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ABSTRACT

Multi-view 3D perception models are widely adopted by leading car manufactur-
ers due to their highly competitive performance. However, existing adversarial
camouflage techniques primarily focus on single-view 2D detectors, limiting their
effectiveness against multi-view 3D perception models. In the paper, we propose
BEVCA, the first framework to generate adversarial camouflage that effectively
attacks multi-view BEV-based 3D perception models by exploiting the Bird’s-
Eye-View (BEV) representation used across various 3D perception models. Our
framework introduces a new differentiable multi-view neural renderer to enable
end-to-end gradient-based camouflage optimization. Furthermore, we propose a
novel BEV-feature-based adversarial loss to achieve effective and transferable at-
tacks. Extensive experiments on 3D object detection and segmentation scenarios
demonstrate that BEVCA outperforms the best existing baselines, achieving aver-
age attack improvements of 36.2% and 21.6% in black-box settings, respectively.
Our code is available at https://anonymous.4open.science/r/BEVCA-1D82.

1 INTRODUCTION

Vision-based autonomous driving (AD) systems have been widely adopted by major vehicle man-
ufacturers, such as Tesla Tesla, Inc. (2025), due to their competitive performance. These systems
utilize multiple camera sensors surrounding the ego vehicle to perceive the nearby environment with
deep learning models Philion & Fidler (2020); Zhou & Krähenbühl (2022); Runsheng Xu (2022);
Huang et al. (2021); Wang et al. (2022b); Li et al. (2022). However, despite the significant progress,
the current research shows deep neural networks (DNNs) are proven to be vulnerable to adversarial
examples Szegedy et al. (2014), which threaten the safety-critical nature of the AD systems.

Prior attacks mainly focus on the single-view 2D vehicle detection task. These methods Wang et al.
(2022a); Suryanto et al. (2022; 2023); Zhou et al. (2024a); Lyu et al. (2024); Zhou et al. (2024b) use
the Carla simulator Dosovitskiy et al. (2017) to generate vehicle images with various transformations
to enhance the attack robustness. Besides, they leverage a differentiable neural renderer Kato et al.
(2018); Ravi et al. (2020) to enable direct adversarial camouflage optimization against the target
model, achieving effective attack performance.

Despite the impressive progress made on 2D attacks, the current state-of-the-art vehicle detection
methods are dominated by 3D perception models, which take multi-view images as input. As a
result, the current single-view 2D attack pipelines cannot be directly applied to the multi-view
3D perception models. Some works like Zhu et al. (2023); Wang et al. (2025) explore attacking
the multi-view 3D perception models with adversarial patches by minimizing the detection scores.
However, the adversarial patches are inherently not robust against various viewing angles since they
cannot fully cover the target vehicle, leading to suboptimal attack performance. Besides, attacks in
the real world are mostly black-box settings, yet all the previous methods require access to the target
model’s detection scores to optimize the adversarial texture, which limits their attack transferability.

To tackle the above challenges, we propose BEVCA, a novel framework to generate adversarial
camouflage against multi-view BEV-based 3D perception models. The insight of our framework is:
most of the state-of-the-art multi-view 3D perception models Philion & Fidler (2020); Huang et al.
(2021); Wang et al. (2022b); Li et al. (2022) rely on the bird’s-eye-view (BEV) feature extracted
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Figure 1: Comparison of 3D detection results using different textures on the photo-realistic sim-
ulation environment, where only the adversarial camouflage generated by our BEVCA framework
successfully evades detection. (a) A normal vehicle without attack texture; (b) AdvPatch Wang et al.
(2025). (c)-(g) are the top-performing methods for 2D detection: FCA Wang et al. (2022a), DTA
Suryanto et al. (2023), ACTIVE Suryanto et al. (2023), RAUCA Zhou et al. (2024a), and CNCA
Lyu et al. (2024) respectively; (h ) Our method BEVCA.

from the multi-view input, which is a versatile 2D feature map that can be used for various perception
tasks in AD systems Hu et al. (2023); Zheng et al. (2024). Therefore, the attack on the BEV feature
can result in attacks on the downstream tasks. Motivated by this insight, we first enable the neural
rendering of multi-view, realistic, and consistent target vehicle images, facilitating direct gradient-
based camouflage generation against multi-view 3D perception models. After that, we introduce a
novel adversarial attack based on the BEV feature. We precisely locate the BEV feature regions
that are highly associated with the target vehicle to compute the adversarial loss. As a result, the
combination of the multi-view neural rendering and BEV-feature-based adversarial attack results in
highly effective and transferable adversarial camouflage for different perception tasks and models.

The main contributions of our work are summarized as follows:

• To the best of our knowledge, our framework is the first to generate adversarial camouflage
against multi-view BEV-based 3D perception models. It enables effective and transfer-
able adversarial attack via novel multi-view neural rendering and the BEV-feature-based
adversarial attack.

• We propose a novel neural renderer capable of generating realistic and multi-view target
vehicle images from different positions to the ego vehicle, facilitating gradient-based ad-
versarial camouflage optimization against multi-view BEV-based 3D perception models.

• We propose a novel adversarial loss function to attack in the BEV feature space associated
with the target vehicle, which leads to effective and transferable attacks against various
BEV-based 3D perception models and tasks.

We conduct a comprehensive evaluation with various multi-view BEV-based 3D perception mod-
els. The results show that our generated adversarial camouflage outperforms existing baselines,
achieving average improvements of 36.2% and 21.6% in 3D object detection and segmentation,
respectively.

2 RELATED WORK

In this section, we first introduce multi-view 3D perception, then review adversarial camouflage
attacks on vehicle detection, and finally define the threat model for our scenario.

2.1 MULTI-VIEW 3D PERCEPTION

The development of large-scale multi-view datasets such as NuScenes Caesar et al. (2020) and
Waymo Open Dataset Sun et al. (2020) has significantly accelerated progress in multi-view 3D per-
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ception. Bird’s-Eye-View (BEV) models Philion & Fidler (2020); Huang et al. (2021); Wang et al.
(2022b); Li et al. (2022) have demonstrated state-of-the-art performance across various autonomous
driving (AD) tasks. These models extract and aggregate information from multi-view driving im-
ages to construct a unified BEV feature representation of the environment, which can support various
downstream tasks, including 3D object detection, map segmentation, and even end-to-end driving
systems Hu et al. (2023); Zheng et al. (2024).

2.2 ADVERSARIAL CAMOUFLAGE

Accurate vehicle detection is critical for the safety of AD systems, motivating a growing interest in
studying the robustness of vehicle detectors with adversarial attacks. These attacks can be catego-
rized as single-view 2D attacks and multi-view 3D attacks. Existing 2D attack methods leverage
3D simulators such as Carla Dosovitskiy et al. (2017) to generate target vehicle images under vari-
ous transformations for optimizing adversarial textures. Then, these methods Wang et al. (2022a);
Suryanto et al. (2022; 2023); Zhou et al. (2024a); Lyu et al. (2024) employ the differentiable neural
renderer Kato et al. (2018); Ravi et al. (2020) to directly optimize adversarial textures via gradient
backpropagation. Besides, Suryanto et al. (2022; 2023); Zhou et al. (2024a); Lyu et al. (2024) fur-
ther incorporate realistic environmental features, such as shadows and fog, to mitigate the domain
gap between simulation and real-world conditions, achieving better attack performance. Regarding
multi-view 3D attacks, previous works attempt to generate the adversarial patches on the target vehi-
cle. Zhu et al. (2023); Wang et al. (2025) utilize the 3D annotations of the target vehicle to transform
the 2D adversarial patches so that they look realistic and consistent in the multi-view image setting,
while Li et al. (2024) utilizes NeRF to generate adversarial texture on the vehicle.

In contrast to prior works, our framework introduces a novel combination of multi-view neural
rendering and BEV-feature-based adversarial attack to enable effective and transferable attacks on
multi-view BEV-based 3D perception models.

2.3 THREAT MODEL

Our attack framework targets multi-view BEV-based 3D perception models in AD systems, aiming
to craft physically realizable camouflage attacks that degrade perception performance on a targeted
vehicle.

Targeted Model: We consider attackers targeting multi-view perception models that construct a
BEV feature representation for downstream tasks like object detection and segmentation. These
BEV perception models, for instance, BEVFormer Li et al. (2022), are widely adopted in the current
state-of-the-art multi-view 3D perception tasks Hu et al. (2023); Zheng et al. (2024).

Attacker: The attacker’s goal is to reduce the perception performance of the target models towards
the camouflaged vehicle, subject to the physical constraints and consistently effective across vari-
ous viewpoints. This is achieved by altering the vehicle’s appearance with adversarial camouflage
textures. In the white-box setting, the attacker is assumed to have full access to the targeted model
for gradient-based optimization. In the black-box setting, the attacker has no internal access to the
targeted model but knows the targeted model relies on BEV feature representation. In both cases,
the attacker cannot modify training data, model weights, or sensor configurations.

3 METHODS

In this section, we first present an overview of our framework for generating effective and transfer-
able adversarial camouflage against multi-view 3D perception models. Then, we describe the details
of the essential components of our framework.

3.1 OVERVIEW

Figure 2 illustrates the overall framework for generating adversarial camouflage. We first construct
a multi-view image dataset of a target vehicle captured from the ego vehicle’s perspective using
the Carla simulator Dosovitskiy et al. (2017), following the NuScenes Caesar et al. (2020) dataset
format. This dataset contains the multi-view images Xin, camera configurations Φcam, and the
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Figure 2: The overview of BEVCA. Our framework consists of multi-view neural rendering and
BEV-feature-based attack modules. The multi-view neural rendering outputs the multi-view cam-
ouflage vehicle images from the ego vehicle perspective. The BEV-feature-based attack locates the
BEV feature regions that are highly associated with the target vehicle with a designed mask. The
combination of both modules enables effective and transferable camouflage attacks against multi-
view 3D perception models.

transformation matrices Ttar←ego that map ego coordinates to target vehicle coordinates. Our multi-
view neural renderer first uses a neural renderer NR, which takes the adversarial texture Tadv ,
3D vehicle mesh Msh, camera configurations Φcam, and the transformation matrices Ttar←ego as
input, and produces the multi-view rendered adversarial target vehicle images Xnr. Subsequently,
both Xnr and Xin are input into an Environmental Feature Renderer (EFR). We use the pretrained
EFR from Lyu et al. (2024) to extract environmental features from Xin and render them together
with the background to output the realistic multi-view camouflaged target vehicle images Xadv . To
summarize:

Xadv = EFR(Xin, NR(Msh, Tadv,Φcam, Ttar←ego)) (1)

Instead of attacking task-specific output scores (e.g., detection confidence), we target the BEV fea-
ture representation to improve attack transferability. A key challenge is identifying the regions
within the BEV feature map that correspond to the target vehicle’s presence in the multi-view im-
ages. To this end, we construct a no-vehicle multi-view dataset Xno under the identical settings as
Xin, except that the target vehicle is removed. We feed Xadv and Xno into a BEV encoder to obtain
the corresponding BEV features:

Badv = BEV (Xadv) (2)
Bno = BEV (Xno) (3)

Since the only difference between Xadv and Xno is the presence of the target vehicle, we hypoth-
esize that the difference between Badv and Bno reflects the target vehicle’s impact on BEV feature
space:

Bdiff = |Badv −Bno| (4)

Empirically, we observe that the prominent regions in Badv are geometrically aligned with the target
vehicle’s ground-truth location. Based on this observation, we apply a BEV mask Mbev to Bdiff ,
locating the affected regions Bmasked :

Bmasked = Bdiff ·Mbev (5)
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We define an adversarial loss Ladv based on Bmasked to attack the BEV representation towards the
target vehicle. Additionally, following Sharif et al. (2016), we employ a total variation loss Ltv

on the adversarial texture image Tadv to ensure the naturalness of texture to human vision. The
details of Ladv and Ltv will be discussed in the following section. Finally, our total loss function to
optimize the adversarial texture is:

Ltotal = αLadv + βLtv, (6)

where α, β are the hyperparameters to control the contribution of each loss function.

3.2 MULTI-VIEW NEURAL RENDERING

Previous works Suryanto et al. (2022; 2023); Zhou et al. (2024a); Lyu et al. (2024) have demon-
strated the effectiveness of adversarial camouflage against 2D object detectors by leveraging realistic
neural rendering of textured vehicles. In the single-view setting, the adversarial vehicle is placed at
the center of the image, and the rendering can be achieved using the object-centric rendering meth-
ods from Ravi et al. (2020); Kato et al. (2018). These methods only require the relative camera pose
with respect to the adversarial vehicle, which can be easily obtained during the camera initialization
in CARLA. However, this pipeline is not directly applicable to multi-view 3D perception tasks. In
such scenarios, multiple cameras are attached to the ego vehicle to observe the target vehicle. As
a result, the camera pose relative to the target vehicle—required by the renderer—can no longer
be retrieved through the simple initialization procedure used in the single-view pipeline. To support
multi-view rendering, it is necessary to redesign the pipeline by computing the relative pose between
each ego-mounted camera and the target vehicle, based on the geometric relationships among the
ego vehicle, the target vehicle, and the cameras.

To address this, we extend the popular differentiable rendering library PyTorch3D Ravi et al. (2020)
as the naive renderer to support multi-view rendering. The naive renderer requires three key inputs:
the 3D mesh of the vehicle, the adversarial texture, and the camera settings relative to the target
vehicle. The key challenge is to compute the transformations Ttar←ego, which convert the camera
settings of each camera coordinate system Φcam to the target vehicle’s coordinate system:

Φr = Ttar←ego · Φcam (7)

where Φr can be directly input to the naive neural renderer. These transformations ensure that each
rendered view accurately reflects the camera’s perspective towards the target vehicle. We apply
these camera parameter transformations to all six ego-mounted cameras and perform image render-
ing as defined in Eq 1 to obtain multi-view rendering images. The full mathematical details and
transformation steps are provided in the appendix A.1 for interested readers.

3.3 BEV-FEATURE-BASED ADVERSARIAL ATTACK

The current state-of-the-art multi-view 3D perception models Philion & Fidler (2020); Huang et al.
(2021); Wang et al. (2022b); Li et al. (2022) rely heavily on BEV features to support downstream
perception tasks in autonomous driving systems Hu et al. (2023); Zheng et al. (2024). This motivated
us to attack from the BEV feature to achieve an effective and transferable attack. However, since
the BEV feature is high-dimensional, it is challenging to directly isolate the feature areas that are
influenced by the target vehicle. To tackle this, we utilize the BEV feature extracted from the dataset
with the same camera configurations but excluding the target vehicle. We analyze the difference
between these two BEV features to locate the target vehicle’s associated feature regions, which we
used to calculate the adversarial loss.

Specifically, as shown in Eq. 2 and 3, we first obtain the BEV features Badv and Bno from Xadv

and Xno respectively. We compute their difference to obtain the Bdiff , which has the shape of
(H,W,C), where H and W define the BEV perception grid, and C is the feature dimension. To
localize the affected regions, we average across the feature dimension C and visualize the resulting
2D heatmap. Empirically, as shown in Figure 3, we observe that high-activation areas in this map
tend to coincide with the ground-truth location of the target vehicle, suggesting a strong correlation.

Based on the above observation, we propose a BEV mask Mbev to effectively crop out the affected
regions. We leverage the annotated position of the target vehicle to build this mask. For convenience,
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Figure 3: Examples of BEV difference feature and corresponding vehicle ground truth images. We
can observe a strong correlation between BEV regions relevant to the target vehicle (marked by the
red circles) and vehicle ground truth position (marked by the yellow points).

we represent the target’s position in polar coordinates (rtar, θtar) related to the ego vehicle and
define the mask region as:

Mbev = {(r, θ) | |r − rtar| ≤ ∆r, |θ − θtar| ≤ ∆θ} (8)

where ∆r and ∆θ are the tunable thresholds to control the mask area. In the ablation section, we
evaluate the effectiveness of this mask strategy.

Once the masked BEV difference Bmasked is obtained (as shown in Eq. 5. ), we define the adver-
sarial Ladv as the mean of the non-zero elements in Bmasked:

Ladv =

∑
i

Bmasked,i∑
i

⊮(Bmasked,i ̸= 0)
(9)

where ⊮(·) is the indicator function, which returns 1 if the condition inside is true and 0 otherwise.
The denominator represents the number of non-zero elements in Bmasked, and the numerator is the
sum of all elements in Bmasked.

Additionally, we also apply the Total Variation (TV) loss followed by Sharif et al. (2016) to encour-
age naturalness of the texture towards human vision:

Ltv =
∑
i,j

(xi,j − xi+1,j)
2
+ (xi,j − xi,j+1)

2 (10)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We utilize the Carla simulator Dosovitskiy et al. (2017) to generate datasets for our
experiments. To have a comparative analysis with prior studies Wang et al. (2022a); Suryanto et al.
(2023), we select the Audi E-Tron as the target vehicle model. We generate a dataset of 2500
samples for camouflage generation and a test dataset of 500 samples for camouflage evaluation.
These datasets contain multi-view images of the target vehicle with various distances and view
angles relative to the ego vehicle, across various background scenes. During our experiments, we
found that the performance of the original targeted models degraded significantly in the simulation
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dataset compared to their reported results, as shown in Table 7. This is because these models are
trained on realistic datasets like nuScenes Caesar et al. (2020). To alleviate the domain gap between
simulation and realism, we generate a fine-tuning dataset of 500 samples with completely different
settings from camouflage generation and test datasets to adapt these models to the digital domain.
For the real-world evaluation, we print our camouflage in a 2D UV map image and stick it to a full-
size Audi vehicle. We build a simple multi-view camera data collection platform to collect real-life
multiview data. We collect two datasets: one of the car with normal painting and another of the car
with our camouflage. Each dataset has 191 samples with different azimuths and distances towards
the ego position. We split the dataset into close (less than 10 meters) and long scenarios(more than
10 meters) based on the distance between target vehicle and ego position.

Baselines. We compare our method with state-of-the-art solutions: advanced adversarial camou-
flages against 2D detection and adversarial patches against 3D detection: FCA Wang et al. (2022a),
DTA Suryanto et al. (2022), ACTIVE Suryanto et al. (2023), RAUCA Zhou et al. (2024a), CNCA
Lyu et al. (2024), and AdvPatch Wang et al. (2025). For a fair comparison, we use the official
textures generated by these methods and apply them to the Audi E-Tron model.

Evaluation metrics. In digital experiment, to evaluate the effectiveness of the adversarial cam-
ouflage, we utilize the Average Precision (AP) score defined by the 2D center distance between
the prediction and ground truth on the ground plane Caesar et al. (2020); Li et al. (2022) for 3D
detection task and Intersection-over-Union (IoU) Zhou & Krähenbühl (2022) of vehicle class for
BEV segmentation task, respectively. In the real-world experiment, we use the Attack Success Rate
(ASR) which measures the percentage at which the target vehicle is successfully detected originally
but not detected after the attack.

Target models. We choose the BEVFormer-base Li et al. (2022) model as the white-box target
model for adversarial camouflage generation. To evaluate the effectiveness and transferability of
the optimized camouflage, we utilize a collection of 3D object detection and BEV segmentation
models treated as black-box models. 3D object detection models include BEVFormer series (small,
tiny, base-seg-det, small-seg-det) Li et al. (2022) with different model configurations. The BEV
segmentation models include Lift-Splat-Shoot Philion & Fidler (2020), Cross View Transformer
Zhou & Krähenbühl (2022) and SinBEVT Runsheng Xu (2022). We train the original version of
these models on the fine-tuning dataset with one epoch before evaluating on the test dataset.

Optimization details. We utilize the Adam optimizer with a learning rate of 0.01 for adversarial
camouflage generation. The camouflage texture is initialized randomly and trained with 10 epochs.
For the hyperparameters of loss functions, we set the values of α and β (see Eq. 6) to 1 and 1000,
respectively 5. For the BEV mask, we set the distance and angle thresholds (∆r,∆θ) to 15 meters
and 15 degrees (see Eq. 8) after hyperparameter tunings 6. We conduct experiments on one NVIDIA
RTX A800 80GB GPU.

4.2 ATTACK PERFORMANCE EVALUATION

Attack performance on 3D perception models. We compare our proposed method, BEVCA,
against several state-of-the-art adversarial camouflage approaches, including FCA, DTA, ACTIVE,
RAUCA, CNCA, and AdvPatch. To thoroughly evaluate the effectiveness and transferability of our
method, we conduct extensive experiments across a variety of multi-view 3D perception models in
both 3D object detection and BEV segmentation tasks. The results are shown in Table 1, where
BEVCA consistently outperforms all baselines. AdvPatch shows performance comparable to that of
a normally painted vehicle, primarily due to its reliance on small, localized patches. FCA provides
only marginal improvement, as it lacks the ability to model complex environmental interactions. In
contrast, DTA, ACTIVE, RAUCA, and CNCA offer stronger performance, yet remain suboptimal
because they are not explicitly designed for multi-view perception models. Our method surpasses all
the baselines, achieving an average performance gain of approximately 36.2% in black-box settings
against the best previous baseline, demonstrating strong effectiveness and transferability.

We also provide some adversarial camouflage vehicle examples against 3D detection in different sce-
narios in the appendix section . These examples demonstrate that the vehicle with normal painting
is accurately detected with well-aligned 3D bounding boxes. However, with our adversarial camou-
flage texture, the target vehicle becomes significantly harder to detect, often resulting in inaccurate
bounding boxes or complete disappearance from the detection output.

7
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Table 1: Comparison of the effectiveness of attacks across various 3D detection and BEV segmen-
tation models. The metrics for 3D detection and BEV segmentation are AP and IoU of the vehicle
class, respectively.

METHODS
3D DETECTION BEV SEGMENTATION

BASE SMALL TINY BASE-SEG-DET SMALL-SEG-DET LSS CVT SINBEVT

NORMAL 0.618 0.721 0.514 0.750 0.634 0.509 0.609 0.570
FCA 0.593 0.696 0.512 0.721 0.595 0.442 0.505 0.489
DTA 0.578 0.663 0.469 0.684 0.591 0.372 0.480 0.449
ACTIVE 0.559 0.664 0.433 0.682 0.588 0.367 0.481 0.436
RAUCA 0.562 0.682 0.479 0.689 0.576 0.380 0.459 0.427
CNCA 0.567 0.626 0.404 0.634 0.523 0.306 0.401 0.360
ADVPATCH 0.601 0.702 0.516 0.703 0.608 0.479 0.579 0.533

BEVCA 0.191 0.285 0.381 0.329 0.331 0.253 0.307 0.273

For the BEV segmentation task, although the adversarial camouflage generated by BEVCA is specif-
ically optimized for the BEVFormer base model, it consistently achieves the best attack performance
across all segmentation models when compared to existing baselines. Notably, BEVCA attains an
average improvement of approximately 21.6% over the strongest previous baseline performance in
black-box settings. These results further underscore the task transferability and robust generalization
of our approach across diverse BEV-based perception tasks.

Figure 4: Visualization results of our camouflage attack against 3D object detection in the physical
world.

Multi-view robust attack. To evaluate the robustness of our adversarial camouflage under vary-
ing target vehicle positions, we conduct comprehensive experiments across different distances and
azimuths relative to the ego vehicle. Specifically, we generate a dataset where the target vehicle
appears at distances of [10, 15, 25, 40] meters, aligned with the BEVFormer model’s perception
range of up to 51.2 meters. For azimuths, we sample [0°, 60°, 120°, 180°, 240°, 300°]. For each
distance-azimuth combination, we create 40 samples with varying background scenes across differ-
ent CARLA towns to ensure diversity. We use the BEVFormer base model for evaluation, as other
detectors exhibit similar trends.
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Table 2: The attack performance for multi-azimuth and multi-distance. Notice the AP of the normal
painted car is 0.618.

AZIMUTH (◦) DISTANCE AVG
10 15 25 40

0 0.278 0.129 0.468 0.376 0.313
60 0.005 0.184 0.311 0.278 0.195

120 0.206 0.332 0.167 0.218 0.231
180 0.123 0.641 0.404 0.001 0.292
240 0.242 0.293 0.300 0.195 0.258
300 0.088 0.282 0.347 0.197 0.228

AVG 0.157 0.310 0.333 0.211 0.253

Table 3: Attack success rate of our camouflaged car in the physical world evaluation

Distance Close Long

ASR 53.1% (51/96) 15.8% (15/95)

The results are shown in Table 2. The total mean Car AP value is comparable to the value reported
in Table 1. We also observe that with the increase of the distance, the AP first prone to increase at a
distance of 10, after that the AP prone to decrease after a distance of 25. This trend can be attributed
to two factors: (1) with the increase of the distance, fine-grained adversarial camouflage patterns are
difficult for the detection model to identify, causing the decrease of the attack performance; and (2)
the detection performance of the model declines at long ranges, causing the AP to decrease again.
Nevertheless, our camouflage maintains strong attack effectiveness across all tested configurations,
demonstrating its robustness in multi-view settings.

Physical world evaluation. We conduct the physical world evaluation by printing the camouflage in
a 2D UV map format and sticking it to a full-size Audi car. To collect real multi-view data, we built
a simple multi-view camera data collection platform following the camera setup from the nuScenes
Caesar et al. (2020) dataset. We collect two datasets: one of the car with normal painting and an-
other of the car with our camouflage. Then we compare the detection results of these two datasets
with BEVFormer-base model to compute ASR scores. Table 3 shows the attack performance of our
method in both close and long distance settings. Our method achieves a high attack rate of 53.1%
in close distance scenarios, demonstrating a realistic threat in real-world applications. Furthermore,
Figure 4 shows that our camouflaged car can be successfully undetected from the 3D detector while
the other surrounding objects (cars, scooters, pedestrians) are well detected. In summary, the physi-
cal evaluation results demonstrate that our method is transferable to the real world.

4.3 ABLATION STUDIES

Table 4: Comparison of the attack performance of different adversarial loss functions across various
3D detection and BEV segmentation models.

METHODS
3D DETECTION BEV SEGMENTATION

BASE SMALL TINY BASE-SEG-DET SMALL-SEG-DET LSS CVT SINBEVT

Ldet 0.564 0.683 0.498 0.728 0.597 0.450 0.505 0.467
Lbev+ NO MASK 0.612 0.704 0.508 0.735 0.585 0.498 0.588 0.574
Lbev +Mbev 0.191 0.285 0.381 0.329 0.329 0.253 0.307 0.258

Effectiveness of different adversarial losses. During the camouflage generation, we choose to
optimize the camouflage with adversarial loss based on BEV features rather than downstream task
detection scores. Furthermore, we propose a BEV mask to precisely locate the BEV feature regions
that are highly associated with the target vehicle’s influence. In these ablation studies, we compare
the attack performance of the resulting camouflage of different adversarial losses to validate our

9
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Table 5: Comparison of the attack performance
of different total variation loss configurations.

β
BEVFORMER AVG

BASE SMALL TINY

0 0.537 0.689 0.488 0.571
10 0.453 0.630 0.457 0.513

100 0.358 0.553 0.425 0.445
1000 0.191 0.285 0.381 0.286
5000 0.199 0.286 0.374 0.286

10000 0.211 0.277 0.370 0.286

Table 6: The attack performance of dif-
ferent mask parameter settings.

∆r (◦) ∆θ

5 15 25

5 0.209 0.221 0.205
15 0.216 0.191 0.228
25 0.219 0.210 0.223

proposed methods. We generate the adversarial camouflages with the following adversarial loss
settings against the same target model (BEVFormer base): Ldet based on 3D object detection scores,
Lbev based on BEV features but without applying BEV masks, Lbev with mask Mbev .

We evaluate the camouflage attack performance across different models in both 3D object detection
and BEV segmentation tasks in Table 4, respectively. The camouflage generated by Ldet achieves
similar attack performance to baselines like FCA, demonstrating its limitation to transfer to other
models and tasks. The camouflage generated by Lbev without BEV mask show similar performance
as the Normal baseline without any attack in both 3D detection and BEV segmentation tasks. This is
because when using Lbev with no mask as the adversarial loss, the corresponding attack input space
is the entire multi-view image input. Using such adversarial loss to guide the optimization of the
target vehicle texture is ineffective because the target vehicle area only occupies a very small part
of the entire BEV perception area (approximately 3%), as shown in Figure 3. Therefore, we need to
enhance the Lbev with the mask to accurately locate the BEV feature areas that are highly relevant
to the target vehicle. In our experiment, the camouflage generated by Lbev with the BEV mask
achieves the best performance in both 3D detection and BEV segmentation tasks across different
models, demonstrating the effectiveness and transferability of our proposed pipeline.

Effectiveness of hyperparameters during optimization. We investigate the impact of the main hy-
perparameters during camouflage optimization related to total variation loss and BEV mask. Specif-
ically, we vary the hyperparameter β that controls the strength of the total variation constraint, and
report the results in Table 5 with BEVFormer series models. The results show that incorporating
the total variation loss consistently improves attack performance. When β is too small, the gener-
ated textures lack coherent structure and fail to deliver strong adversarial signals—especially at long
ranges. As β increases, the attack performance improves steadily, highlighting the importance of
enforcing total variation in the camouflage pattern. For BEV mask settings, we run hyperparameter
tuning experiments with the BEVFormer-base model on two tunable thresholds ∆r and ∆θ to find
suitable values such that it can locate the relevant area accurately. The results from Table 6 show that
∆r with value of 15 and ∆θ with values of 15 give the best results. We fix these settings throughout
our experiments.

5 CONCLUSION & LIMITATION

We have proposed BEVCA, a novel adversarial camouflage attack framework against multi-view
3D perception. Our framework can generate effective and transferable adversarial camouflage for
different 3D perception tasks and models. In particular, we propose a novel multi-view neural
renderer to facilitate the gradient-based camouflage optimization against multi-view 3D perception
models. Besides, we propose a novel adversarial loss based on BEV features to enable effective
and transferable attacks. With extensive experiments against various black-box models in both 3D
object detection and BEV segmentation tasks, the results demonstrate that BEVCA outperforms the
existing works under multi-view 3D perception settings. Our current work is limited by the fact that
we have not conducted more comprehensive physical experiments to evaluate the transferability of
our method due to limited time and resources, which will be addressed in future work.
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6 ETHICS STATEMENT

This paper presents work whose goal is to advance the safety of AD systems. While the proposed
adversarial attack method could be potentially used by malicious users, it can also support efforts to
enhance the robustness of AD systems via adversarial training, adversarial testing, and adversarial
detection, thereby safeguarding the security of AD systems.

7 REPRODUCIBILITY STATEMENT

We provide the necessary materials in an open-source repository for readers who want to reproduce
our work https://anonymous.4open.science/r/BEVCA-1D82. We provide our code and environment
setup steps for camouflage generation. Besides, we also provide an optimized adversarial texture of
our method for testing attack performance. Lastly, We will also upload the datasets for camouflage
generation and testing, and the optimization details mentioned in the section 4.1.
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Brady Zhou and Philipp Krähenbühl. Cross-view transformers for real-time map-view semantic
segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition, pp. 13760–13769, 2022.

Jiawei Zhou, Linye Lyu, Daojing He, and Yu Li. Rauca: a novel physical adversarial attack on
vehicle detectors via robust and accurate camouflage generation. In Proceedings of the 41st In-
ternational Conference on Machine Learning, ICML’24. JMLR.org, 2024a.

12

https://doi.org/10.1145/2976749.2978392
http://dx.doi.org/10.1109/cvpr42600.2020.00252
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://www.tesla.com/fsd


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiawei Zhou, Linye Lyu, Daojing He, and Yu Li. Toward robust and accurate adversarial camouflage
generation against vehicle detectors. arXiv preprint arXiv:2411.10029, 2024b.

Zijian Zhu, Yichi Zhang, Hai Chen, Yinpeng Dong, Shu Zhao, Wenbo Ding, Jiachen Zhong, and
Shibao Zheng. Understanding the robustness of 3d object detection with bird’s-eye-view repre-
sentations in autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 21600–21610, 2023.

A APPENDIX

A.1 MULTI-VIEW CAMERA POSE TRANSFORMATION DETAILS

The key challenge for precise multi-view rendering of the target vehicle is to compute the transfor-
mation from each camera coordinate system to the target vehicle’s coordinate system. First, we can
obtain the following geometric data from the CARLA API:

• The global position and rotation of the ego vehicle: tglobego , Rglob
ego .

• The global position and rotation of the target vehicle: tglobtar , Rglob
tar .

• The position and rotation of the ego camera in the ego vehicle frame: tegocam, Rego
cam.

Since CARLA employs a left-handed coordinate system while PyTorch3D uses a right-handed one,
we first convert all relevant data accordingly through a proper handedness transformation.

t̂ = M · t, R̂ = M ·R ·M, where M = diag(1,−1, 1) (11)

where t̂ and R̂ denote transformed quantities in the right-handed coordinate system. With the above
information, we can construct the following transformation matrices:

Ttar←glob =

[
R̂glob

tar t̂globtar
01×3 1

]⊤
, Tglob←ego =

[
R̂glob

ego t̂globego

01×3 1

]
(12)

We then obtain the transformation matrix from the ego vehicle coordinate system to the target vehicle
coordinate system as:

Ttar←ego = Ttar←glob · Tglob←ego (13)

To obtain the camera pose matrix in the ego vehicle coordinate system, we construct it as follows:

Φcam =

[
R̂ego

cam ·RD t̂egocam
01×3 1

]
, RD =

[
0 0 1
1 0 0
0 1 0

]
(14)

where RD is a transformation matrix that converts Carla’s camera convention (x-forward, z-up) to
PyTorch3D’s camera convention (z-forward, y-up). Eventually, we compute the camera pose Φr in
the target vehicle coordinate system, which is required as input by PyTorch3D, via:

Φr = Ttar←ego · Φcam (15)

For multi-view rendering, We apply the above camera parameter transformation to all six ego-
mounted cameras and perform image rendering as defined in Eq 1.

A.2 PHYSICAL WORLD EXPERIMENTS

We have conducted the physical experiment to validate our method. Figure 5 shows the setup for
our physical experiments. We print our generated BEVCA camouflage in a 2D UV map and stick it
to a real-life-size Audi vehicle. We also built a simple multi-view camera data collection platform
to collect real-life multi-view data. We set up six camera sensors on this platform, following the
camera settings (positions and angles) from nuScenes. With this platform, we collect two datasets:
one of the car with normal painting and another of the car with our camouflage. Each dataset has
191 samples with different azimuths and distances towards the ego position. We split both datasets
based on the target vehicle distance to the ego position: 96 samples for close distance and 95 for
long distance. The close distance refers to the attack vehicle being less than 10 meters from the ego
position, while the long distance indicates it is more than 10 meters away.
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Figure 5: The physical experiment setup: (a) full size camouflaged car; (b) multi-view camera data
collection platform.

Table 7: Comparison of the effectiveness of attacks across various original 3D detection and BEV
segmentation models. The metrics for 3D detection and BEV segmentation are AP and IoU of the
vehicle class, respectively.

METHODS
3D DETECTION BEV SEGMENTATION

BASE SMALL TINY BASE-SEG-DET SMALL-SEG-DET LSS CVT SINBEVT

NORMAL 0.309 0.324 0.243 0.321 0.333 0.209 0.234 0.238
FCA 0.306 0.336 0.263 0.32 0.337 0.204 0.200 0.208
DTA 0.260 0.296 0.249 0.294 0.318 0.175 0.168 0.195
ACTIVE 0.236 0.264 0.220 0.265 0.292 0.178 0.183 0.195
RAUCA 0.259 0.29 0.204 0.295 0.295 0.162 0.157 0.164
CNCA 0.227 0.253 0.185 0.245 0.284 0.157 0.201 0.181
ADVPATCH 0.307 0.310 0.235 0.321 0.331 0.193 0.213 0.202

BEVCA 0.080 0.126 0.158 0.148 0.171 0.123 0.065 0.106

A.3 MULTI-VIEW ATTACK VISUALIZATION

As shown in Figure 6, we provide some examples of our camouflage attack against 3D object de-
tection. Compared with the ground truth label, we can see that the camouflaged vehicle leads to
inaccurate bounding boxes or complete “disappearance” from the detector. Our camouflage can
achieve successful attacks when the target vehicle appears in not only one but also across views. As
shown in Figure 7, we provide more examples of our camouflage attack against 3D object detection
in the real world evaluation.

A.4 ATTACK PERFORMANCE ON ORIGINAL TARGETED MODELS

Table 7 shows the comparison of the effectiveness of different attacks across different 3D detection
and BEV segmentation original models, which are trained on the nuScenes dataset Caesar et al.
(2020). Compared to Table 1, we can notice the performance gap for each attack-model pair be-
tween these two tables due to the domain gap between simulation and reality. However, BEVCA
still outperforms all the baselines, proving the effectiveness and transferability of our method.

A.5 USE OF LLMS

We only use LLMs to check grammar errors and polish writing on our draft version of the paper for
the purpose of delivering our ideas and concept clearly. No use of LLMs for original work, such as
idea generation.
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Figure 6: Visualization results of our camouflage attack against 3D object detection tasks. We can
observe that the camouflaged vehicle leads to inaccurate bounding boxes or complete “disappear-
ance” from the detector compared to the ground truths.
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Figure 7: Additional visualization results of our camouflage attack against 3D object detection tasks
in the physical world.
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