥(𝑡) is the position of the ball at time 𝑡, ¤𝑥(𝑡) and ¥𝑥(𝑡) are the first and second time derivatives, respectively, 𝑘 is the
friction coefficient and 𝑚 is the mass of the ball. We can reformulate the second order ODE into a system of first order
ODEs by introducing the velocity 𝑣(𝑡) = ¤𝑥(𝑡) as a variable:

¤𝑥(𝑡) = 𝑣(𝑡)

¤𝑣(𝑡) = − 1
𝑚

(
𝑘𝑣(𝑡) + 4𝑥(𝑡)3 − 8𝑥(𝑡)

)
. (40)

We solve the system of ODEs numerically on a grid of 101 time points 𝑡𝑘 for 𝑘 = 0, . . . , 100 equally spaced between 𝑡 = 0
and 𝑡 = 10 using a numerical integration method. The initial conditions are 𝑥(0) = −2.07414285 + 5 × 10−7 × 𝜀𝑥 , with
𝜀𝑥 ∼ Uniform(−1, 1) and 𝑣(0) = 11. The initial values are chosen such that there is a non-zero chance that the ball ends up
in the left or right well without any additional interventions.



For shift interventions, we sample random velocity shifts Δ𝑣(𝑡𝑘) ∼ N (0, 0.5). The positions are unshifted. In the numerical
integration scheme, the shift interventions are implemented by splitting the integration domain in parts. The ODE system is
integrated from the initial conditions at 𝑡0 to the next time grid at 𝑡1. Then the velocity at 𝑡1 is shifted by Δ𝑣(𝑡1) and used as
the initial value for the next integration starting at 𝑡1, and so on. Similarly, we introduce independent stochasticity by adding
noise to the velocity sampled from N(0, 0.2) at each time step, mimicking intrinsic noise of the system.

Parameters Double Well (Fig. 3)

learning rate 𝜆 5 · 10−4

learning rate scheduler -
No. repeated train. runs per seed 1
simulation paths 𝑛sim 10, 000
training epochs 𝑁ite 200
simulation batch size 𝐵 128
intervention batch size 𝐵𝑖 64
overlap reg. 𝜂ov (12) 0
balancing reg. 𝜂bal (13) 0

Table 2: Experimental parameters and settings for the double well experiments.

Data and Training The data and training parameters are summarized in Table 1. All simulation data is generated before
training and reused in each epoch. We split the data into training (70%), validation and test (15% each).

F.3 SPRING-MASS SYSTEM

Parameters 4 masses with different weights (Fig. 4) 2 groups of masses (Fig. 7)

learning rate 𝜆 10−4 10−3

learning rate scheduler cosine annealing cosine annealing
No. repeated train. runs per seed 5 5
simulation paths 𝑛sim 10, 000 10, 000
training epochs 𝑁ite 4, 800 1, 800
simulation batch size 𝐵 128 128
intervention batch size 𝐵𝑖 64 512
overlap reg. 𝜂ov (12) 0.1 0.1
balancing reg. 𝜂bal (13) 0.1 0.1
spring constant 𝑘 10−3 10−3

rest length 𝑢0 1 1
masses 𝑚𝑖 (0.5, 0.83, 0.17, 1.5) all 1

Table 3: Experimental parameters and settings for the spring mass system experiments.

Simulation Let 𝑀 be the number of masses. Then, 𝑚𝑖 ∈ R, ®̃𝑥𝑖 (𝑡) ∈ R2 and ®𝑣𝑖 (𝑡) ∈ R2 represent the weight, position and
velocity of mass 𝑖 = 1, . . . , 𝑀 at time 𝑡. 𝐴 ∈ {0, 1}𝑀×𝑀 is the adjacency matrix encoding the spring connections, where
𝐴𝑖 𝑗 = 1 indicates that a spring connects masses 𝑖 and 𝑗 . The rest length at which the springs exert no force is denoted by 𝑢0
and 𝑘 is the spring constant. Both 𝑢0 and 𝑘 are assumed to be the same for all springs.

The total force acting on mass 𝑖 at time 𝑡 is given by

®𝐹𝑖 (𝑡) = −𝑘
∑︁

𝑗 ,𝐴𝑖 𝑗=1

(
∥ ®𝑢𝑖 𝑗 (𝑡)∥ − 𝑢0

) ®𝑢𝑖 𝑗 (𝑡)
∥ ®𝑢𝑖 𝑗 (𝑡)∥

(41)

where ®𝑢𝑖 𝑗 (𝑡) = ®𝑥𝑖 (𝑡) − ®𝑥 𝑗 (𝑡) is the displacement vector from mass 𝑗 to mass 𝑖. The equations of motion are

d®̃𝑥𝑖 (𝑡)
d𝑡

= ®𝑣𝑖 (𝑡),
d®𝑣𝑖 (𝑡)

d𝑡
= ®𝑎𝑖 (𝑡), with ®𝑎𝑖 (𝑡) =

®𝐹𝑖 (𝑡)
𝑚𝑖

. (42)



We assume that the masses have no volume and do not collide or interact other than the forces coming from the springs.

We solve the system of ODEs numerically on a grid of 21 time points 𝑡𝑘 for 𝑘 = 0, . . . , 20 equally spaced between 𝑡 = 0
and 𝑡 = 100 using a numerical integration method. The positions are initially set on a grid to ®̃𝑥1 (𝑡 = 0) = (0, 0) + ®̃𝑥offset,
®̃𝑥2 (𝑡 = 0) = (1, 0) + ®̃𝑥offset, ®̃𝑥3 (𝑡 = 0) = (0, 1) + ®̃𝑥offset and ®̃𝑥4 (𝑡 = 0) = (1, 1) + ®̃𝑥offset, where ®̃𝑥offset ∼ N(0, 10) is a random
offset that shifts the entire system. The initial velocities are independently drawn as ®𝑣𝑖 (𝑡 = 0) ∼ N (0, 0.01). We apply
random independent velocity shifts Δ®𝑣𝑖 (𝑡𝑘) ∼ N (0, 0.005) at each time step and integrate it into the ODE solver in the same
way as for the double well experiment in App. F.2.

The feature vectors 𝑿 used to learn the TCR of the spring-mass system consists of all velocity values for all masses across
all simulated time points. The interventions 𝒊 are the corresponding velocity interventions.

Data and Training The data and training parameters are summarized in Table 3. All simulation data is generated before
training and reused in each epoch. We split the data into training (70%), validation and test (15% each). Similar to the
experiments on the two-branch linear graph in App. F.1, we repeat the training runs with different weight initializations and
use a cosine annealing learning rate scheduler.

F.4 ADDITIONAL RESULTS

F.4.1 Spring-Mass System without Regularization
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Figure 6: Spring-mass system experiment without regularization. Same experimental setup as described in Sec. 5.3 and App. F.3 with
the regularization turned off, i.e. 𝜂ov = 𝜂bal = 0. The learned high-level mechanism is 𝑓 (𝒁) ≈ −0.180𝑍1 + 0.125𝑍2.

When running the TCR algorithm without regularization, it cannot be ensured that the found solutions correspond to
different properties of the low-level system, as shown in Fig. 6. There is significant mixing among the high-level variables,
in particular the velocity in 𝑥-direction of the masses towards the end of the simulation appears in both high-level variables.

F.4.2 Grouped Spring-Mass System

We simulate two groups of four masses as shown in Fig. 7(a). In contrast to the experiment shown in Sec. 5.3, all masses
have equal weight and the target is the center of mass velocity in 𝑥-direction at the end of the simulation. The data and
training parameters are summarized in Table 3.

Since the only interactions between masses are mediated by the springs, as described in App. F.3, the two groups of masses
do not influence each other and are thus fully independent. The learned TCR identifies the two groups of masses as the
two independent causes of the target. This is reflected in the parameters shown in Fig. 7 (b-e), where high-level variable
𝑍1 is predominantly influenced by the behavior of the second group (yellow) and variable 𝑍2 by the first group (blue).
Furthermore, we observe that the 𝑦-component of the velocity, which is irrelevant for the target here, is ignored by the TCR
and filtered out.



1

2 3

4

5

6 7

8

(a)

1

0

1 W
eig

ht
s (b)

0 10
Time Steps

1

0

1

2 W
eig

ht
s (c)

1

0

1 W
eig

ht
s(d) Mass index & dimension (b-e)

1_x
1_y
2_x
2_y
3_x
3_y
4_x
4_y

5_x
5_y
6_x
6_y
7_x
7_y
8_x
8_y

0 10
Time Steps

1

0

2 W
eig

ht
s(e)

Figure 7: Spring-mass system experiment with two groups of masses. (a) Simulated system of eight point masses with equal weights
connected by springs in two groups of 4 and with random initial velocity (blue arrows). In contrast to the experiment shown in Sec. 5.3,
target of the simulation is the center of mass speed in 𝑥-direction. (b-e) Learned 𝝉- and 𝝎-weights corresponding to velocity components
in 𝑥- and 𝑦-direction for a TCR with two high-level variables. The learned high-level mechanism is 𝑓 (𝒁) ≈ −0.0866𝑍1 − 0.0782𝑍2.
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