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ABSTRACT

Can the large language models (LLMs) solve challenging first-order combinatorial
reasoning problems such as graph coloring, knapsack, and cryptarithmetic? By
first-order, we mean these problems can be instantiated with potentially an infinite
number of problem instances of varying sizes. They are also challenging being
NP-hard and requiring several reasoning steps to reach a solution. While existing
work has focused on coming up with datasets with hard benchmarks, there is
limited work which exploits the first-order nature of the problem structure. To
address this challenge, we present FCoReBench, a dataset of 40 such challenging
problems, along with scripts to generate problem instances of varying sizes and
automatically verify and generate their solutions. We first observe that LLMs, even
when aided by symbolic solvers, perform rather poorly on our dataset, being unable
to leverage the underlying structure of these problems. We specifically observe
a drop in performance with increasing problem size. In response, we propose a
new approach, SymPro-LM, which combines LLMs with both symbolic solvers
and program interpreters, along with feedback from a few solved examples, to
achieve huge performance gains. Our proposed approach is robust to changes in the
problem size, and has the unique characteristic of not requiring any LLM call during
inference time, unlike earlier approaches. As an additional experiment, we also
demonstrate SymPro-LM’s effectiveness on other logical reasoning benchmarks.

1 INTRODUCTION

Recent works have shown that large language models (LLMs) can reason like humans (Wei et al.,
2022a), and solve diverse natural language reasoning tasks, without the need for any fine-tuning (Wei
et al., 2022c; Zhou et al., 2023; Zheng et al., 2023). We note that, while impressive, these tasks are
simple reasoning problems, generally requiring only a handful of reasoning steps to reach a solution.

We are motivated by the goal of assessing the reasoning limits of modern-day LLMs. In this paper, we
study computationally intensive, first-order combinatorial problems posed in natural language. These
problems (e.g., sudoku, knapsack, graph coloring, cryptarithmetic) have long served as important
testbeds to assess the intelligence of AI systems (Russell and Norvig, 2010), and strong traditional AI
methods have been developed for them. Can LLMs solve these directly? If not, can they solve these
with the help of symbolic AI systems like SMT solvers? To answer these questions, we release a
dataset named FCoReBench, consisting of 40 such problems (see Figure 1).

We refer to such problems as fcore (first-order combinatorial reasoning) problems. Fcore problems
can be instantiated with any number of instances of varying sizes, e.g., 9×9 and 16×16 sudoku.
Most of the problems in FCoReBench are NP-hard and solving them will require extensive planning
and search over a large number of combinations. We provide scripts to generate instances for each
problem and verify/generate their solutions. Across all problems we generate 1354 test instances of
varying sizes for evaluation and also provide 596 smaller sized solved instances as a training set. We
present a detailed comparison with existing benchmarks in the related work (Section 2).

Not surprisingly, our initial experiments reveal that even the largest LLMs can only solve less than a
third of these instances. We then turn to recent approaches that augment LLMs with tools for better
reasoning. Program-aided Language models (PAL) (Gao et al., 2023) use LLMs to generate programs,
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Figure 1: Illustrative examples of problems in FCoReBench (represented as images for illustration).

offloading execution to a program interpreter. Logic-LM (Pan et al., 2023) and SAT-LM (Ye et al.,
2023) use LLMs to convert questions to symbolic representations, and external symbolic solvers
perform the actual reasoning. Our experiments show that, by themselves, their performances are
not that strong on FCoReBench. At the same time, both these methods demonstrate complementary
strengths – PAL can handle first-order structures well, whereas Logic-LM is better at complex
reasoning. In response, we propose a new approach named SymPro-LM, which combines the powers
of both PAL and symbolic solvers with LLMs to effectively solve fcore problems. In particular,
the LLM generates an instance-agnostic program for an fcore problem that converts any problem
instance to a symbolic representation. This program passes this representation to a symbolic solver,
which returns a solution back to the program. The program then converts the symbolic solution to
the desired output representation, as per the natural language instruction. Interestingly, in contrast to
LLMs with symbolic solvers, once this program is generated, inference on new fcore instances (of
any size) can be done without any LLM calls.

SymPro-LM outperforms few-shot prompting by 21.61, PAL by 3.52 and Logic-LM by 16.83 percent
points on FCoReBench, with GPT-4-Turbo as the LLM. Given the structured nature of fcore problems,
we find that utilizing feedback from small sized solved examples to correct the programs generated
for just four rounds yields a further 21.02 percent points gain for SymPro-LM, compared to 12.5 points
for PAL.

We further evaluate SymPro-LM on three (non-first order) logical reasoning benchmarks from liter-
ature (Tafjord et al., 2021; bench authors, 2023; Saparov and He, 2023a). SymPro-LM consistently
outperforms existing baselines by large margins on two datasets, and is competitive on the third,
underscoring the value of integrating LLMs with symbolic solvers through programs. We perform
additional analyses to understand impact of hyperparameters on SymPro-LM and its errors. We release
the dataset and code for further research. We summarize our contributions below:

• We formally define the task of natural language first-order combinatorial reasoning and
present FCoReBench, a corresponding benchmark.

• We provide a thorough evaluation of LLM prompting techniques for fcore problems, offering
new insights into existing techniques.

• We propose a novel approach, SymPro-LM, demonstrating its effectiveness on fcore problems
as well as other datasets, along with an in-depth analysis of its performance.

2 RELATED WORK

Neuro-Symbolic AI: Our work falls in the broad category of neuro-symbolic AI (Yu et al., 2023)
which builds models leveraging the complementary strengths of neural and symbolic methods. Several
prior works build neuro-symbolic models for solving combinatorial reasoning problems (Palm et al.,
2018; Wang et al., 2019; Paulus et al., 2021; Nandwani et al., 2022a;b). These develop specialized
problem-specific modules (that are typically not size-invariant), which are trained over large training
datasets. In contrast, SymPro-LM uses LLMs, and bypasses problem-specific architectures, generalizes
to problems of varying sizes, and is trained with very few solved instances.

Reasoning with Language Models: The previous paradigm to reasoning was fine-tuning of LLMs
(Clark et al., 2021; Tafjord et al., 2021; Yang et al., 2022), but as LLMs scaled, they have been
found to reason well, when provided with in-context examples without any fine-tuning (Brown et al.,
2020; Wei et al., 2022b). Since then, many prompting approaches have been developed that leverage
in-context learning. Prominent ones include Chain of Thought (CoT) prompting (Wei et al., 2022c;
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Kojima et al., 2022), Least-to-Most prompting (Zhou et al., 2023), Progressive-Hint prompting
(Zheng et al., 2023) and Tree-of-Thoughts (ToT) prompting (Yao et al., 2023).

Tool Augmented Language Models: Augmenting LLMs with external tools has emerged as a way
to solve complex reasoning problems (Schick et al., 2023; Paranjape et al., 2023). The idea is to
offload a part of the task to specialized external tools, thereby reducing error rates. Program-aided
Language models (Gao et al., 2023) invoke a Python interpreter over a program generated by an LLM.
Logic-LM (Pan et al., 2023) and SAT-LM (Ye et al., 2023) integrate reasoning of symbolic solvers
with LLMs, which convert the natural language problem into a symbolic representation. SymPro-LM
falls in this category and combines LLMs with both program interpreters and symbolic solvers.

Logical Reasoning Benchmarks: There are several reasoning benchmarks in literature, such as
LogiQA (Liu et al., 2020) for mixed reasoning, GSM8K (Cobbe et al., 2021) for arithmetic reasoning,
FOLIO (Han et al., 2022) for first-order logic, PrOntoQA (Saparov and He, 2023b) and ProofWriter
(Tafjord et al., 2021) for deductive reasoning, AR-LSAT (Zhong et al., 2021) for analytical reasoning.
These dataset are not first-order i.e. each problem is accompanied with a single instance (despite the
rules potentially being described in first-order logic). We propose FCoReBench, which substantially
extends the complexity of these benchmarks by investigating computationally hard, first-order
combinatorial reasoning problems. Among recent works, NLGraph (Wang et al., 2023) studies
structured reasoning problems but is limited to graph based problems, and has only 8 problems in
its dataset. On the other hand, NPHardEval (Fan et al., 2023) studies problems from the lens of
computational complexity, but works with a relatively small set of 10 problems. In contrast we
study the more broader area of first-order reasoning, we investigate the associated complexities of
structured reasoning, and have a much large problem set (sized 40). Specifically, all the NP-Hard
problems in these two datasets are also present in our benchmark.

3 PROBLEM SETUP: NATURAL LANGUAGE FIRST-ORDER COMBINATORIAL
REASONING

Figure 2: FCoReBench Example: Filling a n×n Sudoku
board along with its rules, input-output format, and a
couple of sample input-output pairs.

A first-order combinatorial reasoning problem
P has three components: a space of legal input
instances (X ), a space of legal outputs (Y), and
a set of constraints (C) that every input-output
pair must satisfy. E.g., for sudoku, X is the
space of partially-filled grids with n × n cells,
Y is the space of fully-filled grids of the same
size, and C comprises row, column, and box alld-
iff constraints, with input cell persistence. To
communicate a structured problem instance (or
its output) to an NLP system, it must be seri-
alized in text. We overload X and Y to also
denote the formats for these serialized input and
output instances. Two instances for sudoku are
shown in Figure 2 (grey box). We are also pro-
vided (serialized) training data of input-output
instance pairs, DP = {(x(i), y(i))}Ni=1, where
x(i) ∈ X , y(i) ∈ Y , such that (x(i), y(i)) honors
all constraints in C.

Further, we verbalize all three components –
input-output formats and constraints – in nat-
ural language instructions. We denote these
instructions by NL(X ), NL(Y), and NL(C),
respectively. Figure 2 illustrates these for su-
doku. With this notation, we summarize our setup as follows. For an fcore problem P = ⟨X ,Y, C⟩,
we are provided NL(X ), NL(Y), NL(C) and training data DP , and our goal is to learn a function
F , which maps any (serialized) x ∈ X to its corresponding (serialized) solution y ∈ Y such that
(x, y) honors all constraints in C.
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4 FCoReBench: DATASET CONSTRUCTION

First, we shortlisted computationally challenging first-order problems from various sources. We
manually scanned Wikipedia 1 for NP-hard algorithmic problems and logical-puzzles. We also took
challenging logical-puzzles from other publishing houses (e.g., Nikoli),2 and real world problems
from the operations research community and the industrial track of the annual SAT competition 2.
From this set, we selected problems (1) that can be described in natural language (we remove problems
where some rules are inherently visual), and (2) for whom, the training and test datasets can be created
with a reasonable programming effort. This led to 40 fcore problems (see Table 7 for a complete
list), of which 30 are known to be NP-hard and others have unknown complexity. 10 problems are
graph-based (e.g., graph coloring), 18 are grid based (e.g., sudoku), 5 are set-based (e.g., knapsack),
5 are real-world settings (e.g. car sequencing) and 2 are miscellaneous (e.g., cryptarithmetic).

Two authors of the paper having formal background in automated reasoning and logic then created the
natural language instructions and the input-output format for each problem. First, for each problem
one author created the input-output formats and the instructions for them (NL(X ), NL(Y)). Second,
the same author then created the natural language rules (NL(C)) by referring to the respective sources
and re-writing the rules. These rules were verified by the other author making sure that they were
correct i.e. the meaning of the problem did not change and they were unambiguous. The rules were
re-written to ensure that an LLM cannot easily invoke its prior knowledge about the same problem.
For the same reason, the name of the problem was hidden.

In the case of errors in the natural language descriptions, feedback was given to the author who
wrote the descriptions to correct them. In our case typically there were no corrections required
except 3 problems where the descriptions were corrected within a single round of feedback. A third
independent annotator was employed who was tasked with reading the natural language descriptions
and solving the input instances in the training set. The solutions were then verified to make sure
that the rules were written and comprehensible by a human correctly. The annotator was able to
solve all instances correctly highlighting that the descriptions were correct. The guidelines utilized
to re-write the rules from their respective sources were to use crisp and concise English without
utilizing technical jargon and avoiding ambiguities. The rules were intended to be understood by any
person with a reasonable comprehension of the language and did not contain any formal specifications
or mathematical formulas. Appendices A.2 and A.3 have detailed examples of rules and formats,
respectively.

Next, we created train/test data for each problem. These instances are generated programmatically by
scripts written by the authors. For each problem, one author also wrote a solver and a verification
script, and the other verified that these scripts and suggested corrections if needed. In all but one
case the other author found the scripts to be correct. These scripts (after correction) were also
verified through manually curated test cases. These scripts were then used to ensure the feasibility of
instances.

Since a single problem instance can potentially have multiple correct solutions (Nandwani et al.,
2021) – all solutions are provided for each training input. The instances in the test set are typically
larger in size than those in training. Because of their size, test instances may have too many solutions,
and computing all of them can be expensive. Instead, the verification script can be used, which
outputs the correctness of a candidate solution for any test instance. The scripts are a part of the
dataset and can be used to generate any number of instances of varying complexity for each problem
to easily extend the dataset. Keeping the prohibitive experimentation costs with LLMs in mind, we
generate around 15 training instances and around 34 test instances on average per problem. In total
FCoReBench has 596 training instances and 1354 test instances.

5 SymPro-LM

Preliminaries: In the following, we assume that we have access to an LLM L, which can work with
various prompting strategies, a program interpreter I, which can execute programs written in its
language and a symbolic solver S , which takes as input a pair of the form (E, V ), where E is set of

1https://en.wikipedia.org/wiki/List_of_NP-complete_problems
2 https://www.nikoli.co.jp/en/puzzles/, https://satcompetition.github.io/
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equations (constraints) specified in the language of S, and V is a set of (free) variables in E, and
produces an assignment A to the variables in V that satisfies the set of equations in E. Given the
an fcore problem P = ⟨X ,Y, C⟩ described by NL(C), NL(X ), NL(Y) and DP , we would like to
make effective use of L, I and S , to learn the mapping F , which takes any input x ∈ X , and maps it
to y ∈ Y , such that (x, y) honors the constraints in C.

Background: We consider the following possible representations for F which cover existing work.

• Exclusively LLM: Many prompting strategies (Wei et al., 2022c; Zhou et al., 2023) make exclusive
use of L to represent F . L is supplied with a prompt consisting of the description of P via NL(C),
NL(X ), NL(Y), the input x, along with specific instructions on how to solve the problem and
asked to output y directly. This puts the entire burden of discovering F on the LLM.

• LLM → Program: In strategies such as PAL (Gao et al., 2023), the LLM is prompted to output a
program, which then is interpreted by I on the input x, to produce the output y.

• LLM + Solver: Strategies such as Logic-LM (Pan et al., 2023) and Sat-LM (Ye et al., 2023)
make use of both the LLM L and the symbolic solver S. The primary goal of L is to to act as an
interface for translating the problem description for P and the input x, to the language of the solver
S. The primary burden of solving the problem is on S, whose output is then parsed as y.

5.1 OUR APPROACH

Figure 3: SymPro-LM: Solid lines indicate the main flow
and dotted lines indicate feedback pathways.

Our approach can be seen as a combination of
LLM→Program and LLM+Solver strategies de-
scribed above. While the primary role of the
LLM is to do the interfacing between the natural
language description of the problem P , the task
of solving the actual problem is delegated to the
solver S as in LLM+Solver strategy. But unlike
them, where the LLM directly calls the solver,
we now prompt it to write a program, ψ, which
can work with any given input x ∈ X of any
size. This allows us to get rid of the LLM calls
at inference time, resulting in a "lifted" imple-
mentation. The program ψ internally represents
the specification of the problem. It takes as argu-
ment an input x, and then converts it according
to the inferred specification of the problem to a
set of equations (Ex, Vx) in the language of the solver S to get the solution to the original problem.
The solver S then outputs an assignment Ax in its own representation, which is then passed back
to the program ψ, which converts it back to the desired output format specified by Y and produces
output ŷ. Broadly, our pipeline consists of the 3 components which we describe next in detail.

• Prompting LLMs: The LLM is prompted withNL(C),NL(X ),NL(Y) (see Figure 2) to generate
an input-agnostic program ψ. The LLM is instructed to write ψ to read an input from a file, convert
it to a symbolic representation according to the inferred specification of the problem, pass the
symbolic representation to the solver and then use the solution from the solver to generate the
output in the desired format. The LLM is also prompted with information about the solver and
its underlying language. Optionally we can also provide the LLM with a subset of DP (see
Appendix B.3 for exact prompts).

• Symbolic Solver: ψ can convert any input instance x to (Ex, Vx) which it passes to the symbolic
solver. The solver is agnostic to how the representation (Ex, Vx) was created and tries to find an
assignment Ax to Vx which satisfies Ex which is passed back to ψ (see Appendix E.1 for sample
programs generated).

• Generating the Final Output: ψ then uses Ax to generate the predicted output ŷ. This step is
need because the symbolic representation was created by ψ and it must recover the desired output
representation from Ax, which might not be straightforward for all problem representations.

Refinement via Solved Examples: We make use of DP to verify and (if needed) make corrections
to ψ. For each (x, y) ∈ DP (solved input-output pair), we run ψ on x to generate the prediction ŷ,
during which the following can happen: 1) Errors during execution of ψ; 2) The solver is unable
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to find Ax under a certain time limit; 3) ŷ ̸= y, i.e. the predicted output is incorrect; 4) ŷ = y,
i.e. the predicted output is correct. If for any training input one of the first three cases occur we
provide automated feedback to the LLM through prompts to improve and generate a new program.
This process is repeated till all training examples are solved correctly or till a maximum number of
feedback rounds is reached. The feedback is simple in nature and includes the nature of the error,
the actual error from the interpreter/symbolic solver and the input instance on which the error was
generated. For example, in the case where the output doesn’t match the gold output we prompt the
LLM with the solved example it got wrong and the expected solution. Appendix B contains details of
feedback prompts.

It is possible that a single run of SymPro-LM (along with feedback) is unable to generate the correct
solution for all training examples – so, we restart SymPro-LM multiple times for a given problem.
Given the probabilistic nature of LLMs a new program is generated at each restart and a new feedback
process continues. For the final program, we pick the best program generated during these runs, as
judged by the accuracy on the training set. Figure 3 describes our entire approach diagrammatically.

SymPro-LM for Non-First Order Reasoning Datasets: For datasets that are not first-order in nature,
a single program does not exist which can solve all problems, hence we prompt the LLM to generate
a new program for each test set instance. Thus we cannot use feedback from solved examples and we
only use feedback to correct syntactic mistakes (if any). The prompt contains an instruction to write
a program which will use a symbolic solver to solve the problem. Additionally, we provide details
about the solver to be used. The prompt also contains in-context examples demonstrating sample
programs for other logical reasoning questions. The LLM should parse the logical reasoning question
and extract the corresponding facts/rules which it needs to pass to the solver (via the program). Once
the solver returns with an answer, it is passed back to the program to generate the final output.

6 EXPERIMENTAL SETUP

Our experiments answer these research questions. (1) How does SymPro-LM compare with other
LLM-based reasoning approaches on fcore problems? (2) How useful is using feedback from solved
examples and multiple runs for fcore problems? (3) How does SymPro-LM compare with other
methods on other existing (non-first order) logical reasoning benchmarks? (4) What is the nature of
errors made by SymPro-LM and other baselines?
Baselines: On FCoReBench, we compare our method with 4 baselines: 1) Standard LLM prompting,
which leverages in-context learning to directly answer the questions; 2) Program-aided Language
Models, which use imperative programs for reasoning and offload the solution step to a program
interpreter; 3) Logic-LM, which offloads the reasoning to a symbolic solver. 4) Tree-of-Thoughts
(ToT) Yao et al. (2023), which is a search based prompting technique. These techniques (Yao et al.,
2023; Hao et al., 2023) involve considerable manual effort for writing specialized prompts for each
problem and are estimated to be 2-3 orders of magnitude more expensive than other baselines. We thus
decide to present a separate comparison with ToT on a subset of FCoReBench (see Appendix C.1.1 for
more details regarding ToT experiments). We use Z3 (De Moura and Bjørner, 2008) an efficient SMT
solver for experiments with Logic-LM and SymPro-LM. We use the Python interpreter for experiments
with PAL and SymPro-LM. We also evaluate refinement for PAL and SymPro-LM by using 5 runs
each with 4 rounds of feedback on solved examples for each problem. We evaluate refinement for
Logic-LM by providing 4 rounds of feedback to correct syntactic errors in constraints (if any) for each
problem instance. We decide not to evaluate SAT-LM given its conceptual similarity to Logic-LM
having being proposed concurrently.

Models: We experiment with 3 LLMs: GPT-4-Turbo (gpt-4-0125-preview) (OpenAI, 2023) which
is a SOTA LLM by OpenAI, GPT-3.5-Turbo (gpt-3.5-turbo-0125), a relatively smaller LLM by
OpenAI and Mixtral 8x7B (open-mixtral-8x7b) (Jiang et al., 2024), an open-source mixture-of-
experts model developed by Mistral AI. We set the temperature to 0 for few-shot prompting and
Logic-LM for reproducibility and to 0.7 to sample several runs for PAL and SymPro-LM.

Prompting LLMs: Each method’s prompt includes the natural language description of the problem’s
rules and the input-output format, along with two solved examples. No additional intermediate
supervision (e.g., SMT or Python program) is given in the prompt. For few-shot prompting we
directly prompt the LLM to solve each test set instance separately. For PAL we prompt the LLM
to write an input-agnostic Python program which reads the input from a file, reasons to solve the
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input and then writes the solution to another file, the program generated is run on each testing set
instance. For Logic-LM for each test set instance we prompt the LLM to convert it into its symbolic
representation which is then fed to a symbolic solver, the prompt additionally contains the description
of the language of the solver. We then prompt the LLM with the solution from the solver and ask
it to generate the output in the desired format (see Section 5). Prompt templates are detailed in
Appendix B and other experimental details can be found in Appendix C.

Metrics: For each problem, we use the associated verification script to check the correctness of the
candidate solution for each test instance. This script computes the accuracy as the fraction of test
instances solved correctly, using binary marking assigning 1 to correct solutions and 0 for incorrect
ones. We report the macro-average of test set accuracies across all problems in FCoReBench.

Additional Datasets: Apart from FCoReBench, we also evaluate SymPro-LM on 3 additional logical
reasoning datasets: (1) LogicalDeduction from the BigBench (bench authors, 2023) benchmark,
(2) ProofWriter (Tafjord et al., 2021) and (3) PrOntoQA (Saparov and He, 2023a). In addition to
other baselines, we also compare with Chain-of-Thought (CoT) prompting (Wei et al., 2022c), as it
performs significantly better than standard prompting for such datasets. Recall that these benchmarks
are not first-order in nature i.e. each problem is accompanied with a single instance (despite the rules
potentially being first-order) and hence we have to run SymPro-LM (and other methods) separately for
each test instance (see Appendix C.2 for more details).

7 RESULTS

Table 1 describes the main results for FCoReBench. Unsurprisingly, GPT-4-Turbo is hugely better
than other LLMs. Mixtral 8x7B struggles on our benchmark indicating that smaller LLMs (even with
mixture of experts) are not as effective at complex reasoning. Mixtral in general does badly, often
doing worse than random (especially when used without refinement). PAL and SymPro-LM tend to
perform better than other baselines benefiting from the vast pre-training of LLMs on code (Chen
et al., 2021). Logic-LM performs rather poorly with smaller LLMs indicating that they struggle to
invoke symbolic solvers directly.

Table 1: Results for FCoReBench. - / + indicate before / after refinement.
Performance for random guessing is 20.13%.

Few-Shot PAL Logic-LM SymPro-LM
Model Prompting - + - + - +

Mixtral 8x7B 25.06% 14.98% 36.09% 0.21% 2.04% 8.08% 30.09%
GPT-3.5-Turbo 27.02% 32.66% 49.19% 6.04% 6.58% 17.08% 50.35%
GPT-4-Turbo 29.33% 47.42% 66.40% 34.11% 38.51% 50.94% 83.37%

Hereafter, we focus primarily
on GPT-4-Turbo’s performance,
since it is far superior to other
models. SymPro-LM outper-
forms few-shot prompting and
Logic-LM across all problems in
FCoReBench. On average the im-
provements are by an impressive 54.04% against few-shot prompting and by 44.86% against Logic-
LM (with refinement). Few-shot prompting solve less than a third of the problems with GPT-4-Turbo,
suggesting that even the largest LLMs cannot directly perform complex reasoning. While Logic-LM
performs better, it still isn’t that good either, indicating that combining LLMs with symbolic solvers
is not enough for such reasoning problems.

Table 2: Logic-LM’s performance on
FCoReBench evaluated with refinement.

Outcome GPT-3.5-Turbo GPT-4-Turbo
Correct Output 6.58% 38.51%
Incorrect Output 62.11% 52.06%
Timeout Error 2.375% 2.49%
Syntactic Error 29.04% 6.91% Table 3: Error analysis at a program level for GPT-

4-Turbo before and after refinement for PAL and
SymPro-LM. Results are averaged over all runs for a
problem and further over all problems in FCoReBench.

Outcome PAL SymPro-LM
(Before / After) (Before / After)

Incorrect Program 70% / 57% 58% / 38%
Semantically Incorrect Program 62% / 49.5% 29% / 20.5%
Python Runtime Error 7% / 4.5% 13.5% / 5.5%
Timeout 1% / 3% 15.5% / 12%

Further qualitative analysis suggests that Logic-
LM gets confused in handling the structure of
fcore problems. As problem instance size grows,
it tends to make syntactic mistakes with smaller
LLMs (Table 2). With larger LLMs, syntactic mis-
takes reduce, but constraints still remain seman-
tically incorrect and do not get corrected through
feedback.
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Often this is because LLMs are error-prone when enumerating combinatorial constraints, i.e., they
struggle with executing implicit for-loops and conditionals (see Appendix F). In contrast, SymPro-LM
and PAL manage first order structures well, since writing code for a loop/conditional is not that hard,
and the correct loop-execution is done by a program interpreter. These (size-invariant) programs then
get used independently without any LLM call at inference time to solve any input instance – easily
generalizing to larger instances – highlighting the benefit of using a program interpreter for such
combinatorial problems.

At the same time, PAL is also not as effective on FCoReBench. Table 4 compares the effect of feedback
and multiple runs on PAL and SymPro-LM. SymPro-LM outperforms PAL by 16.97% on FCoReBench
(with refinement). When LLMs are forced to write programs for performing complicated reasoning,
they tend to produce brute-force solutions that often are either incorrect or slow (see Table-8 in the
appendix). This highlights the value of offloading reasoning to a symbolic solver. Interestingly,
feedback from solved examples and re-runs is more effective (Table 3) for SymPro-LM, as also shown
by larger gains with increasing number of feedback rounds and runs (Table 4). We hypothesize that
this is because declarative programs (generated by SymPro-LM) are easier to correct, than imperative
programs (produced by PAL).

Table 4: Comparative analysis between PAL and SymPro-LM on FCoReBench for GPT-4-Turbo.

Number of Rounds of Feedback
0 1 2 3 4

PAL 47.42% 54.00% 57.09% 58.82% 59.92%
SymPro-LM 50.94% 62.54% 68.52% 71.12% 71.96%

↑ 3.52% ↑ 8.54% ↑ 11.43% ↑ 12.3% ↑ 12.04%

(a) Effect of feedback rounds for a single run

Number of Runs
1 2 3 4 5

PAL 59.92% 62.54% 63.95% 65.19% 66.40%
SymPro-LM 71.96% 77.21% 80.06% 82.06% 83.37%

↑ 12.04% ↑ 14.67% ↑ 16.11% ↑ 16.87% ↑ 16.97%

(b) Effect of multiple runs each with 4 feedback rounds

Table 5: Accuracy and cost comparison between ToT prompt-
ing and SymPro-LM with GPT-4-Turbo for 3 problems in
FCoReBench. Costs are per test instance for ToT and one
time costs per problem for SymPro-LM.

Problem Instance size ToT prompting SymPro-LM

Accuracy Cost Accuracy Cost

Latin Squares 3x3 46.33% $0.1235 100% $0.02
4x4 32.5% $0.5135 100% $0.02

Magic Square 3x3 26.25% $0.4325 100% $0.02
4x4 8% $0.881 100% $0.02

Sujiko 3x3 7.5% $0.572 100% $0.02
4x4 0% $1.676 100% $0.02

Comparison with ToT Prompting: Ta-
ble 5 compares SymPro-LM with ToT
prompting on 3 problems. SymPro-LM is
far superior in terms of cost and accuracy,
indicating that even the largest LLMs can-
not do complex reasoning on problems
with large search depths and branching fac-
tors, despite being called multiple times
with search-based prompting. Due to its
programmatic nature, SymPro-LM general-
izes even better to larger instances and is
also hugely cost effective, as there is no
need to call an LLM for each instance separately. We do not perform further experiments with ToT
prompting, due to cost considerations.

Figure 4: Effect of increasing problem instance size on baselines and SymPro-LM for GPT-4-Turbo.

Effect of Problem Instance Size: We now report performance of SymPro-LM and other baselines
against varying problem instance sizes (see Figure 4) for 3 problems in FCoReBench (sudoku,
sujiko and magic-square). Increasing the problem instance size increases the number of variables,
accompanying constraints and reasoning steps required to reach the solution. We observe that being
programmatic SymPro-LM and PAL, are relatively robust against increase in size of input instances. In
comparison, performance of Logic-LM and few-shot prompting declines sharply. PAL programs are
often inefficient and may see performance drop when they fail to find a solution within the time limit.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

(a) Effect of feedback (b) Effect of multiple runs (c) Effect of # of solved examples

Figure 5: Effect of feedback and multiple runs with GPT-4-Turbo. (a) and (b) show results with 10 solved
examples for feedback where dashed lines show results for individual problems in FCoReBench, with coloured
lines highlighting specific problems and the red bold line represents the average effect across all problems. (c)
shows the effect of number of solved examples used for feedback in a single run.

Effect of Feedback on Solved Examples: Figure 5a describes the effect of multiple rounds of
feedback for SymPro-LM. Feedback helps performance significantly; utilizing 4 feedback rounds
improves performance by 21.02%. Even the largest LLMs commit errors, making it important to
verify and correct their work. But feedback on its own is not enough, a single run might end-up in
a wrong reasoning path, which is not corrected by feedback making it important to utilize multiple
runs for effective reasoning. Utilizing 5 runs improves the performance by additional 11.41%
(Figure 5b) after which the gains tend to saturate. Performance also increases with an increase in
the number of solved examples (Figure 5c). Each solved example helps in detecting and correcting
different errors. However, performance tends to saturate at 7 solved examples and no new errors are
discovered/corrected, even with additional training data.

7.1 RESULTS ON OTHER DATASETS

Table 6 reports the performance on non-first order datasets. SymPro-LM outperforms all other baselines
on ProofWriter and LogicalDeduction, particularly Logic-LM. This showcases the value of integrating
LLMs with symbolic solvers through programs, even for standard reasoning tasks. These experiments
suggest that LLMs translate natural language questions into programs using solvers much more
effectively than into symbolic formulations directly. We attribute this to the vast pre-training of
LLMs on code (Brown et al., 2020; Chen et al., 2021). For instance, on the LogicalDeduction
benchmark, while Logic-LM does not make syntactic errors during translation it often makes logical
errors. These errors significantly decrease when LLMs are prompted to produce programs instead
(Figure 6b). Error analysis on ProofWriter and PrOntoQA reveals that for more complex natural
language questions, LLMs also start making syntactic errors during translation as the number of
rules/facts start increasing. With SymPro-LM these errors are vastly reduced because, apart from
the benefit from pre-training, LLMs also start utilizing programming constructs like dictionaries
and loops to make most out of the structure in these problems (Figure 6a). PAL and CoT perform
marginally better on PrOntoQA because the reasoning style for problems in this dataset involves
forward-chain reasoning which aligns with PAL’s and CoT’s style of reasoning. Integrating symbolic
solvers is not as useful for this dataset, but still achieves competitive performance.

8 DISCUSSION

We analyze FCoReBench to identify where LLMs excel and where the largest models still struggle.
Based on SymPro-LM’s performance, we categorize FCoReBench problems into three broad groups.

Table 6: Results for baselines & SymPro-LM on other benchmarks. Best results with each LLM are highlighted.

GPT-3.5-Turbo-0125 GPT-4-Turbo-0125

Dataset Direct CoT PAL Logic-LM SymPro-LM Direct CoT PAL Logic-LM SymPro-LM

Logical Deduction 39.66 % 50.66 % 66.33 % 71.00 % 78.00 % 65.33 % 76.00 % 81.66 % 82.67 % 94.00 %
ProofWriter 40.50 % 57.16 % 50.5 % 70.16 % 74.167 % 46.5 % 61.66 % 76.29 % 74.83 % 89.83 %
PrOntoQA 49.60 % 83.20 % 98.40 % 72.20 % 97.40 % 83.00 % 98.80 % 99.80 % 91.20 % 97.80 %
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(a) PrOntoQA (b) LogicalDeduction

Figure 6: Examples highlighting benefits of integrating LLMs with symbolic solver through programs.

1) Problems that SymPro-LM solved with 100% accuracy without any feedback. 8 such problems
exist out of the 40, including vertex-cover and latin-square. These problems have a one-to-one
correspondence between the natural language description of the rules and the program for generating
the constraints and the LLM essentially has to perform a pure translation task which they excel at.

2) Problems that SymPro-LM solved with 100% accuracy but after feedback from solved examples.
There are 20 such problems. They typically do not have a one-to-one correspondence between rule
descriptions and code, thus requiring some reasoning to encode the problem in the solver’s language.
For eg. one must define auxiliary variables and/or compose several primitives to encode a single
natural language rule. GPT-4-Turbo initially misses constraints or encodes the problem incorrectly,
but with feedback, it can spot its mistakes and corrects its programs. Examples include k-clique and
binairo. In binairo, for example, GPT-4-Turbo incorrectly encodes the constraints for ensuring all
columns and rows to be distinct but fixes this mistake after feedback (see Figure 17 in the appendix).
LLMs can leverage their vast pre-training to discover non-trivial encodings for several interesting
problems and solved examples can help guide LLMs to correct solutions in case of mistakes.

3) Problems with performance below 100% that are not corrected through feedback or utilizing
multiple runs. For these 12 problems, LLM finds it difficult to encode some natural language
constraint into SMT. Examples include number-link and hamiltonian path, where GPT-4-Turbo is
not able to figure out how to encode existence of paths as SMT constraints. In our opinion, these
conversions are peculiar, and may be hard even for average CS students. We hope that further analysis
of these 12 domains opens up research directions for neuro-symbolic reasoning with LLMs.

9 CONCLUSION AND LIMITATIONS

We investigate the reasoning abilities of LLMs on structured first-order combinatorial reasoning
problems. We formally define the task, and we present FCoReBench, a novel benchmark of 40 such
problems and find that existing tool-augmented techniques, such as Logic-LM and PAL fare poorly.
In response, we propose SymPro-LM – a new technique to aid LLMs with both program interpreters
and symbolic solvers. It uses LLMs to convert text into executable code, which is then processed by
interpreters to define constraints, allowing symbolic solvers to efficiently tackle the reasoning tasks.
Our extensive experiments show that SymPro-LM’s integrated approach leads to superior performance
on our dataset as well as existing benchmarks. Error analysis reveals that SymPro-LM struggles for
a certain class of problems where conversion to symbolic representation is not straightforward. In
such cases simple feedback strategies do not improve reasoning; exploring methods to alleviate such
problems is a promising direction for future work. Another future work direction is to extend this
dataset to include images of inputs and outputs, instead of serialized text representations, and assess
the reasoning abilities of vision-language models, like GPT4-V.

Limitations: While we study a wide variety of fcore problems, more such problems always exist and
adding these to FCoReBench remains a direction of future work. Additionally we assume that input
instances and their outputs have a fixed pre-defined (serialized) representation, which may not always
be easy to find. Another limitation is that encoding of many problems in the solver’s language can
potentially be complicated. Our method relies on the pre-training of LLMs to achieve this without
any training/fine-tuning, and addressing this is a direction for future work.
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A FCoReBench

A.1 DATASET DETAILS AND STATISTICS

Our dataset namely FCoReBench has 40 different fcore problems that have been collected from
various sources. Some of these problems are logical-puzzles from publishing houses like Nikoli,
some problems are from operations research literature, some are from the annual SAT competition
and other problems are well-known computational problems from Computer Science literature such
as hamiltonian path and minimum-dominating set. Table 7 gives the details of all problems in our
dataset. To create our training and test sets, we write scripts to synthetically generate problem
instances. These can be used to extend the dataset as needed with any number of instances of any
size. For experimentation, we generate some solved training instances and a separate set of testing
instances. Each problem also has a natural language description of its rules, and a natural language
description of the input-format which specify how input problem instances and their solutions are
represented in text. The next few sections give illustrative examples and other details.

A.2 NATURAL LANGUAGE DESCRIPTION OF RULES

This section describes how we create the natural language description of rules for problems in
FCoReBench. We extract rules from the sources such as the Wikipedia/Nikoli pages of the correspond-
ing problems. These rules are reworded by a human expert to reduce dataset contamination. Another
human expert ensures that there are no ambiguities in the reworded description of the rules. The
rules are generalized, when needed (for eg. from a 9× 9 Sudoku to a n× n Sudoku). The following
sections provide few examples.

A.2.1 EXAMPLE PROBLEM: SURVO

Figure 7: Conversion of an input survo problem instance to its solution.

Survo (Figure 7) is an example problem from FCoReBench. The task is to fill a m× n rectangular
board with numbers from 1 − m ∗ n such that each row and column sums to an intended target.
(Survo-Wikipedia). The box given below describes the rules of Survo more formally in natural
language.

We are given a partially filled m× n rectangular board, intended row sums and column sums.
- Empty cells are to be filled with numbers
- Numbers in the solved board can range from 1 to m ∗ n

- Numbers present in filled cells on the input board cannot be removed
- Each number from 1 to m*n must appear exactly once on the solved board
- All the empty cells should be filled such that each row and each column of the solved board
must sum to the respective row sum and column sum as specified in the input

A.2.2 EXAMPLE PROBLEM: HAMILTONIAN PATH

Hamiltonian path is a well-known problem in graph theory in which we have to find a path in an
un-directed and an un-weighted graph such that each vertex is visited exactly once by the path.
We consider the decision variant of this problem which is equally hard in terms of computational
complexity. The box below shows the formal rules for this problem expressed in natural language.
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Figure 8: A sample input graph instance and its solution to the hamiltonian-path problem. Vertices
are represented by yellow circles and the hamiltonian path is represented by the red line.

We are given an un-directed and un-weighted graph.
- We have to determine if the graph contains a path that visits every vertex exactly once.

A.2.3 EXAMPLE PROBLEM: DOSUN FUWARI

Figure 9: Conversion of an input dosun fuwari problem instance to its solution.

Dosun Fuwari (Nikoli) as shown in Figure 9 is another example problem from FCoReBench. We are
given a square board with regions (cells enclosed in bold lines) and we have to fill the board with
balloons and iron balls such that one balloon and one iron ball is placed in each region. Balloons are
light and float, so they must be placed in one of the cells at the top, in a cell right under a black cell
(filled-in cell), or under other balloons. Iron balls are heavy and sink, so they must be placed in one
of the cells at the bottom, or in a cell right over a black cell or over other iron balls. The box given
below gives the more formal description of the rules of dosun fuwari in natural language.

We are given a partially filled n*n square board. We are also given subgrids of the input board.
Cells in the input board can either be empty or filled (that is, nothing can be placed in them,
they are blackened) or can be balloons or iron balls.
- The only thing we can do is place balloons or iron balls in some of or all of the empty cells
- Each subgrid specified in the input should have exactly one balloon and iron ball in the
solved board
- Because balloons are buoyant, they should be positioned either in one of the cells located
at the top of the board or in a cell directly below a filled cell (i.e., one of the blackened
cells in the input) or below other balloons.
- Iron balls, being dense, will sink and should therefore be positioned either directly on one
of the cells located at the bottom of the input board, or on a cell directly above a filled
cell (i.e., one of the blackened cells in the input), or above another iron ball.

A.3 NATURAL LANGUAGE DESCRIPTION OF INPUT AND OUTPUT FORMAT

For many problems we consider input-output instances are typically not represented in text. For each
problem we describe a straightforward conversion of the input and output space to text in natural
language. The following sections consider examples of a few problems from FCoReBench.

A.3.1 EXAMPLE PROBLEM: SURVO

Figure 10 represents the conversion of the inputs to survo, originally represented as grid images to
text. Here empty cells are denoted by 0’s and the filled cells have corresponding values. For a given
m× n board, each row has m+ 1 space separated integers with the first m integers representing the
first row of the input board and the (m+1)th integer representing the row sum. The last row contains
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Figure 10: Representation of input instances of survo as text.

n integers represent the column sums. The box below describes this conversion more formally in
natural language.

Input Format:
- The input will have m+ 1 lines
- The first m lines will have n+ 1 space-separated integers
- Each of these m lines represents one row of the partially solved input board (n integers),
followed by the required row sum (a single integer)
- The last line of the input will have n space-separated integers each of which represents the
required column sum in the solved board
Sample Input:
0 6 0 0 0 30
8 1 0 0 0 17
0 9 3 0 30
27 16 10 25

Output Format:
- The output should have m lines, each representing one row of the solved board
- Each of these m lines should have n space-separated integers representing the cells of the
solved board
- Each integer should be from 1 to m ∗ n
Sample Output:
12 6 2 10
8 1 5 4
7 9 3 11

A.3.2 EXAMPLE PROBLEM: DOSUN FUWARI

Figure 11: Representation of inputs instances to dosun-fuwari as text.

Figure 11 represents conversion of the inputs to dosun fuwari, originally represented as grid images
to text. Here the first few lines represent the input board followed by a string ’—–’ which acts as a
separator following which each of the lines has space-separated integers representing the subgrids
of the input board. Cells are numbered in row-major order starting from 0, and this numbering is
used to represent cells in each of the lines describing the subgrids. In the first few lines representing
the input board, 0’s represent the empty cells that must be filled. 1’s denote the blackened cell, 2s
denote the balloons and 3’s denote the iron balls. The box below describes these rules more formally
in natural language
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Input-Format:
- The first few lines represent the input board, followed by a line containing ——–, which acts
as a separator, followed by several lines where each line represents one subgrid
- Each of the lines representing the input board will have space-separated integers ranging from
0 to 3
- 0 denotes empty cells, 1 denotes a filled cell (blackened cell), 2 denotes a cell with a
balloon, 3 denotes a cell with an iron ball
- After the board, there is a separator line containing ——–
- Each of the following lines has space-separated elements representing the subgrids on the
input board
- Each of these lines has integers representing cells of a subgrid
- Cells are numbered in row-major order starting from 0, and this numbering is used to represent
cells in each of the lines describing the subgrids

Sample-Input:
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1
——–
0 1
2 3 6 10
4 8 12
5 9 13 14 15
7 11

Output Format:
- The output should contain as many lines as the size of the input board, each representing one
row of the solved board
- Each row should have n space separate integers (ranging from 0-3) where n is the size of the
input board
- Empty cells will be denoted by 0s, filled cells (blackened) by 1s, balloons by 2s and iron
balls by 3s

Sample-Output:
2 3 0 2
2 1 0 2
0 2 3 3
3 0 3 1

A.3.3 EXAMPLE PROBLEM: HAMILTONIAN PATH

Figure 12: Representation of input instances to hamiltonian-path as text.

Figure 12 represents the conversion of inputs to hamiltonian-path, originally represented as graph
image to text. The first line denotes the number of vertices present in the graph followed by which
each node of the graph will be numbered from 0 - N-1. Each of the subsequent lines represents an
edge of the graph and will contain two space-separated integers (according to the numbering defined
previously). The output is a single word (YES/NO) indicating if a hamiltonian path exists in the
graph. The box below describes this more formally in natural language.
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Input Format:
- The first line will contain a single integer N, the number of nodes in the graph
- The nodes of the graph will be numbered from 0 to N-1
- Each of the subsequent lines will represent an edge of the graph and will contain two
space-separated integers (according to the numbering defined above)

Sample-Input:
5
0 1
1 2
2 3
3 4

Output Format:
- The output should contain a single line with a single word
- The word should be YES if a path exists in the input graph according to constraints specified
above and NO otherwise

Sample Output:
YES
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Table 7: Names of problems in FCoReBench, number of samples in the training set, number of
samples in the test set, average size of input instances in training set, average size of input instances
in test set and computational complexity. The brackets in the 4th column describe how input instance
sizes are measured. ? in the computational complexity column indicates that results are not available
for the corresponding problem.

Problem Name Training
Set
Size

Test
Set
Size

Average Size of Input Instances
in Training Set

Average
Size of
Input
Instances
in Test Set

Computational Complex-
ity

3-Partition (Non
Decision)

15 30 12 (array size) 17.7 NP-Hard

3-Partition (De-
cision)

15 30 12 (array size) 17.7 NP-Complete

Binario 15 50 4.0×4.0 (grid size) 6.96×6.96 NP-Hard (De Biasi, 2013)
Car-Sequencing 15 30 6.96, 3.66, 4.33 (# of cars, # of

options, # of classes)
9.06, 5.66,
6.33

NP-Hard (Kis, 2004)

Clique Cover 15 30 6.26, 9.4 (# of nodes, # of edges) 12.9, 31.4 NP-Complete
Cryptarithmetic 15 30 4.32 (Average # of digits in the

two operands )
4.26 NP-Hard (Epstein, 1987)

Dosun Fuwari 15 30 3.066×3.066 (grid size) 5.23×5.23 NP-Hard (Iwamoto and
Ibusuki, 2018)

Futoshiki 15 47 5×5 (grid size) 7.57×7.57 NP-Hard (Lloyd et al.,
2022)

Fill-a-pix 15 35 2.87× 2.87 (grid size) 4.1× 4.1 NP-Hard (HIGUCHI and
KIMURA, 2019)

Flow-Shop 15 30 6.06, 3.4 (# of jobs, #num of ma-
chines)

3.83, 9.13 NP-Complete (Garey et al.,
1976a)

Factory Workers 15 30 5.73, 12.66 (# of factories, # of
workers)

12.35, 30.0 ?

Graph Coloring 15 30 5.13, 6.8 (# of nodes, # of edges) 9, 21.06 NP-Complete (Gent et al.,
2017)

Hamiltonian
Path

15 30 5.93, 8.6 (# of nodes, # of edges) 13.0, 19.77 NP-Complete

Hamiltonian Cy-
cle

15 30 5.93, 8.6 (# of nodes, # of edges) 11.07,
18.67

NP-Complete

Hidato 15 45 2.87× 2.87 (grid size) 4.1× 4.1 NP-Hard (Itai et al., 1982)
Independent Set 12 30 5.8, 7.2 (# of nodes, # of edges) 14.2, 29.8 NP-Complete
Inshi-No-Heya 15 49 5.0×5.0 (grid size) 6.5×6.5 ?
Job-Shop 15 30 3.66, 3.66 (# of jobs, # of ma-

chines)
9, 9 NP-Complete (Garey et al.,

1976b)
K-Clique 15 31 4.87, 7.6 (# of nodes, # of edges) 8.84, 26.97 NP-Complete
Keisuke 15 30 4.33×4.33 (grid size) 5.83×5.83 ?
Ken Ken 15 20 3.26×3.26 (grid size) 5.2×5.2 NP-Hard (Haraguchi and

Ono, 2015)
Knapsack 15 30 4.8 (array size) 24.56 NP-Hard
K Metric Centre 15 30 4.5 (# of nodes) 7 NP-Hard
Latin Square 15 50 6×6.0 (grid size) 14.3×14.3 NP-Hard (Colbourn, 1984)
Longest Path
Problem

15 30 6.2, 5.87 (# of nodes, # of edges) 12.6, 16.3 NP-Complete

Magic Square 15 30 3.0×3.0 (grid size) 4.33×4.33 ?
Minimum Domi-
nating Set

15 30 6.0, 17.73 (# of nodes, # of edges) 14.53, 45.0 NP-Complete

N-Queens 15 30 3.8×3.8 (grid size) 6.33×6.33 NP-Hard (Gent et al., 2017)
Number Link 15 50 4×4 (grid size) 7.1×7.1 NP-Hard
Partition Prob-
lem

15 35 7.06 (array size) 15 NP-Complete

PRP 15 30 4.93, 12.6 (# of units, # of days) 6.7, 23.9 ?
Shinro 15 30 5.13×5.13 (grid size) 9.2×9.2 ?
Subset Sum 15 30 3.67 (array size) 11.87 NP-Complete
Summle 15 20 2.33 (# of equations) 3.75 ?
Sudoku 15 50 4.0×4.0 (grid size) 13.3×13.3 NP-Hard (YATO and SETA,

2003)
Sujiko 15 45 3.0×3.0 (grid size) 4.0×4.0 ?
Survo 15 47 13.5 (area of grid) 20.25 ?
Symmetric Su-
doku

15 30 4×4 (grid size) 6.5×6.5 ?

Sliding Tiles 15 30 2.66 × 2.66, 6.13 (grid size,
search depth)

3.63 ×
3.63, 8.83

NP-Complete (Demaine
and Rudoy, 2018)

Vertex Cover 14 30 6.4, 13.4 (# of nodes, # of edges) 12.6, 40.4 NP-Complete
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B PROMPT TEMPLATES

In this section we provide prompt templates used for our experiments on FCoReBench, including
the templates for the baselines we experimented with, SymPro-LM as well as prompt templates for
providing feedback.

B.1 FEW-SHOT PROMPT TEMPLATE

Task:
<Description of the Rules of the problems>

Input-Format:
<Description of Textual Representation of Inputs>
<Input Few Shot Example-1>
<Input Few Shot Example-2>
........................
........................
<Input Few Shot Example-n>

Output-Format
<Description of Textual Representation of Outputs>

<Output of Few Shot Example-1>
<Output of Few Shot Example-2>
............................
............................
<Output of Few Shot Example-n>

Input problem instance to be solved:
<Problem Instance from the Test Set>

B.2 PAL PROMPT TEMPLATE

The following box describes the base prompt template used for PAL experiments with FCoReBench.

Write a Python program to solve the following problem:

Task:
<Description of the Rules of the problem>

Input-Format:
<Description of Textual Representation of Inputs>
Sample-Input:
<Sample Input from Feedback Set>

Output-Format:
<Description of Textual Representation of Outputs>
Sample-Output:
<Output of Sample Input from Feedback Set>

Don’t write anything apart from the Python program; use Python comments if needed.

The Python program is expected to read the input from input.txt and write the output to a file
named output.txt.

The Python program must only use standard Python libraries.

B.3 SymPro-LM TEMPLATE

B.3.1 BASE PROMPT
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Write a Python program to solve the following problem:

Task:
<Description of the Rules of the problem>

Input-Format:
<Description of Textual Representation of Inputs>
Sample-Input:
<Sample Input from Feedback Set>

Output-Format:
<Description of Textual Representation of Outputs>
Sample-Output:
<Output of Sample Input from Feedback Set>

The Python program must read the input from input.txt and convert that particular input to the
corresponding constraints, which it should pass to the Z3 solver, and then it should use the Z3
solver’s output to write the solution to a file named output.txt

Don’t write anything apart from the Python program; use Python comments if needed.

B.4 FEEDBACK PROMPT TEMPLATES

These prompt templates are used to provide feedback in the case of SymPro-LM or PAL.

B.4.1 PROGRAMMING ERRORS

Your code is incorrect and produces the following runtime error:<RUN TIME ERROR> for the following
input: <INPUT> rewrite your code and fix the mistake

B.4.2 VERIFICATION ERROR

Your code is incorrect, when run on the input: <INPUT> the output produced is <OUTPUT-GENERATED>
which is incorrect whereas one of the correct output is <GOLD-OUTPUT>.
Rewrite your code and fix the mistake.

B.4.3 TIMEOUT ERROR

Your code was inefficient and took more than <TIME-LIMIT> seconds to execute for the following input:
<INPUT>.
Rewrite the code and optimize it.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

B.5 LOGIC-LM PROMPT TEMPLATE

The following box describes the prompt for Logic-LM experiments with FCoReBench, the prompt is
used to convert the input to its symbolic representation.

Task:
<Description of the Rules of the problem>

Input-Format:
<Description of Textual Representation of Inputs>
Sample-Input:
<Sample Input from Feedback Set>

Output-Format:
<Description of Textual Representation of Outputs>
Sample-Output:
<Output of Sample Input from Feedback Set>

Input problem to be solved:
<Problem Instance from the Test Set>

The task is to declare variables and the corresponding constraints on them in SMT2 for the
input mentioned above. The variables and constraints should be such that once the variables are
solved for, one can use the solution to the variables (which satisfies the constraints) to get
to the output in the desired format for the above mentioned input.

Only Write the SMT2 code and nothing else. Write the complete set of SMT2 variables
and constraints. Enclose SMT2 code in “‘smt2 “‘

B.6 TOT

In this section we give an example of the ToT prompts used for experiments on FCoReBench. We use
latin square as the running example.

B.6.1 PROPOSE PROMPT

This prompt is called for each search node to get the possible next states.
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Task:
We are given a nxn partially solved board and have to solve it according to the following rules:
- We need to replace the 0s with numbers from 1-n.
- Non-zero numbers on the board cannot be replaced.
- Each number from 1-n must appear exactly once in each column and row in the solved board
Given a board, decide which cell to fill in next and the number to fill it with, each possible
next step is separated by a new line.
You can output up-to 3 next steps.
If the input board is fully filled or no valid next step exists output only ’END’.

Sample-Input-1:
1 0 3
2 0 0
0 1 2
Possible next steps for Sample Input-1:
1 2 3
2 0 0
0 1 2

1 0 3
2 0 0
3 1 2

1 0 3
2 3 0
0 1 2

Sample-Input-2:
1 2 3
2 3 1
3 1 2
Possible next steps for Sample Input-2:
END

Input:
<node from the search tree>
Possible next steps for Input:

B.6.2 VALUE PROMPT

This prompt is called for each search node to evaluate how likely it is to get to the solution from that
node. We use this to prune the search tree.
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Task:
We are given a nxn partially solved board and have to solve it according to the following rules:
- We need to replace the 0s with numbers from 1-n.
- Non-zero numbers already on the board cannot be replaced.
- Each number from 1-n must appear exactly once in each column and row in the solved board.
Given a partially filled board, evaluate how likely it is to reach a valid solution
(sure/likely/impossible)

Output-Format:
The output should have two lines as follows:
<Reasoning>
<Sure/Likely/Impossible>
Sample-Input-1:
0 0 0
0 0 0
0 0 0
Board is empty, hence it is always possible to get to a solution.
Sure

Sample-Input-2:
1 0 3
2 0 0
0 1 2
No constraint is violated till now and it is likely to get to a solution.
Likely

Sample-Input-3:
1 1 3
2 0 0
0 1 2
Constraint violated in first row.
Impossible

Input:
<node from the search tree>

C EXPERIMENTAL DETAILS

C.1 FCoReBench

All methods are evaluated zero-shot, meaning no in-context demonstrations for the task are provided
to the LLM. We choose the zero-shot setting for FCoReBench because of the structured nature of
problems, making it unfair to provide demonstrations of highly related problems instances to the
LLM. The LLM is only given a description of the rules of the problem and the task it has to perform.
For PAL and SymPro-LM we present results with 10 solved examples for feedback.

C.1.1 TOT PROMPTING

We evaluate ToT prompting (Yao et al., 2023) on 3 problems in FCoReBench. Our implementation
closely resembles the official implementation which we adapt for grid based logical puzzles. We
use a BFS based approach with propose and value prompts. An example prompt for latin square
can be found in Appendix B.6. Problems in our benchmark have huge branching factors, to reduce
experimentation cost, we greedily prune the search frontier to 5 nodes at each depth based on scores
assigned by the LLM during the value stage. Additionally during the propose stage we prompt the
LLM to output at most 3 possible next steps. The temperature is set to 0.0 for reproducibility. Unlike
the original implementation problems in our benchmark can have varying search depths, hence we
explicitly ask the LLM to output ’END’ once a terminal node is reached. At any depth if a terminal
node is amongst the best nodes we terminate the search and return the terminal nodes at that depth,
otherwise we search till a maximum search depth governed by the problem instance.
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C.2 OTHER DATASETS

We evaluate SymPro-LM on 3 other datasets apart from FCoReBench. Our evaluation closely follows
Logic-LM’s evaluation (Pan et al., 2023). For baselines we use the same prompts as Logic-LM.
Logic-LM did not evaluate PAL, for which we write prompts on our own similar to the CoT prompts
used by Logic-LM. For SymPro-LM we write prompts on our own. We use the same in-context
examples as used for Logic-LM. We instruct the LLM to write a Python program to parse the input
problem, setup variables/constraints and pass these to a symbolic solver, call the solver and using
the solver’s output print the final answer. For LogicalDeduction we use the python-constraints 3

package which is a CSP solver. For other datasets we use the Z3-solver 4. Since all problems are
single correct MCQ questions we use accuracy as our metric. Like Logic-LM if there is an error
during execution of the program generated by the LLM we fall back on using chain-of-thought to
predict the answer. The following sections provide descriptions for the datasets used.

C.2.1 PRONTOQA

PrOntoQA (Saparov and He, 2023a) is a recent synthetic dataset created to analyze the deductive
reasoning capacity of LLMs. We use the hardest fictional characters version of the dataset, based
on the results in (Saparov and He, 2023a). Each version is divided into different subsets depending
on the number of reasoning hops required. We use the hardest 5-hop subset for evaluation. Each
question in PrOntoQA aims to validate a new fact’s veracity, such as “True or false: Alex is not shy.”
The following box provides an example:

Context: Each jompus is fruity. Every jompus is a wumpus. Every wumpus is not transparent.
Wumpuses are tumpuses. Tumpuses are mean. Tumpuses are vumpuses. Every vumpus is cold. Each
vumpus is a yumpus. Yumpuses are orange. Yumpuses are numpuses. Numpuses are dull. Each numpus
is a dumpus. Every dumpus is not shy. Impuses are shy. Dumpuses are rompuses. Each rompus is
liquid. Rompuses are zumpuses. Alex is a tumpus

Question: True or false: Alex is not shy.
Options:
A) True
B) False

C.2.2 PROOFWRITER

ProofWriter (Tafjord et al., 2021) is another commonly used dataset for deductive logical reasoning.
Compared with PrOntoQA, the problems are expressed in a more naturalistic language form. We use
the open-world assumption (OWA) subset in which each example is a (problem, goal) pair and the
label is one of PROVED, DISPROVED, UNKNOWN. The dataset is divided into five parts each part
requiring 0, ≤ 1, ≤ 2, ≤ 3, and ≤ 5 hops of reasoning, respectively. We evaluate the hardest depth-5
subset. To reduce overall experimentation costs, we randomly sample 600 examples in the test set
and ensure a balanced label distribution. The following box provides an example:

Context: Anne is quiet. Erin is furry. Erin is green. Fiona is furry. Fiona is quiet.
Fiona is red. Fiona is rough. Fiona is white. Harry is furry. Harry is quiet. Harry
is white. Young people are furry. If Anne is quiet then Anne is red. Young, green
people are rough. If someone is green then they are white. If someone is furry and quiet
then they are white. If someone is young and white then they are rough. All red people are young.

Question: Based on the above information, is the following statement true, false, or
unknown? Anne is white.
Options:
A) True
B) False
C) Uncertain

3https://github.com/python-constraint/python-constraint
4https://pypi.org/project/z3-solver/
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C.2.3 LOGICALDEDUCTION

LogicalDeduction bench authors, 2023 is a challenging logical reasoning task from the BigBench
collaborative benchmark. The problems are mostly about deducing the order of a sequence of objects
from a minimal set of conditions. We use the full test set consisting of 300 examples. The following
box provides an example:

Context: The following paragraphs each describe a set of three objects arranged in a fixed
order. The statements are logically consistent within each paragraph. In an antique car show,
there are three vehicles: a station wagon, a convertible, and a minivan. The station wagon is
the oldest. The minivan is newer than the convertible.

Question: Which of the following is true?
Options:
A) The station wagon is the second-newest.
B) The convertible is the second-newest.
C) The minivan is the second-newest.

C.3 HARDWARE DETAILS

All experiments were conducted on an Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz, 32 cores,
64-bit, with 512 KiB L1 cache, 16 MiB L2 cache, and 22 MiB L3 cache. We accessed GPT-4-Turbo
and GPT-3.5-Turbo by invoking both models via the OpenAI API. Mixtral 8x7B was also accessed
by using the Mistral AI API although the model weights are available publicly. We preferred the API,
over running the model locally given the ease of setup because all our other experiments were with
APIs.

D ADDITIONAL RESULTS

D.1 INFERENCE TIME

The following tables describes the average inference time for test set instances of a few illustrative
problems in FCoReBench. SymPro-LM performs much better compared to PAL because PAL programs

Problem PAL SymPro-LM

Sudoku 2.01 0.215
Latin Square 5.46 0.2
Cryptarithmetic 0.83 0.73
Independent Set 1.438 0.106
Minimum Dominating Set 0.98 0.112
Sujiko 0.742 0.102
Vertex Cover 1.58 0.105

Table 8: Average inference time in seconds of SymPro-LM and PAL for test set instances for selected
problems in FCoReBench

often tend to be brute force and inefficient whereas the solver can exploit the nature of the input-
instance while performing the reasoning with SymPro-LM.
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E EXAMPLES

E.1 SymPro-LM

E.1.1 FCoReBench

This section includes example programs generated by SymPro-LM for some illustrative problems in
FCoReBench. Each program reads the input from a file, generates the corresponding constraints, calls
the solver internally and then uses the solution from the solver to write the output in the desired
format to a file.

from z3 import Solver , Int , And , Distinct , Or
import math

# Function to read the board from the file
def read_board(filename):

with open(filename , ’r’) as file:
board = [[int(num) for num in line.split()] for line in file]

return board

# Function to write the solved board to the file
def write_board(filename , board):

with open(filename , ’w’) as file:
for row in board:

file.write(’ ’.join(map(str , row))+’\n’)

# Function to solve the Sudoku -like puzzle
def solve_puzzle(board):

n = len(board)
sqrt_n = int(math.sqrt(n))
s = Solver ()

# Create a matrix of integer variables
X = [[Int(f’X_{i+1}_{j+1}’) for j in range(n)] for i in range(n)]

# Constraints for each cell to be between 1 and n
cells_c = [And(1 <= X[i][j], X[i][j] <= n) for i in range(n) for j in range(n)]

# Constraints for rows and columns to be distinct
rows_c = [Distinct(X[i]) for i in range(n)]
cols_c = [Distinct ([X[i][j] for i in range(n)]) for j in range(n)]

# Constraints for subgrids to be distinct
subgrids_c = [Distinct ([X[i][j]

for i in range(k*sqrt_n , (k+1)*sqrt_n)
for j in range(l*sqrt_n , (l+1)*sqrt_n)])

for k in range(sqrt_n) for l in range(sqrt_n)]

# Constraints for the given cells to match the input
given_c = [X[i][j] == board[i][j] for i in range(n) for j in range(n) if board[i][j] != 0]

# Add all constraints to the solver
s.add(cells_c + rows_c + cols_c + subgrids_c + given_c)

if s.check() == ’sat’:
m = s.model()
solved_board = [[m.evaluate(X[i][j]).as_long () for j in range(n)] for i in range(n)]
return solved_board

else:
return None

# Main process
if _name_ == ’_main_ ’:

input_filename = ’input.txt’
output_filename = ’output.txt’

board = read_board(input_filename)
solved_board = solve_puzzle(board)

if solved_board:
write_board(output_filename , solved_board)

else:
print("Failed to solve the puzzle")

Figure 13: SymPro-LM example: correct program for sudoku generated by GPT-4-Turbo.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

from z3 import *

def parse_input(file_path):
with open(file_path , ’r’) as file:

lines = [line.strip() for line in file.readlines ()]
board = [list(line.split()) for line in lines [:-2]]
across_nums = lines [-2]. split()
down_nums = lines [-1]. split()
return board , across_nums , down_nums

def solve_crossword(board , across_nums , down_nums):
size = len(board)
solver = Solver ()

# Create a 2D array of Z3 integer variables
X = [[Int(f"x_{i}_{j}") for j in range(size)] for i in range(size)]

# Apply constraints based on the initial board
for i in range(size):

for j in range(size):
if board[i][j] == "-":

solver.add(X[i][j] == -1)
elif board[i][j] != "0":

solver.add(X[i][j] == int(board[i][j]))
else:

solver.add(And(X[i][j] >= 0, X[i][j] <= 9))

# Function to generate constraints for placing numbers
def place_numbers(numbers , vertical=False):

for num in numbers:
num_len = len(num)
placements = []
for i in range(size):

for j in range(size):
if vertical:

if i + num_len <= size:
seq = [X[i+k][j] == int(num[k]) for k in range(num_len)]
placements.append(And(*seq))

else:
if j + num_len <= size:

seq = [X[i][j+k] == int(num[k]) for k in range(num_len)]
placements.append(And(*seq))

solver.add(Or(* placements))

place_numbers(across_nums , vertical=False)
place_numbers(down_nums , vertical=True)

if solver.check() == sat:
model = solver.model()
solution = [[model.evaluate(X[i][j]) for j in range(size)] for i in range(size)]
return solution

else:
return None

def write_output(file_path , solution):
with open(file_path , ’w’) as file:

for row in solution:
line = ’ ’.join(’-’ if val.as_long () == -1 else str(val.as_long ()) for val in row)
file.write(f"{line}\n")

def main():
input_file = ’input.txt’
output_file = ’output.txt’
board , across_nums , down_nums = parse_input(input_file)
solution = solve_crossword(board , across_nums , down_nums)
if solution:

write_output(output_file , solution)
else:

print("No solution found.")

if __name__ == "__main__":
main()

Figure 14: SymPro-LM example: correct program for keisuke generated by GPT-4-Turbo.
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from z3 import *

def read_input(filename):
with open(filename , ’r’) as file:

n, k = map(int , file.readline ().split())
edges = [tuple(map(int , line.split())) for line in file]

return n, k, edges

def write_output(filename , answer):
with open(filename , ’w’) as file:

file.write(answer)

def solve_graph_path(n, k, edges):
s = Solver ()
path = [Int(f’path_{i}’) for i in range(k+1)] # Representing vertices along the path

# Every vertex in the path must be within graph vertices
for vertex in path:

s.add(vertex >= 0, vertex < n)

# Edges constraint
for i in range(k):

s.add(Or([And(path[i] == edge[0], path[i+1] == edge [1])
for edge in edges] +
[And(path[i] == edge[1], path[i+1] == edge [0])
for edge in edges]))

# Making sure all vertices in the path are distinct
for i in range(k+1):

for j in range(i+1, k+1):
s.add(path[i] != path[j])

if s.check() == sat:
return "YES"

return "NO"

def main():
n, k, edges = read_input("input.txt")
answer = solve_graph_path(n, k, edges)
write_output("output.txt", answer)

if __name__ == "__main__":
main()

Figure 15: SymPro-LM example: correct program for hamiltonian path generated by GPT-4-Turbo.
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from z3 import *

# Function to read the graph and the integer K from the file input.txt
def read_input(filename):

with open(filename , ’r’) as file:
n, k = map(int , file.readline ().split())
edges = [tuple(map(int , line.split())) for line in file]

return n, k, edges

# Function to check if it’s possible to select at most K vertices
def is_possible(n, k, edges):

# Initialize Z3 Solver
solver = Solver ()

# Create a list of boolean variables representing whether a vertex is selected
vertices = [Bool(f’vertex_{i}’) for i in range(n)]

# Add constraint that at most K vertices can be selected
solver.add(Sum([If(v, 1, 0) for v in vertices ]) <= k)

# For each edge , add constraint that at least one of the vertices should be selected
for u, v in edges:

solver.add(Or(vertices[u], vertices[v]))

# Check if the problem is solvable with the given constraints
if solver.check() == sat:

return "YES"
else:

return "NO"

# Function to write the output to a file
def write_output(filename , result):

with open(filename , ’w’) as file:
file.write(result)

# Main function
def main():

n, k, edges = read_input(’input.txt’)
result = is_possible(n, k, edges)
write_output(’output.txt’, result)

if __name__ == "__main__":
main()

Figure 16: SymPro-LM example: correct program for vertex-cover generated by GPT-4-Turbo.

...

### Constraint for ensuring distinct rows/columns is incorrect
### This constraint ensures that each row/column has distinct elements which over -constraints the

problem.
# Constraints for rows and columns to be distinct
for i in range(n):

solver.add(Distinct ([grid[i][j] for j in range(n)])) # Rows distinct
solver.add(Distinct ([grid[j][i] for j in range(n)])) # Columns distinct

...

...
# Enforcing distinct rows and columns by ensuring sum of differences is non -zero
for i in range(n):

for j in range(i + 1, n):
# Ensure row i and row j are different
solver.add(Sum([If(grid[i][k] != grid[j][k], 1, 0) for k in range(n)]) > 0)
# Ensure column i and column j are different
solver.add(Sum([If(grid[k][i] != grid[k][j], 1, 0) for k in range(n)]) > 0)

...

Figure 17: SymPro-LM example: snippet of incorrect program for binairo generated by GPT-4-Turbo
and same snippet after correction by feedback.
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from z3 import *

# Function to write the solution to the output file
def write_solution_to_file(solution):

with open("output.txt", "w") as f:
if solution is None:

f.write("None")
else:

f.write(" ".join(map(str , solution)))

# Function to solve the problem with Z3
def solve_with_z3(array , target_sum):

solver = Solver ()

# Create a boolean variable for each element in the array to indicate if it is included in the
sum

include_vars = [Bool(f"include_{i}") for i in range(len(array))]

# Add constraint that the sum of the selected elements should be equal to the target sum
solver.add(Sum([If(include_vars[i], array[i], 0) for i in range(len(array))]) == target_sum)

# Try to find a solution
if solver.check() == sat:

model = solver.model()
# Extract the solution: which elements to include
solution = [array[i] for i in range(len(array)) if is_true(model[include_vars[i]])]
return solution

else:
return None

# Main function to read the input , solve the problem , and write the output
def main():

with open("input.txt", "r") as f:
lines = f.read().strip().split("\n")
array = list(map(int , lines [0]. split()))
target_sum = int(lines [1])

solution = solve_with_z3(array , target_sum)
write_solution_to_file(solution)

# Execute the main function
if __name__ == "__main__":

main()

Figure 18: SymPro-LM example: correct program for subset-sum generated by GPT-4-Turbo.
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E.1.2 OTHER DATASETS

from z3 import *

# Define properties using dictionaries
properties = {

"jompus": {"fruity": True , "wumpus": True},
"wumpus": {"transparent": False , "tumpus": True},
"tumpus": {"mean": True , "vumpus": True},
"vumpus": {"cold": True , "yumpus": True},
"yumpus": {"orange": True , "numpus": True},
"numpus": {"dull": True , "dumpus": True},
"dumpus": {"shy": False , "rompus": True},
"impus": {"shy": True},
"rompus": {"liquid": True , "zumpus": True},

}

# Create Z3 solver
s = Solver ()

# Declare the individual
Alex = Bool(’Alex’)

# Add facts
s.add(Bool(’tumpus_Alex ’))

# Add rules using for loops and dicts
for entity , props in properties.items():

for prop , value in props.items():
if value:

s.add(Implies(Bool(f’{entity}_Alex’), Bool(f’{prop}_Alex’)))
else:

s.add(Implies(Bool(f’{entity}_Alex’), Not(Bool(f’{prop}_Alex’))))

# Define Alex as a tumpus
s.add(Bool(’tumpus_Alex ’))

# Query if Alex is not shy
s.add(Not(Bool(’shy_Alex ’)))

# Check the solution
answer = ’A’ if s.check() == sat else ’B’

Figure 19: SymPro-LM PrOntaQA Example Program.
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from z3 import *

s = Solver ()

### Define predicates as Z3 Booleans
Quiet = Function(’Quiet’, IntSort (), BoolSort ())
Furry = Function(’Furry’, IntSort (), BoolSort ())
Green = Function(’Green’, IntSort (), BoolSort ())
Red = Function(’Red’, IntSort (), BoolSort ())
Rough = Function(’Rough’, IntSort (), BoolSort ())
White = Function(’White’, IntSort (), BoolSort ())
Young = Function(’Young’, IntSort (), BoolSort ())

### Define persons as integers
Anne , Erin , Fiona , Harry = Ints(’Anne Erin Fiona Harry’)

### Add facts to the solver
s.add(Quiet(Anne))
s.add(Furry(Erin), Green(Erin))
s.add(Furry(Fiona), Quiet(Fiona), Red(Fiona), Rough(Fiona), White(Fiona))
s.add(Furry(Harry), Quiet(Harry), White(Harry))

# Add rules to the solver
def add_rules(solver):

x = Int(’x’)
solver.add(ForAll(x, Implies(Young(x), Furry(x)))) # Young people are furry
solver.add(Implies(Quiet(Anne), Red(Anne))) # If Anne is quiet then Anne is red
solver.add(ForAll(x, Implies(Or(Young(x), Green(x)), Rough(x)))) # Young , green people are rough
solver.add(ForAll(x, Implies(Green(x), White(x)))) # If someone is green then they are white
solver.add(ForAll(x, Implies(And(Furry(x), Quiet(x)), White(x)))) # If someone is furry and quiet

then they are white
solver.add(ForAll(x, Implies(And(Young(x), White(x)), Rough(x)))) # If someone is young and

white then they are rough
solver.add(ForAll(x, Implies(Red(x), Young(x)))) # All red people are young

add_rules(s)

query = White(Anne) # Query: Is Anne white?
# Check if the negation of the query leads to a contradiction
s.push() # Create a new context to test the negation
s.add(Not(query))

answer = ’’
if s.check() == unsat:

answer = "A"
else:

s.pop() # Restore the previous state
s.add(query) # Directly add the query now
if s.check() == unsat:

answer = "B"
else:

answer = "C"

Figure 20: SymPro-LM ProofWriter Example Program.

from constraint import *

problem = Problem ()
## DOMAIN
## 1 is oldest
## 3 is newest
domain = [1, 2, 3]
problem.addVariables ([’station_wagon ’, ’convertible ’, ’minivan ’], domain)

### CONSTRAINTS
problem.addConstraint(lambda station_wagon: station_wagon == 1, (’station_wagon ’,)) # station wagon

is the oldest
problem.addConstraint(lambda minivan , convertible: minivan > convertible , (’minivan ’, ’convertible ’))

# minivan is newer than the convertible
problem.addConstraint(lambda station_wagon , convertible , minivan: len({ station_wagon , convertible ,

minivan }) == 3, (’station_wagon ’, ’convertible ’, ’minivan ’)) # Ensure all vehicles have
different ages

## SOLUTION
answer = ""
solution = problem.getSolutions ()[0]
if solution["station_wagon"] == 2: # A) The station wagon is the second -newest.

answer = "A"
elif solution["convertible"] == 2: # B) The convertible is the second -newest.

answer = "B"
elif solution["minivan"] == 2: # C) The minivan is the second -newest.

answer = "C"

Figure 21: SymPro-LM LogicalDeduction Example Program.
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E.2 PAL

This section includes example programs generated by PAL for some illustrative problems in
FCoReBench. Each program reads the input from a file, performs the reasoning and writes the
output to another text file.

import math

def read_board(filename):
with open(filename , ’r’) as file:

board = [[int(num) for num in line.split()] for line in file]
return board

def write_board(filename , board):
with open(filename , ’w’) as file:

for row in board:
file.write(’ ’.join(map(str , row)) + ’\n’)

def is_valid(board , row , col , num):
n = len(board)
box_size = int(math.sqrt(n))
row_start = (row // box_size) * box_size
col_start = (col // box_size) * box_size

if any(num == board[row][i] for i in range(n)):
return False

if any(num == board[i][col] for i in range(n)):
return False

if any(num == board[i][j] for i in range(row_start , row_start + box_size) for j in range(
col_start , col_start + box_size)):

return False
return True

def solve(board):
n = len(board)
for row in range(n):

for col in range(n):
if board[row][col] == 0:

for num in range(1, n+1):
if is_valid(board , row , col , num):

board[row][col] = num
if solve(board):

return True
board[row][col] = 0

return False
return True

def main():
board = read_board(’input.txt’)
if solve(board):

write_board(’output.txt’, board)
else:

print("No solution exists.")

if __name__ == "__main__":
main()

Figure 22: PAL example: correct program for sudoku generated by GPT-4-Turbo.
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import itertools

def read_input(filename):
""" Read the input file and return the board and constraints."""
with open(filename , "r") as file:

lines = file.readlines ()

n = len(lines [0]. strip().split())
board = [list(map(int , line.strip().split())) for line in lines[:n]]
constraints = [tuple(map(int , line.strip().split())) for line in lines[n:]]

return board , constraints

def write_output(filename , board):
""" Write the solution to the output file."""
with open(filename , "w") as file:

for row in board:
file.write(’ ’.join(map(str , row)) + ’\n’)

def check_constraints(board , constraints):
""" Check if the board satisfies all the constraints."""
n = len(board)
for x, y in constraints:

x_row , x_col = divmod(x, n)
y_row , y_col = divmod(y, n)
if board[x_row][x_col] >= board[y_row][y_col]:

return False
return True

def solve_board(board , constraints):
""" Solve the board with the given constraints."""
n = len(board)
rows = [set(range(1, n + 1)) - set(row) for row in board]
cols = [set(range(1, n + 1)) - set(board[row][col] for row in range(n)) for col in range(n)]

def backtrack(row , col):
if row == n:

return check_constraints(board , constraints)
if col == n:

return backtrack(row + 1, 0)
if board[row][col] == 0:

for num in rows[row] & cols[col]:
board[row][col] = num
rows[row]. remove(num)
cols[col]. remove(num)

if backtrack(row , col + 1):
return True

board[row][col] = 0
rows[row].add(num)
cols[col].add(num)

else:
return backtrack(row , col + 1)

return False

backtrack(0, 0)
return board

def main():
input_filename = ’input.txt’
output_filename = ’output.txt’

board , constraints = read_input(input_filename)
solved_board = solve_board(board , constraints)
write_output(output_filename , solved_board)

if __name__ == "__main__":
main()

Figure 23: PAL example: correct program for futoshiki generated by GPT-4-Turbo.
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def dfs(graph , node , visited , N, path_length):
if path_length == N:

# If all nodes have been visited , we found a Hamiltonian path
return True

for neighbor in graph[node]:
if not visited[neighbor ]:

visited[neighbor] = True
if dfs(graph , neighbor , visited , N, path_length + 1):

return True
visited[neighbor] = False

return False

def has_hamiltonian_path(N, edges):
# Initialize the graph as an adjacency list
graph = {i: [] for i in range(N)}
for edge in edges:

graph[edge [0]]. append(edge [1])
graph[edge [1]]. append(edge [0])

# Try to find Hamiltonian path starting from each node
for start_node in range(N):

visited = [False] * N
visited[start_node] = True
if dfs(graph , start_node , visited , N, 1):

return True
return False

def main():
# Read the input file
with open(’input.txt’, ’r’) as file:

lines = file.readlines ()

# Parse the number of nodes
N = int(lines [0]. strip())

# Parse the edges
edges = [tuple(map(int , line.strip().split())) for line in lines [1:]]

# Check if a Hamiltonian path exists
path_exists = has_hamiltonian_path(N, edges)

# Write the output to a file
with open(’output.txt’, ’w’) as file:

file.write(’YES’ if path_exists else ’NO’)

# Execute the program
if __name__ == ’__main__ ’:

main()

Figure 24: PAL example: correct program for hamiltonian path generated by GPT-4-Turbo.
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from itertools import combinations

# Function to read the graph from a file
def read_graph(file_path):

with open(file_path , ’r’) as file:
lines = file.readlines ()

N, K = map(int , lines [0]. split())
edges = [tuple(map(int , line.split())) for line in lines [1:]]
return N, K, edges

# Function to check if a set of vertices is a valid cover
def is_valid_cover(vertices , edges):

for edge in edges:
if edge [0] not in vertices and edge [1] not in vertices:

return False
return True

# Loading the graph
N, K, edges = read_graph(’input.txt’)

# Attempting to find a valid cover with at most K vertices
found = False
for num_vertices in range(1, K+1):

for vertices in combinations(range(N), num_vertices):
if is_valid_cover(vertices , edges):

found = True
break

if found:
break

# Writing the result to the file
with open(’output.txt’, ’w’) as file:

file.write(’YES’ if found else ’NO’)

Figure 25: PAL example: correct program for vertex cover generated by GPT-4-Turbo.

def find_combinations_that_sum_to_target(array , target , start=0, path =[]):
"""
This function finds combinations in ’array’ that sum to ’target ’.
It returns a list of all possible combinations that sum up to the target.
"""
if target == 0:

return [path]
if target < 0:

return []
combinations = []
for i in range(start , len(array)):

if i > start and array[i] == array[i-1]:
continue

combinations += find_combinations_that_sum_to_target(array , target -array[i], i+1, path+[array
[i]])

return combinations

# Read input from input.txt
with open(’input.txt’, ’r’) as file:

input_lines = file.readlines ()
array = list(map(int , input_lines [0]. strip().split()))
target = int(input_lines [1]. strip())

# Find combinations
combinations = find_combinations_that_sum_to_target(array , target)

# Write output to output.txt
with open(’output.txt’, ’w’) as file:

if combinations:
# Just write the first combination found to the output file
file.write(’ ’.join(map(str , combinations [0])))

else:
file.write(’None’)

Figure 26: PAL example: correct program for subset sum generated by GPT-4-Turbo.
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F LOGIC-LM

This section describes example runs of Logic-LM for certain problems in FCoReBench.

""" Input Instance """
## 0 4 3 2
## 2 0 1 0
## 0 0 0 0
## 0 0 2 3

; Declare the variables
(declare -const a11 Int)
(declare -const a12 Int)
(declare -const a13 Int)
(declare -const a14 Int)
(declare -const a21 Int)
(declare -const a22 Int)
(declare -const a23 Int)
(declare -const a24 Int)
(declare -const a31 Int)
(declare -const a32 Int)
(declare -const a33 Int)
(declare -const a34 Int)
(declare -const a41 Int)
(declare -const a42 Int)
(declare -const a43 Int)
(declare -const a44 Int)

; Initialize known values
(assert (= a12 4))
(assert (= a13 3))
(assert (= a14 2))
(assert (= a21 2))
(assert (= a23 1))
(assert (= a43 2))
(assert (= a44 3))

; Each cell must be between 1 and 4
(assert (and (>= a11 1) (<= a11 4)))
(assert (and (>= a22 1) (<= a22 4)))
(assert (and (>= a24 1) (<= a24 4)))
(assert (and (>= a31 1) (<= a31 4)))
(assert (and (>= a32 1) (<= a32 4)))
(assert (and (>= a33 1) (<= a33 4)))
(assert (and (>= a34 1) (<= a34 4)))
(assert (and (>= a41 1) (<= a41 4)))
(assert (and (>= a42 1) (<= a42 4)))

; Each number must appear exactly once in each row
(assert (distinct a11 a12 a13 a14))
(assert (distinct a21 a22 a23 a24))
(assert (distinct a31 a32 a33 a34))
(assert (distinct a41 a42 a43 a44))

; Each number must appear exactly once in each column
(assert (distinct a11 a21 a31 a41))
(assert (distinct a12 a22 a32 a42))
(assert (distinct a13 a23 a33 a43))
(assert (distinct a14 a24 a34 a44))

; Each number must appear exactly once in each 2x2 subgrid
(assert (distinct a11 a12 a21 a22))
(assert (distinct a13 a14 a23 a24))
(assert (distinct a31 a32 a41 a42))
(assert (distinct a33 a34 a43 a44))

; Check and get the model
(check -sat)
(get -model)

Figure 27: Logic-LM example: correct constraints for a sudoku instance generated by GPT-4-Turbo.
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""" Input Instance """
# 1 2 3 4 5 6 7 8 9 10
# 55

(declare -const a1 Bool)
(declare -const a2 Bool)
(declare -const a3 Bool)
(declare -const a4 Bool)
(declare -const a5 Bool)
(declare -const a6 Bool)
(declare -const a7 Bool)
(declare -const a8 Bool)
(declare -const a9 Bool)
(declare -const a10 Bool)

(assert (= (+ (ite a1 1 0) (ite a2 2 0) (ite a3 3 0) (ite a4 4 0) (ite a5 5 0) (ite a6 6 0) (ite a7 7
0) (ite a8 8 0) (ite a9 9 0) (ite a10 10 0)) 55))

(check -sat)
(get -model)

Figure 28: Logic-LM example: correct constraints for a subset sum instance generated by GPT-4-
Turbo.
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""" Input Instance """
# 8 3
# 0 1
# 0 2
# 2 4
# 3 4
# 3 7
# 6 7
# 0 6
# 5 1
# 5 0
# 5 2
# 5 4
# 5 3
# 5 7
# 5 6

; Declare colour variables for each vertex
(declare -const c0 Int)
(declare -const c1 Int)
(declare -const c2 Int)
(declare -const c3 Int)
(declare -const c4 Int)
(declare -const c5 Int)
(declare -const c6 Int)
(declare -const c7 Int)

; Constraint: Each colour variable must be in the range [0, K-1], where K=3 for this problem
(assert (and (>= c0 0) (< c0 3)))
(assert (and (>= c1 0) (< c1 3)))
(assert (and (>= c2 0) (< c2 3)))
(assert (and (>= c3 0) (< c3 3)))
(assert (and (>= c4 0) (< c4 3)))
(assert (and (>= c5 0) (< c5 3)))
(assert (and (>= c6 0) (< c6 3)))
(assert (and (>= c7 0) (< c7 3)))

; Constraint: Adjacent vertices must have different colours
(assert (not (= c0 c1)))
(assert (not (= c0 c2)))
(assert (not (= c2 c4)))
(assert (not (= c3 c4)))
(assert (not (= c3 c7)))
(assert (not (= c6 c7)))
(assert (not (= c0 c6)))
(assert (not (= c5 c1)))
(assert (not (= c5 c0)))
(assert (not (= c5 c2)))
(assert (not (= c5 c4)))
(assert (not (= c5 c3)))
(assert (not (= c5 c7)))
(assert (not (= c5 c6)))

; Check if there is a solution
(check -sat)

Figure 29: Logic-LM example: correct constraints for graph coloring instance generated by GPT-4-
Turbo.
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""" Input Instance """
# 0 1 3 0
# 4 3 2 1
# 0 4 1 0
# 1 0 0 0
(declare -const a11 Int)
(declare -const a12 Int)
(declare -const a13 Int)
(declare -const a14 Int)

(declare -const a21 Int)
(declare -const a22 Int)
(declare -const a23 Int)
(declare -const a24 Int)

(declare -const a31 Int)
(declare -const a32 Int)
(declare -const a33 Int)
(declare -const a34 Int)

(declare -const a41 Int)
(declare -const a42 Int)
(declare -const a43 Int)
(declare -const a44 Int)

(assert (and (>= a11 1) (<= a11 4)))
(assert (and (>= a12 1) (<= a12 4)))
(assert (and (>= a13 1) (<= a13 4)))
(assert (and (>= a14 1) (<= a14 4)))

(assert (and (>= a21 1) (<= a21 4)))
(assert (and (>= a22 1) (<= a22 4)))
(assert (and (>= a23 1) (<= a23 4)))
(assert (and (>= a24 1) (<= a24 4)))

(assert (and (>= a31 1) (<= a31 4)))
(assert (and (>= a32 1) (<= a32 4)))
(assert (and (>= a33 1) (<= a33 4)))
(assert (and (>= a34 1) (<= a34 4)))

(assert (and (>= a41 1) (<= a41 4)))
(assert (and (>= a42 1) (<= a42 4)))
### SYNTAX ERROR
(assert (>= a43 1) (<= a43 4)))
### SYNTAX ERROR
(assert (and (>= a44 1) (<= a44 4)))

(assert (distinct a11 a12 a13 a14))
(assert (distinct a21 a22 a23 a24))
(assert (distinct a31 a32 a33 a34))
(assert (distinct a41 a42 a43 a44))

(assert (distinct a11 a21 a31 a41))
(assert (distinct a12 a22 a32 a42))
(assert (distinct a13 a23 a33 a43))
(assert (distinct a14 a24 a34 a44))

(assert (distinct a11 a12 a21 a22))
(assert (distinct a13 a14 a23 a24))
(assert (distinct a31 a32 a41 a42))
(assert (distinct a33 a34 a43 a44))

(assert (distinct a11 a12 a13 a14))
(assert (distinct a21 a22 a23 a24))
(assert (distinct a31 a32 a33 a34))
(assert (distinct a41 a42 a43 a44))

(check -sat)
(get -model)

Figure 30: Logic-LM example: syntax error (highlighted by a comment) in constraints for sudoku
instance generated by GPT-3.5-Turbo.
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""" Input Instance """
# 1 0 0 2
# 4 0 1 0
# 2 0 0 1
# 3 0 2 0

; Declare the variables
(declare -const a11 Int)
(declare -const a12 Int)
(declare -const a13 Int)
(declare -const a14 Int)
(declare -const a21 Int)
(declare -const a22 Int)
(declare -const a23 Int)
(declare -const a24 Int)
(declare -const a31 Int)
(declare -const a32 Int)
(declare -const a33 Int)
(declare -const a34 Int)
(declare -const a41 Int)
(declare -const a42 Int)
(declare -const a43 Int)
(declare -const a44 Int)

; Initialize known values
(assert (= a11 1))
### ERROR
(assert (= a13 1))
### ERROR
(assert (= a21 4))
### ERROR
(assert (= a23 2))
### ERROR
(assert (= a31 2))
(assert (= a34 1))
(assert (= a41 3))
(assert (= a43 2))

; Each cell must be between 1 and 4
(assert (and (>= a12 1) (<= a12 4)))
(assert (and (>= a14 1) (<= a14 4)))
(assert (and (>= a22 1) (<= a22 4)))
(assert (and (>= a24 1) (<= a24 4)))
(assert (and (>= a32 1) (<= a32 4)))
(assert (and (>= a33 1) (<= a33 4)))
(assert (and (>= a42 1) (<= a42 4)))
(assert (and (>= a44 1) (<= a44 4)))

; Each number must appear exactly once in each row
(assert (distinct a11 a12 a13 a14))
(assert (distinct a21 a22 a23 a24))
(assert (distinct a31 a32 a33 a34))
(assert (distinct a41 a42 a43 a44))

; Each number must appear exactly once in each column
(assert (distinct a11 a21 a31 a41))
(assert (distinct a12 a22 a32 a42))
(assert (distinct a13 a23 a33 a43))
(assert (distinct a14 a24 a34 a44))

; Each number must appear exactly once in each 2x2 subgrid
(assert (distinct a11 a12 a21 a22))
(assert (distinct a13 a14 a23 a24))
(assert (distinct a31 a32 a41 a42))
(assert (distinct a33 a34 a43 a44))

; Check and get the model
(check -sat)
(get -model)

Figure 31: Logic-LM example: errors (highlighted comments) in constraints for sudoku instance
generated by GPT-4-Turbo.
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