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ABSTRACT

In this paper, we define the sum of RKBSs using the characterization theorem of
RKBSs and show that the sum of RKBSs is compatible with the direct sum of
feature spaces. Moreover, we decompose the integral RKBS Fσ(X ,Ω) into the
sum of p-norm RKBSs {L1

σ(µi)}i∈I . Finally, we provide some applications to
enhance the structural understanding of the integral RKBS class.

1 INTRODUCTION

To analyze the performance of neural networks, the hypothesis space represented by (infinite width)
neural networks has been studied. Based on the concept of variation spaces (Kurková & Sanguineti,
2001; Mhaskar, 2004), Bach (2017) defined the F1 spaces as an integral representation of the neural
networks using the total variation norm. In subsequent, E & Stephan (2022) defined the Barron
spaces employing the path norm and showed that the F1 spaces and the Barron spaces can be iso-
metrically isomorphic when using the Rectified Linear Unit (RELU) activation function.

The concept of Reproducing Kernel Banach Spaces (RKBSs) is a generalization of the Reproducing
Kernel Hilbert Spaces (RKHSs), similar to how Banach spaces extend Hilbert spaces (Zhang et al.,
2009). Relating to neural networks, Bartolucci et al. (2023) defined a class of integral RKBSs which
are variants of the F1 spaces. They defined a class of integral RKBSs through the characterization
theorem of the RKBS introduced by Combettes et al. (2018) which describe an RKBS using a feature
space and its associated feature map.

In this study, our primary focus is on a class of integral RKBSs. We aim to decompose this function
space and identify its fundamental building blocks. Decomposing a function space entails preserv-
ing both its algebraic operations and topological properties. Since we are dealing with RKBS, we
additionally need to ensure that the decomposition preserves the property that evaluation function-
als remain continuous (see Definition 3.2). Considering the case of RKHS, there exists a sum of
RKHSs that naturally extends the space in a canonical manner, resulting in an RKHS (Aronszajn,
1950). Using this approach, we aim to define the (potentially infinite) sum of RKBSs and investigate
its relationship with the feature spaces.

The main questions of this paper are the following:

(1) Finding a natural definition for the sum of RKBSs that is compatible with the usual direct
sum of Banach spaces.

(2) How can we decompose a class of integral RKBSs using the sum defined in question (1)?

To answer these questions, we define the sum of RKBSs, see Proposition 3.7, and show that the
direct sum of the feature (Banach) spaces is compatible with the sum of RKBSs (Proposition 4.2).
Roughly speaking, it is well-known that the space of the Radon measures can be decompose as the
vast l1 direct sum of L1 spaces. As an analogue of the fact described above, we decompose the class
of integral RKBSs using the sum of p-norm RKBSs (Theorem 4.4).
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1.1 RELATED WORK

Before the era of neural networks, one of the main topics in machine learning was the kernel method,
exemplified by concepts such as Reproducing Kernel Hilbert Spaces (RKHSs) and Support Vec-
tor Machines (Aronszajn, 1950; Steinwart & Christmann, 2008; Berlinet & Thomas-Agnan, 2011).
Machine learning models that use RKHS as their hypothesis space are guaranteed the existence of
a solution through the Representer Theorem. Additionally, an algorithm for explicitly finding this
solution is clearly presented (Smola & Schölkopf, 1998; Shalev Shwartz & Ben David, 2014). This
characteristic significantly reduces the gap between theoretical understanding and practical applica-
tion. One standard method for extending RKHS is through their sum, which plays a crucial role in
enhancing the approximation ability of machine learning models. For instance, approaches like the
multiple kernel algorithm demonstrate the utility of such extensions in effectively capturing diverse
features of data (Yamanishi et al., 2004; Gönen & Alpaydın, 2011).

However, RKHS-based learning algorithms exhibit certain limitations due to their inner product
structure. To address these challenges, the concept of Reproducing Kernel Banach Spaces (RKBSs)
was introduced. Numerous studies have explored its theoretical foundations and applications (Zhang
et al., 2009; Song et al., 2013; Fasshauer et al., 2015; Lin et al., 2022). Meanwhile, early theoretical
research on neural networks primarily focused on approximation properties (Cybenko, 1989; Hornik
et al., 1990; Barron, 1993). This line of inquiry led to further investigations into the hypothesis
spaces of infinitely wide neural networks, culminating in the introduction of concepts such as Barron
spaces and variation spaces(Bach, 2017; E et al., 2022; E & Stephan, 2022; Siegel & Xu, 2023).

Recent studies have attempted to analyze the hypothesis spaces of neural networks within the RKBS
framework. For this purpose, the concept of integral RKBS has been introduced, which enables the
proof of the Representer Theorem for one-layer neural networks (Bartolucci et al., 2023). How-
ever, unlike RKHS-based models, neural networks lack a clear algorithm for finding the solutions
guaranteed by the Representer Theorem. In this study, we propose a method to decompose the hy-
pothesis space of one-layer neural networks while preserving the RKBS structure. This approach
enables a bottom-up exploration of the hypothesis space of one-layer neural networks, with the goal
of contributing to the development of explicit algorithms for solutions guaranteed by the Representer
Theorem in neural network settings.

1.2 ORGANIZATION

This paper is organized as follows. In Section 2, we briefly review the definitions and basic facts of
the functional analysis. In Section 3, following Bartolucci et al. (2023); Spek et al. (2022), we intro-
duce the definition of RKBSs and related function subclasses, namely a class of integral RKBSs and
a class of p-norm RKBSs. We present some basic properties of these function classes, particularly
focusing on the comparison between integral RKBSs and spaces of continuous functions (Proposi-
tion 3.5). Moreover, we define the sum of RKBSs, which is a modified version of Example 3.13 in
Combettes et al. (2018) and the theorem in 353p of Aronszajn (1950), by using the characterization
theorem of an RKBS. In Section 4, we state the main result of this article. We provide the compati-
bility between the sum of RKBSs and the direct sum of feature (Banach) spaces. Furthermore, using
the compatibility (Proposition 4.2), we obtain that a class of integral RKBSs can be decomposed into
the sum of p-norm RKBSs (Theorem 4.4). In Section 5, we provide direct applications of Theorem
4.4, showing how the size of the RKBS Fσ(X ,Ω) compares to the finite sum of p-norm RKHSs.

2 PRELIMINARIES AND NOTATIONS

In this paper, we denote I as a non-empty index set and the set {1, . . . , n} is denoted by [n]. We
consistently use p and q as conjugate indices, where p satisfies 1 ≤ p < ∞. The data space
is represented as X , and the parameter space as Ω. For convenience, we assume that X and Ω are
compact subsets of Rd and RD for some d,D ∈ N, respectively. Furthermore, we use the notation ∼=
to denote isomorphisms between vector spaces and the notation ∼=

B
to denote isometric isomorphisms

between Banach spaces.
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2.1 DIRECT SUM OF NORMED VECTOR SPACES

Let {ai}i∈I be a family of elements in a Hausdorff commutative topological group (HCTG) H .
Define F as the collection of all finite subsets of I , and order F by inclusion. Then F becomes
a directed set. For each F ∈ F , define aF :=

∑
i∈F ai. Since F is a finite set, aF would be

well-defined. Thus, (aF )F∈F is a net in H . The family {ai}i∈I is said to be summable if the net
(aF )F∈F converges. In this case, the limit is called the sum of the family {ai}i∈I , and we denote it
by H

∑
i∈Iai. When we consider sums in the norm topology of R, we use the term

∑
i∈I ai instead

of R
∑

i∈Iai. The contents related to the summable family in HCTG and R can be found in III §5
and IV §7 of Bourbaki (1971) respectively.

For a given index set I ̸= ∅, let {Xi}i∈I be a family of sets indexed by I . Then the direct product of
the sets in {Xi}i∈I is defined by

∏
i∈I Xi :=

{
x : I →

⋃
i∈I Xi : x(i) ∈ Xi for all i ∈ I

}
. When

we assume that Xi ̸= ∅ for all i ∈ I , by the axiom of choice,
∏

i∈I Xi is the non-empty set. In this
case, for j ∈ I , we can define pj :

∏
i∈I Xi → Xj by pj(x) = x(j) for x ∈

∏
i∈I Xi. And we

call pj is the j-th canonical projection. By abuse of notation, for any x ∈
∏

i∈I Xi, we denote x
by (xi)i∈I which means x(j) = xj ∈ Xj for all j ∈ I . When {Xi}i∈I is a collection of R-vector
spaces, the direct product of {Xi}i∈I is the vector space

∏
i∈I Xi with componentwise addition

and scalar multiplication. In this case, the canonical projections are linear maps. Furthermore,
if {Xi}i∈I are topological spaces, then we can define the direct product of {Xi}i∈I by giving a
topology on

∏
i∈I Xi, called the product topology. Under this situation, the canonical projections

are continuous maps.

Let {Xi : i ∈ I} be a collection of normed vector spaces indexed by I . Then we can define the
direct sum of the normed vector spaces {Xi : i ∈ I} as follows:

Definition 2.1 (The direct sum of normed vector spaces (Conway, 1997)). For 1 ≤ p < ∞, we
define

p⊕
i∈I

Xi :=

x ∈
∏
i∈I

Xi :

[∑
i∈I

∥x(i)∥pXi

] 1
p

<∞


as a normed vector space equipped with the norm ∥x∥⊕p

i∈I Xi
=
[∑

i∈I∥x(i)∥
p
Xi

] 1
p . For p = ∞,

we define

∞⊕
i∈I

Xi :=

{
x ∈

∏
i∈I

Xi : sup
i∈I

∥x(i)∥Xi
<∞

}
as a normed vector space equipped with the norm ∥x∥⊕∞

i∈I Xi
= supi∈I∥x(i)∥Xi

.

In particular, if each Xi is a Banach space, then the direct sum of {Xi}i∈I is a Banach space. Let p
and q be conjugate indices with 1 ≤ p < ∞. We can obtain the following relationship between the
duality and the direct sum (see III §5 Exercise 4 in Conway (1997)):

Define the map Φ :

q⊕
i∈I

(X∗
i ) →

(
p⊕

i∈I

Xi

)∗

as Φ ((gi)i∈I) (fi)i∈I =
∑
i∈I

⟨gi, fi⟩ (2.1)

for (gi)i∈I ∈
⊕q

i∈I (X
∗
i ) and (fi)i∈I ∈

⊕p
i∈I Xi. Then Φ is well-defined and it is an isometric

isomorphism.

2.2 REVIEW OF MEASURE THEORY

Let K be a compact metric space. Then we know that the Borel and Baire σ-algebra over K is
coincide and every Borel measure onK is Radon measure (see Proposition 6.3.4 and Theorem 7.1.7
in Bogachev & Ruas (2007)). Let C(K) be the Banach space consisting of continuous real-valued
functions defined onK, equipped with the supremum norm. We denote by M(K) the Banach space
of (signed) Borel measures defined on K, endowed with the total variation norm. Additionally, the
set of positive measures in M(K) is denoted by M(K)+, and the set of probability measures

3
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in M(K) is denoted by P (K). We know that by the Riesz Representation Theorem, there is an
isometric isomorphism

Λ : M(K) → C(K)∗ defined by Λ(µ)(f) :=

∫
K

fdµ for µ ∈ M(K) and f ∈ C(K). (2.2)

Let a measure space (K,Σ, µ) be given. Then, for 1 ≤ p ≤ ∞, we can define the Ba-
nach space Lp(µ) consisting of equivalence class of p-th power integrable functions with norm{
∥f∥p =

(∫
K
|f |dµ

)1/p
<∞, if 1 ≤ p <∞

∥f∥∞ = ess sup|f | <∞, if p = ∞
. When p and q are conjugate indices with 1 < p <

∞, there is an isometric isomorphism

Ξ : Lq(µ) → Lp(µ)∗ defined by Ξ(g)(f) :=

∫
K

fgdµ for g ∈ Lq(µ) and f ∈ Lp(µ). (2.3)

It is also true for the case of p = 1, q = ∞ if the measure space (K,Σ, µ) is indeed σ-finite. We use
the notation Lp(K,µ) instead of Lp(µ) if there is a need to distinguish the domain space K.

A family F of measures in M(K)+ is called singular if µ ⊥ ν whenever µ, ν ∈ F and µ ̸= ν
(see Definition 4.2.4 and Definition 4.6.1 in Dales et al. (2016)). Let S be a nonempty sub-
set of M(K)+. Then, by Zorn’s lemma, there exists a maximal element in the set {A : A ⊂
S, A is a singular family in M(K)+}. This maximal element is called a maximal singular family
in S. Let {µi}i∈I be a maximal singular family in P (K). Then, there exists an isometric isomor-
phism

Θ :

1⊕
i∈I

L1(µi) → M(K) defined by Θ((fi)i∈I) =M(K)

∑
i∈I
ρi (2.4)

for (fi)i∈I ∈
⊕1

i∈I L
1(µi), where ρi(B) =

∫
B
fidµi for all i ∈ I and Borel set B in K. (see

Theorem 4.6.6 in Dales et al. (2016) and Proposition 4.3.8 in Albiac & Kalton (2016)). We use the
notation Φ,Λ,Ξ and Θ liberally in situations that are isometrically isomorphic, as described above.

3 REPRODUCING KERNEL BANACH SPACES

3.1 DEFINITION OF RKBS

When we consider RX =
∏

x∈X Rx, where Rx is just a copy of R for each x ∈ X , there is a natural
topological structure called the product topology. Equivalently, it is the initial topology with respect
to the family of canonical projections {px : RX → Rx}x∈X . Since this topology is compatible with
the vector space structure of RX , RX becomes a Hausdorff topological vector space (HTVS). Thus,
we may consider a summable family (ai)i∈I in RX and denote its sum in RX by RX

∑
i∈Iai if it

exists.

Let V be a linear subspace of RX . Then a topology on V induced by the product topology of RX

again gives V the structure of a HTVS. Additionally, due to the transitivity of the initial topology,
the subspace topology on V coincides with the initial topology induced by the family of restrictions
{px|V : V → Rx}x∈X . We denote such a HTVS as (V, {px|V }x∈X ). (Relating reference can
be found in Narici & Beckenstein (2010); Bogachev & Smolyanov (2017); Bourbaki (1971)). To
distinguish between an index set I and the data set X , we use the term for the case of the latter as
follows:
Definition 3.1. Let V be a linear subspace of RX . For each x ∈ X , we use the term evaluation
functional at x ∈ X on V to refer to the restriction of the canonical projection px|V : V → Rx,
denoting it as evx. Specifically, the function evx : V → R is a linear functional defined by evx(f) =
f(x) for all f ∈ V .

Now we define a reproducing kernel Banach space on X as follows:
Definition 3.2 (Definition of reproducing kernel Banach space (Bartolucci et al., 2023; Lin et al.,
2022)). For a given set X , a reproducing kernel Banach space (RKBS) B on X is a Banach space
B of functions f : X → R such that

4
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1. as a vector space, B is a linear subspace of RX

2. for all x ∈ X , there is a constant Cx ≥ 0 such that for all f ∈ B, |f(x)| ≤ Cx∥f∥B.

According to the definition, all evaluation functionals on B are continuous. In other words, we have
that for all x ∈ X , evx ∈ B∗. Therefore, the norm topology of an RKBS (B, ∥·∥B) is finer than
the HTVS (B, {evx}x∈X ). Let (B, ∥·∥1) and (B, ∥·∥2) be two RKBSs on the same linear subspace
B of RX . Then by the Closed Graph Theorem, two norms ∥·∥1 and ∥·∥2 on the linear space B is
equivalent (see I §3 Exercise 2 in Bourbaki (1953) and Corollary IV1 in Aronszajn (1950))1. In
other words, when we have a function space B, we can give an unique RKBS structure on B up to
equivalence of norms.

We will consider these RKBSs as hypothesis spaces in machine learning. The reason for using
RKBS is as follows: When defining a hypothesis space (or function space) in machine learning,
we consider completeness and pointwise convergence as the minimal assumptions required for the
properties of the function space (see Chapter 1 in Berlinet & Thomas-Agnan (2011)).

3.2 CHARACTERIZATION OF RKBSS

Before we state the characterization theorem of RKBSs, we introduce a method that induces a math-
ematical structure from a pre-existing structure. Let V be a normed vector space over R equipped
with the norm ∥·∥V , and let W be a vector space over R. If there is a vector space isomorphism
T : V → W , then ∥T−1(·)∥V : W → R defines a norm on W . Furthermore, when we con-
sider W as a normed vector space equipped with the norm ∥T−1(·)∥V , the linear isomorphism
T : (V, ∥·∥V ) → (W, ∥T−1(·)∥V ) becomes an isometric isomorphism (This is referred to as the
transport of structure).

Let V andW be vector spaces. If T : V →W is a linear map, then there exists an unique linear map
T̂ : V/ kerT →W such that T̂ ◦π = T , where π : V → V/ kerT defined by π(v) = [v] for v ∈ V .
Throughout this paper, we use the notation T̂ to denote the induced linear map described above in
similar situations. We now state the characterization theorem of RKBSs introduced by Combettes
et al. (2018).
Theorem 3.3 (Characterization of RKBSs (Bartolucci et al., 2023; Combettes et al., 2018)). A linear
subspace B of RX is an RKBS on X if and only if there exists a Banach space Ψ and a map ψ : X →
Ψ∗ such that B = im(A) = {f : ∃ν ∈ Ψ s.t. A(ν) = f} with the norm ∥f∥B = inf

ν∈A−1(f)
∥ν∥Ψ,

where A : Ψ → RX is a linear map defined by (Aν)(x) := ⟨ψ(x), ν⟩ for x ∈ X and ν ∈ Ψ.

Note that the linear map A is the linear transformation induced from the family of the linear maps
{ψ(x) : Ψ → Rx}x∈X by the universal property of the direct product of the vector spaces {Rx}x∈X .
We briefly review the proof provided in Bartolucci et al. (2023). In the necessity part of the proof, it
is shown that kerA is closed in Ψ by the following equations:

ker(A) = {ν ∈ Ψ : ψ(x)(ν) = 0 for all x ∈ X} =
⋂
x∈X

kerψ(x). (3.1)

Thus, Ψ/ kerA can be a Banach space with the quotient norm. Consider the linear map Â :

Ψ/ kerA → RX such that A = Â ◦ π. Since Â : Ψ/ kerA ∼= im(A) is an isomorphism of
vector spaces, by the transport of the structure, B = im(A) becomes a Banach space with the norm:

∥f∥B = ∥Â−1(f)∥Ψ/ ker(A) = inf
ν∈π−1(Â−1(f))

∥ν∥Ψ = inf
ν∈A−1(f)

∥ν∥Ψ

The evaluation functionals are continuous as follows: for any f ∈ B and ν ∈ A−1(f), we have
|f(x)| = |Aν(x)| ≤ ∥ψ(x)∥Ψ∗∥ν∥Ψ. Thus, we can deduce that for all x ∈ X ,

∥evx(f)∥R = |f(x)| ≤ ∥ψ(x)∥Ψ∗ inf
ν∈A−1(f)

∥ν∥Ψ = ∥ψ(x)∥Ψ∗∥f∥B. (3.2)

From now on, for a given RKBS B, we consider a corresponding space Ψ, a map ψ and an induced
linear mapA. In this situation, by abuse of notation, we may say that an RKBS triple B = (Ψ, ψ,A)
is given. Each component of the triple (Ψ, ψ,A) has a specific name. Specifically, we refer to Ψ as
a feature space, ψ as a feature map, and A as an RKBS map in order.

1https://terrytao.wordpress.com/tag/weak-topology/
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3.3 ONE-LAYER NEURAL NETWORKS

In this subsection, we assume that Ω1 ⊂ Rd and Ω2 ⊂ R are compact, and let Ω = Ω1 × Ω2.
Consider a continuous nonlinear function g : R → R. The prediction function represented by a
one-layer neural network with a one-dimensional target can be expressed as follows:

f(x) =

m∑
i=1

ηig(x · θi − bi), (3.3)

where x ∈ X , θi ∈ Ω1, bi ∈ Ω2 and ηi ∈ R for i = 1, . . . ,m. For convention, and with some abuse
of notation, we define a continuous function σ : X × Ω → R by σ(x,w) = g(x · θ − b) where
w = (θ, b). This gives the following simplified representation: f(x) =

∑m
i=1 ηiσ(x,wi). Using

measure-theoretic notation, we can have an integral representation of the equation 3.3: f(x) =∫
Ω
σ(x,w)d (

∑m
i=1 ηiδwi) where δwi is the Dirac measure at wi. When considering the limit as

m→ ∞ in equation 3.3, we obtain the following:∫
Ω

σ(x,w)d

(
m∑
i=1

ηiδwi

)
→
∫
Ω

σ(x,w)dµ(w),

for some µ ∈ M(Ω). A more detailed explanation can be found in Chapter 9 of Bach (2024). In the
following subsection, we will define the hypothesis space of one-layer neural networks in a more
abstract way using this relaxed expression.

3.4 INTEGRAL RKBS AND P-NORM RKBS

Directly using the characterization theorem, we can define the hypothesis spaces that are considered
to represent one-layer neural networks. Until section 4, we consider a fixed element σ in C(X ×Ω),
where X is a compact subset of Rd and Ω is a compact subset of RD for some d,D ∈ N.

Let V and W be a real normed vector spaces. If we denote V ∗∗ be the bidual space of V , then there
is a linear isometric embedding ι : V → V ∗∗, called the canonical embedding of V in V ∗∗, defined
by ι(v)(v∗) = v∗(v) for v ∈ V and v∗ ∈ V ∗. For a given bounded linear operator T : V → W ,
the dual operator of T is the linear operator T ∗ : W ∗ → V ∗ defined by T ∗(w∗) := w∗ ◦ T for
w∗ ∈W ∗.

Definition 3.4 (A class of integral RKBSs, associated with the function σ (Bartolucci et al., 2023;
Spek et al., 2022)). Let M(Ω) be a feature space. Consider a feature map ψ : X → M(Ω)∗(∼=

B
C(Ω)∗∗) defined by ψ(x) = Λ∗(ι(σ(x, ·))) for all x ∈ X , where ι : C(Ω) → C(Ω)∗∗ is the
canonical embedding of C(Ω) in C(Ω)∗∗ and Λ∗ is the dual operator of Λ : M(Ω) → C(Ω)∗,
which is defined in equation 2.2. Then there is a linear mapA : M(Ω) → RX defined by (Aµ)(x) =
⟨ψ(x), µ⟩ =

∫
Ω
σ(x,w)dµ(w) for x ∈ X and µ ∈ M(Ω). An integral RKBS Fσ(X ,Ω), associated

with the function σ is defined by the Banach space

Fσ(X ,Ω) :=
{
f ∈ RX : ∃µ ∈ M(Ω) s.t. ∀x ∈ X , f(x) =

∫
Ω

σ(x,w)dµ(w)

}
, (3.4)

equipped with the norm ∥f∥Fσ(X,Ω) = infµ∈A−1(f)∥µ∥M(Ω).

In the above Definition 3.4, consider the linear map A : M(Ω) → RX . We deduce that, by
the Dominated Convergence Theorem, im(A) is a linear subspace of C(X ) (see Theorem 2.27 in
Folland (1999)). Furthermore, from the inequality ∥Aµ∥C(X ) ≤ supx∈X ,w∈Ω |σ(x,w)| ∥µ∥, we can
see that the mapA : M(Ω) → C(X ) is indeed a bounded operator. Recently, Steinwart showed that
when X is an uncountable compact metric space, there is no RKHS H on X such that C(X ) ⊂ H
(Steinwart, 2024). We can obtain a similar result for the class of integral RKBS as well.

Proposition 3.5. The bounded operator A : M(Ω) → C(X ) defined by

(Aµ)(x) =

∫
Ω

σ(x,w)dµ(w)

for x ∈ X and µ ∈ M(Ω) is compact.
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Using the proposition above, it follows that if im(A) is closed in C(X ), then im(A) has finite
dimension. Thus, when X is an infinite compact metric space, we deduce that Fσ(X ,Ω) ⊊ C(X ),
and in general, Fσ(X ,Ω) cannot be a Banach space if it equipped with the supremum norm.

Definition 3.6 (A class of p-Norm RKBS, associated with the function σ (Spek et al., 2022)). Let
π ∈ P (Ω) be given. Let p and q be conjugate indices such that 1 ≤ p <∞. Take a feature space Ψ
as Lp(π) and choose a feature map ψ : X → (Lp(π))∗ defined by ψ(x) = Ξ(σ(x, ·)) for x ∈ X ,
where Ξ : Lq(π) → (Lp(π))∗ is the isometric isomorphism defined in equation 2.3. Then, there is a
linear map A : Lp(π) → RX defined by (Ah)(x) = ⟨ψ(x), h⟩ for x ∈ X and h ∈ Lp(π). We define
a p-Norm RKBS Lp

σ(π), associated with the function σ by the Banach space

Lp
σ(π) :=

{
f ∈ RX : ∃h ∈ Lp(π) s.t. ∀x ∈ X , f(x) =

∫
Ω

σ(x,w)h(w)dπ(w)

}
, (3.5)

equipped with the norm ∥f∥Lp
σ(π) = infh∈A−1(f)∥h∥Lp(π).

When we consider the p = 2 case, we obtain the RKHS L2
σ(π). This space corresponds to F2 as

described in Bach (2017). The kernel of L2
σ(π) is given by k(x, y) =

∫
Ω
σ(x,w)σ(y, w)dπ(w) for

(x, y) ∈ X × X . Furthermore, L2
σ(π) is embedded in L1

σ(π) (that is, L2
σ(π) ⊂ L1

σ(π)) and for all
f ∈ L2

σ(π), ∥f∥L1
σ(π)

≤ ∥f∥L2
σ(π)

. As an analogue to the case of Lp space, we sometimes use the
notation Lp

σ(Ω, π) instead of Lp
σ(π) to avoid confusion.

3.5 INFINITE SUM OF REPRODUCING KERNEL BANACH SPACES

Let an RKBS B be given. If we consider an evaluation functional on B evaluating at x ∈ X by
evx : B → R, as discussed earlier, then we have that for all x ∈ X , evx ∈ B∗. Thus, if we
assume that a collection of RKBSs {Bi}i∈I is given and denote evix as the evaluation functional on
Bi evaluating at x ∈ X , then for all i ∈ I and x ∈ X , evix ∈ B∗

i . Now, we define the sum of RKBSs
as follows, modifying Example 3.13 in Combettes et al. (2018) and the theorem on page 353 of
Aronszajn (1950):

Proposition 3.7 (Infinite sum of reproducing kernel Banach spaces). Let p and q be conjugate
indices with 1 ≤ p < ∞. Let {Bi}i∈I be a collection of RKBSs on X . Suppose that for all
x ∈ X , (evix)i∈I ∈

⊕q
i∈I B∗

i . Let
⊕p

i∈I Bi be a feature space and define a feature map s : X →(⊕p
i∈I Bi

)∗
by s(x) = Φ((evix)i∈I) for x ∈ X , where Φ :

⊕q
i∈I B∗

i →
(⊕p

i∈I Bi

)∗
is the isometric

isomorphism defined in equation 2.1. Then there is a linear map S :
⊕p

i∈I Bi → RX defined by
(S(fi)i∈I) (x) = ⟨s(x), (fi)i∈I⟩ for (fi)i∈I ∈

⊕p
i∈I Bi and x ∈ X . By the Theorem 3.3, we

can define an RKBS B = Im(S) =
{
RX
∑

i∈Ifi : (fi)i∈I ∈
⊕p

i∈I Bi

}
equipped with the norm

∥f∥B = inf(fi)i∈I∈S−1(f)∥(fi)i∈I∥⊕p
i∈I Bi

= inff=RX
∑

i∈Ifi
∥(fi)i∈I∥⊕p

i∈I Bi
.

Note that the property of net in the initial topology implies that f =RX
∑

i∈Ifi in (RX , {px}x∈X )
is equivalent to f(x) =

∑
i∈I fi(x) for all x ∈ X . Thus, we have that

B =

{
f ∈ RX : ∃(fi)i∈I ∈

p⊕
i∈I

Bi s.t. ∀x ∈ X , f(x) =
∑
i∈I

〈
evix, fi

〉}

=

{
RX

∑
i∈I
fi : (fi)i∈I ∈

p⊕
i∈I

Bi

}
.

From now on, we denote B mentioned in the Proposition 3.7 by
∑p

i∈I Bi and call it the sum of the
family of RKBSs {Bi}i∈I . In particular, for the case of p = 1, we denote B as

∑
i∈I Bi. In the

Proposition 3.7, we intentionally use the notation s for the feature map and S for the RKBS map to
emphasize that they are used to represent the sum of RKBSs. Moreover, we denote the RKBS triple
of the sum of RKBSs by

∑p
i∈I Bi = (

⊕p
i∈I Bi, s,S) using s and S.

Remark 3.8. Let a family of RKBS triples {Bi = (Ψi, ψi, Ai)}i∈I be given. From the equation 3.2,
we know that ∥evix∥B∗

i
≤ ∥ψi(x)∥Ψ∗

i
for all x ∈ X and i ∈ I . Thus, instead of assuming (evix)i∈I ∈⊕q

i∈I B∗
i for all x ∈ X , it suffices to assume that (ψi(x))i∈I ∈

⊕q
i∈I Ψ

∗
i for all x ∈ X .
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4 MAIN RESULTS

4.1 COMPATIBILITY BETWEEN THE SUM OF RKBSS AND THE DIRECT SUM OF FEATURE
SPACES

In this section, we present the compatibility between the sum of RKBSs and the direct sum of
feature spaces. Before stating our main proposition, we prove the following lemma, which says
that the restriction to the direct sum of Banach spaces of the product of (quotient, isometry) maps
preserves their properties.

Lemma 4.1. Suppose 1 ≤ p <∞, and let a family of Banach spaces {Xi}i∈I be given.

1. Suppose that for each i ∈ I , Di is a closed linear subspace of Xi, and let πi : Xi →
Xi/Di be the projection map defined by πi(xi) := [xi] for xi ∈ Xi. Then, the map

(̃πi)i∈I :
⊕p

i∈I Xi →
⊕p

i∈I Xi/Di defined by (̃πi)i∈I ((xi)i∈I) = (πi(xi))i∈I for
(xi)i∈I ∈

⊕p
i∈I Xi is a surjective bounded linear operator.

2. Assume there is another family of Banach spaces {Yi}i∈I . If for each i ∈ I , there is an

isometric isomorphism ϕi : Xi → Yi, then the map (̃ϕi)i∈I :
⊕p

i∈I Xi →
⊕p

i∈I Yi defined

by (̃ϕi)i∈I ((xi)i∈I) = (ϕi(xi))i∈I for (xi)i∈I ∈
⊕p

i∈I Xi is an isometric isomorphism.

The following proposition is one of the main result of this paper. It states that when we have a family
of RKBSs, there is an RKBS induced by the direct sum of feature spaces, which is isometrically
isomorphic to the sum of the given family of RKBSs. Conversely, when we have an RKBS induced
by the direct sum of feature spaces, there is a collection of RKBSs such that their sum is isometrically
isomorphic to the given RKBS.

Proposition 4.2 (Compatibility). Let I ̸= ∅ be an index set. Let p and q be conjugate indices, where
p satisfies 1 ≤ p <∞.

1. Suppose a family of RKBS triples {Bi = (Ψi, ψi, Ai)}i∈I is given and (evix)i∈I ∈⊕q
i∈I B∗

i for all x ∈ X . Then, there is an RKBS triple B = (
⊕p

i∈I Ψi, ψ,A) such that
B ∼=

B

∑p
i∈I Bi.

2. For an RKBS triple B = (
⊕p

i∈I Ψi, ψ,A), there is a family of reproducing kernel Banach
spaces {Bi∈I}i∈I such that B ∼=

B

∑p
i∈I Bi.

⊕p
i∈I Ψi

⊕p
i∈I Ψi/ kerAi

⊕p
i∈I Bi

RX

˜(πi)i∈I

A

˜(Âi)i∈I

S

Figure 1: Commutative diagram for the compatibility

The diagram above intuitively illustrates the result we aim to demonstrate in Proposition 4.2. De-
tailed information about each map can be found in Appendix A.4.

4.2 DECOMPOSITION OF ONE-LAYER NEURAL NETWORKS

The following lemma shows that if there is an isometrically isomorphic feature space, then we can
construct an isometrically isomorphic RKBS.

Lemma 4.3. Let Ψ1 be a Banach space and let B2 = (Ψ2, ψ2, A2) be an RKBS triple. If there is
an isomeric isomorphism ξ : Ψ1 → Ψ2, then there is an RKBS triple B1 = (Ψ1, ψ1, A1) such that
B1

∼=
B
B2.

8
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Now, we introduce our main theorem. It state that the integral RKBS Fσ(X ,Ω) defined in the
Definition 3.4 can be decomposed into the sum of a family of p-norm RKBSs {L1

σ(µi)}i∈I defined
in the Definition 3.6, where {µi}i∈I is a maximal singular family in P (Ω).
Theorem 4.4. Let {µi}i∈I be a maximal singular family in P (Ω). Then, we have the following:

Fσ(X ,Ω) ∼=
B

∑
i∈I

L1
σ(µi).

Remark 4.5. In the proof of the Theorem 4.4, we can see that the following set equality holds:

Fσ(X ,Ω) =
∑
i∈I

L1
σ(µi).

Furthermore, since Ω is a compact metric space in our setting, L1
σ(µi) is a separable RKBS for all

i ∈ I . Thus, we decompose the integral RKBS Fσ(X ,Ω) into infinitely many separable RKBSs.

5 APPLICATION

Let {µi}i∈[n] be any finite family in P (Ω). Since for each i ∈ [n], ki(x, y) =
∫
Ω
σ(x,w)σ(y, w)dµi

for (x, y) ∈ X ×X is the reproducing kernel of L2
σ(µi), the sum kernel k(x, y) =

∑n
i=1 ki(x, y) is

the reproducing kernel of
∑2

i∈[n] L2
σ(µi) (The notation

∑2
i∈[n] refers to the case where we defined it

in Proposition 3.7 with p = 2 and I = [n]). In this setting, we can guarantee that
∑2

i∈[n] L2
σ(µi) is an

RKHS. The following proposition shows that when we consider the finite singular family in P (Ω),
the RKHS

∑2
i∈[n] L2

σ(µi) contained in the RKBS Fσ(X ,Ω) with the same associated function σ.

Proposition 5.1. For any finite singular family {µi}i∈[n] in P (Ω), we have

2∑
i∈[n]

L2
σ(µi) ⊂ Fσ(X ,Ω).

Let a family of continuous functions {σi : X × Ω → R}ni=1 be given. By the Tietze extension
theorem and the pasting lemma, there is a continuous function σ : X × Ω × [0, 1] → R which is a
extension of the continuous function σ̃ : X × Ω × { 1

n , . . . ,
n−1
n , 1} → R defined by σ̃(x,w, i

n ) =
σi(x,w) for all i = 1, . . . , n, x ∈ X and w ∈ Ω. In the following proposition, we show that the
finite sum of p-norm RKBSs associated with different functions is contained in the integral RKBS
associated with a suitable function when considering a larger parameter space. This means that the
class of integral RKBSs is quite large due to its flexibility in choosing the dimension of the parameter
space.
Proposition 5.2. Let a family of continuous functions {σi : X ×Ω → R}ni=1 be given. Let {πi}ni=1
be a collection of probability measures in Ω. Then, we have

2∑
i∈[n]

L2
σi
(Ω, πi) ⊂ Fσ(X ,Ω× [0, 1]).

Remark 5.3. For the purpose of a realistic application, we consider the case where p = 2 in this
section, but the results can also be generalized to the case where 1 ≤ p < ∞. Note that from
the Corollary 13 in Spek et al. (2022), it is known that Fσ(X ,Ω) =

⋃
π∈P (Ω) Lp

σ(π). Thus, the
Proposition 5.1 can be obtained without needing to consider the infinite sum of RKBSs. However,
using this approach allows for a more systematic exploration.

6 CONCLUSION AND FUTURE WORK

We showed that there is a compatibility property between the direct sum of feature spaces and the
sum of RKBSs. By using this, we can decompose a class of integral RKBS Fσ(X ,Ω) into the
sum of p-norm RKBSs {L1

σ(µi)}i∈I . The advantage of this analytical method is that it allows for a

9
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more structural understanding of the RKBS class through an appropriate decomposition approach.
In Section 5, we partially explained these advantages by comparing the integral RKBS class to the
previously known sum of RKHSs. Additionally, through these insights, we expect that it would be
helpful in designing multiple kernel learning algorithms for the RKBS class. To ensure the feasibility
of learning, we need to consider the Representer Theorem, which is discussed in paper Bartolucci
et al. (2023) for the integral RKBS class. If the most generalized form of the Representer Theorem
presented by Unser & Aziznejad (2022) can be extended to the infinite case, it seems likely that this
would enable the recovery of the results obtained in Bartolucci et al. (2023) within the context of
our findings.
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A APPENDIX

A.1 PROOF OF PROPOSITION 3.5

Proof. Since Ω is a compact metric space, C(Ω) is separable space. Let {µn} be a bounded se-
quence in M(Ω) ∼=

B
C(Ω)∗. Then, by the separable version of the Banach-Alaoglu Theorem, there

exists a weak* convergent subsequence {µnk
} such that µnk

−→
w∗

µ (see Problem 10 of Chapter

4.9 in Kreyszig (1991)). Define Γ := {σ(x, ·) ∈ C(Ω) : x ∈ X}. Since Γ is uniformly bounded
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and pointwise equicontinuous, we have the following (see Exercise 8.10.134 in Bogachev & Ruas
(2007)):

lim
n→∞

∥Aµnk
−Aµ∥C(X ) = lim

n→∞
sup
x∈X

∣∣∣∣∫ σ(x,w)d(µnk
− µ)(w)

∣∣∣∣
= lim

n→∞
sup
f∈Γ

∣∣∣∣∫ fd(µnk
− µ)

∣∣∣∣ = 0.

A.2 PROOF OF PROPOSITION 3.7

Proof. Let
⊕p

i∈I Bi be a feature space and define a feature map s : X →
(⊕p

i∈I Bi

)∗
as s(x) =

Φ((evix)i∈I) for x ∈ X , where Φ :
⊕q

i∈I B∗
i →

(⊕p
i∈I Bi

)∗
is the isometric isomorphism defined

in equation 2.1. Now, there is a linear transformation S :
⊕p

i∈I Bi → RX by (S(fi)i∈I) (x) =

⟨s(x), (fi)i∈I⟩ for (fi)i∈I ∈
⊕p

i∈I Bi and x ∈ X . Then, by the Theorem 3.3,
⊕p

i∈I Bi/ ker(S) =
im(S) is an RKBS on X with the norm ∥f∥B = inf(fi)i∈I∈S−1(f)∥(fi)i∈I∥⊕p

i∈I Bi
.

A.3 PROOF OF LEMMA 4.1

Proof. We know that for each i ∈ I , πi is a surjective bounded linear operator, and its norm satisfies
∥πi∥ ≤ 1 (see III §4 Theorem 4.2 in Conway (1997)). Additionally, there is an unique linear map
(πi)i∈I :

∏
i∈I Xi →

∏
i∈I Xi/Di such that πj ◦ pj = qj ◦ (πi)i∈I for all j ∈ I , where pj and qj

are j-th canonical projections of
∏

i∈I Xi and
∏

i∈I Xi/Di, respectively. Consider the restriction of

(πi)i∈I to
⊕p

i∈I Xi and denote it by (̃πi)i∈I :
⊕p

i∈I Xi →
∏

i∈I Xi/Di. Let (xi)i∈I ∈
⊕p

i∈I Xi.

Since (̃πi)i∈I ((xi)i∈I) = (πi(xi))i∈I ∈
∏

i∈I Xi/Di and
∑

i∈I∥πi(xi)∥
p
Xi/Di

≤
∑

i∈I∥xi∥
p
Xi

<

∞, it follows that im
(
(̃πi)i∈I

)
⊂
⊕p

i∈I Xi/Di. From this, we also know that (̃πi)i∈I is a bounded
operator with norm less than 1.

It remains to show the surjectivity of (̃πi)i∈I :
⊕p

i∈I Xi →
⊕p

i∈I Xi/Di. Let (πi(xi))i∈I ∈⊕p
i∈I Xi/Di. Then, we have

∑
i∈I infdi∈Di

∥xi + di∥pXi
=
∑

i∈I (infdi∈Di
∥xi + di∥Xi

)
p

=∑
i∈I∥πi(xi)∥

p
Xi/Di

< ∞ and the set N = {i ∈ I : ∥πi(xi)∥Xi/Di
> 0} is countable. Let

f : N → N be a reordering bijection. From the definition of the infimum, for each k ∈ N, we can
take d̃f(k) ∈ Df(k) such that

∥xf(k) + d̃f(k)∥pXf(k)
< inf

df(k)∈Df(k)

∥xf(k) + df(k)∥pXf(k)
+

1

k2
.

Then, we have that:∑
i∈N

∥xi + d̃i∥pXi
=

∞∑
k=1

∥xf(k) + d̃f(k)∥pXf(k)

<

∞∑
k=1

inf
df(k)∈Df(k)

∥xf(k) + df(k)∥pXf(k)
+

∞∑
k=1

1

k2
<∞.

Thus, if we take x′i =
{
xi + d̃i if i ∈ N,

0 if i ∈ I \N , then (x′i)i∈I ∈
⊕p

i∈I Xi and (̃πi)i∈I ((x
′
i)i∈I) =

(πi(xi))i∈I . We can also prove the (2) directly.

A.4 PROOF OF PROPOSITION 4.2

Proof. From the Lemma 4.1, we know that there is a surjective bounded linear operator (̃πi)i∈I :⊕p
i∈I Ψi →

⊕p
i∈I Ψi/ kerAi and an isometric isomorphism ˜(Âi)i∈I :

⊕p
i∈I Ψi/ kerAi →

12
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⊕p
i∈I Bi. Let Φ :

⊕q
i∈I B∗

i →
(⊕p

i∈I Bi

)∗
be the isometric isomorphism defined in equation 2.1.

Since (evix)i∈I ∈
⊕q

i∈I B∗
i for all x ∈ X , we can apply the Proposition 3.7 to deduce that there

is an RKBS triple for the summation of RKBSs
∑p

i∈I Bi = (
⊕p

i∈I Bi, s,S). Consider the map

A := S ◦ ˜(Âi)i∈I ◦ (̃πi)i∈I = S ◦ ˜(Ai)i∈I :
⊕p

i∈I Ψi → RX . To verify the map A is indeed an
RKBS map, we show the following holds

(A(µi)i∈I) (x) =
(
S
(

˜(Ai)i∈I(µi)i∈I

))
(x) =

〈
Φ((evix)i∈I) ◦ ˜(Ai)i∈I , (µi)i∈I

〉
for all x ∈ X and (µi)i∈I ∈

⊕p
i∈I Ψi. Thus, if we define a feature map ψ : X →

(⊕p
i∈I Ψi

)∗
by ψ(x) = Φ((evix)i∈I) ◦ ˜(Ai)i∈I ∈

(⊕p
i∈I Ψi

)∗
for x ∈ X , then we get an RKBS triple B =

(
⊕p

i∈I Ψi, ψ,A). Since ˜(Âi)i∈I ◦ (̃πi)i∈I is surjective, im(A) = im(S) in terms of set equality.
Also we note that, by the Theorem 3.3, B = im(A) and

∑p
i∈I Bi = im(S) as sets. Since im(A)

and im(S) both inherit the same algebraic structure from RX , we can deduce that they are the same
as vector space. The only remaining part of the proof is to show that for any f ∈ B, ∥f∥B =
∥f∥∑p

i∈I Bi
.

To prove (2), suppose that we have the RKBS triple B = (
⊕p

i∈I Ψi, ψ,A). We denote Φ0 :⊕q
i∈I Ψ

∗
i →

(⊕p
i∈I Ψi

)∗
as the isometric isomorphism defined in equation 2.1. Since ψ(x) ∈(⊕p

i∈I Ψi

)∗
for all x ∈ X , we know that

Φ−1
0 (ψ(x)) ∈

q⊕
i∈I

Ψ∗
i , ∥Φ−1

0 (ψ(x))∥⊕q
i∈I Ψ∗

i
<∞. (A.1)

Now, we define for each i ∈ I , ψi : X → Ψ∗
i by ψi(x) = pi(Φ

−1
0 (ψ(x))) for x ∈ X , where pi is

i-th canonical projection on
∏

i∈I Ψ
∗
i . Then, for each i ∈ I , there is an RKBS map Ai : Ψi → RX

defined by (Aiµi)(x) = ⟨ψi(x), µi⟩ for x ∈ X and µi ∈ Ψi. From the Theorem 3.3, we can
get a family of RKBS triples {Bi = (Ψi, ψi, Ai)}i∈I . Let Φ :

⊕q
i∈I B∗

i →
(⊕p

i∈I Bi

)∗
be the

isometric isomorphism defined in equation 2.1. By the above equation A.1, we can deduce that
(ψi(x))i∈I ∈

⊕q
i∈I Ψ

∗
i . Thus, the Remark 3.8 implies the existence of an RKBS triple for the sum

of RKBSs
∑p

i∈I Bi = (
⊕p

i∈I Bi, s,S). From the following series of equations, we can see that

A = S ◦ ˜(Âi)i∈I ◦ (̃πi)i∈I . For x ∈ X and (µi)i∈I ∈
⊕p

i∈I Ψi, we have that

(A ((µi)i∈I)) (x) = ⟨ψ(x), (µi)i∈I⟩ =
〈
Φ0

(
Φ−1

0 (ψ(x))
)
, (µi)i∈I

〉
=
∑
i∈I

〈
pi(Φ

−1
0 (ψ(x))), µi

〉
=
∑
i∈I

⟨ψi(x), µi⟩ =
〈
Φ((evix)i∈I), (Aiµi)i∈I

〉
= (S ((Aiµi)i∈I)) (x)

=
(
S
(

˜(Ai)i∈I((µi)i∈I)
))

(x) =

((
S ◦ ˜(Âi)i∈I ◦ (̃πi)i∈I

)
((µi)i∈I)

)
(x).

For similar reasons as the previous case, we only need to prove that for any f ∈ B, ∥f∥B =
∥f∥∑p

i∈I Bi
.

We start by exploring the definition of each norm. The norm on the RKBS
∑p

i∈I Bi is given by

∥f∥p∑p
i∈I Bi

= inf
{
∥(fi)i∈I∥p⊕p

i∈I Bi
: (fi)i∈I ∈ S−1(f)

}
= inf

{∑
i∈I

inf
{
∥µi∥pΨi

: µi ∈ A−1
i (fi)

}
: (fi)i∈I ∈ S−1(f)

}

13
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for f ∈
∑p

i∈I Bi. The norm on the RKBS B is given by

∥f∥pB = inf
{
∥(µi)i∈I∥p⊕p

i∈I Ψi
: (µi)i∈I ∈ A−1(f)

}
= inf

∥∥A−1(f)
∥∥p⊕p

i∈I Ψi

= inf

∥∥∥∥ ˜(Ai)i∈I

−1

◦ S−1(f)

∥∥∥∥p⊕p
i∈I Ψi

= inf

∥∥∥∥∥∥
⋃

(fi)i∈I∈S−1(f)

˜(Ai)i∈I

−1

((fi)i∈I)

∥∥∥∥∥∥
p

⊕p
i∈I Ψi

= inf
⋃

(fi)i∈I∈S−1(f)

∥∥∥∥ ˜(Ai)i∈I

−1

((fi)i∈I)

∥∥∥∥p⊕p
i∈I Ψi

= inf

{
inf

∥∥∥∥ ˜(Ai)i∈I

−1

((fi)i∈I)

∥∥∥∥p⊕p
i∈I Ψi

: (fi)i∈I ∈ S−1(f)

}

= inf

{
inf

{∑
i∈I

∥µi∥pΨi
: (µi)i∈I ∈ ˜(Ai)i∈I

−1

((fi)i∈I)

}
: (fi)i∈I ∈ S−1(f)

}

for f ∈ B. If we denote the set
{∑

i∈I∥µi∥pΨi
: (µi)i∈I ∈ ˜(Ai)i∈I

−1

((fi)i∈I)

}
by C, then we

conclude the proof by showing that:

∑
i∈I

inf
{
∥µi∥pΨi

: µi ∈ A−1
i (fi)

}
= inf C

for all (fi)i∈I ∈ S−1(f). To show that
∑

i∈I inf
{
∥µi∥pΨi

: µi ∈ A−1
i (fi)

}
is a lower bound for C,

we note that (µi)i∈I ∈ ˜(Ai)i∈I

−1

((fi)i∈I) is equivalent to

(µi)i∈I ∈
p⊕

i∈I

Ψi and ∀i ∈ I, Aiµi = fi. (A.2)

Let (νi)i∈I ∈ ˜(Ai)i∈I

−1

((fi)i∈I).
Then, by the equation A.2, we have that inf

{
∥µi∥pΨi

: µi ∈ A−1
i (fi)

}
≤ ∥νi∥pΨi

for all i ∈ I .
Thus, we deduce that

∑
i∈I inf

{
∥µi∥pΨi

: µi ∈ A−1
i (fi)

}
≤
∑

i∈I∥νi∥
p
Ψi

. Now, we have to show
that

∑
i∈I inf

{
∥µi∥pΨi

: µi ∈ A−1
i (fi)

}
is the greatest lower bound of C. Let c be an any lower

bound of the set C. Since we already assumed that (fi)i∈I ∈ S−1(f), the norm of (fi)i∈I in⊕p
i∈I Bi is finite. That is, we know that

∑
i∈I inf

{
∥µi∥pΨi

: µi ∈ A−1
i (fi)

}
=
∑

i∈I∥fi∥Bi
< ∞.

We denote the set
{
i ∈ I : inf

{
∥µi∥pΨi

: µi ∈ A−1
i (fi)

}
̸= 0
}

by H . Then, for i ∈ I \ H ,
inf
{
∥µi∥pΨi

: µi ∈ A−1
i (fi)

}
= 0. Hence, there is a sequence {νni }n∈N ∈ A−1

i (fi), so that
∥νni − 0∥pΨi

→ 0 as n → ∞. Furthermore, since A−1
i (fi) is a translation of kerAi, by the equa-

tion 3.1, A−1
i (fi) is a closed subset in Ψi. Therefore, we deduce that

0 ∈ A−1
i (fi) for all i ∈ I \H (A.3)

For the case of H , note that H is a countable subset of I . Accordingly, we may take a reordering
bijection g : N → H . By simply using the definition of the infimum, for any 1 > ϵ > 0 and for any
g(n) ∈ H , there is a νg(n) ∈ A−1

g(n)(fg(n)) such that

inf
{
∥µg(n)∥pΨg(n)

: µg(n) ∈ A−1
g(n)(fg(n))

}
+

1

4
· 1

2n
· ϵ > ∥νg(n)∥pΨg(n)

. (A.4)
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Combining the above results, we obtain the following:∑
i∈I

inf
{
∥µi∥pΨi

: µi ∈ A−1
i (fi)

}
+ ϵ (A.5)

>
∑
i∈I

inf
{
∥µi∥pΨi

: µi ∈ A−1
i (fi)

}
+

∞∑
n=1

1

4
· 1

2n
· ϵ (A.6)

=
∑
i∈H

inf
{
∥µi∥pΨi

: µi ∈ A−1
i (fi)

}
+

∞∑
n=1

1

4
· 1

2n
· ϵ (A.7)

=

∞∑
n=1

(
inf
{
∥µg(n)∥pΨg(n)

: µg(n) ∈ A−1
g(n)(fg(n))

}
+

1

4
· 1

2n
· ϵ
)

(A.8)

>

∞∑
n=1

∥νg(n)∥pΨg(n)
=
∑
i∈H

∥νi∥pΨi
. (A.9)

Define ξi =

{
νi if i ∈ H,

0 if i ∈ I \H . Then, by the equation A.3 and equation A.4, we know that

for all i ∈ I , ξi ∈ A−1
i (fi). In addition, from the inequalities in equation A.9, we also

know that
∑

i∈I∥ξi∥
p
Ψi

≤
∑

i∈I∥fi∥
p
Bi

+ 1 < ∞. Thus, by the equation A.2, we deduce

that (ξi)i∈I ∈ ˜(Ai)i∈I

−1

((fi)i∈I) (i.e.,
∑

i∈I∥ξi∥
p
Ψi

∈ C). Finally, the following show that∑
i∈I inf

{
∥µi∥pΨi

: µi ∈ A−1
i (fi)

}
is the greatest lower bound of C:∑

i∈I

inf
{
∥µi∥pΨi

: µi ∈ A−1
i (fi)

}
+ ϵ >

∑
i∈H

∥νi∥pΨi
=
∑
i∈I

∥ξi∥pΨi
≥ c for all 1 > ϵ > 0,

where c is a lower bound of the set C.

A.5 PROOF OF PROPOSITION 4.3

Proof. Define a feature map ψ1 : X → Ψ∗
1 by ψ1(x) = ψ2(x) ◦ ξ for x ∈ X and a linear map A1 :

Ψ1 → RX by (A1µ) (x) =< ψ1(x), µ > for x ∈ X and µ ∈ Ψ1. Then, we deduce thatA1 = A2◦ξ.
Furthermore, B1 = (Ψ1, ψ1, A1) is an RKBS. Consider the map ξ : Ψ1/ kerA2 ◦ ξ → Ψ2/ kerA2

defined by ξ([µ]) = [ξ(µ)] for [µ] ∈ Ψ1/ kerA2 ◦ ξ. Since ker (A2 ◦ ξ) = ξ−1(kerA2), ξ is a
well-defined vector space monomorphism. The remaining proof for establishing surjectivity and
isometry is straightforward.

A.6 PROOF OF THEOREM 4.4

Proof. By the Definition 3.4, there is a map ψ : X → M(Ω)∗ defined by ψ(x) = Λ∗(ι(σ(x, ·)))
for x ∈ X . And there is an RKBS map A :M(Ω) → RX defined by (A(µ))(x) =< ψ(x), µ > for
all x ∈ X and µ ∈M(Ω) such that

Fσ(X ,Ω) ∼=
B
M(Ω)/ kerA.

Let Θ :
⊕1

i∈I L
1(µi) →M(Ω) be the isometric isomorphism defined in equation 2.4. Define a map

ψ : X →
(⊕1

i∈I L
1(µi)

)∗
by ψ(x) = ψ(x) ◦ Θ. And consider a map A :

⊕1
i∈I L

1(µi) → RX

defined by A = A ◦Θ. Then, by the Lemma 4.3, we have that

M(Ω)/ kerA ∼=
B

1⊕
i∈I

L1(µi)/ kerA.

Now, let Φ0 :
⊕∞

i∈I

(
L1(µi)

)∗ →
(⊕1

i∈I L
1(µi)

)∗
be the isometric isomorphism defined in equa-

tion 2.1. For each i ∈ I , if we define a map ψi : X →
(
L1(µi)

)∗
by ψi(x) = pi

(
Φ−1

0

(
ψ(x)

))
15
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for x ∈ X and define a map Ai : L1(µi) → RX by
(
Ai(h)

)
(x) =

〈
ψi(x), h

〉
for x ∈ X and

h ∈ L1(µi), then by the Proposition 4.2, we can deduce that

1⊕
i∈I

L1(µi)/ kerA ∼=
B

1∑
i∈I

Bi,

where Bi = (L1(µi), ψi, Ai) for all i ∈ I . We want to show that Bi is indeed Lσ(µi) for all
i ∈ I . Suppose for each i ∈ I , Ξi : L∞(µi) →

(
L1(µi)

)∗
is the isometric isomorphism intro-

duced in equation 2.3. According to the Definition 3.6, it suffices to verify that ψi(x) = Ξi(σ(x, ·))
for all x ∈ X and i ∈ I . This condition is equivalent to ψ(x) = Φ0

((
Ξi(σ(x, ·))

)
i∈I

)
for

all x ∈ X . Hence, we want to prove the following holds: (Λ∗ (ι (σ(x, ·))) ◦Θ) ((fi)i∈I) =

Φ0

(
(Ξi(σ(x, ·)))i∈I

)
((fi)i∈I) for all x ∈ X and (fi)i∈I ∈

⊕1
i∈I L

1(µi). First, for the left-hand
side, we have:

(Λ∗ (ι(σ(x, ·))) ◦Θ) ((fi)i∈I) =
〈
Λ∗ (ι(σ(x, ·))) ,M(K)

∑
i∈I
ρi

〉
=
〈
ι(σ(x, ·)) ◦ Λ,M(K)

∑
i∈I
ρi

〉
=
∑
i∈I

⟨ι(σ(x, ·)) ◦ Λ, ρi⟩

=
∑
i∈I

⟨ι(σ(x, ·)),Λ(ρi)⟩ =
∑
i∈I

⟨Λ(ρi), σ(x, ·)⟩

=
∑
i∈I

∫
Ω

σ(x,w)dρi(w) =
∑
i∈I

∫
Ω

σ(x,w)fi(w)dµi(w).

Next, for the right-hand side, we have:

Φ0

(
(Ξi(σ(x, ·)))i∈I

)
((fi)i∈I) =

∑
i∈I

〈
Ξi(σ(x, ·))), fi

〉
=
∑
i∈I

∫
Ω

σ(x,w)fi(w)dµi(w).

A.7 PROOF OF PROPOSITION 5.1

Proof. As we noted in the Definition 3.6, we can easily show that for a given π ∈ P (Ω),
L2
σ(π) ⊂ L1

σ(π) and ∥f∥L1
σ(π)

≤ ∥f∥L2
σ(π)

for all f ∈ L2
σ(π). Let {µi}i∈I be a maximal sin-

gular family containing {µi}i∈[n]. Consider the map ι :
⊕2

i∈[n] L2
σ(µi) →

⊕1
i∈I L1

σ(µi) defined

by ι(x)(i) =

{
x(i), if i ∈ [n]

0, if i ∈ I \ [n] for x ∈
⊕2

i∈[n] L2
σ(µi). Since ι(x)(i) = x(i) ∈ L2

σ(µi) ⊂

L1
σ(µi) for all i ∈ [n], we know that ι(x) ∈

∏
i∈I L1

σ(µi). Furthermore, by the following in-
equalities

∑
i∈I∥ι(x)(i)∥L1

σ(µi) =
∑n

i=1∥x(i)∥L1
σ(µi) ≤

∑n
i=1∥x(i)∥L2

σ(µi) < ∞, we deduce that
ι(x) ∈

⊕1
i∈I L1

σ(µi). Thus, ι is well-defined linear map.

By the Remark 3.8, we can define the RKBS linear map for the sum of RKBSs S1 :
⊕1

i∈I L1
σ(µi) →

RX by S1((fi)i∈I)(x) =
∑

i∈I fi(x) for x ∈ X and (fi)i∈I ∈
⊕1

i∈I L1
σ(µi). And let S2 :⊕2

i∈[n] L2
σ(µi) → RX be the RKBS linear map defined by S2((fi)i∈[n])(x) =

∑
i∈[n] fi(x) for

x ∈ X and (fi)i∈[n] ∈
⊕2

i∈[n] L2
σ(µi). Now, consider the map ι :

⊕2
i∈[n] L2

σ(µi)/ kerS2 →⊕1
i∈I L1

σ(µi)/ kerS1 defined by ι([x]) = [ι(x)] for x ∈
⊕2

i∈[n] L2
σ(µi). From the following fact

ι−1(kerS1) =

x ∈
2⊕

i∈[n]

L2
σ(µi) : ι(x) ∈ kerS1


=

x ∈
2⊕

i∈[n]

L2
σ(µi) :

∑
i∈I

(ι(x)(i)) (x) = 0 for all x ∈ X

 = kerS2,
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we deduce that ι is well-defined monomorphism. If we consider the map ĩd = Ŝ1 ◦ ι ◦ Ŝ2
−1

:∑2
i∈[n] L2

σ(µi) →
∑

i∈I L1
σ(µi), then it is indeed the identity map. Thus, we have

∑2
i∈[n] L2

σ(µi) ⊂∑
i∈I L1

σ(µi). Furthermore, by the Remark 4.5, we know that
∑

i∈I L1
σ(µi) = Fσ(X ,Ω) as a set

equality.

A.8 PROOF OF PROPOSITION 5.2

Proof. For fixed i ∈ [n], define ι : L2(Ω, πi) → L2(Ω × [0, 1], πi ⊗ δi/n) by ι(h)(w, r) ={
h(w) if r = i

n ,

0 otherwise
for w ∈ Ω and r ∈ [0, 1] where δi/n is the Dirac measure centred on i/n

in ([0, 1],B([0, 1])). Then, ι(h) is measurable with respect to (Ω × [0, 1],B(Ω × [0, 1])) and∫
Ω×[0,1]

|ι(h)(w, r)|2dπi ⊗ δi/n <∞. Thus, ι is well-defined linear map.

Now, define A : L2(Ω, πi) → RX by (Ah)(x) =
∫
Ω
σi(x,w)h(w)dπi for h ∈ L2(Ω, πi) and

x ∈ X andB : L2(Ω× [0, 1], πi⊗δi/n) → RX by (Bh̃)(x) =
∫
Ω×[0,1]

σ(x,w, r)h̃(w, r)dπi⊗δi/n
for h̃ ∈ L2(Ω × [0, 1], πi ⊗ δi/n) and x ∈ X , which are the RKBS linear maps introduced in the
Definition 3.6. Since we know that

ι−1(kerB) =
{
h ∈ L2(Ω, πi) : ι(h) ∈ kerB

}
=
{
h ∈ L2(Ω, πi) : B(ι(h)) = 0

}
=

{
h ∈ L2(Ω, πi) :

∫
Ω

∫
[0,1]

σ(x,w, r)ι(h)(w, r)dδi/ndπi

}

=

{
h ∈ L2(Ω, πi) :

∫
Ω

σi(x,w)h(w)dπi

}
= kerA,

it follows that ι : L2(Ω, πi) → L2(Ω× [0, 1], πi⊗δi/n) defined by ι([h]) = [ι(h)] for h ∈ L2(Ω, πi)
is well-defined monomorphism.

Consider a map ĩd = B̂◦ι◦Â−1 : L2
σi
(Ω, πi) → L2

σ(Ω×[0, 1], πi⊗δi/n) and letAh ∈ L2
σi
(Ω, πi) =

im(A). Then, we have ĩd(Ah) = B̃ ◦ ι([h]) = B̂([ι(h)]) = Bι(h) = Ah. It means that ĩd is an
identity map. Furthermore, we can deduce that

∥Ah∥L2
σ(Ω×[0,1],πi⊗δi/n) = ∥Bι(h)∥L2

σ(Ω×[0,1],πi⊗δi/n) = ∥[ι(h)]∥L2
σ(Ω×[0,1],πi⊗δi/n)/ kerB

= inf
g̃∈kerB

∥ι(h) + g̃∥L2
σ(Ω×[0,1],πi⊗δi/n) ≤ inf

g∈kerA
∥ι(h) + ι(g)∥L2

σ(Ω×[0,1],πi⊗δi/n)

= ∥Ah∥L2
σi

(Ω,πi).

Thus, for i = 1, . . . , n, we have

L2
σi
(Ω, πi) ⊂ L2

σ(Ω× [0, 1], πi ⊗ δi/n)

and for all f ∈ L2
σ(Ω, πi), ∥f∥L2

σ(Ω×[0,1],πi⊗δi/n) ≤ ∥f∥L2
σi

(Ω,πi). From this, we can verify that∑2
i∈[n] L2

σi
(Ω, πi)⊂

∑2
i∈[n] L2

σ(Ω×[0, 1], πi⊗δi/n) and since {πi⊗δi/n}ni=1 is a singular family in

P (Ω× [0, 1]), by the Proposition 5.1, we conclude that
∑2

i∈[n] L2
σi
(Ω, πi) ⊂ Fσ(X ,Ω× [0, 1]).
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