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ABSTRACT

Machine learning has increasingly been employed to solve NP-hard combina-
torial optimization problems, resulting in the emergence of neural solvers that
demonstrate remarkable performance, even with minimal domain-specific knowl-
edge. To date, the community has created numerous open-source neural solvers
with distinct motivations and inductive biases. While considerable efforts are de-
voted to designing powerful single solvers, our findings reveal that existing solvers
typically demonstrate complementary performance across different problem in-
stances. This suggests that significant improvements could be achieved through
effective coordination of neural solvers at the instance level. In this work, we pro-
pose the first general framework to coordinate the neural solvers, which involves
feature extraction, selection model, and selection strategy, aiming to allocate each
instance to the most suitable solvers. To instantiate, we collect several typical neu-
ral solvers with state-of-the-art performance as alternatives, and explore various
methods for each component of the framework. We evaluated our framework on
two extensively studied combinatorial optimization problems, Traveling Salesman
Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP). Experimental
results show that the proposed framework can effectively distribute instances and
the resulting composite solver can achieve significantly better performance (e.g.,
reduce the optimality gap by 0.88% on TSPLIB and 0.71% on CVRPLIB) than
the best individual neural solver with little extra time cost.

1 INTRODUCTION

Combinatorial Optimization Problems (COPs) involve finding an optimal solution over a set of
combinatorial alternatives, which has broad and important applications such as logistics (Konstan-
takopoulos et al., 2022) and manufacturing (Zhang et al., 2019). To solve COPs, traditional ap-
proaches usually depend on heuristics designed by experts, requiring extensive domain knowledge
and considerable effort. Recently, machine learning techniques have been introduced to automati-
cally discover effective heuristics for COPs (Bengio et al., 2021; Cappart et al., 2023), leading to the
burgeoning development of end-to-end neural solvers that employ deep neural networks to generate
solutions for problem instances (Bello et al., 2017; Kool et al., 2019; Joshi et al., 2019). Compared
to traditional approaches, these end-to-end neural solvers can not only get rid of the heavy reliance
on expertise, but also realize better inference efficiency (Bello et al., 2017).

To enhance the capabilities of neural solvers, a variety of methods have been proposed, with in-
tensive effort on the design of frameworks, network architectures, and training procedures. For
example, to improve the performance across different distributions, Jiang et al. (2022) proposed
adaptively joint training over varied distributions, and Bi et al. (2022) leveraged knowledge distil-
lation to integrate the models trained on different distributions. For generalization on large-scale
instances, Fu et al. (2021) implemented a divide-and-conquer strategy, Luo et al. (2023) proposed
a heavy-decoder structure to better capture the relationship among nodes, while Gao et al. (2024)
utilized the local transferability and introduced an additional local policy model. Diffusion mod-
els (Sun & Yang, 2023) have also been adapted to generate the distribution of optimal solutions,
demonstrating impressive results. More works include bisimulation quotienting (Drakulic et al.,
2023), latent space search (Chalumeau et al., 2023), local reconstruction (Cheng et al., 2023; Ye
et al., 2024; Zheng et al., 2024) and so on.
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Figure 1: (a), (b): Observation from the comparison of prevailing neural solvers at instance level.
Details of the settings are provided in Section 4.1. (c): Our proposed coordination framework.

As various neural solvers are emerging in the community, the state-of-the-art records for the overall
performance on benchmark problems are frequently refreshed. However, the detailed comparison of
these neural solvers on each instance has been rarely discussed. Here, we empirically examined the
performance of several prevailing neural solvers on each instance, as illustrated in Figure 1(a) and
1(b). As expected from the no-free-lunch theorem (Wolpert & Macready, 1997), we find that

• As shown in Figure 1(a), there exists no single neural solver that can dominate all the other
neural solvers on every instance, and different neural solvers win on different instances,
demonstrating their complementary performance at instance level.

• As shown in Figure 1(b), the modification of instance distribution can almost reverse the
domination relationship of neural solvers, which further verifies that different neural solvers
are good at instances with specific characteristics due to their intrinsic inductive biases.

These observations suggest that it may potentially bring impressive improvements to the overall per-
formance, if multiple neural solvers are coordinated to solve instances together. In fact, recent works
have already made preliminary attempts from the perspective of ensemble learning (Jiang et al.,
2023) and population-based training (Grinsztajn et al., 2023). However, their individual solvers
share the same architecture, resulting in limited diversity. On the other hand, as all of the individual
solvers should run during inference, these methods can hardly achieve ideal efficiency.

Motivated by the observations above, we, for the first time, propose a general framework to coordi-
nate end-to-end neural solvers for COPs at instance level by selecting suitable individual solvers for
each instance, as illustrated in Figure 1(c). Specifically, our proposed framework consists of three
key components, which are summarized as follows:

• Feature extraction: For each problem instance, extract features that can be effectively
used to identify their characteristics.

• Selection model: Based on the features of instances, train a selection model that can be
utilized to identify suitable solvers for each instance.

• Selection strategy: Due to the intricate structures of COPs, using only the most suitable
individual solver predicted by the selection model may fail. Therefore, it is important to
design robust selection strategies based on the confidence of the selection model.

To verify the effectiveness of our proposed framework, we collect several prevailing open-source
neural solvers and their released models with competitive performance in the community to con-
struct the pool of individual solvers, and provide several implementations for each component of the
framework. For feature extraction, we utilize the graph attention network (Veličković et al., 2018;
Kool et al., 2019) to encode COP instances, and further propose a refined encoder with pooling to
leverage the hierarchical structures of COPs. For selection model, we train it from the perspective
of classification and ranking, respectively. We also implement several selection strategies, including
top-k selection, rejection-based selection, and so on. Detailed descriptions are provided in Sec-
tion 3. We conduct experiments on two widely studied COPs: Traveling Salesman Problem (TSP)
and Capacitated Vehicle Routing Problem (CVRP). Experimental results exhibit that our framework
can generally select suitable individual solvers for each instance to achieve significantly better per-
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formance with limited extra time consumption. Compared to the best individual solver, our frame-
work reduces the optimality gap by 0.82% on synthetic TSP, 2.00% on synthetic CVRP, 0.88% on
TSPLIB (Reinelt, 1991), and 0.71% on CVRPLIB Set-X (Uchoa et al., 2017). As this is the first
preliminary attempt on neural solver selection for COPs, we also analyze the influence of various
implementations of components, and provide some discussion on future improvements.

2 RELATED WORKS

2.1 END-TO-END NEURAL SOLVERS FOR COPS

Traditional approaches for COPs have achieved impressive results, but they often rely on problem-
specific heuristics and domain knowledge by experts (Helsgaun, 2000; 2017). Instead, recent efforts
focus on utilizing end-to-end learning methods. A prominent fashion is autoregression, which em-
ploys graph neural networks in an encoder-decoder framework and progressively extends a partial
solution until a complete solution is constructed (Vinyals et al., 2015; Bello et al., 2017; Kool et al.,
2019). However, these methods tend to exhibit poor generalization performance across distribu-
tions and scales (Joshi et al., 2022). To address the generalization issue, considerable efforts have
been dedicated within the community. For example, Zhou et al. (2023) took various distributions
and scales as different learning tasks and adopted meta-learning over them to obtain a generalizable
model. Bi et al. (2022) leveraged knowledge distillation, where models trained on different distribu-
tions are utilized as teacher models for one generalizable student model. Liu et al. (2024) used the
idea of prompt learning to realize zero-shot adaptation of the pertained model by selecting the most
matched prompt for instances. More efforts in autoregressive methods include instance-conditioned
adaptation (Zhou et al., 2024a), adversarial training (Wang et al., 2024) and nested local views (Fang
et al., 2024), to name a few.

Another popular kind of end-to-end learning methods is non-regressive, which predicts or generates
the distributions of potential solutions. Typically, Joshi et al. (2019); Ye et al. (2023) employed
graph neural networks to predict the probability of components appearing in an optimal solution,
represented with the form of heatmap. Diffusion models (Sun & Yang, 2023; Sanokowski et al.,
2024) have also been adapted to generate the distribution of optimal solutions, demonstrating better
expressiveness than classical push-forward generative models (Salmona et al., 2022).

2.2 SOLVING COPS WITH MULTIPLE NEURAL SOLVERS

Recent studies have made preliminary attempts to integrate multiple neural solvers to enhance over-
all performance on COPs. For example, Jiang et al. (2023) adopted ensemble learning, where mul-
tiple neural solvers with identical architecture are trained on different instance distributions through
Bootstrap sampling to ensure diversity. During inference, the outputs of all the solvers are gathered
by average at each action step. Grinsztajn et al. (2023) proposed a population-based training method
Poppy, where multiple decoders with a shared encoder are trained simultaneously as a population
of solvers, with a reward targeting at maximizing the overall performance of the population. When
solving a problem instance, each solver generates solutions independently, and the best solution is
selected as the final result. However, these works suffer from heavy computation cost as multiple
solvers have to be run for each instance. Even they propose to share a common encoder for each
solver, experimental results still demonstrate undesired inference time (Grinsztajn et al., 2023). On
the other hand, different solvers share the same neural architecture, which may limit the diversity
and thus the final performance.

Consider that the burgeoning community has proposed many methods from various perspectives,
resulting in diverse end-to-end neural solvers with different inductive biases. Properly coordinating
these neural solvers can potentially bring a significant improvement on overall performance. Mo-
tivated by the observation in Figure 1(a) and 1(b), we propose to select suitable ones from a pool
of diverse individual solvers for each instance. Note that similar idea has been utilized in the area
of algorithm selection (Kerschke et al., 2019) and model selection (Zhang et al., 2023), but has
never been explored in the area of neural combinatorial optimization. By solver selection at instance
level, any type of (existing or newly constructed) neural solver can be utilized, and only the selected
individual solvers need to be run in inference, thereby maintaining high efficiency.
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3 THE PROPOSED FRAMEWORK

This section will introduce the proposed framework of coordinating neural solvers for COPs. In
general, our target is learning to select the suitable solvers for each problem instance. To address
this, our proposed framework comprises three key components:

• Feature extraction: To select the most suitable neural solvers for each instance, it is essen-
tial to extract the instance features, which is challenging as the COPs are usually intricate.
In this work, we first utilize the graph attention encoder (Kool et al., 2019) to encode COP
instances, and further propose a refined graph encoder with pooling, which can leverage
the hierarchical structures of COPs to obtain better features.

• Selection model: We train a neural selection model with the graph encoder to identify the
most suitable solvers. Specifically, we implement two loss functions from the perspectives
of classification and ranking.

• Selection strategies: Due to the complexity of COPs, it may be risky to rely solely on the
selection model to consistently identify the most suitable solver. To address this, we pro-
pose compromise strategies that allow to allocate multiple solvers (if necessary) to a single
instance based on the confidence levels of the selection model, pursuing better performance
with limited extra cost.

In the following subsections, we will elaborate the three key components in our framework.

3.1 FEATURE EXTRACTION

For feature extraction, it depends on the COP to be solved. Here, we use the two most prevailing
problems, TSP and CVPR, in the neural solver community for COPs (Kwon et al., 2020; Luo et al.,
2023; Drakulic et al., 2023) as examples, which will also be employed in our experiments. TSP
and CVRP involve finding optimal routes over a set of nodes. For TSP, the objective is to find the
shortest possible route that visits each node exactly once and returns to the starting node. Each TSP
instance consists of nodes distributed in Euclidean space. For CVRP, the goal is to plan routes for
multiple vehicles to serve customer nodes with varying demands, starting and ending at a depot node,
while minimizing the total travel distance and satisfying vehicle capacity constraints (Dantzig &
Ramser, 1959). Both TSP and CVRP instances can be represented as fully connected graphs, where
nodes correspond to locations (cities or customers). The graph representation makes them suitable
for encoding using Graph Neural Networks (GNNs), which can effectively capture the structural
information inherent in these problems (Khalil et al., 2017; Kool et al., 2019). In this paper, we
design two types of GNN-based encoders tailored for TSP and CVRP instances as follows.

Graph attention encoder. We take the CVRP as an example to describe the computation of the
graph encoder. The raw features x ∈ RN×3 of a CVRP instance are a set of nodes {(xi, yi,mi)|i ∈
[N ]}, where (xi, yi) are the node coordinates, mi is the node demand, N is the number of nodes,
and [N ] denotes the set {1, 2, . . . , N}. First, a linear layer is employed on every node for initial
node embeddings, i.e., H0 = xW , where W ∈ R3×d are the weights and d denotes the embedding
dimension. Given initial embeddings, multiple graph attention layers (Veličković et al., 2018; Kool
et al., 2019) are applied to iteratively update the node embeddings as H l = AttentionLayerl(H l−1),
where l ∈ [L] and L is the number of layers. Since the graphs of TSP and CVRP are both fully
connected, the graph attention layer covers every pair of nodes and self-connections, which becomes
similar to the self-attention mechanism (Vaswani et al., 2017). Details of the attention layer are
provided in Appendix A.1. Finally, the node embeddings output by the last layer are averaged to
form the instance representation, as most COP encoders (Khalil et al., 2017; Kool et al., 2019) did.

Hierarchical graph encoder. Averaging the final node embeddings may result in sub-optimal
instance representations that are too flat to effectively capture the hierarchical structures inherent in
COPs (Goh et al., 2024). Inspired by (Lee et al., 2019), we design a hierarchical graph attention
encoder to address this limitation, which successively downsamples the graph of an instance using
graph pooling, and aggregates features from each downsampling level to construct a comprehensive
graph representation, as illustrated in Figure 2.
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Figure 2: Illustration of the hierar-
chical graph encoder.

The hierarchical graph encoder contains L blocks. In each
block, several graph attention layers are first applied, and then
the graph pooling layer selects representative nodes to form a
coarsened graph that preserves important features. Consider
the l-th block, where the number of selected nodes is denoted
as Nl. To quantify the representativeness of each node for
graph pooling, an additional graph attention layer is introduced
to compute representative scores. Specifically, this graph at-
tention layer computes score embeddings H l

score based on the
current node embeddings H l, which encode rich information
about the graph structure and node features. These score em-
beddings H l

score are then mapped to scalar representative scores
via linear layer. The complete process is shown as follows:

H l
score = AttentionLayerlscore(H

l), Zl = σ(H l
scoreW

l
score),

where Zl ∈ RN l−1×1 are the representative scores of the N l−1 nodes preserved in the (l − 1)-
th block, σ is a non-linear function (here we use the tanh function), and W l

score ∈ Rd×1 are the
parameters of the linear layer. Subsequently, we sort the nodes according to their representative
scores and select top-N l nodes (N l < N l−1 < N ) to preserve. To make this pooling layer trainable
via back-propagation (LeCun et al., 2002), we further combine the representative score together
with the embeddings of their corresponding nodes as follows: H̃ l = H l + Zl1, where 1 ∈ R1×d is
a vector with all the elements being 1. Intuitively, this operation can move the embeddings of high
scored nodes away from the embeddings of low scored nodes.

Figure 2 shows the complete encoder, where L blocks are stacked, and each block is formed by
several graph attention layers followed by a pooling layer. By successively applying L encoder
blocks, the number of preserved nodes gradually decreases according to N l = α ·N l−1 (α is set to
0.8 in our experiments). This process constructs a hierarchy of the original graph and its coarsened
versions, enabling the encoder to capture multi-level structural information effectively. Within each
block, we apply a readout layer that aggregates the embeddings after the graph attention layers by
mean pooling and max pooling (Lee et al., 2019), i.e.,

ol = σ(Mean(H l)∥Max(H l)),

where Mean() computes the average embedding over the nodes, Max() computes the maximum
along the column dimension, ∥ denotes concatenation, and σ is a non-linear function. The result ol

provides the representation of the l-th coarsened graph. At the last layer, we also readout oL+1 from
the final embeddings. To form the hierarchical instance representation, we sum the representations
of all levels as o =

∑L+1
l=1 ol.

3.2 SELECTION MODEL

We employ a Multiple-Layer Perception (MLP) to predict compatibility scores of neural solvers,
where a higher score indicates that it is more suitable to allocate the instance to the corresponding
neural solver. This MLP model takes the instance representation and the instance scale N as input
and outputs a score vector, where the value of each index is the score of the corresponding neural
solver. In summary, the graph encoder and the MLP are cascaded to compose a neural selection
model, which can produce the compatibility scores of individual solvers from the raw COP instance
in an end-to-end manner. Advanced neural solver features can be incorporated for richer informa-
tion, as discussed in Section 5. However, we find that even using fixed indices of neural solvers has
already been effective, which will be clearly shown in our experiments.

We train the selection model using a supervised dataset comprising thousands of synthetic COP
instances. The objective values obtained by the neural solvers are recorded as supervision infor-
mation. Intuitively, a neural solver with a lower objective value (for minimization) has a higher
compatibility score. To learn such desired score output, we employ two losses from the perspectives
of classification and ranking.

Classification. The selection problem is formulated as a classification task, where the most suit-
able neural solver for a given instance serves as the ground truth label. By employing classification

5
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loss functions such as cross-entropy loss used in our experiments, we can train a selection model.
However, this approach focuses on identifying the optimal neural solver and ignores sub-optimal
solvers, which may lead to unsatisfactory performance when the selection is inaccurate.

Ranking. The neural solvers can be sorted according to the objective values they obtain, thereby
forming a ranking of the given solvers, denoted by ϕ : [M ] → [M ], where ϕ(i) is the index of the
rank-i solver and M is the number of solvers. We then train the selection model by maximizing the
likelihood of producing correct rankings based on the computed scores (Xia et al., 2008),

max
θ

EI [

M∑
i=1

log
exp(gθ(I)ϕI(i))∑M
j=i exp(gθ(I)ϕI(j))

],

where gθ denotes the selection model with parameters θ, I denotes a problem instance, and ϕI is the
ground-truth ranking on instance I . This ranking loss can leverage the dominance relationship of all
neural solvers, including sub-optimal ones, which thus can make the selection more robust.

3.3 SELECTION STRATEGIES

Considering that the intricate structures of COPs may pose great challenge to the selection model,
besides greedy selection, we propose several compromise strategies that allow multiple solvers for
a single instance based on the confidence level of the selection model, aiming to improve the overall
performance with little extra cost.

Greedy selection. The most straightforward approach is the greedy selection, which chooses the
neural solver with the highest score. This method is efficient since only one solver is executed per
instance. However, it may be inaccurate, potentially leading to sub-optimal performance.

Top-k selection. The top-k selection method can be adopted for better optimality, where we select
and execute the neural solvers with top-k scores for each instance, thus constructing a portfolio of
multiple solvers. This approach increases the likelihood of including the optimal solver but incurs
additional computational overhead due to the execution of multiple solvers.

Rejection-based selection. To balance efficiency and effectiveness, we propose the rejection-
based selection strategy, which adaptively selects greedy or top-k selection. Recognizing that the
confidence of the greedy selection varies across instances, an advanced strategy is to employ the
top-k selection for low-confidence instances to enhance performance and utilize only the greedy
selection for high-confidence ones to minimize computational cost. To implement this strategy, we
can use a confidence measure to determine whether to accept or reject the greedy selection. If the
confidence in the greedy selection is below a threshold, we reject it and apply the top-k selection
to the instance for improved optimality. In this paper, we adopt the simple yet effective softmax
response (Hendrycks & Gimpel, 2017) as the confidence measure, and define the threshold by re-
jecting a certain fraction of test instances with the lowest confidence levels.

Top-p selection. We further propose a top-p selection strategy that selects the smallest subset of
solvers whose normalized scores (i.e., selection probabilities) sum up to at least p. The value of p
is predefined or adjusted according to the time budget. Thus, this strategy adaptively determines
the number of selected neural solvers by covering a certain amount of probability mass, rather than
relying on a fixed number k.

4 EXPERIMENTS

To examine the effectiveness of our proposed selection framework, we conduct experiments on TSP
and CVRP, investigating the following Research Questions (RQ): RQ1: How does the proposed
selection framework perform compared to individual neural solvers? RQ2: How does the proposed
selection framework perform when the problem distribution shifts and the problem scale increases?
RQ3: How do different implementations of components affect the performance of the framework?
We introduce the experimental settings in Section 4.1 and investigate the above RQs in Section 4.2.
The code and data used in our experiments are provided in the supplementary materials.
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4.1 EXPERIMENTAL SETTINGS

Synthetic TSP and CVRP. We generate synthetic TSP and CVRP instances by sampling node
coordinates from Gaussian mixture distributions with randomized covariance matrices. In the case
of CVRP, vehicle capacities are generated using either the scale-related capacity or the triangular
distribution. We consider varying problem scales, where the scale N is sampled uniformly from
[50, 500]. More details of the data generation process are provided in Appendix A.2.

Datasets. For training, we generate 10, 000 TSP and CVRP instances and apply 8-fold instance
augmentation (Kwon et al., 2020). For test, we generate smaller synthetic datasets comprising 1, 000
instances. Figures 1(a) and 1(b) in Section 1 are based on results from the CVRP test dataset. To
evaluate the out-of-distribution performance, we utilize two well-known benchmarks with more
complex problem distributions and larger problem scales (up to N = 1002): TSPLIB (Reinelt,
1991) and CVRPLIB Set-X (Uchoa et al., 2017). For TSPLIB, we select a subset of instances with
N ≤ 1002, and CVRPLIB Set-X includes instances ranging from N = 100 to 1000. These problem
scales are larger than the scale N ∈ [50, 500] of our training datasets.

Open-source neural solvers. We choose recent open-source neural solvers with state-of-the-art
performance as the candidates, including Omni (Zhou et al., 2023), BQ (Drakulic et al., 2023),
LEHD (Luo et al., 2023), DIFUSCO (Sun & Yang, 2023), T2T (Li et al., 2023), ELG (Gao et al.,
2024), INViT (Fang et al., 2024) and MVMoE (Zhou et al., 2024b). Greedy decoding is used for
all the methods to avoid stochasticity. We set the pomo size to 100 and the augmentation number
to 8 for the methods based on POMO (Kwon et al., 2020). The number of denoising steps is set to
50 and the number of 2-opt iterations is set to 100 for diffusion-based methods. These individual
solvers constitute a neural solver zoo. Ideally, if we can always select the best solver from the
zoo for each instance, the optimal performance is achieved, which is also the performance upper
bound of our selection model. Considering that some neural solvers contribute little to the overall
performance, we iteratively eliminate the least contributive solver from the candidates, resulting in
a more compact neural solver zoo. This process reduces the zoo size to 7 solvers for TSP and 5 for
CVRP. Further details of the elimination procedure are provided in Appendix A.3.

Hyperparameters. (1) Hyperparameters of graph encoders. For the graph attention encoder,
we set the number of layers to 4. For the hierarchical graph encoder, we use 2 blocks where each
block has 2 attention layers. The embedding dimension is set to 128. Other hyperparameters of
encoders can be found in Appendix A.1. (2) Hyperparameters of training. The Adam opti-
mizer (Kingma & Ba, 2015) is employed for training, where we set the learning rate to 1 × 10−4

and the weight decay to 1 × 10−6. The number of epochs is set to 50. The final model is chosen
according to the performance on a validation dataset with 1, 000 synthetic instances. We train 5
selection models using different random seeds and report the mean and standard deviation of their
performance. (3) Hyperparameters of selection strategies. For the top-k strategy, we set k = 2.
For the rejection-based strategy, we reject the 20% of instances with the lowest confidence levels
(i.e., the highest selection probability of all individual solvers), and apply top-2 selection to these
rejected instances. For the top-p strategy, we set p = 0.5 for TSP and p = 0.8 for CVRP.

Performance metrics. Following previous studies, we employ the gap to the best-known solution
cI(σ̂)−cI(σ

∗)
cI(σ∗) as the performance metric, called optimality gap, where σ̂ is the solution obtained by

each method, σ∗ is the best-known solution computed by extensive search of expert solvers (Hels-
gaun, 2017; Vidal, 2022), and cI() is the cost function of problem instance I . We also report the
average time to evaluate efficiency, which includes both the running of neural solvers and selection.

4.2 EXPERIMENTAL RESULTS

RQ1: How does the proposed selection framework perform compared to individual neural
solvers? In Table 1, we present the performance of several implementations of our selection frame-
work on synthetic TSP and CVRP, alongside the results of the top-3 individual neural solvers1. We
can observe that all implementations of our framework outperform the best neural solver on both

1DIFUSCO and T2T have multiple trained models. We only report the best results of these models.
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Table 1: Empirical results on synthetic TSP and CVRP datasets, reporting the mean (standard devi-
ation) over five independent runs. The top three individual solvers are included for comparison, and
Oracle denotes the optimal performance for selection, which is computed by running all individual
solvers in the zoo for each instance and selecting the best one. The best individual solver and its
results are underlined, and the best optimality gaps, excluding Oracle, are highlighted in boldface.

Methods TSP

Gap Time

BQ (3rd) 3.00% 1.40s
T2T (2nd) 2.40% 1.58s
DIFUSCO (1st) 2.33% 1.45s
Oracle 1.24% 8.93s

Selection by classification

Greedy 1.94% (0.02%) 1.36s (0.01s)
Top-k (k = 2) 1.53% (0.01%) 2.52s (0.04s)
Rejection (20%) 1.81% (0.01%) 1.63s (0.01s)
Top-p (p = 0.5) 1.84% (0.03%) 1.55s (0.06s)

Selection by ranking

Greedy 1.86% (0.01%) 1.33s (0.01s)
Top-k (k = 2) 1.51% (0.02%) 2.56s (0.03s)
Rejection (20%) 1.75% (0.02%) 1.63s (0.01s)
Top-p (p = 0.5) 1.68% (0.02%) 1.86s (0.07s)

Methods CVRP

Gap Time

LEHD (3rd) 7.37% 1.01s
BQ (2nd) 7.20% 1.59s
Omni (1st) 6.82% 0.24s
Oracle 4.64% 4.38s

Selection by classification

Greedy 5.35% (0.02%) 0.64s (0.01s)
Top-k (k = 2) 4.81% (0.01%) 1.87s (0.03s)
Rejection (20%) 5.19% (0.03%) 0.77s (0.01s)
Top-p (p = 0.8) 5.16% (0.03%) 0.87s (0.08s)

Selection by ranking

Greedy 5.31% (0.01%) 0.62s (0.01s)
Top-k (k = 2) 4.82% (0.01%) 1.90s (0.04s)
Rejection (20%) 5.15% (0.02%) 0.74s (0.01s)
Top-p (p = 0.8) 4.99% (0.02%) 1.03s (0.03s)

TSP and CVRP, demonstrating the effectiveness of our framework. For example, using ranking loss
and the top-k selection strategy with k = 2, our framework achieves average optimality gaps of
1.51% on TSP and 4.82% on CVRP, surpassing the best individual solver’s gaps of 2.33% on TSP
and 6.82% on CVRP, achieved by DIFUSCO and Omni, respectively. Moreover, except utilizing
the top-k strategy, our selection framework is nearly as efficient as running a single solver. In some
cases, our framework can obtain better optimality gaps while consuming even less time. For in-
stance, using ranking loss and greedy selection on TSP leads to the average optimality gap 1.86%
with 1.33s, while the best individual solver DIFUSCO achieves 2.33% gap with 1.45s. In Table 1,
Oracle (the fourth row) denotes the optimal performance for selection, which is obtained by running
all individual solvers for each instance and selecting the best one. The best optimality gaps achieved
by our selection framework (using ranking loss and top-k selection with k = 2) are close to Oracle,
with gaps of 1.51% on TSP and 4.81% on CVRP, compared to Oracle’s gaps of 1.24% on TSP and
4.64% on CVRP. Furthermore, our framework can offer significant speed advantages over Oracle,
e.g., consuming an average time of 2.56s on TSP, whereas Oracle requires an average time of 8.93s.
Note that complete results for all individual solvers are provided in Appendix A.10.

Extension of RQ1: Is the performance of the top-k selection better than the solver portfolio
with the same size? The top-k strategy enhances the performance by running a selected subset of
the solver zoo for each instance, which certainly costs more time than individual solvers. For a fair
comparison, we benchmark our top-k selection method against a solver portfolio of the same size
k. We construct this solver portfolio by exhaustively enumerating all possible subsets of size k and
selecting the one with the best overall performance. As shown in Appendix A.5, our top-k selection
consistently outperforms the size-k solver portfolio across k = {1, 2, 3, 4} on all datasets, i.e., TSP,
CVRP, TSPLIB and CVRPLIB Set-X, demonstrating the effectiveness of our selection model.

RQ2: How does the proposed selection framework perform when the problem distribution
shifts and the problem scale increases? We evaluate the generalization performance on two
benchmarks, TSPLIB and CVRPLIB Set-X, which contain out-of-distribution and larger-scale in-
stances. As shown in Table 2, all implementations of our selection framework generalize well, where
the ranking model using top-k selection improves the optimality gap by 0.88% (i.e., 1.95%-1.07%)
on TSPLIB and by 0.71% (i.e., 6.10%-5.39%) on CVRPLIB Set-X, compared to the best individual
solvers T2T and ELG on these two benchmarks. These results show that our selection framework is
robust against the distribution shifts and increases in problem scale.

RQ3: How do different implementations affect performance? We evaluate and compare dif-
ferent implementations of the three components in our framework:
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Table 2: Generalization results to TSPLIB and CVRPLIB Set-X datasets, which contain real-world
out-of-distribution instances with larger scales.

Methods TSPLIB

Gap Time

BQ (3rd) 3.04% 1.44s
DISFUCO (2nd) 2.13% 1.44s
T2T (1st) 1.95% 1.74s
Oracle 0.89% 9.14s

Selection by classification

Greedy 1.54% (0.05%) 1.33s (0.02s)
Top-k (k = 2) 1.22% (0.10%) 2.47s (0.02s)
Rejection (20%) 1.42% (0.11%) 1.54s (0.03s)
Top-p (p = 0.5) 1.49% (0.11%) 1.37s (0.02s)

Selection by ranking

Greedy 1.33% (0.06%) 1.28s (0.03s)
Top-k (k = 2) 1.07% (0.03%) 2.48s (0.02s)
Rejection (20%) 1.26% (0.03%) 1.51s (0.04s)
Top-p (p = 0.5) 1.28% (0.04%) 1.46s (0.06s)

Methods CVRPLIB Set-X

Gap Time

BQ (3rd) 10.31% 2.60s
Omni (2nd) 6.21% 0.38s
ELG (1st) 6.10% 1.31s
Oracle 5.10% 6.81s

Selection by classification

Greedy 5.96% (0.12%) 1.06s (0.08s)
Top-k (k = 2) 5.44% (0.08%) 2.40s (0.25s)
Rejection (20%) 5.83% (0.12%) 1.31s (0.09s)
Top-p (p = 0.8) 5.79% (0.09%) 1.42s (0.17s)

Selection by ranking

Greedy 5.76% (0.04%) 1.31s (0.10s)
Top-k (k = 2) 5.39% (0.06%) 2.56s (0.13s)
Rejection (20%) 5.63% (0.05%) 1.60s (0.08s)
Top-p (p = 0.8) 5.61% (0.03%) 1.72s (0.08s)

Table 3: Mean (standard deviation) of optimality gaps of different feature extraction methods. All
the models are trained using ranking loss, and employ greedy selection.

Datasets Best solver Manual Attention encoder Hierarchical encdoer

TSP 2.33% 1.97% (0.01%) 1.87% (0.02%) 1.86% (0.01%)
CVRP 6.82% 5.49% (0.08%) 5.30% (0.01%) 5.31% (0.01%)

TSPLIB 1.95% 1.83% (0.03%) 1.45% (0.11%) 1.33% (0.06%)
CVRPLIB 6.10% 6.35% (0.06%) 5.87% (0.06%) 5.76% (0.04%)

(1) Feature extraction methods. We compare the manual features (Smith-Miles et al., 2010) (see
Appendix A.4), graph attention encoder Kool et al. (2019), and hierarchical graph encoder in Table 3.
All methods are trained using ranking loss, and we report the optimality gap with greedy selection.
As shown in Table 3, even the simplest manual features perform well, achieving better results than
the best individual solver across three datasets — TSP, CVRP, and TSPLIB. This further validates the
effectiveness of our selection framework. Comparing the third and fourth columns, we observe that
the graph attention encoder consistently outperforms manual features on all datasets, verifying the
superiority of learned features. Furthermore, by comparing the fourth and fifth columns, we find that
while the graph attention encoder has already been effective on synthetic datasets, introducing the
hierarchical encoder can further improve generalization performance on out-of-distribution datasets,
TSPLIB and CVRPLIB Set-X, which is quite important in practice. This enhanced generalization
capability may be attributed to the hierarchical encoder’s ability to leverage the inherent hierarchical
structures in COPs. More ablation studies of the hierarchical encoder are provided in Appendix A.6.

(2) Loss functions to train the selection model. We can clearly observe from Tables 1 and 2 that
the model trained with ranking loss generally outperforms the one trained with classification loss,
particularly when employing top-p selection or under out-of-distribution settings. We also compare
their accuracy of selecting the best single individual, which is similar as shown Appendix A.8.
Thus, the benefit of ranking loss over classification loss shows the importance of incorporating the
dominance relationships among sub-optimal solvers, which can make the selection more robust.

(3) Selection strategies. Greedy selection is efficient by selecting only the predicted best solver.
Instead, top-k selection selects the best k solvers for better optimality gaps, but resulting in longer
time. Rejection-based and top-p selection provide a trade-off between optimality gap and time.
Here, we focus on the evaluation of rejection-based and top-p selection. We tune their hyperparam-
eters (e.g., rejection ratio, k, and p) to obtain a range of results, provided in Appendix A.7. The
results show the rejection-based selection with smaller k (k = 2 or 3) tends to achieve better trade-
off. Comparing top-p selection and rejection-based selection, their performance has no significant
difference. This is expected, because both of their principles are running more individual neural
solvers when the confidence of the selection model is insufficient. However, the top-p selection may
be preferable in practice, where only one hyperparameter p is associated.
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5 CONCLUSION AND DISCUSSIONS

In this paper, we propose a general framework for neural solver selection for the first time, which can
effectively select suitable solvers for each instance, leading to significantly better performance with
little additional computational time, as validated by the extensive experiments on two well-studied
COPs, TSP and CVRP. Besides TSP and CVRP, our proposed selection framework is adaptable to
other problems. For new problems, one only needs to customize the feature extraction component.
For instance, when adapting our framework to scheduling problems, one can adjust the graph atten-
tion encoder according to MatNet (Kwon et al., 2021) (i.e., add edge embeddings). We hope this
preliminary work can open a new line for the topic of neural combinatorial optimization. Within
the proposed selection framework, we preliminarily investigate several implementations of the three
key components: Feature extraction, training loss functions, and selection strategies. Techniques
such as hierarchical graph encoder, ranking loss, rejection-based selection, and top-p selection no-
tably enhance overall performance. Beyond the techniques presented, we discuss several promising
avenues for further research under this framework.

Feature extraction for neural solvers. In our implementation, we only extracted features for
problem instances and used fixed indices for neural solvers, which assumes a static neural solver
zoo and can not directly utilize any newly added neural solver during deployment. To enable zero-
shot generalization to unseen neural solvers, it is essential to construct a smooth feature space for
solvers, where those with similar preferences and biases are positioned closely together. Here we
design a preliminary method for extracting features of neural solvers to facilitate generalization
to unseen solvers. This method is based on the insight that a neural solver’s preferences can be
characterized by representative instances where it significantly outperforms other solvers. For each
neural solver, we sort those instances where it performs the best in an ascending order according to
the ratio of the objective value that the solver obtains to the runner-up objective value, and select
top 1% as its representative instances. Each representative instance is then treated as a token, and
we apply a transformer to learn a summary feature from these instance tokens, which serves as
the feature representation of the neural solver. Detailed implementations and results are provided
in Appendix A.9. The results show that the preliminary method enables generalization to unseen
neural solvers, where adding an extra solver can improve the selection performance.

Furthermore, advanced neural solver features should provide richer and deeper information than
only using instance features to increase the capacity of the selection model. However, our prelim-
inary method is based on the representative instances and fails to provide deeper information into
the solvers’ internal mechanisms. For future improvements, some approaches may be worth explor-
ing, such as utilizing large language models to encode the code of neural solvers (Wu et al., 2024)
or learning neural representations from their trained parameters (Kofinas et al., 2024), which can
access internal solver information, and potentially improving selection performance.

Runtime-aware selection for learn-to-seach solvers. In this paper, since the average runtime of
most individual neural solvers is short (approximately 1–2 seconds), we ignored their time difference
during the training of the selection model, and only used the objective values obtained by the neural
solvers as supervision information (by classification or ranking). However, if there are some time-
consuming learn-to-search solvers, such as NeuOpt (Ma et al., 2021; 2023) and local reconstruction
methods (Kim et al., 2021; Ye et al., 2024), in the solver pool, the runtime should be considered in
the performance ranking. In such cases, developing a runtime-aware selection method to balance
computational time and solution optimality would be necessary. To address this, we could penalize
objective values based on time consumption or simultaneously optimize both metrics using multi-
objective learning methods (Lin et al., 2022).

Enhance the neural solver zoo by training. As shown in Figure 6, current neural solvers can
exhibit complementary performance over instances without any modification, which has motivated
our framework of neural solver selection. Inspired by the population-based training (Grinsztajn
et al., 2023), we can further enhance their complementary ability through finetuning, i.e., each neural
solver is finetuned on those instances where it performs the best. We can also train new solvers from
scratch by maximizing their performance contribution to the current solver zoo and iteratively add
such new solvers for enhancement. Moreover, to facilitate the training and deployment of a neural
solver zoo, it is essential to develop a unified platform that provides interfaces for executing and
training diverse neural solvers, such as an extension to the existing RL4CO (Berto et al., 2024).
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A APPENDIX

A.1 GRAPH ATTENTION LAYER

The graph attention layer is composed of two sub-layers: a multi-head attention sub-layer (Vaswani
et al., 2017) and a feed-forward sub-layer. Each sub-layer is equipped with residual connection (He
et al., 2016) and ReZero normalization (Bachlechner et al., 2021) for stable convergence of training.
Denote the embedding of the i-th node as hi (i.e., the i-th row of H). Since the graphs of TSP and
CVRP are typically considered to be fully connected, the graph attention layer is calculated as

ĥi = hl−1
i + αlMHAl

i(h
l−1
1 ,hl−1

2 , ...,hl−1
N ),

hl
i = ĥi + αlFF(ĥi),

where l is the layer index, i is the node index, αl is a learnable parameter used in the ReZero
normalization, MHA and FF are short for the multi-head attention and the feed-forward network,
respectively. For the implementations of the basic components MHA and FF, we refer to Vaswani
et al. (2017) for details. Specifically, following the common settings of previous works, we set the
dimension of h to 128, the number of heads in MHA to 8, and the hidden dimension of FF to 512.

A.2 DATA GENERATION

Synthetic TSP and CVRP instances are generated for training, where the node coordinates, demands,
and vehicle capacities are all sampled from manually defined distributions. The scale of each in-
stance is sampled from [50, 500] randomly. Details of node coordinates, vehicle capacity, and node
demands are introduced as follows.

Node coordinates To generate diverse training instances, we utilize Gaussian mixture distri-
butions to sample the node coordinates for both TSP and CVRP, which is common in previous
works (Manchanda et al., 2022; Zhou et al., 2023) and demonstrates effectiveness on approximat-
ing various node distributions with different hardness levels (Smith-Miles et al., 2010). First, we
randomly select the number of Gaussian components c ∼ U(0, 15) (when c = 0, we use the
uniform distribution) and partition the nodes randomly into c groups, one for each component.
For each Gaussian component, we sample the mean coordinates µ = (xµ, yµ) by xµ ∼ U(0, 1)
and yµ ∼ U(0, 1), and sample the variances varx and vary uniformly from [1, 100]. The covari-
ance cov is sampled uniformly from [−√varx · vary,

√
varx · vary), forming the covariance matrix

Σ =

[
varx cov
cov vary

]
. Node coordinates are sampled from the N(µ,Σ) and then scaled to the

square of x, y ∈ [0, 1]. Unlike conventional Gaussian mixture distributions (Manchanda et al., 2022;
Zhou et al., 2023), which often use an identity covariance matrix, our approach employs randomized
covariance matrices Σ. This modification can produce more diverse instances by introducing more
variability in the node distributions.

Vehicle capacity and node demands We employ two vehicle capacity distributions to generate
CVRP instances: (1) Scale-related distribution (Zhou et al., 2023): The vehicle capacity is propor-
tional to the scale N , defined as Q = 30 + ⌈N5 ⌉. (2) Triangular distributions (Uchoa et al., 2017):
The parameters of the triangular distribution include the upper limit ub, mode m, and lower limit
lb, which are randomly sampled in succession as follows: ub ∼ U(20, N

2 ), m ∼ U(5, ub), and
lb ∼ U(3,m). The triangular distribution T (lb,m, ub) is then used to generate vehicle capaci-
ties, resulting in more diverse CVRP instances compared to the fixed capacity setting (Nazari et al.,
2018). Each capacity distribution is selected with equal probability. Node demands mi are sampled
uniformly from U(1, 10) and normalized by dividing by Q.

A.3 ELIMINATE USELESS NEURAL SOLVERS

The preserved neural solvers should have distinct strengths in certain problem instances, ensuring
that they can bring significant improvements in overall performance. Motivated by this, we propose
a simple yet effective heuristic strategy to build the neural solver zoo based on the assessment of
their contribution to the overall performance.
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Given the alternative neural solvers S = {s1, s2, s3, ....}, we assess the contribution of a specific
solver si ∈ S by the degradation of performance after removing it. That is, the assessment of si can
be formalized as

A(si) = EI [PI(S)− PI(S/si)] ,

where PI(·) denotes the performance of a neural solver zoo on instance I . Here we use the percent-
age of the optimality gap to define PI(·) and employ a validation set for the estimation of expec-
tations. According to this criteria, we can estimate the alternative solvers and remove the one with
the lowest assessed contribution from S. This process repeats iteratively until for all si ∈ S, A(si)
surpasses the predefined threshold δ, indicating the significance of each alternative neural solver.
In practice, we collect the prevailing competitive neural solvers in the community to compose the
original S and set δ as 0.01%.

The neural solver zoos before and after elimination are listed in Table 4. Note that for DIFUSCO
and T2T, multiple models are released. We collect both the models trained on the N = 100 dataset
and the N = 500 dataset as alternatives simultaneously.

Table 4: The neural solver zoo before and after elimination.

Stage Neural solver zoo for TSP Neural solver zoo for CVRP

Before elimination
BQ, LEHD, Omni, ELG, INViT,

DIFUSCO (N=100), DIFUSCO (N=500),
T2T (N=100), T2T (N=500)

BQ, LEHD, Omni, ELG, INViT, MVMoE

After elimination
BQ, LEHD, ELG,

DIFUSCO (N=100), DIFUSCO (N=500),
T2T (N=100), T2T (N=500)

BQ, LEHD, Omni, ELG, MVMoE

A.4 MANUAL FEATURES

We reproduce the manual features proposed by Smith-Miles et al. (2010), which use statistical in-
formation and cluster analysis results to describe the characteristics of TSP. In this paper, we adopt
these features: the standard deviation of the distances, the coordinates of the instance centroid, the
radius of the TSP instance, the fraction of distinct distances, the variance of the normalized nearest
neighbour distances (nNNd’s), the coefficient of variation of the nNNd’s, the ratio of the number
of clusters to the number of nodes (Here we use HDBSCAN algorithm (Campello et al., 2013) to
generate clusters), the ratio of number of outliers to nodes, and the mean radius of the clusters. For
CVRP, we further add the mean and standard deviation of node demands to the features.
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A.5 RESULTS OF TOP-k SELECTION.

We compare the performance of our top-k selection and the solver portfolio with the same size k
on four datasets, including TSP, CVRP, TSPLIB and CVRPLIB Set-X. As shown in Figure 3, our
top-k selection consistently outperforms the size-k solver portfolio across k ∈ {1, 2, 3, 4}. We also
observe that the performance of our top-k selection is close to the Oracle when k = 4. Moreover,
it is expected that the performance improvement of our top-k selection gradually diminishes as k
increases, since the performance of solver portfolio is also approaching the Oracle (the gray line).

Related works, such as ZTop (Bai et al., 2021), employ a fixed set of neural solvers to construct
a portfolio for all instances, resembling the static portfolio approach compared in this study. In
contrast, our top-k selection strategy dynamically constructs instance-specific portfolios, offering
greater flexibility and a higher potential for performance improvement. As demonstrated in Figure 3,
our method consistently outperforms the static portfolio approach across all portfolio sizes.
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Figure 3: Comparisons of the proposed top-k selection and the solver portfolio with size k.
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A.6 ABLATION OF THE HIERARCHICAL GRAPH ENCODER.

The proposed hierarchical graph encoder utilizes graph pooling to downsample the instance graph
and aggregates features obtained from multiple levels of the downsampled graphs. To evaluate the
effectiveness of the graph pooling, we employ a graph encoder that aggregates the features from
multiple layers for comparison, which is a clear ablation study since the main difference is that it
does not have the graph pooling operation.

The results in Table 5 show that using our hierarchical graph encoder outperforms the encoder that
simply accumulates multi-layer features, especially in terms of the generalization performance on
CVRPLIB Set-X. This demonstrates the effectiveness of the graph pooling operation.

Table 5: Ablation study of hierarchical graph encoder. We report the mean and standard deviation of
five independent runs. All the models are trained using ranking loss, and employ greedy selection.

Datasets Attention encoder + Multi-layer features Hierarchical encoder

TSP 1.87% (0.02%) 1.87% (0.01%) 1.86% (0.01%)
CVRP 5.30% (0.01%) 5.30% (0.02%) 5.31% (0.01%)

TSPLIB 1.45% (0.11%) 1.35% (0.05%) 1.33% (0.06%)
CVRPLIB 5.87% (0.06%) 5.86% (0.08%) 5.76% (0.04%)

To evaluate the computational efficiency of the hierarchical encoder, we provide detailed com-
parisons of the computation cost and optimality between our hierarchical encoder and a typical
graph encoder. The results are shown in Table 6, which includes the inference time per instance on
TSPLIB, training time per epoch, and the average optimality gap on TSPLIB.

Table 6: Comparisons of the computation cost and optimality between our hierarchical encoder and
a typical attention encoder.

Methods Inference time of
selection model

Inference time of
neural solvers

Training time
each epoch Optimality gap

Naive attention encoder 0.0054s 1.2600s 1m40s 1.54%
Hierarchical encoder 0.0070s 1.2961s 2m30s 1.37%

We can observe from the second column that the introduction of our hierarchical encoder will in-
crease the inference time of the selection model a little bit, e.g., from 0.0054s to 0.0070s. However,
as shown in the second and third columns, the inference time of the selection model is orders of
magnitude shorter than that of the neural solvers, so the inference efficiency of the selection model
is less of a concern. The fourth column shows that the training time per epoch of the naı̈ve encoder
and the hierarchical encoder are 1m40s and 2m30s, respectively. Although the hierarchical encoder
slows the training, the total runtime for 50 epochs is still only 2 hours, which is acceptable in most
scenarios. Therefore, the performance metric (i.e., optimality gap) of different encoders is more cru-
cial, especially the generalization performance. If the encoder learns robust representations, we can
directly transfer the selection model to different datasets in a zero-shot manner, saving the time for
fine-tuning and adaptation. Considering the better generalization (e.g., the optimality gap decreases
from 1.54% to 1.37%), we believe that the proposed hierarchical encoder is a better choice.

A.7 DETAILED COMPARISONS OF SELECTION STRATEGIES

According to the mechanisms of the four selection strategies, they have different preferences in the
trade-off of efficiency and optimality. Generally, for efficiency, Greedy > Rejection ≈ Top-p >
Top-k, for optimality, Top-k > Rejection ≈ Top-p > Greedy. Meanwhile, the hyper-parameters of
them can be used for balancing efficiency and optimality as well. As a result, the choice of differ-
ent selection strategies can be decided by the users according to their preference, and we suggest
using Top-p or Rejection as the default choices since they can adaptively select solvers based on the
confidence of the selection model.

The rejection-based selection and top-p selection are both designed to achieve better performance
with little additional time consumption. To evaluate them in detail, we tune their parameters (e.g.,
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rejection ratio, k, and p) to obtain a range of results. For the rejection-based selection, we use
k ∈ {2, 3, 4} and vary the rejection ratio from 0.05 to 0.85 in increments of 0.05. For the top-
p selection, we adjust the value of p from 0.40 to 0.95 in increments of 0.01. The results of the
optimality gap and time consumption are provided in Figure 4. As shown in the figures, the rejection
strategy with smaller k tends to achieve better optimality gaps using the same time consumption.
Therefore, we recommend k = 2 or 3 when using rejection-based selection. Comparing top-p
selection and rejection-based selection, we can not definitively conclude which strategy is superior,
which is expected since they share a similar idea of utilizing confidence levels to decide whether
to employ multiple solvers. However, the top-p selection may be preferable in practice due to its
simplicity, where only a single hyperparameter p requires tuning.

Furthermore, these results highlight p and the rejection ratio as important hyperparameters that allow
users to balance efficiency and optimality. Though using a fixed value has led to good performance
in our experiments, we believe that adaptively adjusting p and rejection ratio for each instance could
further improve performance. Therefore, it is interesting to develop an instance-specific adapter for
p or rejection ratio by leveraging instance features, which we leave for future works.
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Figure 4: Performance of the rejection-based and top-p selection.

A.8 SELECTION ACCURACY

We present the accuracy of selecting the optimal neural solver in Table 7. The results show that the
ranking model and classification model generally have similar selection accuracy, except that the
ranking model achieves better accuracy than the classification model on CVRPLIB.

Table 7: Accuracy of models trained by different losses using greedy selection. We report the mean
and standard deviation of five independent runs.

Metrics Classification Ranking

Accuracy on TSP 36% (1%) 35% (1%)
Accuracy on CVRP 61% (1%) 62% (0%)

Accuracy on TSPLIB 40% (3%) 40% (7%)
Accuracy on CVRPLIB 52% (2%) 56% (3%)
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A.9 NEURAL SOLVER FEATURES

To enable generalization to unseen neural solvers, we design a preliminary feature extraction method
for neural solvers, which utilizes representative instances to represent a neural solver. For each
neural solver, we sort those instances where the neural solver performs the best in an ascending
order according to the ratio of the objective value that the solver obtains to the runner-up objective
value, and select the top 1% as its representative instances. Then, we use an instance encoder to
obtain embeddings for each representative instance, serving as their token vectors. A transformer
with two layers is employed to learn a summary feature from these instance tokens, which serves as
the feature representation of the neural solver. More details are described as follows.

Instance tokenization. We use a hierarchical graph encoder as the tokenization encoder to gen-
erate embeddings for each representative instance. Note that the parameters θ′ of the tokenization
encoder are not updated by back-propagation. Instead, to stabilize the instance tokens during train-
ing, we update θ′ using a momentum-based moving average of the parameters θ of the instance
feature encoder: θ′ ← m · θ′ + (1 −m) · θ, where m ∈ [0, 1) is a momentum coefficient (We set
m = 0.99 in experiments). Only the parameters θ are updated via back-propagation. This momen-
tum update ensures that θ′ evolves more smoothly than θ, resulting in stable instance tokenization.

Transformer architecture. For each neural solver, we utilize the tokens of its representative in-
stances along with a learnable summary token to compute a summary representation. We apply two
attention layers for this purpose. The first layer is a self-attention mechanism applied over all to-
kens (including the summary token), enabling interactions among them. The second attention layer
uses only the summary token as the query and all tokens as keys and values, effectively aggregating
information from all tokens into the summary token. The final embedding of the summary token is
then output as the neural solver’s representation.

Selection model with neural solver feature. The selection model integrates both the instance
features and the neural solver features to output a score for each instance-solver pair. We employ an
MLP to compute these scores. For each instance, the scores across all neural solvers are normalized
to derive the probability distribution for solver selection.

To integrate a newly added neural solver, we first identify its representative instances from the train-
ing dataset and employ the aforementioned networks to compute its feature representation. The
selection model can then leverage this new solver by considering its feature during selection, with-
out the need for any fine-tuning.

To evaluate the effectiveness of this method, we remove the second-best neural solver from the
current solver zoo, train the selection model using the supervision information provided by the
pruned solver zoo, and reintroduce the removed solver during testing. Figure 5 presents the top-
k selection performance with and without the newly added (extra) solver. The results show that
the performance with the newly added solver is generally better than the performance without it,
demonstrating that the selection model can leverage the information of unseen solvers without any
finetuning. In other words, the selection model can generalize to unseen solvers. However, we
observe a slight decrease in top-1 performance, indicating that the preliminary method requires
further improvement.
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Figure 5: Performance of introducing an extra neural solver based on the neural solver feature. The
results of top-k selection with and without extra neural solver are presented.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.10 COMPLETE RESULTS WITH ALL NEURAL SOLVERS

Table 8: Empirical results on synthetic TSP and TSPLIB datasets, reporting the mean (standard
deviation) over five independent runs. All individual solvers are included for comparison, and
Oracle denotes the optimal performance for selection, which is computed by running all individual
solvers in the zoo for each instance and selecting the best one. The best individual solver and its
results are underlined, and the best optimality gaps, excluding Oracle, are highlighted in boldface.
The suffixes ’-N100’ and ’-N500’ indicate models trained on datasets with N=100 and N=500,
respectively. Obj denotes the average objective value on the dataset.

Methods TSP

Obj Gap Time

BQ 8.13 3.00% 1.61s
ELG 8.18 3.70% 0.45s
LEHD 8.17 3.57% 0.86s
T2T-N100 8.08 2.48% 1.71s
T2T-N500 8.08 2.40% 1.98s
DIFUSCO-N100 8.11 2.84% 1.46s
DIFUSCO-N500 8.07 2.33% 1.45s
Oracle 7.99 1.24% 8.93s

Selection by classification

Greedy 8.04 (0.00) 1.94% (0.02%) 1.36s (0.01s)
Top-k (k = 2) 8.01 (0.00) 1.53% (0.01%) 2.52s (0.04s)
Rejection (20%) 8.03 (0.00) 1.81% (0.01%) 1.63s (0.01s)
Top-p (p = 0.5) 8.03 (0.00) 1.84% (0.03%) 1.55s (0.06s)

Selection by ranking

Greedy 8.04 (0.00) 1.86% (0.01%) 1.33s (0.01s)
Top-k (k = 2) 8.01 (0.00) 1.51% (0.02%) 2.56s (0.03s)
Rejection (20%) 8.03 (0.00) 1.75% (0.02%) 1.63s (0.01s)
Top-p (p = 0.5) 8.02 (0.00) 1.68% (0.02%) 1.86s (0.07s)

Methods TSPLIB

Obj Gap Time

BQ 8.29 3.04% 1.44s
ELG 8.29 3.05% 0.40s
LEHD 8.26 2.57% 0.88s
T2T-N100 8.22 2.09% 1.76s
T2T-N500 8.21 1.95% 1.74s
DISFUCO-N100 8.23 2.25% 1.44s
DISFUCO-N500 8.22 2.13% 1.44s
Oracle 8.12 0.89% 9.14s

Selection by classification

Greedy 8.17 (0.00) 1.54% (0.05%) 1.33s (0.02s)
Top-k (k = 2) 8.15 (0.01) 1.22% (0.10%) 2.47s (0.02s)
Rejection (20%) 8.16 (0.01) 1.42% (0.11%) 1.54s (0.03s)
Top-p (p = 0.5) 8.17 (0.01) 1.49% (0.11%) 1.37s (0.02s)

Selection by ranking

Greedy 8.16 (0.00) 1.33% (0.06%) 1.28s (0.03s)
Top-k (k = 2) 8.14 (0.00) 1.07% (0.03%) 2.48s (0.02s)
Rejection (20%) 8.15 (0.00) 1.26% (0.03%) 1.51s (0.04s)
Top-p (p = 0.5) 8.15 (0.00) 1.28% (0.04%) 1.46s (0.06s)
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Table 9: Empirical results on synthetic CVRP and CVRPLIB Set-X datasets, reporting the mean
(standard deviation) over five independent runs. All individual solvers are included for comparison.
Obj denotes the average objective value on the dataset.

Methods CVRP

Obj Gap Time

BQ 18.39 7.20% 1.59s
ELG 18.49 7.81% 0.82s
LEHD 18.42 7.37% 1.01s
MVMoE 19.48 13.56% 0.70s
Omni 18.32 6.82% 0.24s
Oracle 17.95 4.64% 4.38s

Selection by classification

Greedy 18.07 (0.00) 5.35% (0.02%) 0.64s (0.01s)
Top-k (k = 2) 17.98 (0.00) 4.81% (0.01%) 1.87s (0.03s)
Rejection (20%) 18.04 (0.01) 5.19% (0.03%) 0.77s (0.01s)
Top-p (p = 0.8) 18.04 (0.01) 5.16% (0.03%) 0.87s (0.08s)

Selection by ranking

Greedy 18.06 (0.00) 5.31% (0.01%) 0.62s (0.01s)
Top-k (k = 2) 17.98 (0.00) 4.82% (0.01%) 1.90s (0.04s)
Rejection (20%) 18.04 (0.00) 5.15% (0.02%) 0.74s (0.01s)
Top-p (p = 0.8) 18.01 (0.00) 4.99% (0.02%) 1.03s (0.03s)

Methods CVRPLIB Set-X

Obj Gap Time

BQ 71.21 10.31% 2.60s
ELG 68.50 6.10% 1.31s
LEHD 73.40 13.70% 1.60s
MVMoE 74.59 15.54% 0.90s
Omni 68.57 6.21% 0.38s
Oracle 67.85 5.10% 6.81s

Selection by classification

Greedy 68.41 (0.08) 5.96% (0.12%) 1.06s (0.08s)
Top-k (k = 2) 68.07 (0.05) 5.44% (0.08%) 2.40s (0.25s)
Rejection (20%) 68.32 (0.08) 5.83% (0.12%) 1.31s (0.09s)
Top-p (p = 0.8) 68.30 (0.06) 5.79% (0.09%) 1.42s (0.17s)

Selection by ranking

Greedy 68.28 (0.03) 5.76% (0.04%) 1.31s (0.10s)
Top-k (k = 2) 68.04 (0.04) 5.39% (0.06%) 2.56s (0.13s)
Rejection (20%) 68.19 (0.03) 5.63% (0.05%) 1.60s (0.08s)
Top-p (p = 0.8) 68.18 (0.02) 5.61% (0.03%) 1.72s (0.08s)
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A.11 SEPARATE RESULTS OF DIFFERENT SCALES

We provide separate results of different scales for a deeper investigation, where we divide the
N ∈ [50, 500] to four subsets as shown in the first row of Table 10. The results in Tables 10
and 11 demonstrate that our selection method consistently outperforms the single best solver across
different problem scales on both TSP and CVRP datasets.

Table 10: Separate results according to problem scale N on synthetic TSP dataset. We report the
mean (standard deviation) optimality gap over five independent runs.

Methods / N [50, 200] (200, 300] (300, 400] (400, 500]

Single best solver 0.96% 2.34% 2.78% 2.98%
Oracle 0.39% 1.19% 1.70% 2.18%

Ours (Greedy) 0.84% (0.03%) 2.01% (0.02%) 2.43% (0.02%) 2.71% (0.03%)
Ours (Top-k, k = 2) 0.61% (0.02%) 1.53% (0.03%) 1.99% (0.03%) 2.41% (0.05%)
Ours (Rejection, 20%) 0.75% (0.04%) 1.86% (0.04%) 2.33% (0.03%) 2.62% (0.02%)
Ours (Top-p, p = 0.5) 0.71% (0.02%) 1.70% (0.02%) 2.24% (0.04%) 2.57% (0.04%)

Table 11: Separate results according to problem scale N on synthetic CVRP dataset. We report the
mean (standard deviation) optimality gap over five independent runs.

Methods / N [50, 200] (200, 300] (300, 400] (400, 500]

Single best solver 3.95% 6.06% 7.76% 9.24%
Oracle 2.17% 4.33% 5.74% 7.40%

Ours (Greedy) 2.85% (0.03%) 4.87% (0.02%) 6.47% (0.05%) 8.09% (0.01%)
Ours (Top-k, k = 2) 2.32% (0.02%) 4.54% (0.02%) 5.91% (0.03%) 7.55% (0.03%)
Ours (Rejection, 20%) 2.64% (0.02%) 4.70% (0.03%) 6.22% (0.02%) 7.91% (0.03%)
Ours (Top-p, p = 0.5) 2.36% (0.02%) 4.70% (0.04%) 6.21% (0.05%) 7.81% (0.02%)

A.12 ADDITIONAL RESULTS FOR MORE NEURAL SOLVERS AND LARGER-SCALE DATASETS

We add several new solvers to our pool, increase the problem scale from N ∈ [50, 500] to N ∈
[500, 2000], and use the enhanced solver pool to conduct new experiments. The results shown in
Table 12 demonstrate that our framework can be compatible with more neural solvers and can also
improve performance over the single best solver on larger-scale instances.

For details, we add two divide-and-conquer solvers, GLOP Ye et al. (2024) and UDC Zheng et al.
(2024), to our solver pool, which can significantly enhance the overall performance. The construc-
tion of our solver pool now considers reinforced (ELG, INViT), supervised (BQ, LEHD), meta-
learning-based (Omni), diffusion-based (DIFUSCO, T2T), and divide-and-conquer (GLOP, UDC)
methods. The experimental results have shown that our proposed framework can effectively com-
bine the advantages of these neural solvers and significantly improve performance.

Table 12: Experimental results on the larger-scale instances with N ∈ [500, 2000]. We report the
mean (standard deviation) over five independent runs.

Methods Synthetic TSP with N ∈ [500, 2000]

Gap Time

Single best solver 6.104% 8.369s
Ours (Greedy) 5.540% (0.038%) 8.322s (0.036s)
Ours (Top-k, k = 2) 5.369% (0.003%) 15.566s (0.085s)

Single best of new solver pool 3.562% 5.274s
Ours with new solvers (Greedy) 3.126% (0.002%) 6.892s (0.006s)
Ours with new solvers (Top-k, k = 2) 2.955% (0.005%) 13.713s (0.036s)
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A.13 COMPARISONS WITH TRADITIONAL ALGORITHM SELECTION METHODS

To further demonstrate the effectiveness of our proposed techniques, we provide additional com-
parison results between our proposed method and existing algorithm selection methods for non-
neural TSP solvers (Smith-Miles et al., 2010; Seiler et al., 2020), as shown in Table 13. In fact, the
method of using features from Smith-Miles et al. (2010) and our ranking model was also compared
in Table 3. The R package salesperson2 provides the up-to-now most comprehensive collection
of features for TSP and is widely used in algorithm selection methods (Seiler et al., 2020; Heins
et al., 2021). Based on the feature set of salesperson, we reproduce an advanced algorithm selection
method (Seiler et al., 2020) following the pipeline that computes hand-crafted features, conducts
feature selection, and applies random forest for classification, where we employ the univariate sta-
tistical test to select important features. Besides, we also combine the salesperson features with our
ranking model for ablation, denoted by ”Seiler et al. (2020) + Ranking” in Table 13.

Table 13: Comparison experiments with algorithm selection methods for TSP. We report the mean
(standard deviation) over five independent runs.

Methods Synthetic TSP TSPLIB

Gap Time Gap Time

Single best solver 2.33% 1.45s 1.95% 1.74s
Oracle 1.24% 8.93s 0.89% 9.14s

Algorithm selection methods

Smith-Miles et al. (2010) + Ranking 1.97% (0.01%) 1.37s (0.01s) 1.83% (0.03%) 1.32s (0.05s)
Seiler et al. (2020) 2.12% (0.04%) 1.35s (0.00s) 1.56% (0.01%) 1.34s (0.05s)
Seiler et al. (2020) + Ranking 1.95% (0.01%) 1.33s (0.03s) 1.55% (0.03%) 1.27s (0.06s)

Our selection method using ranking

Greedy 1.86% (0.01%) 1.33s (0.01s) 1.33% (0.06%) 1.28s (0.03s)
Top-k (k = 2) 1.51% (0.02%) 2.56s (0.03s) 1.07% (0.03%) 2.48s (0.02s)
Rejection (20%) 1.75% (0.02%) 1.63s (0.01s) 1.26% (0.03%) 1.51s (0.04s)
Top-p (p = 0.5) 1.68% (0.02%) 1.86s (0.07s) 1.28% (0.04%) 1.46s (0.06s)

The experimental results in Table 13 indicate that our proposed method can achieve superior perfor-
mance than advanced algorithm selection methods on both synthetic TSP and TSPLIB. Comparing
the fifth and sixth rows, our proposed hierarchical encoder demonstrates superior performance over
the salesperson features, especially on the out-of-distribution benchmark TSPLIB. Additionally, the
comparison of the fourth and fifth rows shows that our deep learning-based ranking model achieves
better results than traditional classification methods. Furthermore, the results of the last three rows
illustrate that our proposed adaptive selection strategies effectively enhance optimality with minimal
increases in time consumption.

A.14 EXPLANATION FOR THE DATASET CHOICE

Most NCO methods use specific benchmarks with fixed distributions and scales, like uniform TSP
datasets, to evaluate the optimization and generalization ability under controlled conditions. Many
prevailing methods have achieved excellent performance on these benchmarks (e.g., gap< 0.5% on
uniform TSP100). In contrast, our study focuses on a harder setting by using a dataset with diverse
instances of varying distributions and scales, where the properties of instances are not specified in
advance. This approach allows us to assess whether a selection method can effectively identify the
suitable solver for a wide range of instances.

Additionally, we also provide results of coordinating multiple neural solvers on the widely-used
uniform TSP100, as shown in Table 14. These results show that while selection on this dataset can
still be effective, the potential improvement over the best single solver is limited, as single solvers
already perform well on the uniform dataset.

2https//github.com/jakobbossek/salesperson
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Table 14: Results of coordinating multiple neural solvers on different datasets.

Methods Our synthetic TSP dataset Unifrom TSP100

Single best solver 2.33% 0.29%
Oracle 1.24% 0.10%

A.15 ILLUSTRATION OF THE NODES SAMPLED BY HIERARCHICAL GRAPH ENCODER

We illustrate the retained nodes after downsampling. Surprisingly, we can find some consistent
patterns which are intuitively reasonable. We summarize them as three main points:

• Cluster nodes. As illustrated in Figures 6(a) and 6(b), when instances contain certain clus-
ters, the hierarchical encoder tends to select a subset of “representative” nodes from each
cluster, efficiently describing the entire spatial distribution.

• Specific blocks. As illustrated in Figures 6(c) and 6(d), when instances contain specific
complex geometric patterns like squares (Figure 6(c)) and arrays (Figure 6(d)), the hierar-
chical encoder can capture the nodes of these important areas to identify their characteris-
tics.

• Boundary nodes. For instances without clear sub-components, the hierarchical encoder
tends to focus on boundary nodes that describe the global shape, as illustrated in Figures
6(e) and 6(f).

(a) (b)

(c) (d)

(e) (f)

Figure 6: Illustrations of nodes selected by the hierarchical encoder. Each sub-figure represents
an instance of TSP. The blue nodes represent the original instance, and the red nodes represent the
retained nodes after down-sampling by the hierarchical encoder.
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