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ABSTRACT

In this paper, we define the sum of RKBSs using the characterization theorem of
RKBSs and show that the sum of RKBSs is compatible with the direct sum of
feature spaces. Moreover, we decompose the integral RKBS F, (X, ) into the
sum of p-norm RKBSs {£L(p;)}ics. Finally, we provide some applications to
enhance the structural understanding of the integral RKBS class.

1 INTRODUCTION

To analyze the performance of neural networks, the hypothesis space represented by (infinite width)
neural networks has been studied. Based on the concept of variation spaces (Kurkova & Sanguineti,
2001; [Mhaskar, [2004), Bach|(2017) defined the F; spaces as an integral representation of the neural
networks using the total variation norm. In subsequent, |[E & Stephan| (2022) defined the Barron
spaces employing the path norm and showed that the F; spaces and the Barron spaces can be iso-
metrically isomorphic when using the Rectified Linear Unit (RELU) activation function.

The concept of Reproducing Kernel Banach Spaces (RKBSs) is a generalization of the Reproducing
Kernel Hilbert Spaces (RKHSs), similar to how Banach spaces extend Hilbert spaces (Zhang et al.,
2009). Relating to neural networks, Bartolucci et al.| (2023)) defined a class of integral RKBSs which
are variants of the F; spaces. They defined a class of integral RKBSs through the characterization
theorem of the RKBS introduced by (Combettes et al.|(2018) which describe an RKBS using a feature
space and its associated feature map.

In this study, our primary focus is on a class of integral RKBSs. We aim to decompose this function
space and identify its fundamental building blocks. Decomposing a function space entails preserv-
ing both its algebraic operations and topological properties. Since we are dealing with RKBS, we
additionally need to ensure that the decomposition preserves the property that evaluation function-
als remain continuous (see Definition [3.2). Considering the case of RKHS, there exists a sum of
RKHSs that naturally extends the space in a canonical manner, resulting in an RKHS (Aronszajn,
1950). Using this approach, we aim to define the (potentially infinite) sum of RKBSs and investigate
its relationship with the feature spaces.

The main questions of this paper are the following:

(1) Finding a natural definition for the sum of RKBSs that is compatible with the usual direct
sum of Banach spaces.

(2) How can we decompose a class of integral RKBSs using the sum defined in question (1)?

To answer these questions, we define the sum of RKBSs, see Proposition and show that the
direct sum of the feature (Banach) spaces is compatible with the sum of RKBSs (Proposition 4.2).
Roughly speaking, it is well-known that the space of the Radon measures can be decompose as the
vast [! direct sum of L' spaces. As an analogue of the fact described above, we decompose the class
of integral RKBSs using the sum of p-norm RKBSs (Theorem |4.4).
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1.1 RELATED WORK

Before the era of neural networks, one of the main topics in machine learning was the kernel method,
exemplified by concepts such as Reproducing Kernel Hilbert Spaces (RKHSs) and Support Vec-
tor Machines (Aronszajn, |1950; |Steinwart & Christmann, 2008 Berlinet & Thomas-Agnan, [2011)).
Machine learning models that use RKHS as their hypothesis space are guaranteed the existence of
a solution through the Representer Theorem. Additionally, an algorithm for explicitly finding this
solution is clearly presented (Smola & Scholkopfl [1998; Shalev Shwartz & Ben David, 2014). This
characteristic significantly reduces the gap between theoretical understanding and practical applica-
tion. One standard method for extending RKHS is through their sum, which plays a crucial role in
enhancing the approximation ability of machine learning models. For instance, approaches like the
multiple kernel algorithm demonstrate the utility of such extensions in effectively capturing diverse
features of data (Yamanishi et al.,[2004;|Gonen & Alpaydin, 2011).

However, RKHS-based learning algorithms exhibit certain limitations due to their inner product
structure. To address these challenges, the concept of Reproducing Kernel Banach Spaces (RKBSs)
was introduced. Numerous studies have explored its theoretical foundations and applications (Zhang
et al.| [2009; Song et al.l 2013} [Fasshauer et al., 2015} |Lin et al.|[2022). Meanwhile, early theoretical
research on neural networks primarily focused on approximation properties (Cybenko| |1989; Hornik
et al.l |1990; |Barron, [1993). This line of inquiry led to further investigations into the hypothesis
spaces of infinitely wide neural networks, culminating in the introduction of concepts such as Barron
spaces and variation spaces(Bach, 2017; [E et al., 2022; [E & Stephanl 2022; Siegel & Xul [2023)).

Recent studies have attempted to analyze the hypothesis spaces of neural networks within the RKBS
framework. For this purpose, the concept of integral RKBS has been introduced, which enables the
proof of the Representer Theorem for one-layer neural networks (Bartolucci et al, 2023). How-
ever, unlike RKHS-based models, neural networks lack a clear algorithm for finding the solutions
guaranteed by the Representer Theorem. In this study, we propose a method to decompose the hy-
pothesis space of one-layer neural networks while preserving the RKBS structure. This approach
enables a bottom-up exploration of the hypothesis space of one-layer neural networks, with the goal
of contributing to the development of explicit algorithms for solutions guaranteed by the Representer
Theorem in neural network settings.

1.2  ORGANIZATION

This paper is organized as follows. In Section 2, we briefly review the definitions and basic facts of
the functional analysis. In Section 3, following |Bartolucci et al.|(2023)); Spek et al.| (2022), we intro-
duce the definition of RKBSs and related function subclasses, namely a class of integral RKBSs and
a class of p-norm RKBSs. We present some basic properties of these function classes, particularly
focusing on the comparison between integral RKBSs and spaces of continuous functions (Proposi-
tion . Moreover, we define the sum of RKBSs, which is a modified version of Example 3.13 in
Combettes et al.|(2018) and the theorem in 353p of |Aronszajn| (1950), by using the characterization
theorem of an RKBS. In Section 4, we state the main result of this article. We provide the compati-
bility between the sum of RKBSs and the direct sum of feature (Banach) spaces. Furthermore, using
the compatibility (Proposition4.2), we obtain that a class of integral RKBSs can be decomposed into
the sum of p-norm RKBSs (Theorem[.4). In Section 5, we provide direct applications of Theorem
showing how the size of the RKBS F, (X, ) compares to the finite sum of p-norm RKHSs.

2 PRELIMINARIES AND NOTATIONS

In this paper, we denote I as a non-empty index set and the set {1,...,n} is denoted by [n]. We
consistently use p and ¢ as conjugate indices, where p satisfies 1 < p < oo. The data space
is represented as X, and the parameter space as ). For convenience, we assume that X’ and €2 are
compact subsets of R? and R” for some d, D € N, respectively. Furthermore, we use the notation =2
to denote isomorphisms between vector spaces and the notation % to denote isometric isomorphisms

between Banach spaces.
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2.1 DIRECT SUM OF NORMED VECTOR SPACES

Let {a;}ics be a family of elements in a Hausdorff commutative topological group (HCTG) H.
Define F as the collection of all finite subsets of I, and order F by inclusion. Then F becomes
a directed set. For each ' € F, define ap := Zie r @;. Since I is a finite set, ar would be
well-defined. Thus, (ar)rer is a net in H. The family {a;};cs is said to be summable if the net
(ar)rer converges. In this case, the limit is called the sum of the family {a; };cs, and we denote it
by 1) ;e ai- When we consider sums in the norm topology of R, we use the term ) _,_; a; instead
of ]RZZ.G 7a;. The contents related to the summable family in HCTG and R can be found in III §5
and IV §7 of Bourbaki| (1971) respectively.

For a given index set I # (), let { X; };c; be a family of sets indexed by I. Then the direct product of
the sets in {X; };cs is defined by [[;; X; := {x: T — U;c; X; : x(¢) € X; foralli € I'}. When
we assume that X; # () for all i € I, by the axiom of choice, [ ], X; is the non-empty set. In this
case, for j € I, we can define p; : [[,c; Xi — X by pj(x) = x(j) for x € [[,.; Xi. And we
call p; is the j-th canonical projection. By abuse of notation, for any x € [[,.; Xi, we denote x
by (z;)ier which means x(j) = z; € X, forall j € I. When {X, };c; is a collection of R-vector
spaces, the direct product of {X;}ics is the vector space [],.; X; with componentwise addition
and scalar multiplication. In this case, the canonical projections are linear maps. Furthermore,
if {X,}ier are topological spaces, then we can define the direct product of {X;};cr by giving a
topology on [[;.; X;, called the product topology. Under this situation, the canonical projections
are continuous maps.

Let {X; : ¢ € I} be a collection of normed vector spaces indexed by I. Then we can define the
direct sum of the normed vector spaces {X; : i € I} as follows:

Definition 2.1 (The direct sum of normed vector spaces (Conway, [1997)). For 1 < p < oo, we
define

@Xi = erXi: [Z||x(z)|§{1]p < 00

i€l iel icl

D=

as a normed vector space equipped with the norm HX”GBfeI X, = [ZZGIHX(Z)HI)’(] . For p = o,

we define

DX - {x e TT X s supllx(i)x, < oo}
Pt iy iel

2, x, = Super [[x(9)]|x:-

as a normed vector space equipped with the norm ||x||gz

In particular, if each X; is a Banach space, then the direct sum of { X };cs is a Banach space. Let p
and ¢ be conjugate indices with 1 < p < co. We can obtain the following relationship between the
duality and the direct sum (see III §5 Exercise 4 in|Conway|(1997)):

Define the map @ : @ (XF) — (@ X1;> as ® ((g:)ier) (fi)ier = Z (9:5 fi) (2.1)

i€l i€l i€l

for (9i)icr € @ic; (X;) and (f;)ier € @he; Xi. Then @ is well-defined and it is an isometric
isomorphism.

2.2 REVIEW OF MEASURE THEORY

Let K be a compact metric space. Then we know that the Borel and Baire o-algebra over K is
coincide and every Borel measure on K is Radon measure (see Proposition 6.3.4 and Theorem 7.1.7
inBogachev & Ruas|(2007)). Let C(K) be the Banach space consisting of continuous real-valued
functions defined on K, equipped with the supremum norm. We denote by M (K) the Banach space
of (signed) Borel measures defined on K, endowed with the total variation norm. Additionally, the
set of positive measures in M(K) is denoted by M(K)™, and the set of probability measures
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in M(K) is denoted by P(K). We know that by the Riesz Representation Theorem, there is an
isometric isomorphism

A M(K) — C(K)* defined by A(2)(f) := / fdu forpc M(K)and f € C(K). (2.2)
K

Let a measure space (K,X,u) be given. Then, for 1 < p < oo, we can define the Ba-
nach space LP(u) consisting of equivalence class of p-th power integrable functions with norm

1/ .
1l = (Jxc|Fldp) ™" < 00, if1 <p < oo
[fllec = esssup|f| < oo, ifp=oc
o0, there is an isometric isomorphism

. When p and ¢ are conjugate indices with 1 < p <

E: LY(pu) — LP(u)* defined by E(g)(f) = /K fgdu forge Li(p)and f € LP(u). (2.3)

It is also true for the case of p = 1, ¢ = oo if the measure space (K, X, p) is indeed o-finite. We use
the notation L? (K, u) instead of L (y) if there is a need to distinguish the domain space K.

A family § of measures in M(K)" is called singular if ; | v whenever p,v € § and p # v
(see Definition 4.2.4 and Definition 4.6.1 in Dales et al.| (2016)). Let G be a nonempty sub-
set of M(K)*. Then, by Zorn’s lemma, there exists a maximal element in the set {2 : A C
S, 2 is a singular family in M (K)™}. This maximal element is called a maximal singular family
in &. Let {y; };cr be a maximal singular family in P(K). Then, there exists an isometric isomor-
phism

1
O: @Ll(ui) — M(K) defined by © ((fi)ier) =m(x) Zielm (2.4)

icl

for (fi)icr € @3“ L' (u;), where p;(B) = fB fidu; for all ¢ € I and Borel set B in K. (see
Theorem 4.6.6 in Dales et al.| (2016)) and Proposition 4.3.8 in|Albiac & Kalton! (2016))). We use the
notation ®, A, = and O liberally in situations that are isometrically isomorphic, as described above.

3 REPRODUCING KERNEL BANACH SPACES

3.1 DEFINITION OF RKBS

When we consider R* = [I.cx Re, where R, is just a copy of R for each z € X, there is a natural
topological structure called the product topology. Equivalently, it is the initial topology with respect
to the family of canonical projections {p, : R — R, },cx. Since this topology is compatible with
the vector space structure of RY, R becomes a Hausdorff topological vector space (HTVS). Thus,
we may consider a summable family (a;);ecs in R¥ and denote its sum in RY by rx Zie ra; if it
exists.

Let V be a linear subspace of R*. Then a topology on V induced by the product topology of R
again gives V the structure of a HTVS. Additionally, due to the transitivity of the initial topology,
the subspace topology on V' coincides with the initial topology induced by the family of restrictions
{pzlv : V. — Ry}zexr. We denote such a HTVS as (V, {ps|v }zex). (Relating reference can
be found in Narici & Beckenstein| (2010); Bogachev & Smolyanov| (2017); Bourbaki| (1971)). To
distinguish between an index set I and the data set X', we use the term for the case of the latter as
follows:

Definition 3.1. Let V be a linear subspace of RY. For each x € X, we use the term evaluation
Junctional at © € X on V to refer to the restriction of the canonical projection p;|v : V — Ry,
denoting it as ev,. Specifically, the function ev,, : V' — R is a linear functional defined by ev,(f) =
f(x) forall f € V.

Now we define a reproducing kernel Banach space on X as follows:

Definition 3.2 (Definition of reproducing kernel Banach space (Bartolucci et al.l [2023; [Lin et al.,
2022)). For a given set X, a reproducing kernel Banach space (RKBS) B on X is a Banach space
B of functions f : X — R such that
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1. as avector space, B is a linear subspace of R

2. forall x € X, there is a constant Cy, > 0 such that for all f € B,

f@)| < Callfll-

According to the definition, all evaluation functionals on B are continuous. In other words, we have
that for all x € X, ev, € B*. Therefore, the norm topology of an RKBS (B, ||-||5) is finer than
the HTVS (B, {evy }zcx ). Let (B,]|-]]1) and (B, ||-||2) be two RKBSs on the same linear subspace
B of R*. Then by the Closed Graph Theorem, two norms ||-[|; and ||-||2 on the linear space 3 is
equivalent (see I §3 Exercise 2 in Bourbaki| (1953) and Corollary IV; in |Aronszajn (1950)ﬂ In
other words, when we have a function space B, we can give an unique RKBS structure on 5 up to
equivalence of norms.

We will consider these RKBSs as hypothesis spaces in machine learning. The reason for using
RKBS is as follows: When defining a hypothesis space (or function space) in machine learning,
we consider completeness and pointwise convergence as the minimal assumptions required for the
properties of the function space (see Chapter 1 in Berlinet & Thomas-Agnan|(2011)).

3.2 CHARACTERIZATION OF RKBSs

Before we state the characterization theorem of RKBSs, we introduce a method that induces a math-
ematical structure from a pre-existing structure. Let V' be a normed vector space over R equipped
with the norm |||y, and let W be a vector space over R. If there is a vector space isomorphism
T :V — W, then |[T7(-)][y : W — R defines a norm on W. Furthermore, when we con-
sider W as a normed vector space equipped with the norm ||71(-)||y/, the linear isomorphism
T : (V,|-lv) = (W,||IT7()||v) becomes an isometric isomorphism (This is referred to as the
transport of structure).

Let V and W be vector spaces. If T : V' — W is a linear map, then there exists an unique linear map
T:V/kerT — W suchthatTor = T, where 7 : V — V/ker T defined by w(v) = [v] forv € V.

Throughout this paper, we use the notation T to denote the induced linear map described above in
similar situations. We now state the characterization theorem of RKBSs introduced by |(Combettes
et al.| (2018).

Theorem 3.3 (Characterization of RKBSs (Bartolucci et al.| [2023;/Combettes et al.L[2018)). A linear

subspace B of R is an RKBS on X if and only if there exists a Banach space U and a map ¢ : X —

U* such that B = im(A) = {f : Iv € Y s.t. A(v) = f} with the norm ||f||p = filnfl’(f)||1/|
veEA™

where A : U — RY is a linear map defined by (Av)(x) := ((x),v) forx € X and v € V.

v,

Note that the linear map A is the linear transformation induced from the family of the linear maps
{(x) : ¥ — R, }.cx by the universal property of the direct product of the vector spaces {R,. } ;e x-
We briefly review the proof provided in Bartolucci et al.| (2023)). In the necessity part of the proof, it
is shown that ker A is closed in ¥ by the following equations:

ker(A) = {v € W :¢(x)(v) = 0forallz € X} = () ker (). 3.1

reX
Thus, U/ker A can be a Banach space with the quotient norm. Consider the linear map A
W/ker A — RY such that A = Aor. Since A : ¥/ker A = im(A) is an isomorphism of
vector spaces, by the transport of the structure, B = im(A) becomes a Banach space with the norm:

A1 . .

5=|lA or(A) = inf v|lg = Inf v
Il = 1A Dl = __inf ol = _inf vl

The evaluation functionals are continuous as follows: for any f € B and v € A~(f), we have
|f(z)| = |Av(x)| < ||¢(2)|lw~]|¥||w- Thus, we can deduce that for all zz € X,

leve(Hlle = [f(@)] < o @)lle- | _inf lIvlle = [[v(@)]

flls. (3.2

P *

From now on, for a given RKBS B, we consider a corresponding space ¥, a map ¢ and an induced
linear map A. In this situation, by abuse of notation, we may say that an RKBS triple B = (U, ¢, A)
is given. Each component of the triple (¥, ¢, A) has a specific name. Specifically, we refer to ¥ as
a feature space, v as a feature map, and A as an RKBS map in order.

'https://terrytao.wordpress.com/tag/weak-topology/
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3.3 ONE-LAYER NEURAL NETWORKS

In this subsection, we assume that ; C R? and Q, C R are compact, and let Q = € x Q.
Consider a continuous nonlinear function g : R — R. The prediction function represented by a
one-layer neural network with a one-dimensional target can be expressed as follows:

=Y migla-0; = by), (3.3)
i=1
where z € X, 60, € Qy,b; € Qyandn; € Rfore = 1,...,m. For convention, and with some abuse

of notation, we define a continuous function o : X x @ — R by o(z,w) = g(x - 0 — b) where

= (6,b). This gives the following simplified representation: f(z) = Y., n;o(z, w;). Usmg
measure theoretlc notation, we can have an integral representation of the equation E flz) =
Joof d (>, mi0,,) where &, is the Dirac measure at w;. When considering the 11m1t as
m — 00 1n equation [3.3] we obtain the following:

| (e (ﬁ_njncsw> = [ otaw)intw).

for some 11 € M(Q). A more detailed explanation can be found in Chapter 9 of Bach|(2024). In the
following subsection, we will define the hypothesis space of one-layer neural networks in a more
abstract way using this relaxed expression.

3.4 INTEGRAL RKBS AND P-NORM RKBS

Directly using the characterization theorem, we can define the hypothesis spaces that are considered
to represent one-layer neural networks. Until section 4, we consider a fixed element o in C'(X x §2),
where X is a compact subset of R? and € is a compact subset of R” for some d, D € N.

Let V' and W be a real normed vector spaces. If we denote V' ** be the bidual space of V, then there
is a linear isometric embedding ¢ : V' — V**, called the canonical embedding of V' in V**, defined
by ¢(v)(v*) = v*(v) for v € V and v* € V*. For a given bounded linear operator 7' : V' — W,
the dual operator of 7' is the linear operator 7% : W* — V* defined by T*(w*) := w* o T for
w* e W,

Definition 3.4 (A class of integral RKBSs, associated with the function o (Bartolucci et al.| 2023
Spek et al.|, [2022)). Let M(Q) be a feature space. Consider a feature map ¢ : X — M(Q)*(%

C(Q2)**) defined by (x) = A (t(o(z,-))) for all x € X, where v : C(Q) — C(Q)** is the
canonical embedding of C(2) in C(Q)** and A* is the dual operator of A : M(Q2) — C(2)*,
whlch is deﬁned in equatlon 2.2| Then there is a linear map A : M()) — R?Y defined by (Au)(x) =

= [ oz, w)dp(w) for x € X and p € M(XQ). An integral RKBS F,(X,Q), associated
wnh the functlon o is defined by the Banach space

Fo(X,Q) := {f eERY :3pe M(Q)s.Vz e X, f(z) = /Qa(x,w)d,u(w)} , (3.4)

equipped with the norm || f|| 7, (x,0) = inf ,c a—1 ()| 2l m(0)

In the above Definition consider the linear map A : M(Q) — R*. We deduce that, by
the Dominated Convergence Theorem, im(A) is a linear subspace of C'(X’) (see Theorem 2.27 in
Folland (1999)). Furthermore, from the inequality [[Apl|c(x) < SuPzex wea [o(2; w)| [|p|, we can

see that the map A : M () — C(X) is indeed a bounded operator. Recently, Steinwart showed that
when X is an uncountable compact metric space, there is no RKHS H on X such that C(X) C H
(Steinwart, |2024). We can obtain a similar result for the class of integral RKBS as well.

Proposition 3.5. The bounded operator A : M () — C(X) defined by

(Ap)(z) = / o (&, w)dp(w)

Sforx € X and p € M(Q) is compact.
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Using the proposition above, it follows that if im(A) is closed in C(X'), then im(A) has finite
dimension. Thus, when X’ is an infinite compact metric space, we deduce that F, (X, ) C C(X),
and in general, F,, (X, 1) cannot be a Banach space if it equipped with the supremum norm.

Definition 3.6 (A class of p-Norm RKBS, associated with the function o (Spek et al., [2022)). Let
m € P(Q) be given. Let p and q be conjugate indices such that 1 < p < co. Take a feature space W
as LP(m) and choose a feature map 1) : X — (LP(w))* defined by (x) = Z(o(z,-)) for z € X,
where Z : L(w) — (LP(7))* is the isometric isomorphism defined in equation Then, there is a
linear map A : LP(7t) — RY defined by (Ah)(z) = (¢)(x), h) for v € X and h € LP(r). We define
a p-Norm RKBS L2 (), associated with the function o by the Banach space

£2(r) = {fe]RX T € 1P(7) s Va:eX,f(x):/Qo(a:,w)h(w)dﬂ(w)}, (3.5)

equipped with the norm || f|| zz (zy = infr,ca-1(p)l| Al Lo (m)-

When we consider the p = 2 case, we obtain the RKHS £2 (7). This space corresponds to Fo as
described in Bach| (2017). The kernel of £2 () is given by k(x,y) = [, o w)dm(w) for
(z,y) € X x X. Furthermore, £2 () is embedded in L] () (that is, L2 (7 ) C £1( )) and for all
e L2(m), 1fllzemy < Ifllz2(m)- As an analogue to the case of L? space, we sometimes use the
notation L2 (Q, 7) instead of L2 () to avoid confusion.

3.5 INFINITE SUM OF REPRODUCING KERNEL BANACH SPACES

Let an RKBS B be given. If we consider an evaluation functional on B evaluating at x € X" by
ev, : B — R, as discussed earlier, then we have that for all z € X, ev, € B*. Thus, if we
assume that a collection of RKBSs {B;}ic; is given and denote ev’ as the evaluation functional on
B; evaluating at x € X, then foralli € [ andz € X, ev; € B}. Now, we define the sum of RKBSs
as follows, modifying Example 3.13 in (Combettes et al.| (2018) and the theorem on page 353 of
Aronszajnl (1950):

Proposition 3.7 (Infinite sum of reproducing kernel Banach spaces). Let p and q be conjugate
indices with 1 < p < oo. Let {B;}icr be a collection of RKBSs on X. Suppose that for all
€ X, (ev))ier € Pl By. Let @l B; be a feature space and define a feature map s : X —
(DF., B:)" bys(z) = ®((ev?)ier) forx € X, where & : @2 B — (@F.; B;)" is the isometric
isomorphism defined in equation Then there is a linear map S : @?, crBi — R defined by
(S(fi)ier) (@) = (s(®), (fi)ier) for (fi)icr € @i Bi and x € X. By the Theorem we
can define an RKBS B = Im(S) = {gxY_;crfi: (fi)ier € @le; Bi} equipped with the norm

Iflls = inf(s),c,es-1n | (Fierll@r,, 5, = nfr= o5, p 1 (f)icrllr,, 5,

i€l

Note that the property of net in the initial topology implies that f =gx > .., f; in (R, {ps}ocx)
is equivalent to f(x) = ,.; fi(x) for all z € X. Thus, we have that

p
B= {f €RY:3(fi)ier e PBist Vo e X, f(z) = Z<eva,fi>}

iel i€l

= {szielfi t(fi)ier € @Bz}

icl

From now on, we denote B mentioned in the Proposition nby 276 ; B; and call it the sum of the
family of RKBSs {B;}ics. In particular, for the case of p = 1, we denote B as ) ,_; B;. In the
Proposition[3.7] we intentionally use the notation s for the feature map and S for the RKBS map to
emphasize that they are used to represent the sum of RKBSs. Moreover, we denote the RKBS triple
of the sum of RKBSs by >°*_; B; = (D!, Bi,s,S) using s and S.

Remark 3.8. Let a family of RKBS triples {B; = (U;,;, A;) }ic1 be given. From the equation|3.2]
we know that ||evy || r < ||[¢i(@)||w: forallx € X andi € I. Thus, instead of assuming (ev, )ier €

B} forall x € X it suffices to assume that (1;(x))ic; € @ie; U forall x € X.

ZEI
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4 MAIN RESULTS

4.1 COMPATIBILITY BETWEEN THE SUM OF RKBSS AND THE DIRECT SUM OF FEATURE
SPACES

In this section, we present the compatibility between the sum of RKBSs and the direct sum of
feature spaces. Before stating our main proposition, we prove the following lemma, which says
that the restriction to the direct sum of Banach spaces of the product of (quotient, isometry) maps
preserves their properties.

Lemma 4.1. Suppose 1 < p < oo, and let a family of Banach spaces { X; };c1 be given.

1. Suppose that for each i € I, D; is a closed linear subspace of X;, and let m; : X; —
X/ D; be the projection map defined by m;(x;) := [z;] for x; € X;. Then, the map

(m)icr + Djer Xi — Djer Xi/Di defined by (mi);c; (z:i)ier) = (mi(xi));er for
(zi)ier € @Y, Xi is a surjective bounded linear operator.

2. Assume there is another family of Banach spaces {Y;}icr. If for each i € I, there is an

isometric isomorphism ¢; : X; — Y;, then the map (¢;),c; : @he; Xi — @he; Vi defined

—_~—

by (¢i);er (xi)ier) = (0i(4));c for (wi)icr € @fg X, is an isometric isomorphism.

The following proposition is one of the main result of this paper. It states that when we have a family
of RKBSs, there is an RKBS induced by the direct sum of feature spaces, which is isometrically
isomorphic to the sum of the given family of RKBSs. Conversely, when we have an RKBS induced
by the direct sum of feature spaces, there is a collection of RKBSs such that their sum is isometrically
isomorphic to the given RKBS.

Proposition 4.2 (Compatibility). Let I # () be an index set. Let p and q be conjugate indices, where
p satisfies 1 < p < oo.

1. Suppose a family of RKBS triples {B; = (V;,1;, A;)}Yier is given and (evi);er €
4.1 B; forall x € X. Then, there is an RKBS triple B = (Ple; U, A) such that
B % Zfe] Bi.

2. For an RKBS triple B = ( fe 1 Vi, A), there is a family of reproducing kernel Banach
spaces {B;c1 }icr such that B % Z?e[ Bi;.

N
—_—

fel v, (mi)ier fe[ \IJi/ker A, (Ai)ier @fel B
A S
R){

Figure 1: Commutative diagram for the compatibility

The diagram above intuitively illustrates the result we aim to demonstrate in Proposition 4.2} De-
tailed information about each map can be found in Appendix

4.2 DECOMPOSITION OF ONE-LAYER NEURAL NETWORKS

The following lemma shows that if there is an isometrically isomorphic feature space, then we can
construct an isometrically isomorphic RKBS.

Lemma 4.3. Let ¥y be a Banach space and let By = (¥, 19, As) be an RKBS triple. If there is
an isomeric isomorphism & : Uy — W, then there is an RKBS triple By = (V1,11, A1) such that
B1 = Bs.

B
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Now, we introduce our main theorem. It state that the integral RKBS F,(X,€)) defined in the
Deﬁnition can be decomposed into the sum of a family of p-norm RKBSs { £} (11;) }ie; defined
in the Definition [3.6] where {/1;};¢s is a maximal singular family in P(2).

Theorem 4.4. Let {y; }icr be a maximal singular family in P(Q)). Then, we have the following:

FoX.0) 2 37 L ()

i€l
Remark 4.5. In the proof of the Theorem[.4] we can see that the following set equality holds:
‘-FO'(X7 Q) = Z ‘Cclr(ul)

iel
Furthermore, since ) is a compact metric space in our setting, L1 (j1;) is a separable RKBS for all
1 € 1. Thus, we decompose the integral RKBS F, (X, Q) into infinitely many separable RKBSs.

5 APPLICATION

Let {1; };c[n) be any finite family in P(Q). Since for each i € [n], k;(z,y) = [, o(x, w)o(y, w)dp;
for (z,y) € X x X is the reproducing kernel of £2(p;), the sum kernel k(z,y) = Y7, ki(x,y) is
the reproducing kernel of Z?e (] L2 (;) (The notation Zfe[n] refers to the case where we defined it
in Propositionwith p = 2and I = [n]). In this setting, we can guarantee that Zfe (] L2 (i) is an
RKHS. The following proposition shows that when we consider the finite singular family in P(),
the RKHS 2726 [n] L2 (1) contained in the RKBS F, (X', ) with the same associated function o.

Proposition 5.1. For any finite singular family {p; }ic[n) in P(S2), we have

Z Cg(uz) C J:U(X’Q)'

1€[n]

Let a family of continuous functions {o; : X x @ — R}"_ ; be given. By the Tietze extension
theorem and the pasting lemma, there is a continuous function o : X x © x [0,1] — R which is a
extension of the continuous function 6 : X x @ x {%,...,2=1 1} — R defined by &(z,w, £) =
oi(z,w) foralli =1,...,n,z € X and w € Q. In the following proposition, we show that the
finite sum of p-norm RKBSs associated with different functions is contained in the integral RKBS
associated with a suitable function when considering a larger parameter space. This means that the
class of integral RKBSs is quite large due to its flexibility in choosing the dimension of the parameter
space.

Proposition 5.2. Let a family of continuous functions {o; : X x  — R}, be given. Let {m; }1"_,
be a collection of probability measures in §). Then, we have

2
> LZ(Qm) C Fo(X,Q % [0,1)).

i€[n]

Remark 5.3. For the purpose of a realistic application, we consider the case where p = 2 in this
section, but the results can also be generalized to the case where 1 < p < oo. Note that from
the Corollary 13 in |Spek et al.| (2022), it is known that Fo(X,Q) = U, cpq) L5(m). Thus, the
Proposition can be obtained without needing to consider the infinite sum of RKBSs. However,
using this approach allows for a more systematic exploration.

6 CONCLUSION AND FUTURE WORK

We showed that there is a compatibility property between the direct sum of feature spaces and the
sum of RKBSs. By using this, we can decompose a class of integral RKBS F, (X, 2) into the
sum of p-norm RKBSs {£! (11;)}icr. The advantage of this analytical method is that it allows for a
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more structural understanding of the RKBS class through an appropriate decomposition approach.
In Section 5, we partially explained these advantages by comparing the integral RKBS class to the
previously known sum of RKHSs. Additionally, through these insights, we expect that it would be
helpful in designing multiple kernel learning algorithms for the RKBS class. To ensure the feasibility
of learning, we need to consider the Representer Theorem, which is discussed in paper Bartolucci
et al.[(2023)) for the integral RKBS class. If the most generalized form of the Representer Theorem
presented by [Unser & Aziznejad|(2022) can be extended to the infinite case, it seems likely that this
would enable the recovery of the results obtained in Bartolucci et al.| (2023) within the context of
our findings.
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A APPENDIX

A.1 PROOF OF PROPOSITION[3.3]

Proof. Since §) is a compact metric space, C'({2) is separable space. Let {1, } be a bounded se-

~

quence in M () 5 C(€Q)*. Then, by the separable version of the Banach-Alaoglu Theorem, there

exists a weak* convergent subsequence {j,, } such that yi,,, — p (see Problem 10 of Chapter
4.9 in Kreyszig| (1991))). Define I' := {o(x,:) € C(Q) : z € X}. Since I is uniformly bounded

11



Under review as a conference paper at ICLR 2025

and pointwise equicontinuous, we have the following (see Exercise 8.10.134 in [Bogachev & Ruas
(2007)):

/d%wmmm—uWM’

A [ Apn, = Apllog) = lim sup

= lim sup
n—oo fEF

[ it | 0.

A.2 PROOF OF PROPOSITION[3.7]

Proof. Let @, B; be a feature space and define a feature map s : X — (P, B;)" as s(z) =
®((evl)ier) for x € X, where @ : @7, Bf — (@F.; B;)" is the isometric isomorphism defined
in equation Now, there is a linear transformation S : @fe 1 Bi = RY by (S(fi)ier) (z) =
(s(x), (fi)ier) for (fi)icr € @l Bi and x € X. Then, by the Theorem @D, Bi/ ker(S) =
im(8) is an RKBS on & with the norm || f[|s = inf 4,),,es-1(p)[|(fi)ier | @r_, 5.- O

A.3 PROOF OF LEMMA [4.1]

Proof. We know that for each ¢ € I, ; is a surjective bounded linear operator, and its norm satisfies
[l |l < 1 (see I §4 Theorem 4.2 in|Conway| (1997)). Additionally, there is an unique linear map
(mi)ier : [ier Xi = Tlies Xi/Di such that 7; 0 p; = qj o (), forall j € I, where p; and g;
are j-th canonical projections of [ [, ; X; and [ [;; X;/D;, respectively. Consider the restriction of
(m)iel/te\_@fej X; and denote it by (m;),c; : @b Xi — [[;er Xi/Di. Let (x:),c; € Phe; X
Since (m3);¢; (wi)ier) = (mi(2:));er € [lier Xi/Diand 32 pllmi(@a)lly, b, < Xierllaillk, <
00, it follows that im ((m)iel> C @Y., X;/D;. From this, we also know that (), is a bounded
operator with norm less than 1.

It remains to show the surjectivity of (m;),c; : @b, Xi = @, Xi/D;. Let (mi(x;))ier €

ter Xi/Di. Then, we have 37, infa.ep, |2 + dill, = ;e (infa,ep,llws + dillx,)” =
Ziel||7ri(xi)”z))(,¢/Di < ooandthe set N = {i € I : |m(x;)l|x,/p, > 0} is countable. Let
f N — N be a reordering bijection. From the definition of the infimum, for each k£ € N, we can

take &f(k) € Dy y) such that
- 1
p : p
2y + dyal, ., < df(k)lggf(k)lle(k) i 0, + 130

Then, we have that:

D ollzi+dillk, =Y llesa + drwll,
€N k=1

(oo} (oo}
1
< inf x +d £ + — < 00.
;%W@Mﬂﬂm 10l g%z

z;+d; ifi€eN,
0 ifie I\ N’
(mi(4));c;- We can also prove the (2) directly.

Thus, if we take =} = { then (z}),., € Ple; Xi and (1), ((2))ier) =

A.4 PROOF OF PROPOSITION[4.2]

Proof. From the Lemma we know that there is a surjective bounded linear operator (7;);c; :

fe[ v, — GB?E[ U,/ ker A; and an isometric isomorphism (A;);cr : EBfeI U,/ ker A; —

12
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D, Bi. Let @ : @I, Bf — (@, B;)" be the isometric isomorphism defined in equation
Since (evi)icr € DY el B forall x € X, we can apply the Proposition [3.7|to deduce that there
is an RKBS triple for the summation of RKBSs >_? = (@}, Bi,s,S). Consider the map

e~

A:=S8o (/L)iel o (m)icr = So (Ay)ier : EBZEI U, — RY. To verify the map A is indeed an
RKBS map, we show the following holds

LEI

—_~— P

(Alus)ien) (@) = (8 (Aier(widier) ) (2) = (@((evh)ier)  (Aier ()ier )

forall z € X and (p;)ier € @761\11 Thus, if we define a feature map ¢ : X — (@}, ¥ )*
by ¥(x) = ®((evl)icr) o (AZ)ZGI € (B, ¥ ) for x € X, then we get an RKBS triple B =

(@Y., Vi 9, A). Since (Ay)ier o (mi)ier is surjective, im(A) = im(S) in terms of set equality.
Also we note that, by the Theorem B = im(A) and P, B; = im(S) as sets. Since im(A)
and im(S) both inherit the same algebraic structure from RY, we can deduce that they are the same
as vector space. The only remaining part of the proof is to show that for any f € B, ||f|lz =

1flse., 5

To prove (2), suppose that we have the RKBS triple B = ( fe 1 Vi1, A). We denote @ :
P s ( P \Ilz)* as the isometric isomorphism defined in equation Since (x) €

(Ph., ¥;)" forall z € X, we know that

@\P 125" (¥ ()l e, ws < oo (A1)
el

Now, we define for each i € I, 1; : X — ¥ by o (z) = pi(®y (1 (x))) for x € X, where p; is
i-th canonical projection on Hie ; . Then, for each ¢ € I, there is an RKBS map A4; : ¥; — R¥
defined by (A;pi)(x) = (Yi(x), ;) for x € X and p; € ¥;. From the Theorem. we can

get a family of RKBS triples {B = (Ui, ¢, Ai) bier. Let @ : 69161 B — (B, B; ) be the
isometric isomorphism defined in equation [2.1] By the above equation @ we can deduce that
(Yi());e; € Dic; ¥ Thus, the Remark [3.8/implies the existence of an RKBS triple for the sum

of RKBSs >0 B; = (@ Bi,s,S). From the following series of equations, we can see that
A=So (/12-)2-61 o (m;)ier- Forz € X and (u;);er € @fel ¥,, we have that

(A ((pa)ien)) () = (@), (ni)ier) = (Do (B5 (¥ (2))) , (m)ier) = Y _ (pi(Pg ' (¥(x))), i)
el
= (Whi(w), pi) = (®((ev))icr), (Aipa)ier) = (S (Aipti)ier)) (x)
el

—_~—

= (5 (Aeertren) ) (@) = ( (S0 Aier o (ier ) (Gen) ) o).

For similar reasons as the previous case, we only need to prove that for any f € B, |fllz =
17l 5,

We start by exploring the definition of each norm. The norm on the RKBS Zz <1 Bi is given by

£, s, = it {I(Fier s s, (Fidier € ST}
= inf {Zinf{mﬂgi HYIZS Ai_l(fi)} (fi)ier € Sl(f)}

icl

13
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for f € >-"_; B;. The norm on the RKBS B is given by

171 = inf {l(us)ierllye_ g, (u)ier € A7)} = inf A7 () G g,

i

— -1 P —— —1 ’
= inf ‘(Ai)iel oSTHS) = inf U (AiJier  ((fiier)
Dler Vi (fi)ie1€S~1(f) DL Vs
———— —1 p
= inf U H(Ai)iel ((fi)ier)
(fi)ier€S™(f) fef Vi
— -1 p
— inf {inf ‘(Ai)iGI ((fi)ier) (fidier € 5_1(f)}
@?61 v,

= inf {inf {ZWZ-H{’I” s (1i)ier € (Z.\)_i;_l ((fi)iGI)} (fi)ier € 8—1<f)}

icl

— —1

for f € B. If we denote the set {Ziel|ﬂi| Z&,i s (wi)ier € (Aiier ((fl)lej)} by C, then we

conclude the proof by showing that:

Zinf{||ﬂi|

i€l

L. twi € A7N(fi)} =infC

for all (fi)ier € ST(f). To show that >, inf {[|1;||%, : i € A7 (f:)} is a lower bound for C,
-1

we note that (u;)ier € (Ai)ier  ((fi)ier) is equivalent to

p
(Mi)iGI S @ W, and V¢ € I, AZ,LL’L = fz (A2)
el

Let (vi)ier € (Ai)ier _((fi)ier)-

Then, by the equation [A.2] we have that inf {||u;||%5, : s € A;7'(fi)} < |lwill, forall i € 1.
Thus, we deduce that Y-,/ inf {||ull5, : i € A7 (i)} < Xieswill%,- Now, we have to show
that 3, inf {||uil%, : pi € A;7'(f;)} is the greatest lower bound of C. Let ¢ be an any lower
bound of the set C. Since we already assumed that (f;)ic; € S™!(f), the norm of (f;)ies in
@’ B is finite. That is, we know that Y°,_ , inf { |||}y : pi € ATY) Y =l fill < oo
We denote the set {i € I : inf{||ui|’fpi tpi € A7N(f;)} #0} by H. Then, fori € I\ H,
inf { |||y, : pi € A7'(fi)} = 0. Hence, there is a sequence {v/'},en € A; '(f;), so that
v — O[Ig, — 0asn — oo. Furthermore, since A;° L(f:) is a translation of ker A;, by the equa-
tion A7 L(f:) is a closed subset in ¥;. Therefore, we deduce that

0€ A (fi) foralli € T\ H (A.3)

For the case of H, note that H is a countable subset of I. Accordingly, we may take a reordering
bijection g : N — H. By simply using the definition of the infimum, for any 1 > € > 0 and for any
g(n) € H, thereis a vy, € Ag_(ln)(fg(n)) such that

. _ 1 1
inf {Hﬂg(n)”g D lg(n) € Ag(iz) (fg(n))} + 1o € > Hl/g(n)HZ\}lg(n)' (A4)

g(n)

14
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Combining the above results, we obtain the following:

Zinf{”/ii‘

el

v €ATNfi)} 4 e (A.5)

—1 1
. -1
>me{|mi|§,i:ui€Ai (f’)}—i_ZZQT € (A.6)
el n=1
= inf 2w € AN QL (A7)
*Zm {lluilly, = mi € A (fl)}+21'27'€ .
i€eH n=1
— (. v . 11
= Z inf {H,Ll,g(n)‘ Uy D lg(n) € Ag(n)(fg(n))} + 1 . on <€ (A.8)
n=1
>3 gl o, = S lall- (A9)
n=1 i€H

Define & = {gl iz 2 ?i Jie Then, by the equation and equation we know that

forall i € I, & € A;7'(fi). In addition, from the inequalities in equation [A.9) we also
know that Y, /161y, < Yiellfillg, + 1 < oo. Thus, by the equation [A.2l we deduce

1
that (&)ier € (Ai)ier  ((fi)ier) (e 2o, /lI&ll%y, € C). Finally, the following show that
Sierinf {Jlpill%, : i € A7N(fi)} is the greatest lower bound of C:

S inf {[luillf, cpe€ AT Y > D willh, = Yl

el i€H el

{’I,izc foralll > e > 0,

where c is a lower bound of the set C. O

A.5 PROOF OF PROPOSITION[4.3]

Proof. Define a feature map 11 : X — U3 by ¢ (x) = ¢9(x) o £ for z € X and a linear map A; :
U, — RY by (A1) (v) =< Y1 (), u > forz € X and pu € Uy. Then, we deduce that A; = As0€.
Furthermore, B; = (1,1, A;) is an RKBS. Consider the map £ : ¥/ ker Ay 0 & — Wy/ ker Ay
defined by £([u]) = [€(u)] for [u] € ¥/ ker Ay o&. Since ker (A 0 &) = £ 1(ker Ap), £ is a
well-defined vector space monomorphism. The remaining proof for establishing surjectivity and
isometry is straightforward. O

A.6 PROOF OF THEOREM [4.4]

Proof. By the Definition 3.4} there is a map 1) : X — M (Q)* defined by ¢ (z) = A*(1(o(z,")))
for x € X. And there is an RKBS map A : M (Q) — R defined by (A(p))(z) =< v (x), u > for
all z € X and pp € M () such that

Fo(X,Q) =2 M(Q)/ ker A.

B
LetO : @216 7 LY (i) — M(Q) be the isometric isomorphism defined in equation Define a map
D (@}eILl(Mi)) by $(z) = 1(x) 0 ©. And consider a map A4 : @@L, L' (ju;) — RX
defined by A = A o ©. Then, by the Lemma we have that
1
M(9)/ ker A = @Ll(ui)/kerz.
i€l
Now, let o : @:e, (L (1)) — (@:GI Ll(,ui)) be the isometric isomorphism defined in equa-
tion For each i € I, if we define amap ¢, : X — (L*(u;)) by ¥;(z) = pi (25" (¥(2)))

15
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for z € X and define a map 4; : L'(u;) — RY by (4;(h)) (z) = (¢;(x),h) for z € X and
h € L(u;), then by the Proposition we can deduce that

1 1
LY (u: A~ )
DL (u)/ ke A= 3" B
i€l el
where B; = (L'(u;),;, A;) for all i € I. We want to show that B; is indeed L, (p;) for all
i € I. Suppose for each i € I, Z* : L>®(u;) — Ll(uz))* is the isometric isomorphism intro-

duced in equatlonm 2.3l According to the Definition [3.6| it suffices to verify that ¢, (z) = Z(o(x, -))
for all z € X and i € I. This condition is equivalent to 1(z) = ®q ((Ei(a(x, )))zel) for
all z € X. Hence, we want to prove the following holds: (A* (¢ (o(z,))) 0 ©) ((fi)ier) =

Do (EX(o(x,-)))ier) ((fi)ier) forall z € X and (f;)ier € @;c; L' (). First, for the left-hand
side, we have:

(A" (olo(a,)) 0 ©) ((fier) = (A" (o)) i) 2,01
= <L(a(a:, ) © A mcr Zielpi> = Z (to(z,-)) o A, p;)

—Z A(p:)) —Z<A(Pi)70($7')>
—Z/ (z, w)dp;(w Z/ (z,w) fi(w)dp;(w).

Next, for the right-hand side, we have:

Do ((E (o, ))ier) ((fiier) = 3 (F(o(@ ), fi) = 3 / (. w) fi(w)djss ().

iel i€l

A.7 PROOF OF PROPOSITION[5. 1]

Proof. As we noted in the Definition we can easily show that for a given 7 € P({),
L2(m) € LL(r) and || fllz1(x)y < I fllc2(m) forall f e L2(m). Let {y;}icr be a maximal sin-

gular family containing {; }ic[,). Consider the map ¢ : @ze[n] L2 (i) — @Zle 7 L1 (w;) defined
N

by (x)(i) = {;c,(z), ifz E Bn{ ] forx € @?e[n] L2 (u;). Since 1(x)(i) = x(i) € L2 (u;) C

L5 (i) for all i € [n], we know that v(x) € [[;c; £ (p;). Furthermore, by the following in-

equalities 3=, [|0(3) ()l 22 us) = 2oia lIX(D)l 23 o) < 22521 1%(0) ]l 22 1us) < 00, We deduce that

u(x) € EB;Q LL(u;). Thus, ¢ is well-defined linear map.

By the Remark | we can define the RKBS linear map for the sum of RKBSs S : @Z er LL(pi) —

RY by Si1((fi)ier)(z) = Zie] fi(w) for x € X and (fi)ier € @iel Eclr(ﬂz)- And let Sp :
@?e[n] L2(p;) — RY be the RKBS linear map defined by Sa((f;)ic(n))(z) = > ien Ji(@) for

z € X and (f)iem) € @?e[n] L2 (pi). Now, consider the map 7 : @?E[n] L2(u;)/ ker So —
69;61 LL(u;)/ ker S defined by 7([x]) = [¢(x)] for x € ®?€[n] L2 (y;). From the following fact

lkerS)) =< x € @ﬁQ (i) = 1(x) € ker Sy

i€[n]

=<{XE @ L2 (i) : Z(L(X)(Z)) (r)=0forallx € X » = kerSa,

i€[n] el
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we deduce that 7 is well-defined monomorphism. If we consider the map id = 81 o7o 3271

Zfe[n] LZ(pi) = > ;er L& (wi), then it is indeed the identity map. Thus, we have Zie n] L2 (i) C
>ier L (). Furthermore, by the Remark |4.5) we know that Y., L1 (11;) = F,(X,Q) as a set
equality. O

iel

A.8 PROOF OF PROPOSITION[3.2]

Proof. For fixed i € [n], define v : L*(Q,m) — L*(Q x [0,1],7; ® 8;/,) by o(h)(w,r) =
hw) ifr =, for w € Q and r € [0, 1] where §;/,, is the Dirac measure centred on i/n
0 otherwise

n ([0,1],B(]0,1])). Then, ¢(h) is measurable with respect to (2 x [0,1],B(2 x [0,1])) and
Jaxjo lt(h)(w, r)[2dm; ® 6;/,, < 00. Thus, ¢ is well-defined linear map.

Now, define A : L?(Q2,m;) — R* by (Ah)(z) = Jo az x,w)h(w)dm; for h € L?(Q, ;) and
z€Xand B: L*(Qx[0,1],7,®6;/,) — RY by (Bh)(x fQX 0.1] o(z,w,r)h(w, r)dm; @0y,

for h € L2(Q x [0,1],m; ® 6; /n) and z € X, which are the RKBS linear maps introduced in the
Definition[3.6l Since we know that

v Hker B) = {h € L*(Q,m;) : t(h) € ker B} = {h € L*(Q,m;) : B((h)) =0}

= 2 T ) . olxr,w,r)t w, T r ; T
—{heL(ﬂ, ) /Q/H (1w, )u(h) (0, 7)d, }

_ {h € 120, m) /Qai(x,w)h(w)dm} — ker A,

it follows that 7 : L?(2, m;) — L*(Q2x[0,1], m; ®46;/,,) defined by 7([h]) = [t(h)] for h € L*(Q, ;)
is well-defined monomorphism.
C0n51deramap id = BotoA™1: L2 (€, m) = L2(2%[0,1],7;®6;/,,) and let Ah € L2 (Q,7m;) =

im(A). Then, we have id(Ah) = B o7([h]) = B([¢(h)]) = Bu(h) = Ah. It means that id is an
1dent1ty map. Furthermore, we can deduce that

ARl 22 (x[0,1],7: 05, /) = Be(B)ll 22 @x[0.1],m@8,,.) = Ie(P)]l[22 @x[0,1], 716, ),)/ ker B
= geilgBHL(h) + llr2 (@x[0,11,m:®6,/) < geilgfrAllb(h) + 1) 22 @x[0,1],m:®6,/)
= ARl 2 (.r)-

Thus, fori =1,...,n, we have

E?ri (Q77Ti) - ‘Cf2r<Q X [07 1]77Ti & §z/n)
and for all f € £2(Q,7;), Hf”tﬁ(ﬂx[0,1],m®6,¢/n) < [|fllzz (,x,)- From this, we can verify that
22 L2 (Q,m)C Zfe[n] LZ(2x[0, 1], 7;®6;/,,) and since {W1®5i/n}?=1 is a singular family in
P(Q X [O 1]), by the Proposmon | we conclude that Z L2 (Qm) C Fo(X,Qx[0,1]). O

lE n
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