NEURAL SOLVER SELECTION FOR COMBINATORIAL OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Machine learning has increasingly been employed to solve NP-hard combinatorial optimization problems, resulting in the emergence of neural solvers that demonstrate remarkable performance, even with minimal domain-specific knowledge. To date, the community has created numerous open-source neural solvers with distinct motivations and inductive biases. While considerable efforts are devoted to designing powerful single solvers, our findings reveal that existing solvers typically demonstrate complementary performance across different problem instances. This suggests that significant improvements could be achieved through effective coordination of neural solvers at the instance level. In this work, we propose the first general framework to coordinate the neural solvers, which involves feature extraction, selection model, and selection strategy, aiming to allocate each instance to the most suitable solvers. To instantiate, we collect several typical neural solvers with state-of-the-art performance as alternatives, and explore various methods for each component of the framework. We evaluated our framework on two extensively studied combinatorial optimization problems, Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP). Experimental results show that the proposed framework can effectively distribute instances and the resulting composite solver can achieve significantly better performance (e.g., reduce the optimality gap by 0.88% on TSPLIB and 0.71% on CVRPLIB) than the best individual neural solver with little extra time cost.

029 030

004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

031 032

033

043

1 INTRODUCTION

Combinatorial Optimization Problems (COPs) involve finding an optimal solution over a set of
combinatorial alternatives, which has broad and important applications such as logistics (Konstantakopoulos et al., 2022) and manufacturing (Zhang et al., 2019). To solve COPs, traditional approaches usually depend on heuristics designed by experts, requiring extensive domain knowledge
and considerable effort. Recently, machine learning techniques have been introduced to automatically discover effective heuristics for COPs (Bengio et al., 2021; Cappart et al., 2023), leading to the
burgeoning development of end-to-end neural solvers that employ deep neural networks to generate
solutions for problem instances (Bello et al., 2017; Kool et al., 2019; Joshi et al., 2019). Compared
to traditional approaches, these end-to-end neural solvers can not only get rid of the heavy reliance
on expertise, but also realize better inference efficiency (Bello et al., 2017).

To enhance the capabilities of neural solvers, a variety of methods have been proposed, with in-044 tensive effort on the design of frameworks, network architectures, and training procedures. For example, to improve the performance across different distributions, Jiang et al. (2022) proposed 046 adaptively joint training over varied distributions, and Bi et al. (2022) leveraged knowledge distil-047 lation to integrate the models trained on different distributions. For generalization on large-scale 048 instances, Fu et al. (2021) implemented a divide-and-conquer strategy, Luo et al. (2023) proposed a heavy-decoder structure to better capture the relationship among nodes, while Gao et al. (2024) utilized the local transferability and introduced an additional local policy model. Diffusion mod-051 els (Sun & Yang, 2023) have also been adapted to generate the distribution of optimal solutions, demonstrating impressive results. More works include bisimulation quotienting (Drakulic et al., 052 2023), latent space search (Chalumeau et al., 2023), local reconstruction (Cheng et al., 2023; Ye et al., 2024; Zheng et al., 2024) and so on.

formance with limited extra time consumption. Compared to the best individual solver, our frame-work reduces the optimality gap by 0.82% on synthetic TSP, 2.00% on synthetic CVRP, 0.88% on TSPLIB (Reinelt, 1991), and 0.71% on CVRPLIB Set-X (Uchoa et al., 2017). As this is the first preliminary attempt on neural solver selection for COPs, we also analyze the influence of various implementations of components, and provide some discussion on future improvements.

113 114 115

2 RELATED WORKS

- 116
- 117 118

2.1 END-TO-END NEURAL SOLVERS FOR COPS

Traditional approaches for COPs have achieved impressive results, but they often rely on problem-119 specific heuristics and domain knowledge by experts (Helsgaun, 2000; 2017). Instead, recent efforts 120 focus on utilizing end-to-end learning methods. A prominent fashion is autoregression, which em-121 ploys graph neural networks in an encoder-decoder framework and progressively extends a partial 122 solution until a complete solution is constructed (Vinyals et al., 2015; Bello et al., 2017; Kool et al., 123 2019). However, these methods tend to exhibit poor generalization performance across distribu-124 tions and scales (Joshi et al., 2022). To address the generalization issue, considerable efforts have 125 been dedicated within the community. For example, Zhou et al. (2023) took various distributions 126 and scales as different learning tasks and adopted meta-learning over them to obtain a generalizable 127 model. Bi et al. (2022) leveraged knowledge distillation, where models trained on different distributions are utilized as teacher models for one generalizable student model. Liu et al. (2024) used the 128 idea of prompt learning to realize zero-shot adaptation of the pertained model by selecting the most 129 matched prompt for instances. More efforts in autoregressive methods include instance-conditioned 130 adaptation (Zhou et al., 2024a), adversarial training (Wang et al., 2024) and nested local views (Fang 131 et al., 2024), to name a few. 132

Another popular kind of end-to-end learning methods is non-regressive, which predicts or generates
the distributions of potential solutions. Typically, Joshi et al. (2019); Ye et al. (2023) employed
graph neural networks to predict the probability of components appearing in an optimal solution,
represented with the form of heatmap. Diffusion models (Sun & Yang, 2023; Sanokowski et al.,
2024) have also been adapted to generate the distribution of optimal solutions, demonstrating better
expressiveness than classical push-forward generative models (Salmona et al., 2022).

139

140 2.2 SOLVING COPS WITH MULTIPLE NEURAL SOLVERS

142 Recent studies have made preliminary attempts to integrate multiple neural solvers to enhance overall performance on COPs. For example, Jiang et al. (2023) adopted ensemble learning, where mul-143 tiple neural solvers with identical architecture are trained on different instance distributions through 144 Bootstrap sampling to ensure diversity. During inference, the outputs of all the solvers are gathered 145 by average at each action step. Grinsztajn et al. (2023) proposed a population-based training method 146 Poppy, where multiple decoders with a shared encoder are trained simultaneously as a population 147 of solvers, with a reward targeting at maximizing the overall performance of the population. When 148 solving a problem instance, each solver generates solutions independently, and the best solution is 149 selected as the final result. However, these works suffer from heavy computation cost as multiple 150 solvers have to be run for each instance. Even they propose to share a common encoder for each 151 solver, experimental results still demonstrate undesired inference time (Grinsztajn et al., 2023). On 152 the other hand, different solvers share the same neural architecture, which may limit the diversity and thus the final performance. 153

154 Consider that the burgeoning community has proposed many methods from various perspectives, 155 resulting in diverse end-to-end neural solvers with different inductive biases. Properly coordinating 156 these neural solvers can potentially bring a significant improvement on overall performance. Mo-157 tivated by the observation in Figure 1(a) and 1(b), we propose to select suitable ones from a pool 158 of diverse individual solvers for each instance. Note that similar idea has been utilized in the area 159 of algorithm selection (Kerschke et al., 2019) and model selection (Zhang et al., 2023), but has never been explored in the area of neural combinatorial optimization. By solver selection at instance 160 level, any type of (existing or newly constructed) neural solver can be utilized, and only the selected 161 individual solvers need to be run in inference, thereby maintaining high efficiency.

162 3 THE PROPOSED FRAMEWORK

This section will introduce the proposed framework of coordinating neural solvers for COPs. In general, our target is learning to select the suitable solvers for each problem instance. To address this, our proposed framework comprises three key components:

- **Feature extraction**: To select the most suitable neural solvers for each instance, it is essential to extract the instance features, which is challenging as the COPs are usually intricate. In this work, we first utilize the graph attention encoder (Kool et al., 2019) to encode COP instances, and further propose a refined graph encoder with pooling, which can leverage the hierarchical structures of COPs to obtain better features.
 - Selection model: We train a neural selection model with the graph encoder to identify the most suitable solvers. Specifically, we implement two loss functions from the perspectives of classification and ranking.
- Selection strategies: Due to the complexity of COPs, it may be risky to rely solely on the selection model to consistently identify the most suitable solver. To address this, we propose compromise strategies that allow to allocate multiple solvers (if necessary) to a single instance based on the confidence levels of the selection model, pursuing better performance with limited extra cost.
- 179 180 181

168

169

170

171

172 173

174

175 176

177

In the following subsections, we will elaborate the three key components in our framework.

182 183 184

3.1 FEATURE EXTRACTION

185 For feature extraction, it depends on the COP to be solved. Here, we use the two most prevailing problems, TSP and CVPR, in the neural solver community for COPs (Kwon et al., 2020; Luo et al., 187 2023; Drakulic et al., 2023) as examples, which will also be employed in our experiments. TSP 188 and CVRP involve finding optimal routes over a set of nodes. For TSP, the objective is to find the 189 shortest possible route that visits each node exactly once and returns to the starting node. Each TSP 190 instance consists of nodes distributed in Euclidean space. For CVRP, the goal is to plan routes for 191 multiple vehicles to serve customer nodes with varying demands, starting and ending at a depot node, 192 while minimizing the total travel distance and satisfying vehicle capacity constraints (Dantzig & 193 Ramser, 1959). Both TSP and CVRP instances can be represented as fully connected graphs, where nodes correspond to locations (cities or customers). The graph representation makes them suitable 194 for encoding using Graph Neural Networks (GNNs), which can effectively capture the structural 195 information inherent in these problems (Khalil et al., 2017; Kool et al., 2019). In this paper, we 196 design two types of GNN-based encoders tailored for TSP and CVRP instances as follows. 197

Graph attention encoder. We take the CVRP as an example to describe the computation of the 199 graph encoder. The raw features $x \in \mathbb{R}^{N \times 3}$ of a CVRP instance are a set of nodes $\{(x_i, y_i, m_i) | i \in \mathbb{R}^{N \times 3}\}$ 200 [N], where (x_i, y_i) are the node coordinates, m_i is the node demand, N is the number of nodes, 201 and [N] denotes the set $\{1, 2, \ldots, N\}$. First, a linear layer is employed on every node for initial 202 node embeddings, i.e., $H^0 = xW$, where $W \in \mathbb{R}^{3 \times d}$ are the weights and d denotes the embedding 203 dimension. Given initial embeddings, multiple graph attention layers (Veličković et al., 2018; Kool 204 et al., 2019) are applied to iteratively update the node embeddings as $H^{l} = \text{AttentionLayer}^{l}(H^{l-1})$, 205 where $l \in [L]$ and L is the number of layers. Since the graphs of TSP and CVRP are both fully 206 connected, the graph attention layer covers every pair of nodes and self-connections, which becomes 207 similar to the self-attention mechanism (Vaswani et al., 2017). Details of the attention layer are 208 provided in Appendix A.1. Finally, the node embeddings output by the last layer are averaged to form the instance representation, as most COP encoders (Khalil et al., 2017; Kool et al., 2019) did. 209

210

Hierarchical graph encoder. Averaging the final node embeddings may result in sub-optimal instance representations that are too flat to effectively capture the hierarchical structures inherent in COPs (Goh et al., 2024). Inspired by (Lee et al., 2019), we design a hierarchical graph attention encoder to address this limitation, which successively downsamples the graph of an instance using graph pooling, and aggregates features from each downsampling level to construct a comprehensive graph representation, as illustrated in Figure 2.

216 The hierarchical graph encoder contains L blocks. In each 217 block, several graph attention layers are first applied, and then 218 the graph pooling layer selects representative nodes to form a 219 coarsened graph that preserves important features. Consider 220 the *l*-th block, where the number of selected nodes is denoted as N_l . To quantify the representativeness of each node for 221 graph pooling, an additional graph attention layer is introduced 222 to compute representative scores. Specifically, this graph attention layer computes score embeddings H_{score}^l based on the 224 current node embeddings H^l , which encode rich information 225 about the graph structure and node features. These score em-226 beddings H^l_{score} are then mapped to scalar representative scores 227 via linear layer. The complete process is shown as follows: 228

 $H^l_{\text{score}} = \text{AttentionLayer}^l_{\text{score}}(H^l), \ \ Z^l = \sigma(H^l_{\text{score}}W^l_{\text{score}}),$

Figure 2: Illustration of the hierarchical graph encoder.

where $Z^l \in \mathbb{R}^{N^{l-1} \times 1}$ are the representative scores of the N^{l-1} nodes preserved in the (l-1)-231 th block, σ is a non-linear function (here we use the tanh function), and $W_{\text{score}}^l \in \mathbb{R}^{d \times 1}$ are the 232 parameters of the linear layer. Subsequently, we sort the nodes according to their representative 233 scores and select top- N^l nodes ($N^l < N^{l-1} < N$) to preserve. To make this pooling layer trainable 234 via back-propagation (LeCun et al., 2002), we further combine the representative score together 235 with the embeddings of their corresponding nodes as follows: $\hat{H}^l = H^l + Z^l \mathbf{1}$, where $\mathbf{1} \in \mathbb{R}^{1 \times d}$ is 236 a vector with all the elements being 1. Intuitively, this operation can move the embeddings of high 237 scored nodes away from the embeddings of low scored nodes. 238

Figure 2 shows the complete encoder, where *L* blocks are stacked, and each block is formed by several graph attention layers followed by a pooling layer. By successively applying *L* encoder blocks, the number of preserved nodes gradually decreases according to $N^{l} = \alpha \cdot N^{l-1}$ (α is set to 0.8 in our experiments). This process constructs a hierarchy of the original graph and its coarsened versions, enabling the encoder to capture multi-level structural information effectively. Within each block, we apply a *readout* layer that aggregates the embeddings after the graph attention layers by mean pooling and max pooling (Lee et al., 2019), i.e.,

$$\boldsymbol{o}^l = \sigma(\operatorname{Mean}(H^l) \| \operatorname{Max}(H^l)),$$

where Mean() computes the average embedding over the nodes, Max() computes the maximum along the column dimension, || denotes concatenation, and σ is a non-linear function. The result o^l provides the representation of the *l*-th coarsened graph. At the last layer, we also readout o^{L+1} from the final embeddings. To form the hierarchical instance representation, we sum the representations of all levels as $o = \sum_{l=1}^{L+1} o^l$.

253 3.2 SELECTION MODEL

254 We employ a Multiple-Layer Perception (MLP) to predict compatibility scores of neural solvers, 255 where a higher score indicates that it is more suitable to allocate the instance to the corresponding 256 neural solver. This MLP model takes the instance representation and the instance scale N as input 257 and outputs a score vector, where the value of each index is the score of the corresponding neural 258 solver. In summary, the graph encoder and the MLP are cascaded to compose a neural selection 259 model, which can produce the compatibility scores of individual solvers from the raw COP instance 260 in an end-to-end manner. Advanced neural solver features can be incorporated for richer information, as discussed in Section 5. However, we find that even using fixed indices of neural solvers has 261 already been effective, which will be clearly shown in our experiments. 262

We train the selection model using a supervised dataset comprising thousands of synthetic COP instances. The objective values obtained by the neural solvers are recorded as supervision information. Intuitively, a neural solver with a lower objective value (for minimization) has a higher compatibility score. To learn such desired score output, we employ two losses from the perspectives of classification and ranking.

268

229

230

246

252

Classification. The selection problem is formulated as a classification task, where the most suitable neural solver for a given instance serves as the ground truth label. By employing classification

loss functions such as cross-entropy loss used in our experiments, we can train a selection model.
 However, this approach focuses on identifying the optimal neural solver and ignores sub-optimal solvers, which may lead to unsatisfactory performance when the selection is inaccurate.

Ranking. The neural solvers can be sorted according to the objective values they obtain, thereby forming a ranking of the given solvers, denoted by $\phi : [M] \to [M]$, where $\phi(i)$ is the index of the rank-*i* solver and *M* is the number of solvers. We then train the selection model by maximizing the likelihood of producing correct rankings based on the computed scores (Xia et al., 2008),

- 279
- 280 281

282

283

284

286

 $\max_{\theta} \mathbb{E}_{I} \left[\sum_{i=1}^{M} \log \frac{\exp(g_{\theta}(I)_{\phi_{I}(i)})}{\sum_{j=i}^{M} \exp(g_{\theta}(I)_{\phi_{I}(j)})} \right],$ where g_{θ} denotes the selection model with parameters θ , I denotes a problem instance, and ϕ_{I} is the ground-truth ranking on instance I. This ranking loss can leverage the dominance relationship of all neural solvers, including sub-optimal ones, which thus can make the selection more robust.

285 3.3 SELECTION STRATEGIES

Considering that the intricate structures of COPs may pose great challenge to the selection model,
 besides greedy selection, we propose several compromise strategies that allow multiple solvers for
 a single instance based on the confidence level of the selection model, aiming to improve the overall
 performance with little extra cost.

Greedy selection. The most straightforward approach is the greedy selection, which chooses the neural solver with the highest score. This method is efficient since only one solver is executed per instance. However, it may be inaccurate, potentially leading to sub-optimal performance.

Top-k selection. The top-k selection method can be adopted for better optimality, where we select and execute the neural solvers with top-k scores for each instance, thus constructing a *portfolio* of multiple solvers. This approach increases the likelihood of including the optimal solver but incurs additional computational overhead due to the execution of multiple solvers.

299

300 **Rejection-based selection.** To balance efficiency and effectiveness, we propose the rejection-301 based selection strategy, which adaptively selects greedy or top-k selection. Recognizing that the confidence of the greedy selection varies across instances, an advanced strategy is to employ the 302 top-k selection for low-confidence instances to enhance performance and utilize only the greedy 303 selection for high-confidence ones to minimize computational cost. To implement this strategy, we 304 can use a confidence measure to determine whether to accept or reject the greedy selection. If the 305 confidence in the greedy selection is below a threshold, we reject it and apply the top-k selection 306 to the instance for improved optimality. In this paper, we adopt the simple yet effective softmax 307 response (Hendrycks & Gimpel, 2017) as the confidence measure, and define the threshold by re-308 jecting a certain fraction of test instances with the lowest confidence levels. 309

Top-p selection. We further propose a top-p selection strategy that selects the smallest subset of solvers whose normalized scores (i.e., selection probabilities) sum up to at least p. The value of pis predefined or adjusted according to the time budget. Thus, this strategy adaptively determines the number of selected neural solvers by covering a certain amount of probability mass, rather than relying on a fixed number k.

315 316

317

4 EXPERIMENTS

To examine the effectiveness of our proposed selection framework, we conduct experiments on TSP and CVRP, investigating the following Research Questions (RQ): RQ1: How does the proposed selection framework perform compared to individual neural solvers? RQ2: How does the proposed selection framework perform when the problem distribution shifts and the problem scale increases?
RQ3: How do different implementations of components affect the performance of the framework? We introduce the experimental settings in Section 4.1 and investigate the above RQs in Section 4.2. The code and data used in our experiments are provided in the supplementary materials.

324 4.1 EXPERIMENTAL SETTINGS

Synthetic TSP and CVRP. We generate synthetic TSP and CVRP instances by sampling node
 coordinates from Gaussian mixture distributions with randomized covariance matrices. In the case
 of CVRP, vehicle capacities are generated using either the scale-related capacity or the triangular
 distribution. We consider varying problem scales, where the scale N is sampled uniformly from
 [50, 500]. More details of the data generation process are provided in Appendix A.2.

Datasets. For training, we generate 10,000 TSP and CVRP instances and apply 8-fold instance augmentation (Kwon et al., 2020). For test, we generate smaller synthetic datasets comprising 1,000 instances. Figures 1(a) and 1(b) in Section 1 are based on results from the CVRP test dataset. To evaluate the out-of-distribution performance, we utilize two well-known benchmarks with more complex problem distributions and larger problem scales (up to N = 1002): TSPLIB (Reinelt, 1991) and CVRPLIB Set-X (Uchoa et al., 2017). For TSPLIB, we select a subset of instances with $N \le 1002$, and CVRPLIB Set-X includes instances ranging from N = 100 to 1000. These problem scales are larger than the scale $N \in [50, 500]$ of our training datasets.

339

331

340 **Open-source neural solvers.** We choose recent open-source neural solvers with state-of-the-art 341 performance as the candidates, including Omni (Zhou et al., 2023), BQ (Drakulic et al., 2023), 342 LEHD (Luo et al., 2023), DIFUSCO (Sun & Yang, 2023), T2T (Li et al., 2023), ELG (Gao et al., 343 2024), INViT (Fang et al., 2024) and MVMoE (Zhou et al., 2024b). Greedy decoding is used for all the methods to avoid stochasticity. We set the pomo size to 100 and the augmentation number 344 to 8 for the methods based on POMO (Kwon et al., 2020). The number of denoising steps is set to 345 50 and the number of 2-opt iterations is set to 100 for diffusion-based methods. These individual 346 solvers constitute a neural solver zoo. Ideally, if we can always select the best solver from the 347 zoo for each instance, the optimal performance is achieved, which is also the performance upper 348 bound of our selection model. Considering that some neural solvers contribute little to the overall 349 performance, we iteratively eliminate the least contributive solver from the candidates, resulting in 350 a more compact neural solver zoo. This process reduces the zoo size to 7 solvers for TSP and 5 for 351 CVRP. Further details of the elimination procedure are provided in Appendix A.3.

352 353 Hyperparameters. (1) Hyperparameters of graph encoders. For the graph attention encoder, 354 we set the number of layers to 4. For the hierarchical graph encoder, we use 2 blocks where each 355 block has 2 attention layers. The embedding dimension is set to 128. Other hyperparameters of 356 encoders can be found in Appendix A.1. (2) Hyperparameters of training. The Adam optimizer (Kingma & Ba, 2015) is employed for training, where we set the learning rate to 1×10^{-4} 357 and the weight decay to 1×10^{-6} . The number of epochs is set to 50. The final model is chosen 358 according to the performance on a validation dataset with 1,000 synthetic instances. We train 5 359 selection models using different random seeds and report the mean and standard deviation of their 360 performance. (3) Hyperparameters of selection strategies. For the top-k strategy, we set k = 2. 361 For the rejection-based strategy, we reject the 20% of instances with the lowest confidence levels 362 (i.e., the highest selection probability of all individual solvers), and apply top-2 selection to these 363

364 365

366

367

368

369

370 371

372

Performance metrics. Following previous studies, we employ the gap to the best-known solution $\frac{c_I(\hat{\sigma})-c_I(\sigma^*)}{c_I(\sigma^*)}$ as the performance metric, called optimality gap, where $\hat{\sigma}$ is the solution obtained by each method, σ^* is the best-known solution computed by extensive search of expert solvers (Helsgaun, 2017; Vidal, 2022), and $c_I()$ is the cost function of problem instance *I*. We also report the average time to evaluate efficiency, which includes both the running of neural solvers and selection.

rejected instances. For the top-p strategy, we set p = 0.5 for TSP and p = 0.8 for CVRP.

4.2 EXPERIMENTAL RESULTS

RQ1: How does the proposed selection framework perform compared to individual neural solvers? In Table 1, we present the performance of several implementations of our selection framework on synthetic TSP and CVRP, alongside the results of the top-3 individual neural solvers¹. We can observe that all implementations of our framework outperform the best neural solver on both

¹DIFUSCO and T2T have multiple trained models. We only report the best results of these models.

Table 1: Empirical results on synthetic TSP and CVRP datasets, reporting the mean (standard deviation) over five independent runs. The top three individual solvers are included for comparison, and
Oracle denotes the optimal performance for selection, which is computed by running all individual solvers in the zoo for each instance and selecting the best one. The best individual solver and its results are underlined, and the best optimality gaps, excluding Oracle, are highlighted in boldface.

Methods	TSP		Methods	CVRP	
	Gap	Time		Gap	Time
BQ (3rd)	3.00%	1.40s	LEHD (3rd)	7.37%	1.01s
T2T (2nd)	2.40%	1.58s	BQ (2nd)	7.20%	1.598
DIFUSCO (1st)	2.33%	<u>1.45s</u>	Omni (1st)	<u>6.82%</u>	0.24s
Oracle	1.24%	8.93s	Oracle	4.64%	4.388
Selection by class	ification		Selection by classification		
Greedy	1.94% (0.02%)	1.36s (0.01s)	Greedy	5.35% (0.02%)	0.64s (0.
Top- k ($k = 2$)	1.53% (0.01%)	2.52s (0.04s)	Top- k ($k = 2$)	4.81% (0.01%)	1.87s (0.
Rejection (20%)	1.81% (0.01%)	1.63s (0.01s)	Rejection (20%)	5.19% (0.03%)	0.77s (0.
Top- $p (p = 0.5)$	1.84% (0.03%)	1.55s (0.06s)	Top- $p (p = 0.8)$	5.16% (0.03%)	0.87s (0.
Selection by ranki	inking		Selection by ranking		
Greedy	1.86% (0.01%)	1.33s (0.01s)	Greedy	5.31% (0.01%)	0.62s (0.
Top- $k(k=2)$	1.51% (0.02%)	2.56s (0.03s)	Top- $k(k=2)$	4.82% (0.01%)	1.90s (0.
Rejection (20%)	1.75% (0.02%)	1.63s (0.01s)	Rejection (20%)	5.15% (0.02%)	0.74s (0.
Top- $p (p = 0.5)$	1.68%(0.02%)	1.86s (0.07s)	Top- $p (p = 0.8)$	4.99% (0.02%)	1.03s (0.

400 TSP and CVRP, demonstrating the effectiveness of our framework. For example, using ranking loss 401 and the top-k selection strategy with k = 2, our framework achieves average optimality gaps of 402 1.51% on TSP and 4.82% on CVRP, surpassing the best individual solver's gaps of 2.33% on TSP 403 and 6.82% on CVRP, achieved by DIFUSCO and Omni, respectively. Moreover, except utilizing 404 the top-k strategy, our selection framework is nearly as efficient as running a single solver. In some cases, our framework can obtain better optimality gaps while consuming even less time. For in-405 stance, using ranking loss and greedy selection on TSP leads to the average optimality gap 1.86% 406 with 1.33s, while the best individual solver DIFUSCO achieves 2.33% gap with 1.45s. In Table 1, 407 Oracle (the fourth row) denotes the optimal performance for selection, which is obtained by running 408 all individual solvers for each instance and selecting the best one. The best optimality gaps achieved 409 by our selection framework (using ranking loss and top-k selection with k = 2) are close to Oracle, 410 with gaps of 1.51% on TSP and 4.81% on CVRP, compared to Oracle's gaps of 1.24% on TSP and 411 4.64% on CVRP. Furthermore, our framework can offer significant speed advantages over Oracle, 412 e.g., consuming an average time of 2.56s on TSP, whereas Oracle requires an average time of 8.93s. 413 Note that complete results for all individual solvers are provided in Appendix A.10. 414

Extension of RQ1: Is the performance of the top-k selection better than the solver portfolio 415 with the same size? The top-k strategy enhances the performance by running a selected subset of 416 the solver zoo for each instance, which certainly costs more time than individual solvers. For a fair 417 comparison, we benchmark our top-k selection method against a solver portfolio of the same size 418 k. We construct this solver portfolio by exhaustively enumerating all possible subsets of size k and 419 selecting the one with the best overall performance. As shown in Appendix A.5, our top-k selection 420 consistently outperforms the size-k solver portfolio across $k = \{1, 2, 3, 4\}$ on all datasets, i.e., TSP, 421 CVRP, TSPLIB and CVRPLIB Set-X, demonstrating the effectiveness of our selection model.

422 RQ2: How does the proposed selection framework perform when the problem distribution 423 shifts and the problem scale increases? We evaluate the generalization performance on two 424 benchmarks, TSPLIB and CVRPLIB Set-X, which contain out-of-distribution and larger-scale in-425 stances. As shown in Table 2, all implementations of our selection framework generalize well, where 426 the ranking model using top-k selection improves the optimality gap by 0.88% (i.e., 1.95%-1.07%) 427 on TSPLIB and by 0.71% (i.e., 6.10%-5.39%) on CVRPLIB Set-X, compared to the best individual solvers T2T and ELG on these two benchmarks. These results show that our selection framework is 428 robust against the distribution shifts and increases in problem scale. 429

430

RQ3: How do different implementations affect performance? We evaluate and compare different implementations of the three components in our framework:

451

Methods	TSPL	IB Methods		CVRPLIE	CVRPLIB Set-X	
Wiethous	Gap	Time	Wiethous	Gap	Time	
BQ (3rd)	3.04%	1.44s	BQ (3rd)	10.31%	2.60s	
DISFUCO (2nd)	2.13%	1.44s	Omni (2nd)	6.21%	0.38s	
T2T(lst)	1.95%	1.74s	ELG (1st)	6.10%	1.31s	
Oracle	$\overline{0.89\%}$	9.14s	Oracle	5.10%	6.81s	
Selection by class	ification		Selection by class	Selection by classification		
Greedy	1.54% (0.05%)	1.33s (0.02s)	Greedy	5.96% (0.12%)	1.06s (0.0	
Top- k ($k = 2$)	1.22% (0.10%)	2.47s (0.02s)	Top- $k(k=2)$	5.44% (0.08%)	2.40s (0.2	
Rejection (20%)	1.42% (0.11%)	1.54s (0.03s)	Rejection (20%)	5.83% (0.12%)	1.31s (0.0	
Top- $p (p = 0.5)$	1.49% (0.11%)	1.37s (0.02s)	Top- $p (p = 0.8)$	5.79% (0.09%)	1.42s (0.1	
Selection by ranki	ng		Selection by ranking			
Greedy	1.33% (0.06%)	1.28s (0.03s)	Greedy	5.76% (0.04%)	1.31s (0.1	
Top- $k(k=2)$	1.07% (0.03%)	2.48s (0.02s)	Top- $k(k=2)$	5.39% (0.06%)	2.56s (0.1	
Rejection (20%)	1.26% (0.03%)	1.51s (0.04s)	Rejection (20%)	5.63% (0.05%)	1.60s (0.	
Top $n(n - 0.5)$	1 280% (0.040%)	1 460 (0 060)	$T_{op} = (n - 0.8)$	5 610 (0.020)	1 72 0	

432 Table 2: Generalization results to TSPLIB and CVRPLIB Set-X datasets, which contain real-world 433 out-of-distribution instances with larger scales.

Table 3: Mean (standard deviation) of optimality gaps of different feature extraction methods. All the models are trained using ranking loss, and employ greedy selection.

	Datasets	Best solver	Manual	Attention encoder	Hierarchical encdoer
_	TSP CVRP	2.33% 6.82%	1.97% (0.01%) 5.49% (0.08%)	1.87% (0.02%) 5.30% (0.01%)	1.86% (0.01%) 5.31% (0.01%)
-	TSPLIB CVRPLIB	1.95% 6.10%	1.83% (0.03%) 6.35% (0.06%)	1.45% (0.11%) 5.87% (0.06%)	1.33% (0.06%) 5.76% (0.04%)

459 (1) Feature extraction methods. We compare the manual features (Smith-Miles et al., 2010) (see 460 Appendix A.4), graph attention encoder Kool et al. (2019), and hierarchical graph encoder in Table 3. All methods are trained using ranking loss, and we report the optimality gap with greedy selection. 461 As shown in Table 3, even the simplest manual features perform well, achieving better results than 462 the best individual solver across three datasets — TSP, CVRP, and TSPLIB. This further validates the 463 effectiveness of our selection framework. Comparing the third and fourth columns, we observe that 464 the graph attention encoder consistently outperforms manual features on all datasets, verifying the 465 superiority of learned features. Furthermore, by comparing the fourth and fifth columns, we find that 466 while the graph attention encoder has already been effective on synthetic datasets, introducing the 467 hierarchical encoder can further improve generalization performance on out-of-distribution datasets, 468 TSPLIB and CVRPLIB Set-X, which is quite important in practice. This enhanced generalization 469 capability may be attributed to the hierarchical encoder's ability to leverage the inherent hierarchical 470 structures in COPs. More ablation studies of the hierarchical encoder are provided in Appendix A.6.

471 (2) Loss functions to train the selection model. We can clearly observe from Tables 1 and 2 that 472 the model trained with ranking loss generally outperforms the one trained with classification loss, 473 particularly when employing top-p selection or under out-of-distribution settings. We also compare 474 their accuracy of selecting the best single individual, which is similar as shown Appendix A.8. 475 Thus, the benefit of ranking loss over classification loss shows the importance of incorporating the 476 dominance relationships among sub-optimal solvers, which can make the selection more robust.

477 (3) Selection strategies. Greedy selection is efficient by selecting only the predicted best solver. 478 Instead, top-k selection selects the best k solvers for better optimality gaps, but resulting in longer 479 time. Rejection-based and top-p selection provide a trade-off between optimality gap and time. 480 Here, we focus on the evaluation of rejection-based and top-p selection. We tune their hyperparam-481 eters (e.g., rejection ratio, k, and p) to obtain a range of results, provided in Appendix A.7. The 482 results show the rejection-based selection with smaller k (k = 2 or 3) tends to achieve better trade-483 off. Comparing top-p selection and rejection-based selection, their performance has no significant difference. This is expected, because both of their principles are running more individual neural 484 solvers when the confidence of the selection model is insufficient. However, the top-p selection may 485 be preferable in practice, where only one hyperparameter p is associated.

486 5 CONCLUSION AND DISCUSSIONS

488 In this paper, we propose a general framework for neural solver selection for the first time, which can 489 effectively select suitable solvers for each instance, leading to significantly better performance with 490 little additional computational time, as validated by the extensive experiments on two well-studied 491 COPs, TSP and CVRP. Besides TSP and CVRP, our proposed selection framework is adaptable to 492 other problems. For new problems, one only needs to customize the feature extraction component. For instance, when adapting our framework to scheduling problems, one can adjust the graph atten-493 tion encoder according to MatNet (Kwon et al., 2021) (i.e., add edge embeddings). We hope this <u>191</u> preliminary work can open a new line for the topic of neural combinatorial optimization. Within 495 the proposed selection framework, we preliminarily investigate several implementations of the three 496 key components: Feature extraction, training loss functions, and selection strategies. Techniques 497 such as hierarchical graph encoder, ranking loss, rejection-based selection, and top-p selection no-498 tably enhance overall performance. Beyond the techniques presented, we discuss several promising 499 avenues for further research under this framework. 500

Feature extraction for neural solvers. In our implementation, we only extracted features for 501 problem instances and used fixed indices for neural solvers, which assumes a static neural solver 502 zoo and can not directly utilize any newly added neural solver during deployment. To enable zeroshot generalization to unseen neural solvers, it is essential to construct a smooth feature space for 504 solvers, where those with similar preferences and biases are positioned closely together. Here we 505 design a preliminary method for extracting features of neural solvers to facilitate generalization 506 to unseen solvers. This method is based on the insight that a neural solver's preferences can be 507 characterized by representative instances where it significantly outperforms other solvers. For each 508 neural solver, we sort those instances where it performs the best in an ascending order according to 509 the ratio of the objective value that the solver obtains to the runner-up objective value, and select top 1% as its representative instances. Each representative instance is then treated as a token, and 510 we apply a transformer to learn a summary feature from these instance tokens, which serves as 511 the feature representation of the neural solver. Detailed implementations and results are provided 512 in Appendix A.9. The results show that the preliminary method enables generalization to unseen 513 neural solvers, where adding an extra solver can improve the selection performance. 514

Furthermore, advanced neural solver features should provide richer and deeper information than
only using instance features to increase the capacity of the selection model. However, our preliminary method is based on the representative instances and fails to provide deeper information into
the solvers' internal mechanisms. For future improvements, some approaches may be worth exploring, such as utilizing large language models to encode the code of neural solvers (Wu et al., 2024)
or learning neural representations from their trained parameters (Kofinas et al., 2024), which can access internal solver information, and potentially improving selection performance.

Runtime-aware selection for learn-to-seach solvers. In this paper, since the average runtime of 522 most individual neural solvers is short (approximately 1-2 seconds), we ignored their time difference 523 during the training of the selection model, and only used the objective values obtained by the neural 524 solvers as supervision information (by classification or ranking). However, if there are some time-525 consuming learn-to-search solvers, such as NeuOpt (Ma et al., 2021; 2023) and local reconstruction 526 methods (Kim et al., 2021; Ye et al., 2024), in the solver pool, the runtime should be considered in 527 the performance ranking. In such cases, developing a runtime-aware selection method to balance 528 computational time and solution optimality would be necessary. To address this, we could penalize 529 objective values based on time consumption or simultaneously optimize both metrics using multi-530 objective learning methods (Lin et al., 2022).

531 Enhance the neural solver zoo by training. As shown in Figure 6, current neural solvers can 532 exhibit complementary performance over instances without any modification, which has motivated 533 our framework of neural solver selection. Inspired by the population-based training (Grinsztajn 534 et al., 2023), we can further enhance their complementary ability through finetuning, i.e., each neural solver is finetuned on those instances where it performs the best. We can also train new solvers from 535 scratch by maximizing their performance contribution to the current solver zoo and iteratively add 536 such new solvers for enhancement. Moreover, to facilitate the training and deployment of a neural 537 solver zoo, it is essential to develop a unified platform that provides interfaces for executing and 538 training diverse neural solvers, such as an extension to the existing RL4CO (Berto et al., 2024).

540 REFERENCES

570

571

572

573

578

579

580

581

584

585

586

587 588

589

590

591

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, Gary Cottrell, and Julian J. McAuley. Rezero is all you need: fast convergence at large depth. In *Proceedings of the* 37th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 1352–1361, Virtual, 2021.

Yiwei Bai, Wenting Zhao, and Carla P. Gomes. Zero training overhead portfolios for learning to solve combinatorial problems. *arXiv:2102.03002*, 2021.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
 optimization with reinforcement learning. In *Proceedings of the 5th International Conference on Learning Representations (ICLR)*, Toulon, France, 2017.

- Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: A methodological tour d'horizon. *European Journal of Operational Research*, 290(2): 405–421, 2021.
- Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter Kool, Zhiguang Cao, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song, Changhyun Kwon, Lin Xie, and Jinkyoo Park. RL4CO: An extensive reinforcement learning for combinatorial optimization benchmark. arXiv:2306.17100, 2024. https://github.com/ai4co/rl4co.
- Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee.
 Learning generalizable models for vehicle routing problems via knowledge distillation. In *Advances in Neural Information Processing Systems 35 (NeurIPS)*, pp. 31226–31238, New Orleans, LA, 2022.
- Ricardo J. G. B. Campello, Davoud Moulavi, and Jörg Sander. Density-based clustering based on
 hierarchical density estimates. In *Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)*, pp. 160–172, Gold Coast, Australia, 2013.
 - Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar Veličković. Combinatorial optimization and reasoning with graph neural networks. *Journal of Machine Learning Research*, 24(130):1–61, 2023.
- Félix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexandre Laterre, and Tom Barrett. Combinatorial optimization with policy adaptation using latent space search. In *Advances in Neural Information Processing Systems 36 (NeurIPS)*, pp. 7947–7959, New Orleans, LA, 2023.
 - Hanni Cheng, Haosi Zheng, Ya Cong, Weihao Jiang, and Shiliang Pu. Select and optimize: Learning to aolve large-scale TSP instances. In *Proceedings of the 26th International Conference on Artificial Intelligence and Statistics (AISTATS)*, pp. 1219–1231, Valencia, Spain, 2023.
- George B Dantzig and John H Ramser. The truck dispatching problem. *Management Science*, 6(1): 80–91, 1959.
 - Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO: Bisimulation quotienting for generalizable neural combinatorial optimization. In Advances in Neural Information Processing Systems 36 (NeurIPS), pp. 77416–77429, New Orleans, LA, 2023.
 - Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. INViT: A generalizable routing problem solver with invariant nested view transformer. In *Proceedings of the 41st International Conference* on Machine Learning (ICML), pp. 12973–12992, Vienna, Austria, 2024.
- Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily large TSP instances. In *Proceedings of the 35th AAAI Conference on Artificial Intelligence* (AAAI), pp. 7474–7482, Virtual, 2021.

- Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural solvers for vehicle routing problems via ensemble with transferrable local policy. In *Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 6914–6922, Jeju, Korea, 2024.
- Yong Liang Goh, Zhiguang Cao, Yining Ma, Yanfei Dong, Mohammed Haroon Dupty, and Wee Sun
 Lee. Hierarchical neural constructive solver for real-world TSP scenarios. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)*, pp. 884–895, Barcelona, Spain, 2024.
- Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett. Win ner takes it all: Training performant RL populations for combinatorial optimization. pp. 48485–
 48509, New Orleans, LA, 2023.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (*CVPR*), pp. 770–778, Las Vegas, NV, 2016.
- Jonathan Heins, Jakob Bossek, Janina Pohl, Moritz Seiler, Heike Trautmann, and Pascal Kerschke.
 On the potential of normalized TSP features for automated algorithm selection. In *Proceedings* of the 16th ACM/SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA), pp. 1–15, Virtual Event, Austria, 2021.
- Keld Helsgaun. An effective implementation of the lin-kernighan traveling salesman heuristic. *European Journal of Operational Research*, 126(1):106–130, 2000.
- Keld Helsgaun. An extension of the lin-kernighan-helsgaun TSP solver for constrained traveling
 salesman and vehicle routing problems. Technical report, 2017.
- Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
 examples in neural networks. In *Proceedings of the 5th International Conference on Learning Representations (ICLR)*, Toulon, France, 2017.
- Yuan Jiang, Yaoxin Wu, Zhiguang Cao, and Jie Zhang. Learning to solve routing problems via distributionally robust optimization. In *Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI)*, pp. 9786–9794, Virtual, 2022.
- Yuan Jiang, Zhiguang Cao, Yaoxin Wu, Wen Song, and Jie Zhang. Ensemble-based deep reinforcement learning for vehicle routing problems under distribution shift. In *Advances in Neural Information Processing Systems 36 (NeurIPS)*, pp. 53112–53125, New Orleans, LA, 2023.
- Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network technique for the travelling salesman problem. *arXiv:1906.01227*, 2019.
- Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the
 travelling salesperson problem requires rethinking generalization. *Constraints*, 27(1-2):70–98,
 2022.
- Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. Automated algorithm selection: Survey and perspectives. *IEEE Transactions on Evolutionary Computation*, 27(1): 3–45, 2019.
- Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
 optimization algorithms over graphs. In *Advances in Neural Information Processing Systems 30 (NeurIPS)*, pp. 6348–6358, Long Beach, CA, 2017.
- Minsu Kim, Jinkyoo Park, and joungho kim. Learning collaborative policies to solve NP-hard routing problems. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems 34 (NeurIPS)*, pp. 10418–10430, 2021.
- 647 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *Proceedings* of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, 2015.

- Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J Burghouts, Efstratios Gavves, Cees GM Snoek, and David W Zhang. Graph neural networks for learning equivariant representations of neural networks. In *Proceedings of the 12th International Conference on Learning Representations (ICLR)*, Vienna, Austria, 2024.
- Grigorios D Konstantakopoulos, Sotiris P Gayialis, and Evripidis P Kechagias. Vehicle routing
 problem and related algorithms for logistics distribution: A literature review and classification.
 Operational Research, 22(3):2033–2062, 2022.
- Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In *Proceedings of the 7th International Conference on Learning Representations (ICLR)*, New Orleans, LA, 2019.
- Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
 POMO: Policy optimization with multiple optima for reinforcement learning. In *Advances in Neural Information Processing Systems 33 (NeurIPS)*, pp. 21188–21198, Virtual, 2020.
- Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Matrix
 encoding networks for neural combinatorial optimization. volume 34, pp. 5138–5149, Sydney,
 Australia, 2021.
- Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
 Neural networks: Tricks of the trade, volume 7700, pp. 9–48. 2002.
- Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In *Proceedings of the 36th International Conference on Machine Learning (ICML)*, pp. 3734–3743, Long Beach, California, 2019.
- Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2T: From distribution learning in training
 to gradient search in testing for combinatorial optimization. In *Advances in Neural Information Processing Systems 36 (NeurIPS)*, pp. 50020–50040, New Orleans, LA, 2023.
- Ki Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective combinatorial optimization. In *Proceedings of the 10th International Conference on Learning Representations (ICLR)*, Virtual, 2022.
- Fei Liu, Xi Lin, Weiduo Liao, Zhenkun Wang, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan.
 Prompt learning for generalized vehicle routing. In *Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 6976–6984, Jeju, Korea, 2024.
- Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
 heavy decoder: Toward large scale generalization. In *Advances in Neural Information Processing Systems 36 (NeurIPS)*, pp. 8845–8864, New Orleans, LA, 2023.
- Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang. Learning to iteratively solve routing problems with dual-aspect collaborative transformer. In *Advances in Neural Information Processing Systems 34 (NeurIPS)*, pp. 11096–11107, Virtual, 2021.
- ⁶⁸⁹
 ⁶⁹⁰ Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible regions of routing problems with flexible neural *k*-Opt. In *Advances in Neural Information Processing Systems 36 (NeurIPS)*, pp. 49555–49578, New Orleans, LA, 2023.
- Sahil Manchanda, Sofia Michel, Darko Drakulic, and Jean-Marc Andreoli. On the generalization
 of neural combinatorial optimization heuristics. In *Proceedings of the 33rd/26th Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD)*, pp.
 426–442, Grenoble, France, 2022.
- Mohammadreza Nazari, Afshin Oroojlooy, Martin Takáč, and Lawrence V Snyder. Reinforcement
 learning for solving the vehicle routing problem. In *Advances in Neural Information Processing Systems 31 (NeurIPS)*, pp. 9861–9871, Montréal, Canada, 2018.
- Gerhard Reinelt. TSPLIB A traveling salesman problem library. ORSA Journal on Computing, 3 (4):376–384, 1991.

702 703 704	Antoine Salmona, Valentin De Bortoli, Julie Delon, and Agnes Desolneux. Can push-forward gener- ative models fit multimodal distributions? In <i>Advances in Neural Information Processing Systems</i> 35 (NeurIPS), pp. 10766–10779, New Orleans, LA, 2022.
705	Sebastian Sanokowski. Senn Hochreiter and Sebastian Lehner. A diffusion model framework for
706	unsupervised neural combinatorial optimization. In <i>Proceedings of the 41st International Con</i> -
708	ference on Machine Learning (ICML), Vienna, Austria, 2024.
709	Moritz Seiler, Janina Pohl, Jakob Bossek, Pascal Kerschke, and Heike Trautmann, Deep learning as a
710	competitive feature-free approach for automated algorithm selection on the traveling salesperson
711	problem. In Proceedings of 16th International Conference on Parallel Problem Solving from
/12	Nature (PPSN), pp. 48–64, Leiden, The Netherlands, 2020.
714	Kate Smith-Miles, Jano Van Hemert, and Xin Yu Lim. Understanding TSP difficulty by learning
715 716	from evolved instances. In <i>Proceedings of the 4th International Conference on Learning and Intelligent Optimization (LION)</i> , pp. 266–280, Venice, Italy, 2010.
717	Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
718 719	mization. In Advances in Neural Information Processing Systems 36 (NeurIPS), pp. 3706–3731, New Orleans, LA, 2023.
720	Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
721	New benchmark instances for the capacitated vehicle routing problem. <i>European Journal of</i>
722	Operational Research, 257(3):845–858, 2017.
724	Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
725	Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
726	mation Processing Systems 30 (NeurIPS), pp. 5998–6008, Long Beach, CA, 2017.
727	Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
728 729	Bengio. Graph attention networks. In <i>Proceedings of the 6th International Conference on Learn-ing Representations (ICLR)</i> , Vancouver, Canada, 2018.
730	Thibaut Vidal, Hybrid genetic search for the CVRP: Open-source implementation and swap* neigh-
732	borhood. Computers & Operations Research, 140:105643, 2022.
733	Oriol Vinyals Meire Fortunato and Navdeen Jaitly Pointer networks. In Advances in Neural
734 735	Information Processing Systems 28 (NeurIPS), pp. 2692–2700, Montreal, Canada, 2015.
736	Chenguang Wang, Zhouliang Yu, Stephen McAleer, Tianshu Yu, and Yaodong Yang. ASP: Learn a
737 738	4102–4114, 2024.
739	David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE Trans-
740	actions on Evolutionary Computation, 1(1):67–82, 1997.
741	Xingyu Wu, Yan Zhong, Jibin Wu, Bingbing Jiang, and Kay Chen Tan. Large language model-
743	enhanced algorithm selection: Towards comprehensive algorithm representation. In Proceedings
744	of the 33rd International Joint Conference on Artificial Intelligence (IJCAI), pp. 5235–5244, Jeju, Korea, 2024
745	Kolea, 2024.
746	Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to learning to
747 748	<i>Learning (ICML)</i> , pp. 1192–1199, Helsinki, Finland, 2008.
749	Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. DeepACO: neural-enhanced ant
750 751	systems for combinatorial optimization. Advances in Neural Information Processing Systems 36
752	(<i>NeurIPS</i>), pp. 43706–43728, 2023.
753	Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. GLOP: Learning
754 755	global partition and local construction for solving large-scale routing problems in real-time. In <i>Proceedings of the 38th AAAI Conference on Artificial Intelligence</i> , pp. 20284–20292, Vancouver, Canada, 2024.

756 757 758	Jian Zhang, Guofu Ding, Yisheng Zou, Shengfeng Qin, and Jianlin Fu. Review of job shop schedul- ing research and its new perspectives under industry 4.0. <i>Journal of Intelligent Manufacturing</i> , 30:1809–1830, 2019.
760 761 762	Yi-Kai Zhang, Ting-Ji Huang, Yao-Xiang Ding, De-Chuan Zhan, and Han-Jia Ye. Model spider: Learning to rank pre-trained models efficiently. <i>Advances in Neural Information Processing Systems 36 (NeurIPS)</i> , pp. 13692–13719, 2023.
763 764 765	Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. UDC: A uni- fied neural divide-and-conquer framework for large-scale combinatorial optimization problems. <i>arXiv:2407.00312</i> , 2024.
766 767 768 769	Changliang Zhou, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Instance-conditioned adaptation for large-scale generalization of neural combinatorial optimiza- tion. <i>arXiv:2405.01906</i> , 2024a.
770 771 772	Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable neural methods for vehicle routing problems. In <i>Proceedings of the 40th International Conference on Machine Learning (ICML)</i> , pp. 42769–42789, Honolulu, HI, 2023.
773 774 775 776	Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. MVMoE: Multi-task vehicle routing solver with mixture-of-experts. In <i>Proceedings of the 39th Interna-</i> <i>tional Conference on Machine Learning (ICML)</i> , pp. 61804–61824, Vienna, Austria, 2024b.
777	
778	
779	
780	
781	
782	
783	
784	
785	
786	
787	
788	
789	
790	
791	
792	
793	
794	
795	
796	
797	
798	
200	
801	
802	
803	
804	
805	
806	
807	
808	
809	

810 A APPENDIX

812 A.1 GRAPH ATTENTION LAYER

The graph attention layer is composed of two sub-layers: a multi-head attention sub-layer (Vaswani et al., 2017) and a feed-forward sub-layer. Each sub-layer is equipped with residual connection (He et al., 2016) and ReZero normalization (Bachlechner et al., 2021) for stable convergence of training. Denote the embedding of the *i*-th node as h_i (i.e., the *i*-th row of H). Since the graphs of TSP and CVRP are typically considered to be fully connected, the graph attention layer is calculated as

 $\boldsymbol{h}_{i}^{l} = \boldsymbol{\hat{h}}_{i} + \alpha^{l} \mathrm{FF}(\boldsymbol{\hat{h}}_{i}),$

820

821 822 823

824

825

where l is the layer index, i is the node index, α^{l} is a learnable parameter used in the ReZero normalization, MHA and FF are short for the multi-head attention and the feed-forward network, respectively. For the implementations of the basic components MHA and FF, we refer to Vaswani et al. (2017) for details. Specifically, following the common settings of previous works, we set the dimension of h to 128, the number of heads in MHA to 8, and the hidden dimension of FF to 512.

 $\hat{\boldsymbol{h}}_i = \boldsymbol{h}_i^{l-1} + \alpha^l \text{MHA}_i^l(\boldsymbol{h}_1^{l-1}, \boldsymbol{h}_2^{l-1}, ..., \boldsymbol{h}_N^{l-1}),$

826 827 828

829

834

A.2 DATA GENERATION

Synthetic TSP and CVRP instances are generated for training, where the node coordinates, demands, and vehicle capacities are all sampled from manually defined distributions. The scale of each instance is sampled from [50, 500] randomly. Details of node coordinates, vehicle capacity, and node demands are introduced as follows.

Node coordinates To generate diverse training instances, we utilize Gaussian mixture distri-835 butions to sample the node coordinates for both TSP and CVRP, which is common in previous 836 works (Manchanda et al., 2022; Zhou et al., 2023) and demonstrates effectiveness on approximat-837 ing various node distributions with different hardness levels (Smith-Miles et al., 2010). First, we 838 randomly select the number of Gaussian components $c \sim U(0,15)$ (when c = 0, we use the 839 uniform distribution) and partition the nodes randomly into c groups, one for each component. For each Gaussian component, we sample the mean coordinates $\mu = (x_{\mu}, y_{\mu})$ by $x_{\mu} \sim U(0, 1)$ and $y_{\mu} \sim U(0, 1)$, and sample the variances var_x and var_y uniformly from [1, 100]. The covari-ance cov is sampled uniformly from $[-\sqrt{\operatorname{var}_x \cdot \operatorname{var}_y}, \sqrt{\operatorname{var}_x \cdot \operatorname{var}_y})$, forming the covariance matrix 840 841 842 $\Sigma = \begin{bmatrix} \operatorname{var}_{x} & \operatorname{cov} \\ \operatorname{cov} & \operatorname{var}_{y} \end{bmatrix}$. Node coordinates are sampled from the $N(\mu, \Sigma)$ and then scaled to the 843 844 845 square of $x, y \in [0, 1]$. Unlike conventional Gaussian mixture distributions (Manchanda et al., 2022; 846 Zhou et al., 2023), which often use an identity covariance matrix, our approach employs randomized covariance matrices Σ . This modification can produce more diverse instances by introducing more 847

variability in the node distributions.

849

Vehicle capacity and node demands We employ two vehicle capacity distributions to generate 850 CVRP instances: (1) Scale-related distribution (Zhou et al., 2023): The vehicle capacity is propor-851 tional to the scale N, defined as $Q = 30 + \left\lceil \frac{N}{5} \right\rceil$. (2) Triangular distributions (Uchoa et al., 2017): 852 The parameters of the triangular distribution include the upper limit ub, mode m, and lower limit 853 lb, which are randomly sampled in succession as follows: $ub \sim U(20, \frac{N}{2}), m \sim U(5, ub),$ and 854 $lb \sim U(3,m)$. The triangular distribution T(lb,m,ub) is then used to generate vehicle capaci-855 ties, resulting in more diverse CVRP instances compared to the fixed capacity setting (Nazari et al., 856 2018). Each capacity distribution is selected with equal probability. Node demands m_i are sampled 857 uniformly from U(1, 10) and normalized by dividing by Q. 858

859 860

A.3 ELIMINATE USELESS NEURAL SOLVERS

The preserved neural solvers should have distinct strengths in certain problem instances, ensuring
that they can bring significant improvements in overall performance. Motivated by this, we propose
a simple yet effective heuristic strategy to build the neural solver zoo based on the assessment of
their contribution to the overall performance.

Given the alternative neural solvers $S = \{s_1, s_2, s_3, ...\}$, we assess the contribution of a specific solver $s_i \in S$ by the degradation of performance after removing it. That is, the assessment of s_i can be formalized as

$$\mathcal{A}(s_i) = \mathbb{E}_I \left[\mathcal{P}_I(\boldsymbol{S}) - \mathcal{P}_I(\boldsymbol{S}/s_i) \right],$$

where $\mathcal{P}_{I}(\cdot)$ denotes the performance of a neural solver zoo on instance I. Here we use the percentage of the optimality gap to define $\mathcal{P}_I(\cdot)$ and employ a validation set for the estimation of expec-tations. According to this criteria, we can estimate the alternative solvers and remove the one with the lowest assessed contribution from S. This process repeats iteratively until for all $s_i \in S$, $\mathcal{A}(s_i)$ surpasses the predefined threshold δ , indicating the significance of each alternative neural solver. In practice, we collect the prevailing competitive neural solvers in the community to compose the original S and set δ as 0.01%.

The neural solver zoos before and after elimination are listed in Table 4. Note that for DIFUSCO and T2T, multiple models are released. We collect both the models trained on the N = 100 dataset and the N = 500 dataset as alternatives simultaneously.

Stage	Neural solver zoo for TSP	Neural solver zoo for CVRP
Before elimination	BQ, LEHD, Omni, ELG, INViT, DIFUSCO (N=100), DIFUSCO (N=500), T2T (N=100), T2T (N=500)	BQ, LEHD, Omni, ELG, INViT, MVMoE
After elimination	BQ, LEHD, ELG, DIFUSCO (N=100), DIFUSCO (N=500), T2T (N=100), T2T (N=500)	BQ, LEHD, Omni, ELG, MVMoE

Table 4: The neural solver zoo before and after elimination.

A.4 MANUAL FEATURES

We reproduce the manual features proposed by Smith-Miles et al. (2010), which use statistical in-formation and cluster analysis results to describe the characteristics of TSP. In this paper, we adopt these features: the standard deviation of the distances, the coordinates of the instance centroid, the radius of the TSP instance, the fraction of distinct distances, the variance of the normalized nearest neighbour distances (nNNd's), the coefficient of variation of the nNNd's, the ratio of the number of clusters to the number of nodes (Here we use HDBSCAN algorithm (Campello et al., 2013) to generate clusters), the ratio of number of outliers to nodes, and the mean radius of the clusters. For CVRP, we further add the mean and standard deviation of node demands to the features.

918 A.5 RESULTS OF TOP-k SELECTION.

We compare the performance of our top-k selection and the solver portfolio with the same size k on four datasets, including TSP, CVRP, TSPLIB and CVRPLIB Set-X. As shown in Figure 3, our top-k selection consistently outperforms the size-k solver portfolio across $k \in \{1, 2, 3, 4\}$. We also observe that the performance of our top-k selection is close to the Oracle when k = 4. Moreover, it is expected that the performance improvement of our top-k selection gradually diminishes as k increases, since the performance of solver portfolio is also approaching the Oracle (the gray line).

Related works, such as ZTop (Bai et al., 2021), employ a fixed set of neural solvers to construct a portfolio for all instances, resembling the static portfolio approach compared in this study. In contrast, our top-k selection strategy dynamically constructs instance-specific portfolios, offering greater flexibility and a higher potential for performance improvement. As demonstrated in Figure 3, our method consistently outperforms the static portfolio approach across all portfolio sizes.

Figure 3: Comparisons of the proposed top-k selection and the solver portfolio with size k.

972 A.6 ABLATION OF THE HIERARCHICAL GRAPH ENCODER.

The proposed hierarchical graph encoder utilizes graph pooling to downsample the instance graph
and aggregates features obtained from multiple levels of the downsampled graphs. To evaluate the
effectiveness of the graph pooling, we employ a graph encoder that aggregates the features from
multiple layers for comparison, which is a clear ablation study since the main difference is that it
does not have the graph pooling operation.

The results in Table 5 show that using our hierarchical graph encoder outperforms the encoder that
simply accumulates multi-layer features, especially in terms of the generalization performance on
CVRPLIB Set-X. This demonstrates the effectiveness of the graph pooling operation.

Table 5: Ablation study of hierarchical graph encoder. We report the mean and standard deviation of five independent runs. All the models are trained using ranking loss, and employ greedy selection.

	Datasets	Attention encoder	+ Multi-layer features	Hierarchical encoder
-	TSP	1.87% (0.02%)	1.87% (0.01%)	1.86% (0.01%)
	CVRP	5.30% (0.01%)	5.30% (0.02%)	5.31% (0.01%)
-	TSPLIB	1.45% (0.11%)	1.35% (0.05%)	1.33% (0.06%)
	CVRPLIB	5.87% (0.06%)	5.86% (0.08%)	5.76% (0.04%)

To evaluate the computational efficiency of the hierarchical encoder, we provide detailed comparisons of the computation cost and optimality between our hierarchical encoder and a typical graph encoder. The results are shown in Table 6, which includes the inference time per instance on TSPLIB, training time per epoch, and the average optimality gap on TSPLIB.

 Table 6: Comparisons of the computation cost and optimality between our hierarchical encoder and a typical attention encoder.

Methods	Inference time of selection model	Inference time of neural solvers	Training time each epoch	Optimality gap
Naive attention encoder	0.0054s	1.2600s	1m40s	1.54%
Hierarchical encoder	0.0070s	1.2961s	2m30s	1.37%

1004 We can observe from the second column that the introduction of our hierarchical encoder will increase the inference time of the selection model a little bit, e.g., from 0.0054s to 0.0070s. However, 1005 as shown in the second and third columns, the inference time of the selection model is orders of magnitude shorter than that of the neural solvers, so the inference efficiency of the selection model 1007 is less of a concern. The fourth column shows that the training time per epoch of the naïve encoder 1008 and the hierarchical encoder are 1m40s and 2m30s, respectively. Although the hierarchical encoder 1009 slows the training, the total runtime for 50 epochs is still only 2 hours, which is acceptable in most 1010 scenarios. Therefore, the performance metric (i.e., optimality gap) of different encoders is more cru-1011 cial, especially the generalization performance. If the encoder learns robust representations, we can 1012 directly transfer the selection model to different datasets in a zero-shot manner, saving the time for 1013 fine-tuning and adaptation. Considering the better generalization (e.g., the optimality gap decreases 1014 from 1.54% to 1.37%), we believe that the proposed hierarchical encoder is a better choice.

1015

982

983

992

993

994

995 996

997

9989991000100110021003

1016 A.7 DETAILED COMPARISONS OF SELECTION STRATEGIES 1017

1018According to the mechanisms of the four selection strategies, they have different preferences in the
trade-off of efficiency and optimality. Generally, for efficiency, Greedy > Rejection \approx Top-p >
Top-k, for optimality, Top-k > Rejection \approx Top-p > Greedy. Meanwhile, the hyper-parameters of
them can be used for balancing efficiency and optimality as well. As a result, the choice of differ-
ent selection strategies can be decided by the users according to their preference, and we suggest
using Top-p or Rejection as the default choices since they can adaptively select solvers based on the
confidence of the selection model.

1025 The rejection-based selection and top-p selection are both designed to achieve better performance with little additional time consumption. To evaluate them in detail, we tune their parameters (e.g.,

1026 rejection ratio, k, and p) to obtain a range of results. For the rejection-based selection, we use 1027 $k \in \{2,3,4\}$ and vary the rejection ratio from 0.05 to 0.85 in increments of 0.05. For the top-1028 p selection, we adjust the value of p from 0.40 to 0.95 in increments of 0.01. The results of the 1029 optimality gap and time consumption are provided in Figure 4. As shown in the figures, the rejection 1030 strategy with smaller k tends to achieve better optimality gaps using the same time consumption. Therefore, we recommend k = 2 or 3 when using rejection-based selection. Comparing top-p 1031 selection and rejection-based selection, we can not definitively conclude which strategy is superior, 1032 which is expected since they share a similar idea of utilizing confidence levels to decide whether 1033 to employ multiple solvers. However, the top-p selection may be preferable in practice due to its 1034 simplicity, where only a single hyperparameter p requires tuning. 1035

Furthermore, these results highlight p and the rejection ratio as important hyperparameters that allow users to balance efficiency and optimality. Though using a fixed value has led to good performance in our experiments, we believe that adaptively adjusting p and rejection ratio for each instance could further improve performance. Therefore, it is interesting to develop an instance-specific adapter for p or rejection ratio by leveraging instance features, which we leave for future works.

Figure 4: Performance of the rejection-based and top-*p* selection.

5 A.8 SELECTION ACCURACY

1063 1064

1066

We present the accuracy of selecting the optimal neural solver in Table 7. The results show that the ranking model and classification model generally have similar selection accuracy, except that the ranking model achieves better accuracy than the classification model on CVRPLIB.

Table 7: Accuracy of models trained by different losses using greedy selection. We report the mean and standard deviation of five independent runs.

1073	Metrics	Classification	Ranking
1074			
1075	Accuracy on TSP	36% (1%)	35% (1%)
1076	Accuracy on CVRP	61% (1%)	62% (0%)
1077	Accuracy on TSPLIB	40% (3%)	40% (7%)
1078	Accuracy on CVRPLIB	52% (2%)	56% (3%)
1079			

1080 A.9 NEURAL SOLVER FEATURES

To enable generalization to unseen neural solvers, we design a preliminary feature extraction method for neural solvers, which utilizes representative instances to represent a neural solver. For each neural solver, we sort those instances where the neural solver performs the best in an ascending order according to the ratio of the objective value that the solver obtains to the runner-up objective value, and select the top 1% as its representative instances. Then, we use an instance encoder to obtain embeddings for each representative instance, serving as their token vectors. A transformer with two layers is employed to learn a summary feature from these instance tokens, which serves as the feature representation of the neural solver. More details are described as follows.

1090

Instance tokenization. We use a hierarchical graph encoder as the tokenization encoder to generate embeddings for each representative instance. Note that the parameters θ' of the tokenization encoder are not updated by back-propagation. Instead, to stabilize the instance tokens during training, we update θ' using a momentum-based moving average of the parameters θ of the instance feature encoder: $\theta' \leftarrow m \cdot \theta' + (1 - m) \cdot \theta$, where $m \in [0, 1)$ is a momentum coefficient (We set m = 0.99 in experiments). Only the parameters θ are updated via back-propagation. This momentum update ensures that θ' evolves more smoothly than θ , resulting in stable instance tokenization.

1097

Transformer architecture. For each neural solver, we utilize the tokens of its representative instances along with a learnable summary token to compute a summary representation. We apply two
attention layers for this purpose. The first layer is a self-attention mechanism applied over all tokens (including the summary token), enabling interactions among them. The second attention layer
uses only the summary token as the query and all tokens as keys and values, effectively aggregating
information from all tokens into the summary token. The final embedding of the summary token is
then output as the neural solver's representation.

Selection model with neural solver feature. The selection model integrates both the instance features and the neural solver features to output a score for each instance-solver pair. We employ an MLP to compute these scores. For each instance, the scores across all neural solvers are normalized to derive the probability distribution for solver selection.

To integrate a newly added neural solver, we first identify its representative instances from the training dataset and employ the aforementioned networks to compute its feature representation. The selection model can then leverage this new solver by considering its feature during selection, without the need for any fine-tuning.

To evaluate the effectiveness of this method, we remove the second-best neural solver from the 1114 current solver zoo, train the selection model using the supervision information provided by the 1115 pruned solver zoo, and reintroduce the removed solver during testing. Figure 5 presents the top-1116 k selection performance with and without the newly added (extra) solver. The results show that 1117 the performance with the newly added solver is generally better than the performance without it, 1118 demonstrating that the selection model can leverage the information of unseen solvers without any 1119 finetuning. In other words, the selection model can generalize to unseen solvers. However, we 1120 observe a slight decrease in top-1 performance, indicating that the preliminary method requires 1121 further improvement.

1122

Figure 5: Performance of introducing an extra neural solver based on the neural solver feature. The results of top-k selection with and without extra neural solver are presented.

1134 A.10 COMPLETE RESULTS WITH ALL NEURAL SOLVERS

Table 8: Empirical results on synthetic TSP and TSPLIB datasets, reporting the mean (standard deviation) over five independent runs. All individual solvers are included for comparison, and Oracle denotes the optimal performance for selection, which is computed by running all individual solvers in the zoo for each instance and selecting the best one. The best individual solver and its results are underlined, and the best optimality gaps, excluding Oracle, are highlighted in boldface. The suffixes '-N100' and '-N500' indicate models trained on datasets with N=100 and N=500, respectively. Obj denotes the average objective value on the dataset.

Methods		TSP	
memous	Obj	Gap	Time
BQ	8.13	3.00%	1.61s
ELG	8.18	3.70%	0.45s
LEHD	8.17	3.57%	0.86s
T2T-N100	8.08	2.48%	1.71s
T2T-N500	8.08	2.40%	1.98s
DIFUSCO-N100	8.11	2.84%	1.46s
DIFUSCO-N500	8.07	2.33%	1.458
Oracle	7.99	1.24%	8.93s
Selection by classificati	on		•
Greedy	8.04 (0.00)	1.94% (0.02%)	1.36s (0.01s
Top- $k(k=2)$	8.01 (0.00)	1.53% (0.01%)	2.52s (0.04s
Rejection (20%)	8.03 (0.00)	1.81% (0.01%)	1.63s (0.01s
Top- $p (p = 0.5)$	8.03 (0.00)	1.84% (0.03%)	1.55s (0.06s
Selection by ranking			1
Greedy	8.04 (0.00)	1.86% (0.01%)	1.33s (0.01s
Top- k ($k = 2$)	8.01 (0.00)	1.51%(0.02%)	2.56s (0.03s
Rejection (20%)	8.03 (0.00)	1.75% (0.02%)	1.63s (0.01s
Top- $n (n = 0.5)$	8.02 (0.00)	1.68% (0.02%)	1.86s (0.07s
		TSPLIB	
Methods	Obj	Gap	Time
BO	8 29		1 44s
ELC S	8 20	3.05%	0.40s
LEU	8.29	2 57%	0.408
T2T-N100	8.20	2.5770	1.76s
T2T-N500	8.22	1.05%	1.708
DISEUCO N100	$\frac{0.21}{8.23}$	$\frac{1.95\%}{2.25\%}$	$\frac{1.748}{1.446}$
DISPUCO-N100	8.23	2.23%	1.448
Oracle	8.12	0.89%	9 14s
Selection by classificati	on	0.07 //	91110
Greedy	8 17 (0 00)	1 54% (0 05%)	1 338 (0.025
Top- $k(k-2)$	8 15 (0.01)	1.22% (0.10%)	2 47s (0.02s
Rejection (20%)	8 16 (0.01)	1.22%(0.10%) 1.42%(0.11%)	1 54s (0.03s
Top- $n(n=0.5)$	8 17 (0.01)	1.12%(0.11%) 1.49%(0.11%)	1.37s (0.02s
$\frac{10p \cdot p (p = 0.5)}{\text{Selection by ranking}}$	0.17 (0.01)	1.4970 (0.1170)	1.573 (0.023
		1.2207 (0.0007)	1.00 (0.02
Greedy	8.16 (0.00)	1.33% (0.06%)	1.28s (0.03s
$10p-k \ (k=2)$	$\frac{8.14(0.00)}{9.15(0.00)}$		2.48s (0.02s
Rejection (20%)	8.15 (0.00)	1.26% (0.03%)	1.51s (0.04s
			1 1 1 4 6 7 (1) (1) 4 6

1185

1186

Table 9: Empirical results on synthetic CVRP and CVRPLIB Set-X datasets, reporting the mean (standard deviation) over five independent runs. All individual solvers are included for comparison.
Obj denotes the average objective value on the dataset.

Methods	CVRP		
memous	Obj	Gap	Time
BQ	18.39	7.20%	1.59s
ELG	18.49	7.81%	0.82s
LEHD	18.42	7.37%	1.01s
MVMoE	19.48	13.56%	0.70s
Omni	18.32	6.82%	0.24s
Oracle	17.95	4.64%	4.38s
Selection by classificat	ion		
Greedy	18.07 (0.00)	5.35% (0.02%)	0.64s (0.01s
Top- $k(k=2)$	17.98 (0.00)	4.81% (0.01%)	1.87s (0.03s
Rejection (20%)	18.04 (0.01)	5.19% (0.03%)	0.77s (0.01s
Top- $p (p = 0.8)$	18.04 (0.01)	5.16% (0.03%)	0.87s (0.08s
Selection by ranking			·
Greedy	18.06 (0.00)	5.31% (0.01%)	0.62s (0.01s
Top- $k(k=2)$	17.98 (0.00)	4.82% (0.01%)	1.90s (0.04s
Rejection (20%)	18.04 (0.00)	5.15% (0.02%)	0.74s (0.01s
Top- $p (p = 0.8)$	18.01 (0.00)	4.99% (0.02%)	1.03s (0.03s
Methods		CVRPLIB Set-X	
	Obj	Gap	Time
BQ	71.21	10.31%	2.60s
ELG	<u>68.50</u>	6.10%	<u>1.31s</u>
LEHD	73.40	13.70%	1.60s
MVMoE	74.59	15.54%	0.90s
Omni	68.57	6.21%	0.38s
Oracle	67.85	5.10%	6.81s
Selection by classificat	ion		
Greedy	68.41 (0.08)	5.96% (0.12%)	1.06s (0.08s
Top- $k(k=2)$	68.07 (0.05)	5.44% (0.08%)	2.40s (0.25s
Rejection (20%)	68.32 (0.08)	5.83% (0.12%)	1.31s (0.09s
Top- $p (p = 0.8)$	68.30 (0.06)	5.79% (0.09%)	1.42s (0.17s
Selection by ranking			•
	68.28 (0.03)	5.76% (0.04%)	1.31s (0.10s
Greedy			256 (0.12)
Greedy Top- k ($k = 2$)	68.04 (0.04)	5.39% (0.06%)	2.308 (0.158
Greedy Top- k ($k = 2$) Rejection (20%)	68.04 (0.04) 68.19 (0.03)	5.39% (0.06%) 5.63% (0.05%)	1.60s (0.08s

1242 A.11 SEPARATE RESULTS OF DIFFERENT SCALES

1244 We provide separate results of different scales for a deeper investigation, where we divide the 1245 $N \in [50, 500]$ to four subsets as shown in the first row of Table 10. The results in Tables 10 1246 and 11 demonstrate that our selection method consistently outperforms the single best solver across 1247 different problem scales on both TSP and CVRP datasets.

Table 10: Separate results according to problem scale N on synthetic TSP dataset. We report the mean (standard deviation) optimality gap over five independent runs.

Methods / N	[50, 200]	(200, 300]	(300, 400]	(400, 500]
Single best solver Oracle	0.96% 0.39%	2.34% 1.19%	2.78% 1.70%	2.98% 2.18%
Ours (Greedy)	0.84% (0.03%)	2.01% (0.02%)	2.43% (0.02%)	2.71% (0.03%)
Ours (Top- $k, k = 2$)	0.61% (0.02%)	1.53% (0.03%)	1.99% (0.03%)	2.41% (0.05%)
Ours (Rejection, 20%)	0.75% (0.04%)	1.86% (0.04%)	2.33% (0.03%)	2.62% (0.02%)
Ours (Top- $p, p = 0.5$)	0.71% (0.02%)	1.70% (0.02%)	2.24% (0.04%)	2.57% (0.04%)

Table 11: Separate results according to problem scale N on synthetic CVRP dataset. We report the mean (standard deviation) optimality gap over five independent runs.

3	Methods / N	[50, 200]	(200, 300]	(300, 400]	(400, 500]
+ - 5 6	Single best solver Oracle	3.95% 2.17%	6.06% 4.33%	7.76% 5.74%	9.24% 7.40%
	Ours (Greedy) Ours (Top- k , $k = 2$) Ours (Rejection, 20%) Ours (Top- p , $p = 0.5$)	2.85% (0.03%) 2.32% (0.02%) 2.64% (0.02%) 2.36% (0.02%)	4.87% (0.02%) 4.54% (0.02%) 4.70% (0.03%) 4.70% (0.04%)	6.47% (0.05%)5.91% (0.03%)6.22% (0.02%)6.21% (0.05%)	8.09% (0.01%) 7.55% (0.03%) 7.91% (0.03%) 7.81% (0.02%)

1271 1272

1273

1286

A.12 ADDITIONAL RESULTS FOR MORE NEURAL SOLVERS AND LARGER-SCALE DATASETS

We add several new solvers to our pool, increase the problem scale from $N \in [50, 500]$ to $N \in [500, 2000]$, and use the enhanced solver pool to conduct new experiments. The results shown in Table 12 demonstrate that our framework can be compatible with more neural solvers and can also improve performance over the single best solver on larger-scale instances.

For details, we add two divide-and-conquer solvers, GLOP Ye et al. (2024) and UDC Zheng et al. (2024), to our solver pool, which can significantly enhance the overall performance. The construction of our solver pool now considers reinforced (ELG, INViT), supervised (BQ, LEHD), metalearning-based (Omni), diffusion-based (DIFUSCO, T2T), and divide-and-conquer (GLOP, UDC) methods. The experimental results have shown that our proposed framework can effectively combine the advantages of these neural solvers and significantly improve performance.

Table 12: Experimental results on the larger-scale instances with $N \in [500, 2000]$. We report the mean (standard deviation) over five independent runs.

1287	Methods	Synthetic TSP with $N \in [500, 2000]$			
1288		Gap	Time		
1290	Single best solver	6.104%	8.369s		
1291	Ours (Greedy) Ours (Top $k, k = 2$)	5.540% (0.038%)	8.322s (0.036s) 15 566s (0.085s)		
1292	Ours (10p- κ , $\kappa = 2$)	5.50970 (0.00570)	15.5008 (0.0658)		
1293	Single best of new solver pool	3.562%	5.274s		
1294	Ours with new solvers (Greedy)	3.126% (0.002%)	6.892s (0.006s)		
1295	Ours with new solvers (10p- k , $k = 2$)	2.955% (0.005%)	13./138 (0.0368)		

A.13 COMPARISONS WITH TRADITIONAL ALGORITHM SELECTION METHODS

1298 To further demonstrate the effectiveness of our proposed techniques, we provide additional comparison results between our proposed method and existing algorithm selection methods for non-1299 neural TSP solvers (Smith-Miles et al., 2010; Seiler et al., 2020), as shown in Table 13. In fact, the 1300 method of using features from Smith-Miles et al. (2010) and our ranking model was also compared 1301 in Table 3. The R package salesperson² provides the up-to-now most comprehensive collection 1302 of features for TSP and is widely used in algorithm selection methods (Seiler et al., 2020; Heins 1303 et al., 2021). Based on the feature set of salesperson, we reproduce an advanced algorithm selection 1304 method (Seiler et al., 2020) following the pipeline that computes hand-crafted features, conducts 1305 feature selection, and applies random forest for classification, where we employ the univariate sta-1306 tistical test to select important features. Besides, we also combine the *salesperson* features with our 1307 ranking model for ablation, denoted by "Seiler et al. (2020) + Ranking" in Table 13. 1308

Table 13: Comparison experiments with algorithm selection methods for TSP. We report the mean (standard deviation) over five independent runs.

Methods	Synthetic TSP		TSPLIB	
headeds	Gap	Time	Gap	Time
Single best solver Oracle	2.33% 1.24%	1.45s 8.93s	1.95% 0.89%	1.74s 9.14s
Algorithm selection methods				
Smith-Miles et al. (2010) + Ranking Seiler et al. (2020) Seiler et al. (2020) + Ranking	1.97% (0.01%) 2.12% (0.04%) 1.95% (0.01%)	1.37s (0.01s) 1.35s (0.00s) 1.33s (0.03s)	1.83% (0.03%) 1.56% (0.01%) 1.55% (0.03%)	1.32s (0.05s) 1.34s (0.05s) 1.27s (0.06s)
Our selection method using ranking			·	
Greedy Top- k ($k = 2$) Rejection (20%) Top- p ($p = 0.5$)	1.86% (0.01%) 1.51% (0.02%) 1.75% (0.02%) 1.68% (0.02%)	1.33s (0.01s) 2.56s (0.03s) 1.63s (0.01s) 1.86s (0.07s)	1.33% (0.06%) 1.07% (0.03%) 1.26% (0.03%) 1.28% (0.04%)	1.28s (0.03s) 2.48s (0.02s) 1.51s (0.04s) 1.46s (0.06s)

1325 The experimental results in Table 13 indicate that our proposed method can achieve superior perfor-1326 mance than advanced algorithm selection methods on both synthetic TSP and TSPLIB. Comparing 1327 the fifth and sixth rows, our proposed hierarchical encoder demonstrates superior performance over 1328 the salesperson features, especially on the out-of-distribution benchmark TSPLIB. Additionally, the comparison of the fourth and fifth rows shows that our deep learning-based ranking model achieves 1329 better results than traditional classification methods. Furthermore, the results of the last three rows 1330 illustrate that our proposed adaptive selection strategies effectively enhance optimality with minimal 1331 increases in time consumption. 1332

1333

1334 A.14 EXPLANATION FOR THE DATASET CHOICE

Most NCO methods use specific benchmarks with fixed distributions and scales, like uniform TSP datasets, to evaluate the optimization and generalization ability under controlled conditions. Many prevailing methods have achieved excellent performance on these benchmarks (e.g., gap< 0.5% on uniform TSP100). In contrast, our study focuses on a harder setting by using a dataset with diverse instances of varying distributions and scales, where the properties of instances are not specified in advance. This approach allows us to assess whether a selection method can effectively identify the suitable solver for a wide range of instances.

Additionally, we also provide results of coordinating multiple neural solvers on the widely-used uniform TSP100, as shown in Table 14. These results show that while selection on this dataset can still be effective, the potential improvement over the best single solver is limited, as single solvers already perform well on the uniform dataset.

- 1346 1347
- 1348
- 1349

²https//github.com/jakobbossek/salesperson

1350 Table 14: Results of coordinating multiple neural solvers on different datasets. 1351 Methods Our synthetic TSP dataset Unifrom TSP100 1352 Single best solver 2.33% 0.29% 1353 Oracle 1.24% 0.10% 1354 1355 1356 A.15 ILLUSTRATION OF THE NODES SAMPLED BY HIERARCHICAL GRAPH ENCODER 1357 We illustrate the retained nodes after downsampling. Surprisingly, we can find some consistent 1358 patterns which are intuitively reasonable. We summarize them as three main points: 1359 1360 • Cluster nodes. As illustrated in Figures 6(a) and 6(b), when instances contain certain clus-1361 ters, the hierarchical encoder tends to select a subset of "representative" nodes from each cluster, efficiently describing the entire spatial distribution. 1363 • Specific blocks. As illustrated in Figures 6(c) and 6(d), when instances contain specific 1364 complex geometric patterns like squares (Figure 6(c)) and arrays (Figure 6(d)), the hierar-1365 chical encoder can capture the nodes of these important areas to identify their characteris-1366 tics. 1367 • Boundary nodes. For instances without clear sub-components, the hierarchical encoder tends to focus on boundary nodes that describe the global shape, as illustrated in Figures 1369 6(e) and 6(f). 1370 1371 1372 1373 1374 1375 1376 and the restor-1377 1378 (a) (b) 1379 1380 1381 1382 1384 1385 1386 (c) (d) 1387 1388 1389 1390 1391 1392 Sec. atro 1393 1394 (f) (e) 1395

Figure 6: Illustrations of nodes selected by the hierarchical encoder. Each sub-figure represents an instance of TSP. The blue nodes represent the original instance, and the red nodes represent the retained nodes after down-sampling by the hierarchical encoder.

1398 1399

1396

1397

1400 1401

1402