

000
001
002 **FISHER: A FOUNDATION MODEL FOR MULTI-**
003 **MODAL INDUSTRIAL SIGNAL COMPREHENSIVE REP-**
004 **RESENTATION**
005

006 **Anonymous authors**
007
008 Paper under double-blind review
009

010
011 **ABSTRACT**
012

013 Industrial signal analysis has emerged as a critical problem for the industry. Due
014 to severe heterogeneity within industrial signals, which we summarize as the M5
015 problem, previous works could only deal with small sub-problems by training
016 specialized models, which lacks robustness and incurs huge burdens during devel-
017 opment and deployment. However, we argue that the M5 problem can be dealt by
018 scaling up, where dealing with the multi-sampling-rate is the first step. In this pa-
019 per, we propose FISHER, a Foundation model for multi-modal Industrial Signal
020 compreHEnsive Representation. To support arbitrary sampling rates, FISHER
021 considers the increment of sampling rate as the concatenation of sub-band infor-
022 mation. Specifically, FISHER takes the STFT sub-band as the modeling unit and
023 adopts a teacher-student SSL framework for pre-training. To evaluate the model
024 performance, we also develop the RMIS benchmark, which consists of 19 datasets
025 across four modalities. FISHER is compared with 15 SOTA speech/audio/music
026 encoders, demonstrating versatile and outstanding capabilities with a general per-
027 formance gain of at least 3.23%. Meanwhile, FISHER possesses much more effi-
028 cient scaling curves, where even FISHER-tiny with 5.5M parameters outperforms
029 huge baseline encoders up to 2B. We further reveal that the key to success is adap-
030 tively utilizing the full signal bandwidth regardless of the sampling rate. Both
031 FISHER and RMIS will be open-sourced.
032

033 **1 INTRODUCTION**
034

035 Recent years saw rapid deployment of supervisory control and data acquisition (SCADA) systems
036 in modern manufacturing. These SCADA systems employ ubiquitous sensors of various modalities
037 to continuously monitor and analyze the production lines, generating a huge volume of streaming
038 industrial signals round-the-clock. Nowadays, the installation of SCADA systems do not present any
039 major technical challenge. However, how to efficiently analyze these signals and accurately detect
040 malfunctions are critical challenges for the industries, due to the unique heterogeneity of industrial
041 signals. In this paper, we boil it down to the **M5** problem:
042

043

044 - **Multi-modal.** Sound, vibration, voltage, current, temperature, etc.
045 - **Multi-sampling-rate.** The sampling rate is often selected as twice the Nyquist bandwidth
to reduce cost. Common sampling rates range from 3 kHz to 50 kHz.
046 - **Multi-scale.** Due to the differences in operating mechanisms (sliding, rotation, static, etc)
and working conditions, the signal characteristics are diverse.
047 - **Multitask.** Anomaly detection, fault diagnosis, remaining useful life (RUL) estimation, etc.
048 - **Minim fault.** Fault data are often scarce, and the class distribution is often imbalanced.
049

050 Compared with speech data, audio data, and music data, industrial signal data are not scarce. How-
051 ever, due to the M5 problem, large-scale pre-training has rarely been explored for industrial signal.
052 Previous works mainly focus on small sub-problems, such as sound-based anomaly detection (Jiang
053 et al., 2023; 2024; Wilkinghoff, 2024), vibration-based bearing fault diagnosis (Wang et al., 2023;
Peng et al., 2025), and vibration-based RUL estimation (Wang et al., 2018). These works usually

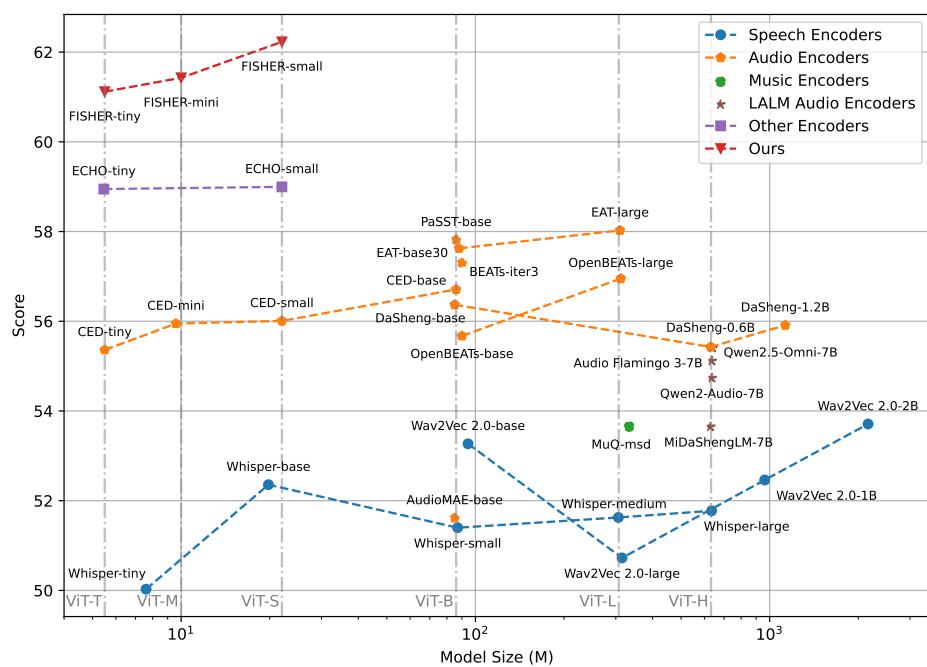


Figure 1: Model Performances on the RMIS benchmark, where the higher the score is, the better the model is. Compared with top baselines, FISHER achieves superior performances with much smaller model sizes, demonstrating versatile capabilities and efficient scaling properties.

train specialized models on small-scale datasets, resulting in models being deficient in robustness under diverse working conditions. Moreover, it incurs huge burdens in the development and deployment of SCADA systems, since each sub-problem must be dealt by an exclusive model.

Therefore, we aim to develop a universal and powerful signal encoder for heterogeneous industrial signals, in order to 1) significantly improve the quality of the signal representation and 2) greatly reduce the complexity of developing and deploying SCADA systems. Recent advances in vision foundation model (Siméoni et al., 2025), large language model (LLM) (Xu et al., 2025; Guo et al., 2025), and large audio language model (LALM) (Goel et al., 2025; Dinkel et al., 2025) have shown that large-scale pre-training can mitigate external heterogeneity, uncover internal similarities and thereby building up powerful foundation model that generalizes well on various tasks. As for industrial signals, we argue that their heterogeneity mainly lies in appearance, while there are still some internal similarities that have yet to be explored, which are listed as follows:

- Sound and vibration, the two most common modalities, are essentially different observations of vibration, since sound is recorded by the oscillation of the microphone diaphragm.
- Different signals are perceptions of the same mechanical event by different physical laws.
- Machines are assembled from components. Signals of different machines are comparable.

Thus, we conjecture that it is also viable to overcome the M5 problem and build up foundation models for industrial signals via large-scale pre-training. Specifically, the multi-modal, multi-scale, and multitask problems can be gradually alleviated by scaling up (Kaplan et al., 2020), while the minim fault problem can be dealt by the external knowledge injected during pre-training (Jiang et al., 2024; Zheng et al., 2024). The multi-sampling-rate problem, however, is a crucial and unavoidable problem for scaling up pre-training, since information is sparsely encoded in the full bandwidth of the signal. Almost all speech/audio pre-trained models only accept inputs with a fixed sampling rate, and data of higher sampling rates must be resampled. This incurs a huge loss of high frequency information, which is crucial for industrial signals as demonstrated in Section 5.5. As a solution, the model must be able to cope with arbitrary sampling rates in order to leverage the full bandwidth.

In this work, we propose **FISHER**, short for Foundation model for multi-modal Industrial Signal **compreHensive** Representation. As the first work in our series, FISHER mainly deals with the

108 unavoidable multi-sampling-rate problem. As known, higher sampling rates incorporate more information
 109 about the signal, thus FISHER models the increment of sampling rate as the concatenation
 110 of additional sub-band information. Specifically, the raw signal, regardless of its modality, is rep-
 111 resented by short time Fourier transform (STFT) with fixed-duration window and hop size. The
 112 spectrogram is then split into sub-bands with predefined bandwidth and the model processes these
 113 sub-bands individually. The model is trained by a teacher-student self distillation framework (Chen
 114 et al., 2024), where the student is guided by the representations of the teacher, and the teacher is an
 115 exponential moving average (EMA) version of the student.

116 To comprehensively evaluate the model, we also develop the **RMIS** benchmark, short for
 117 **R**epresentation of **M**5 **I**ndustrial **S**ignals. The RMIS benchmark incorporates 19 sub-datasets with
 118 two typical signal analysis tasks, i.e. anomaly detection (no fault as prior) and fault diagnosis (clas-
 119 sify specific fault type). All models are evaluated by k-nearest neighbor (KNN) inference to demon-
 120 strate the inherent capabilities.

121 We compare FISHER with top speech/audio/music foundation models and LALM audio encoders,
 122 where FISHER showcases versatile performances and efficient scaling properties. FISHER achieves
 123 an overall score of 62.23% on the RMIS benchmark, surpassing all baselines by 3.23%. Meanwhile,
 124 FISHER possesses a much more efficient scaling curve, achieving superior performances with much
 125 smaller sizes. We further demonstrate that the performance gain is attributed to its ability to adap-
 126 tively utilize the full signal bandwidth, whereas all baselines can only utilize a portion of it. Our
 127 main contributions are:

- 128 • We demonstrate for the first time that it is feasible to train unified foundation models for
 129 industrial signals that generalize on multiple signal analysis tasks across modalities.
- 130 • We propose FISHER, a Foundation model for **I**ndustrial **S**ignal **compreHEnsive**
 131 **R**epresentation. FISHER models the STFT sub-bands via teacher-student self-distillation,
 132 which enables it to process arbitrary industrial signals without resampling.
- 133 • We propose the RMIS benchmark to evaluate the inherent abilities on signal analysis tasks,
 134 where we compare top speech/audio/music encoders and LALM audio encoders.
- 135 • FISHER achieves superior performances on the RMIS benchmark with much smaller model
 136 sizes, showcasing more efficient scaling properties.

139 2 RELATED WORKS

140 Industrial signals are continuous one-dimensional series, which means that relevant experiences
 141 from speech and audio can be leveraged. Recent years saw huge advancements in speech encoders,
 142 such as the Wav2Vec 2.0 series (Baevski et al., 2020), WavLM (Chen et al., 2022) and the Whisper
 143 series (Radford et al., 2023). Compared with speech, general audio is sparser, lacks annotations, and
 144 more closely resembles industrial signals. Top audio encoders conformably adopt SSL pre-training,
 145 where the most popular paradigm is the MAE framework (He et al., 2022). Typical works are
 146 AudioMAE (Huang et al., 2022) and DaSheng (Dinkel et al., 2024b). Another choice is the teacher-
 147 student self-distillation framework in Data2Vec 2.0 (Baevski et al., 2023), CED (Dinkel et al., 2024a)
 148 and EAT (Chen et al., 2024). Iterative self-tokenization and prediction is also effective, such as
 149 BEATs (Chen et al., 2023b) and MuQ (Zhu et al., 2025). With the rise of LALM, these models
 150 are utilized as the audio encoder to LLM, such as Whisper in Xu et al. (2025); Ding et al. (2025),
 151 BEATs in Tang et al. (2023) and DaSheng in Dinkel et al. (2025).

152 On the other hand, pre-trained models are revolutionizing the field of industrial signal analysis with
 153 the advantage of versatility. In anomalous sound detection (ASD), fine-tuning audio pre-trained
 154 models has become the dominant approach (Jiang et al., 2024; Lv et al., 2024). For vibration-based
 155 fault diagnosis, transferring image pre-trained backbones was once the research hotspot (Wen et al.,
 156 2020; Li et al., 2022) since images and industrial signals are both sparse. Some recent works em-
 157 ploy LLM to directly model the signal series (Zhang et al., 2022; Pang et al., 2024). BearLLM (Peng
 158 et al., 2025) builds up a LALM-like model for bearing fault analysis with a vibration encoder pre-
 159 trained on vibration data. However, since common faults in fault diagnosis are supported by consid-
 160 erable data volume, they usually have in-depth theoretical analysis such as characteristic frequency.
 161 Thus, mechanism-aware small models are still competitive for fault diagnosis (Chen et al., 2023a).

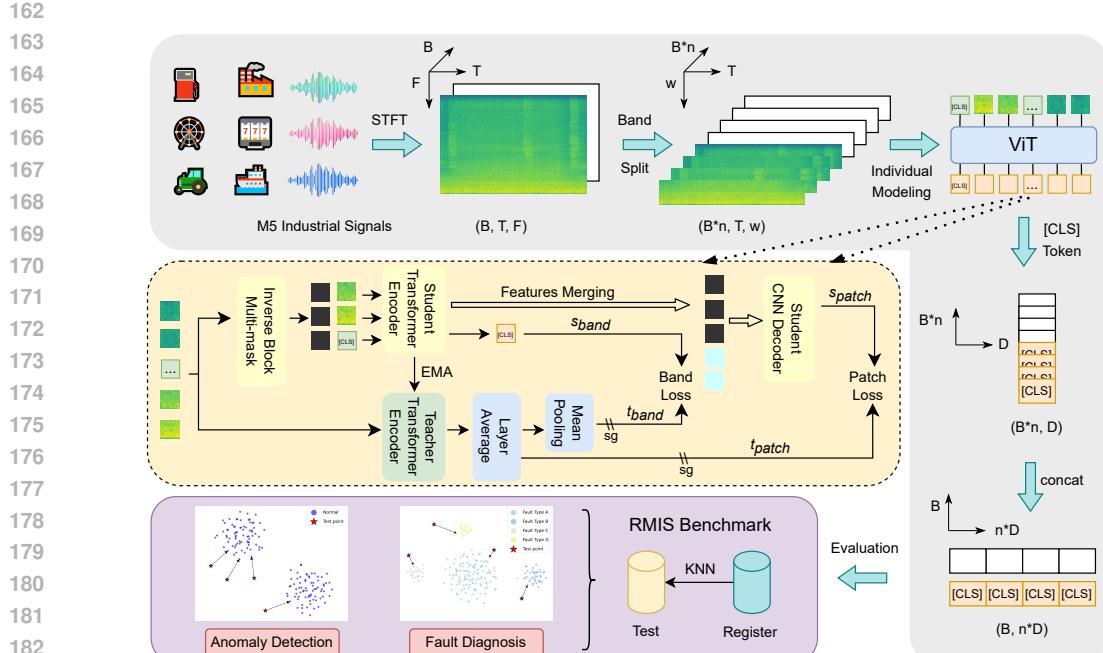


Figure 2: Pipeline of FISHER and RMIS. FISHER converts signals into STFT spectrograms and splits them into sub-bands with fixed bandwidth w . These sub-bands are processed individually by the ViT backbone and the [CLS] embeddings are concatenated as the signal representations. The ViT backbone is trained by teacher-student self-distillation, where the teacher encoder is an EMA version of the student encoder. The model is evaluated on the RMIS benchmark by KNN inference.

3 FISHER

3.1 SUB-BAND MODELING

In FISHER, the input signal is first converted to STFT. While most audio pre-trained models adopt the log-mel spectrogram as the input representation, FISHER reverts to STFT since:

- Malfunctions often appear in high frequencies, which would be diluted in mel scale.
- The harmonic relationships of frequencies are vital, which would be smoothed in mel scale.

To deal with the multi-sampling-rate problem, the STFT window size N is mapped to fixed time duration t_{win} . That is, let f_s denote the signal sampling rate, then $N = t_{win} \cdot f_s$. In this way, the frequency resolution of STFT will be constant for arbitrary sampling rates:

$$\Delta f = \frac{f_s}{N} = \frac{f_s}{t_{win} \cdot f_s} = \frac{1}{t_{win}} \quad (1)$$

where Δf is the frequency gap between adjacent frequency grid. Similarly, the STFT hop size is also mapped to fixed time duration t_{hop} , such that signals with the same time duration will have spectrograms with the same time shape regardless of the sampling rate.

To deal with the variable frequency shape, FISHER emphasizes the importance of sub-band and considers it as the building blocks of the overall information. On the one hand, as depicted in Figure 3, the information gain of a higher sampling rate lies in the additional sub-bands. As known, all sensors employ anti-aliasing filtering to prevent signal aliasing. Therefore, the spectrogram does not contain any information about frequencies higher than half the sampling rate. On the other hand, sampling rates of common large-scale datasets, i.e. 16 kHz, 32 kHz, 44.1 kHz and 48 kHz, are integer multiples of a fundamental frequency f_{base} , such as 2 kHz and 4 kHz, making sub-band a natural unit for modeling multi-sampling-rate signals. Thus, we take the sub-band as the unit

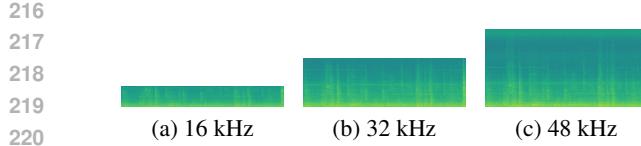


Figure 3: STFT Spectrograms of the same source under different sampling rates. Here we adopt fixed-duration window and hop size. A higher sampling rate comprises additional high frequency sub-bands that carry extra information, while its low frequency sub-bands are almost identical with that of a lower sampling rate. Thus, it is heuristic to select the sub-band as the modeling unit.

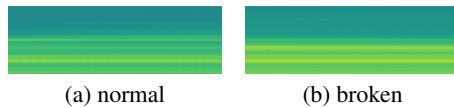


Figure 4: STFT Spectrograms of two vibration signals from the WTPG dataset. Both are extremely stationary throughout the entire clip (more than 300 s), causing the split segments to be highly identical. If random splitting were adopted, the detection results would grow extremely high (up to 99%), making it impossible for comparison.

for modeling, and build up the information of the whole spectrogram by concatenating sub-band information just like building blocks. That is, the signal representation is the concatenation of sub-band representations. The higher the sampling rate is, the more informative the representation is.

We now describe the sub-band modeling process in detail, which is illustrated in Figure 2. A batch of signals are first resampled to a batch-specific sampling rate sr_{batch} to align the spectrogram shape for batching, where sr_{batch} is randomly selected from all the harmonics of f_{base} that are less than a maximum frequency f_{max} . The aligned signals are then converted to log amplitude STFT spectrograms of shape (B, T, F) , where B is the batch size, and T and F are the time and frequency shapes respectively. Each spectrogram is then split into sub-bands with bandwidth w and concatenated along the batch axis, thereby transferring the variability from the frequency axis to the batch axis. These sub-bands have a shape of $(B \times n, T, w)$, where $w = f_{base} \cdot t_{win}$ is the frequency gap on the spectrogram corresponding to f_{base} , and $n = \lfloor \frac{F}{w} \rfloor$ is the number of sub-bands. They are then processed individually by the network and their representations are concatenated afterwards.

3.2 NEURAL PROCESSING

FISHER adopts an encoder-decoder architecture with a teacher-student self distillation scheme for pre-training, which has been demonstrated effective in multiple self-supervised learning (SSL) models (Chen et al., 2024; Baevski et al., 2022; Siméoni et al., 2025). FISHER comprises three sub-networks: a student encoder E_{stu} , a student decoder D_{stu} and a teacher encoder E_{tea} . Both encoders adopt the identical ViT (Dosovitskiy et al., 2021) structure with fixed sinusoidal position encoding and post-norm, while the parameters of E_{tea} are the exponential moving average (EMA) of the parameters of E_{stu} :

$$\theta_{E_{tea}} = \tau \theta_{E_{tea}} + (1 - \tau) \theta_{E_{stu}} \quad (2)$$

where $\theta_{E_{tea}}$ and $\theta_{E_{stu}}$ are the parameters of E_{tea} and E_{stu} respectively, and τ is the EMA decay factor. E_{tea} is updated per step. D_{stu} is a shallow convolutional neural networks (CNN).

As illustrated in Figure 2, both encoders accept the STFT sub-band as the input, where it is further split into a patch sequence following the ViT style. For the student branch, the patch sequence is masked by inverse block masking adopted in EAT (Chen et al., 2024) with a large mask ratio of 80%, and masked patches are discarded. Here we follow the mask cloning strategy in EAT to efficiently increase the batch size, yet we constrain the maximum number of cloned sub-bands in a batch as m_b to prevent fluctuation in GPU memory. The unmasked patches are then appended with a [CLS] token at front and sent into E_{stu} . After encoded by E_{stu} , the output of the [CLS] token is selected as the student sub-band representation s_{band} , and the output of these unmasked patches are merged with the masked parts in the original spatial locations, where the values of the masked parts are initialized from normal Gaussian. D_{stu} takes in the merged sequence and outputs the student patch representation s_{patch} . For the teacher branch, E_{tea} processes the unmasked patch sequence, and the embeddings of all its layers are averaged to derive the teacher sub-band representation t_{band} and teacher patch representation t_{patch} . The self distillation process is supervised from both the

270 sub-band level and the patch level:
 271

$$\begin{cases} L_{band} = \|s_{band} - sg(t_{band})\|_2^2 \\ L_{patch} = \|s_{patch} - sg(t_{patch})\|_2^2 \end{cases} \quad (3)$$

275 where $sg(\cdot)$ denotes stop gradient. The final loss is the combination of the two losses:
 276

$$L = L_{band} + L_{patch} \quad (4)$$

278 It is noted that sub-bands are processed individually during training. During inference, only E_{stu} is
 279 employed and its sub-band representations are concatenated to form the overall representation.
 280

281 4 RMIS BENCHMARK

283 To evaluate the comprehensive representation
 284 capability of the model for M5 industrial sig-
 285 nals, we develop the RMIS benchmark, which
 286 comprises six anomaly detection datasets and
 287 13 fault diagnosis datasets, whose key features
 288 are presented in Table 1. To demonstrate the in-
 289 trinsic versatility of the model, we evaluate the
 290 model by KNN inference without fine-tuning
 291 on any dataset. Each dataset produces a dataset
 292 score, which is based on either the area un-
 293 der the receiver operating characteristic curve
 294 (AUC) or accuracy, and we take the arithmetic
 295 mean of corresponding dataset scores as the
 296 task score. Finally, the overall benchmark score
 297 is the arithmetic mean of two task scores to
 298 eliminate the impact of data imbalance.
 299

300 4.1 ANOMALY DETECTION

301 Anomaly detection is to predict whether a sig-
 302 nal is normal or anomalous when no anomalous
 303 anomalies are provided for training, which empha-
 304 sizes the scarcity of fault data. We evaluate
 305 the model on the datasets of the annual DCASE
 306 ASD challenge, including DCASE20 (Koizumi
 307 et al., 2019; Purohit et al., 2019; Koizumi
 308 et al., 2020), DCASE21 (Tanabe et al., 2021; Kawaguchi et al., 2021; Harada et al., 2021),
 309 DCASE22 (Dohi et al., 2022b;a), DCASE23 (Dohi et al., 2023; Harada et al., 2023b),
 310 DCASE24 (Nishida et al., 2024; Harada et al., 2023a) and DCASE25 (Nishida et al., 2025). We
 311 use the official split and evaluate the model by the challenge criteria, which is based on AUC. For
 312 each dataset, we report the harmonic mean over both the development and the evaluation subsets.
 313 All models adopt the identical KNN-based anomaly detection pipeline as AnoPatch (Jiang et al.,
 314 2024), which is introduced in Appendix A.1.1 to make the paper self-contained.
 315

316 4.2 FAULT DIAGNOSIS

317 Fault diagnosis is to identify the specific fault type or health state of a signal with labeled data
 318 provided in advance. The fault diagnosis part in the RMIS benchmark is sourced from seven pub-
 319 licly available datasets: IDMT-ISA-COMPRESSED-AIR (IICA) (Johnson et al., 2020), IDMT-
 320 ISA-ELECTRIC-ENGINE (IIEE) (Grollmisch et al., 2019), the WT-planetary-gearbox-dataset
 321 (WTPG) (Liu et al., 2023), the Machinery Fault Dataset (MaFaulDa) (Ribeiro, 2016), the UM-
 322 GearEccDataset (UMGED) (Li et al., 2025), the SDUST dataset (Wang et al., 2024; Zhang et al.,
 323 2024; Han et al., 2023; 2022) and the PU Dataset (Lessmeier et al., 2016). Details of these datasets
 324 are presented in Appendix A.2. To reveal the modality specific performance, we first divide these
 325 data by the modality, resulting in 13 datasets. For each dataset, we flatten all multi-channel signals

Table 1: Key features of datasets in the RMIS benchmark. Split denotes whether an official train-test split is provided for the dataset.

(a) Anomaly Detection

Dataset	Modality	Num Class	Sampling Rate	Volume	Split
DCASE20	Sound	2	16 kHz	153 h	✓
DCASE21	Sound	2	16 kHz	165 h	✓
DCASE22	Sound	2	16 kHz	139 h	✓
DCASE23	Sound	2	16 kHz	50 h	✓
DCASE24	Sound	2	16 kHz	49 h	✓
DCASE25	Sound	2	16 kHz	45 h	✓

(b) Fault Diagnosis

Dataset	Modality	Num Class	Sampling Rate	Volume	Split
IICA	Sound	6	48 kHz	47 h	✗
IIEE	Sound	3	44.1 kHz	1 h	✓
WTPG	Vibration	5	48 kHz	14 h	✗
MaFaulDa_sound	Sound	10	50 kHz	3 h	✗
MaFaulDa_vib	Vibration	10	50 kHz	16 h	✗
SDUST_bearing	Vibration	10	25.6 kHz	25 h	✗
SDUST_gear	Vibration	7	25.6 kHz	17 h	✗
UMGED_sound	Sound	11	51.2 kHz	59 h	✗
UMGED_vib	Vibration	11	51.2 kHz	176 h	✗
UMGED_vol	Voltage	11	51.2 kHz	117 h	✗
UMGED_cur	Current	11	51.2 kHz	117 h	✗
PU_vib	Vibration	3	64 kHz	3 h	✗
PU_cur	Current	3	64 kHz	6 h	✗

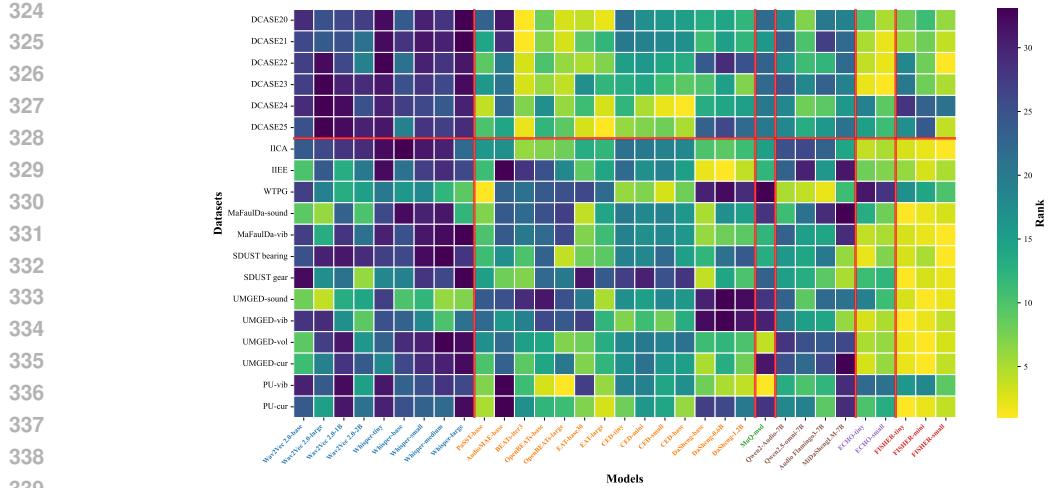


Figure 5: Ranking heatmap on the RMIS benchmark. We rank the scores of all models on each dataset. The brighter the color is, the better the model is. Audio encoders are distinguishably better than speech encoders, while LALM audio encoders are slightly better than speech encoders. FISHER demonstrates strong versatility on all datasets, especially on fault diagnosis tasks where signals are recorded in high sampling rates.

into single-channel and split them into segments if they are longer than 10 s. For KNN inference, k is default to 5 for all models. All datasets are evaluated by macro-average accuracy.

To ensure proper difficulty of the task, the RMIS benchmark conduct sealed train-test split for datasets without official train-test split, where segments from the same channel of the same recording can not be partitioned into both the training and the test sets. Industrial signals are sometimes extremely stationary along the time axis due to the constant working condition, causing the split segments to be highly identical. If random splitting were adopted, these highly similar segments would appear in both the training and test sets, causing the task to be exceedingly simple. Therefore, we trace each channel of the original recording and allocate its segments into either the train set or the test set¹. The train-test split ratio is default to 1:1, except for UMGED datasets which are 4:1. We ensure that all classes are presented in both sets and evaluate the model under 10 different splits. To eliminate the impact of fixed split ratio, the split ratio is further analyzed in Section 5.4.

5 EXPERIMENT

5.1 DETAILS OF FISHER

FISHER is trained under three scales, namely FISHER-tiny (5.5M), FISHER-mini (10M) and FISHER-small (22M), which are in line with the hierarchy of ViT. Table 2 lists unique hyperparameters for each version. As for the shared hyperparameters, t_{win} and t_{hop} are fixed as 25 ms and 10 ms, f_{max} is 32 kHz. All models contain 12 layers and the patch size is 16×16 . All models are pre-trained on the combined dataset of Audioset (Gemmeke et al., 2017), Freesound², MTG-Jamendo (Bogdanov et al., 2019) and Music4all (Santana et al., 2020) with a total volume of 17k hours. We train each model for 400k steps on four NVIDIA RTX A6000 GPUs. For each model, we adopt a warm-up scheduler with a peak learning rate of 0.0005 and a warm-up step of 40k. During evaluation, FISHER directly processes the original signal without resampling.

Table 2: Unique Hyperparameters of FISHER

Scale	Num Param	f_{base}	w	Hidden Size	Num Head	Batch Size ¹	m_b ¹	m_l ²
tiny	5.5M	4000	100	192	3	24	64	5
mini	10M	4000	100	256	4	32	64	5
small	22M	2000	50	384	6	16	128	2

¹ Both the batch size and m_b are identified for each GPU.

² m_l is the block size in inverse block masking.

¹ For the PU dataset, the signal under each working condition is recorded for 20 times, resulting in 20 highly identical segments. Thus, we allocate these segments based on the working condition.

² <https://freesound.org/>

378
379
380 Table 3: Results on the RMIS Benchmark (↑)
381
382

Model	Variant	Anomaly Detection					Fault Diagnosis										All							
		DCASE					Mean	IICA	IIEE	WTPG	MaFaulDa			SDUST			UMGED							
		20	21	22	23	24	25				sound	vib	bearing	gear	sound	vib	vol	cur	vib	cur				
Wav2Vec 2.0	base	64.76	55.14	55.77	55.69	52.76	55.69	56.64	46.77	96.61	60.81	60.72	78.34	54.12	95.01	9.08	9.34	11.93	15.58	67.00	43.42	49.90	53.27	
	large	65.61	55.23	54.44	48.09	50.51	33.98	51.31	45.49	72.48	78.33	62.83	87.35	49.98	97.04	10.12	8.40	9.18	12.50	69.24	48.86	50.14	50.72	
	1B	65.50	55.22	55.81	54.12	51.83	51.60	55.68	44.23	94.97	84.84	49.40	77.08	49.95	96.72	8.39	10.89	8.49	9.93	64.59	40.69	49.24	52.46	
	2B	65.49	55.47	56.35	55.47	53.91	54.53	56.87	42.09	78.81	84.49	59.96	84.14	50.31	98.24	8.37	12.06	10.80	11.13	72.67	44.07	50.55	53.71	
Whisper	tiny	62.85	54.42	53.72	54.09	52.53	54.01	55.27	40.36	55.16	71.86	44.40	76.92	51.17	96.99	6.71	9.52	9.48	12.51	66.00	41.12	44.78	50.03	
	base	65.66	54.89	56.12	56.90	53.70	56.14	57.24	40.10	77.24	83.95	36.35	80.82	51.30	96.90	8.98	9.71	9.02	10.21	69.95	42.70	47.48	52.36	
	small	64.02	54.44	54.85	55.30	53.79	54.67	56.21	41.12	70.21	83.55	38.72	76.75	49.23	95.84	8.63	10.50	8.68	9.89	68.89	43.57	46.58	51.40	
	medium	65.41	54.76	55.58	56.02	54.13	55.21	56.85	41.28	66.84	85.62	37.31	76.66	48.93	96.11	9.29	11.79	8.09	9.61	67.65	44.02	46.40	51.63	
PASST	large	62.27	53.65	54.51	53.97	52.53	54.54	55.25	47.57	70.44	87.24	59.32	73.36	50.85	94.08	9.14	10.10	8.34	8.05	68.80	40.68	48.31	51.78	
	base	66.60	56.84	57.58	59.57	57.64	57.77	59.33	60.51	96.40	92.69	62.42	88.61	61.86	97.12	7.17	9.80	10.65	15.88	74.94	53.81	56.30	57.82	
	AudioMAE	base	63.87	54.86	56.34	57.96	55.30	56.82	57.52	58.88	53.89	64.02	47.48	80.95	59.74	98.18	6.91	10.93	10.01	11.59	56.02	35.54	45.70	51.61
	BEATs	iter3	74.20	60.50	58.95	63.31	56.93	59.09	62.16	77.93	68.17	70.57	52.87	84.45	62.37	98.23	5.98	10.32	10.95	17.23	74.18	48.42	52.44	57.30
OpenBEATs	base	70.86	58.60	57.45	62.48	56.10	57.32	60.47	77.87	70.93	63.60	45.50	83.39	57.31	96.51	5.47	9.51	11.09	13.78	76.94	49.50	50.88	55.67	
	large	72.78	59.93	58.29	63.29	57.32	58.03	61.61	75.18	82.86	62.33	42.69	79.37	70.65	96.86	6.91	9.66	12.63	12.48	78.57	49.67	52.30	56.95	
	EAT	base30	72.69	58.03	58.84	59.35	56.48	58.65	60.67	64.48	96.65	61.28	68.32	91.90	64.03	95.46	7.89	9.39	12.49	18.87	68.33	50.38	54.57	57.62
	large	73.81	57.06	57.94	60.29	57.78	60.34	61.20	65.80	94.06	68.91	58.47	88.42	62.64	96.32	9.57	11.60	11.22	15.54	75.74	54.73	54.85	58.03	
CED	tiny	66.99	56.17	56.75	60.09	56.40	58.40	59.15	47.93	74.23	89.43	53.77	84.56	59.02	96.06	8.09	12.96	10.31	12.65	71.50	49.95	51.57	55.36	
	mini	67.48	56.35	56.59	60.05	57.44	58.26	59.36	50.21	84.26	89.26	56.95	84.88	59.24	95.50	8.36	11.66	10.13	12.43	71.50	48.56	52.53	55.95	
	small	67.50	56.65	56.87	60.76	57.88	58.15	59.63	50.49	80.23	91.20	54.67	84.67	58.00	96.12	8.05	12.15	10.26	13.14	72.89	49.08	52.38	56.01	
	base	67.60	56.67	56.95	60.99	57.89	58.45	59.76	52.26	90.08	89.20	57.64	85.95	60.20	95.84	8.12	11.57	10.03	13.63	72.14	50.91	53.66	56.71	
DaSheng	base	69.25	57.28	56.02	60.95	56.39	55.82	59.28	74.42	99.10	46.84	63.53	92.06	61.37	98.30	5.64	4.45	11.74	20.08	74.93	42.42	53.45	56.37	
	0.6B	68.35	56.76	55.35	59.85	56.34	55.41	58.68	75.14	99.25	45.41	57.26	91.11	58.23	97.59	5.27	4.28	11.69	14.68	75.78	42.63	52.18	55.43	
	1.2B	69.52	57.06	55.82	61.14	56.32	56.01	59.31	73.18	99.00	48.89	58.16	90.79	55.50	97.99	5.42	4.52	11.76	17.32	75.99	44.11	52.51	55.91	
MuQ	msd	66.91	56.75	56.04	57.69	55.64	56.09	58.19	62.23	95.33	37.98	41.22	88.08	60.67	96.38	6.11	5.72	15.07	9.00	78.57	42.20	49.12	53.65	
	Qwen2-Audio	7B	67.32	55.38	56.46	57.19	56.07	56.27	58.12	45.59	73.56	89.91	59.63	83.35	60.13	97.12	7.63	10.26	9.17	10.63	73.17	47.46	51.35	54.73
	Qwen2.5-Omni	7B	70.94	57.39	57.20	59.14	56.83	57.05	59.76	45.49	66.56	90.73	53.52	86.21	60.49	97.60	9.02	11.35	9.25	11.87	74.84	46.74	51.05	55.40
	Audio Flamingo 3	7B	67.02	55.06	57.08	57.52	56.76	56.55	58.33	47.41	88.57	92.41	40.85	87.20	58.27	98.09	7.69	11.56	9.30	10.21	73.37	49.77	51.90	55.12
MiDaShengLM	7B	67.10	55.46	56.10	58.70	56.15	56.03	58.26	63.78	59.63	86.39	35.69	76.94	68.31	98.25	7.75	15.54	9.20	7.29	67.47	41.28	49.04	53.65	
	ECHO	tiny	70.43	59.01	58.86	63.92	55.78	56.56	60.76	85.13	98.06	45.79	58.56	92.53	75.66	97.82	7.92	20.19	15.02	25.58	70.77	49.72	57.13	58.95
	small	72.50	60.20	59.13	64.25	56.76	57.45	61.72	84.74	98.11	50.75	61.52	92.11	67.76	97.63	8.85	17.90	12.91	19.09	70.86	49.37	56.28	59.00	
	FISHER	tiny	70.86	58.76	56.40	58.62	53.64	56.37	59.11	85.31	98.72	38.84	75.79	92.58	71.81	99.20	11.90	23.58	21.10	28.24	72.36	56.21	63.13	61.12
FISHER	mini	70.19	58.40	57.62	61.07	54.59	55.75	59.60	86.02	99.05	48.74	75.74	93.20	70.09	98.55	13.69	20.52	22.95	29.97	72.01	55.73	63.25	61.43	
	small	71.04	59.48	59.64	62.63	55.62	58.46	61.15	90.23	98.96	86.77	72.61	95.86	76.35	99.08	12.72	18.35	17.42	25.52	74.90	54.29	63.31	62.23	

Different colors denote speech encoders, audio encoders, music encoders, LALM audio encoders, other encoders and our model respectively.

5.2 BASELINES

We are curious about 1) how well current state-of-the-art (SOTA) speech/audio/music encoders can encode and understand industrial signals 2) pre-training on what kinds of data are effective for signal analysis 3) what kinds of pre-training/post-training are suitable for signal representation. Therefore, we select 15 SOTA encoders as baselines, including two speech encoders, seven audio encoders, one music encoder, four LALM audio encoders and an encoder inspired by FISHER. Details of these baselines are elaborated in Appendix A.3.

5.3 RESULTS ON THE RMIS BENCHMARK

Table 3 presents the numerical scores on the RMIS benchmark, where the higher the score is, the better the model is. Three conclusions about FISHER can be made. First of all, FISHER is the most versatile model for industrial signal analysis, which achieves a RMIS score of 62.23% and surpasses all baselines by at least 3.23%. FISHER is especially skilled for the fault diagnosis task, which incorporates large amount of high frequency signals. We will further demonstrate in Section 5.5 that the performance gain comes from adaptively utilizing the full signal bandwidth, while most baselines lose critical information during down-sampling. Secondly, FISHER demonstrates superior performances with much smaller model sizes. Three scales of FISHER with barely 5.5M, 10M and 22M parameters, outperform all baselines by at least 2.12%, 2.43% and 3.23%. Therefore, FISHER is more suitable for real-world deployment. Finally, FISHER is much more efficient for scaling on signal analysis tasks. As presented in Figure 1, the scaling curve of FISHER is constantly above the curves of all baselines. It is noted that large pre-trained models do not demonstrate dominant performance in industrial signal analysis as they have in speech and audio analysis, which suggests that models require tailored adjustments on industrial signals to enhance the analytical capabilities.

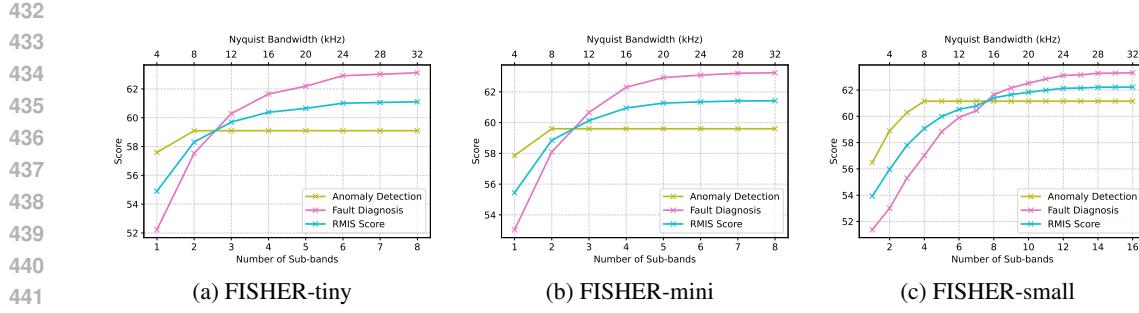


Figure 6: Performance of FISHER vs. Number of Available Sub-bands

Meanwhile, it is intriguing to notice some new findings on how to build signal foundation model by comparing these baselines. First of all, audio encoders are distinguishably better than speech encoders as depicted in Figure 5. It suggests that 1) speech data are probably not suitable for pre-training signal foundation model due the difference in inductive bias 2) network structure must be capable of dealing with sparse input. Secondly, LALM audio encoders are slightly better than speech encoders, indicating that additional post-training is beneficial for improving the analytical capabilities. Finally, as presented in Figure 1, the performances of most models continuously grow as the model size scales up, suggesting that scaling on signal analysis tasks is possible. However, the model requires specialized designs for industrial signal (such as how to deal with multi-sampling-rate) in order to further scale up, and the scaling law could be a bit different for industrial signal. We further discuss this part in Appendix A.4

5.4 MULTIPLE SPLIT RATIOS

In the RMIS benchmark, 12 out of 13 fault diagnosis datasets do not provide official split. Since previous works adopt various split ratios, we further analyze the model performance under multiple split ratios to eliminate its the impact. Specifically, we first plot the performance curve under variable split ratios ranging from 0.05 to 0.95 (train set ratio). For each split ratio, the model is still evaluated under 10 different train-test splits. Then we estimate the area under the multi-split curve. The results are presented in Table 5. There is a strong correlation between the score under fixed split ratio and the area under the multi-split-ratio curve, with a Pearson correlation of 0.967. Therefore, it is reasonable to evaluate the model under a fixed split ratio in the RMIS benchmark.

5.5 HIGH FREQUENCY GAIN

PaSST (Koutini et al., 2022), ECHO (Zhang et al., 2025b) and FISHER are the only models that accept input with sampling rates higher than 16 kHz. On the RMIS benchmark, these models all surpass their respective contemporary models, suggesting that high frequency components are crucial for analyzing industrial signals. To validate it, we constrain the number of sub-bands available to FISHER (starting from low frequency), and evaluate it on the RMIS benchmark. As depicted in Figure 6, the model performance grows steadily until it reaches the maximum sampling rate of the anomaly detection datasets. On fault diagnosis datasets with higher sampling rates, the performance continues to grow monotonically. This reveals that the success of FISHER is mainly attributed to the capability of to utilize the full bandwidth of the original signal.

6 CONCLUSION

In the paper, we hypothesized that the heterogeneous M5 industrial signals can be modeled in a unified model due to the intrinsic similarity. As a result, we proposed FISHER, which models the information gain of higher sampling rate as the concatenation of sub-band information. We also developed the RMIS benchmark to evaluate versatility on different signal analysis tasks, where FISHER excels all baselines by a wide margin with much efficient scaling properties. How to derive more powerful representation of industrial signal and effectively scale on downstream tasks will be the focus of our future work.

486 ETHICS STATEMENT
487488 Our research promotes responsible AI development by advancing industrial safety and efficiency.
489 The proposed FISHER model and RMIS benchmark are intended to improve anomaly detection and
490 fault diagnosis, leading to more reliable machinery, safer working conditions, and the safeguarding
491 of human health and well-being. Furthermore, the datasets used are publicly available and contain
492 no commercially sensitive information. We are committed to fostering ethical research that serves
493 the public good and contributes to a more sustainable future.494
495 REPRODUCIBILITY STATEMENT
496497 The SSL scheme, the model architecture and the training configurations are elaborated in the paper.
498 The model checkpoints, the inference code of FISHER and the full evaluation pipeline of the RMIS
499 benchmark will soon be open-sourced. The full training pipeline of FISHER will be open-sourced
500 once accepted.501
502 REFERENCES
503504 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
505 work for self-supervised learning of speech representations. *Advances in neural information*
506 *processing systems*, 33:12449–12460, 2020.507 Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli. Data2vec:
508 A general framework for self-supervised learning in speech, vision and language. In *International*
509 *conference on machine learning*, pp. 1298–1312. PMLR, 2022.510 Alexei Baevski, Arun Babu, Wei-Ning Hsu, and Michael Auli. Efficient self-supervised learning
511 with contextualized target representations for vision, speech and language. In *International Conference on Machine Learning*, pp. 1416–1429. PMLR, 2023.514 Shikhar Bharadwaj, Samuele Cornell, Kwanghee Choi, Satoru Fukayama, Hye-jin Shim, Soham
515 Deshmukh, and Shinji Watanabe. Openbeats: A fully open-source general-purpose audio encoder.
516 *arXiv preprint arXiv:2507.14129*, 2025.517 Dmitry Bogdanov, Minz Won, Philip Tovstogan, Alastair Porter, and Xavier Serra. The mtg-jamendo
518 dataset for automatic music tagging. In *Machine Learning for Music Discovery Workshop, International*
519 *Conference on Machine Learning (ICML 2019)*, Long Beach, CA, United States, 2019.521 Bingyan Chen, Weihua Zhang, James Xi Gu, Dongli Song, Yao Cheng, Zewen Zhou, Fengshou
522 Gu, and Andrew D Ball. Product envelope spectrum optimization-gram: An enhanced envelope
523 analysis for rolling bearing fault diagnosis. *Mechanical Systems and Signal Processing*, 193:
110270, 2023a.525 Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
526 Kanda, Takuya Yoshioka, Xiong Xiao, et al. Wavlm: Large-scale self-supervised pre-training for
527 full stack speech processing. *IEEE Journal of Selected Topics in Signal Processing*, 16(6):1505–
1518, 2022.529 Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Daniel Tompkins, Zhuo Chen, Wanxiang Che,
530 Xiangzhan Yu, and Furu Wei. BEATs: Audio pre-training with acoustic tokenizers. In *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of*
531 *Machine Learning Research*, pp. 5178–5193. PMLR, 23–29 Jul 2023b.533 Wenxi Chen, Yuzhe Liang, Ziyang Ma, Zhisheng Zheng, and Xie Chen. Eat: Self-supervised pre-
534 training with efficient audio transformer. *arXiv preprint arXiv:2401.03497*, 2024.535 Ding Ding, Zeqian Ju, Yichong Leng, Songxiang Liu, Tong Liu, Zeyu Shang, Kai Shen, Wei Song,
536 Xu Tan, Heyi Tang, et al. Kimi-audio technical report. *arXiv preprint arXiv:2504.18425*, 2025.538 Heinrich Dinkel, Yongqing Wang, Zhiyong Yan, Junbo Zhang, and Yujun Wang. Ced: Consistent
539 ensemble distillation for audio tagging. In *ICASSP 2024-2024 IEEE International Conference on*
Acoustics, Speech and Signal Processing (ICASSP), 2024a.

540 Heinrich Dinkel, Zhiyong Yan, Yongqing Wang, Junbo Zhang, Yujun Wang, and Bin Wang. Scaling
 541 up masked audio encoder learning for general audio classification. In *Interspeech 2024*, 2024b.
 542

543 Heinrich Dinkel, Gang Li, Jizhong Liu, Jian Luan, Yadong Niu, Xingwei Sun, Tianzi Wang, Qiyang
 544 Xiao, Junbo Zhang, and Jiahao Zhou. Midashenglm: Efficient audio understanding with general
 545 audio captions. *arXiv preprint arXiv:2508.03983*, 2025.

546 Kota Dohi, Keisuke Imoto, Noboru Harada, Daisuke Niizumi, Yuma Koizumi, Tomoya Nishida,
 547 Harsh Purohit, Ryo Tanabe, Takashi Endo, Masaaki Yamamoto, and Yohei Kawaguchi. De-
 548 scription and discussion on DCASE 2022 challenge task 2: Unsupervised anomalous sound de-
 549 tection for machine condition monitoring applying domain generalization techniques. In *Pro-
 550 ceedings of the 7th Detection and Classification of Acoustic Scenes and Events 2022 Workshop
 551 (DCASE2022)*, pp. 1–5, Nancy, France, November 2022a.

552 Kota Dohi, Tomoya Nishida, Harsh Purohit, Ryo Tanabe, Takashi Endo, Masaaki Yamamoto, Yuki
 553 Nikaido, and Yohei Kawaguchi. MIMII DG: Sound dataset for malfunctioning industrial machine
 554 investigation and inspection for domain generalization task. In *Proceedings of the 7th Detection
 555 and Classification of Acoustic Scenes and Events 2022 Workshop (DCASE2022)*, pp. 1–5, Nancy,
 556 France, November 2022b.

557 Kota Dohi, Keisuke Imoto, Noboru Harada, Daisuke Niizumi, Yuma Koizumi, Tomoya Nishida,
 558 Harsh Purohit, Ryo Tanabe, Takashi Endo, and Yohei Kawaguchi. Description and discussion on
 559 DCASE 2023 challenge task 2: First-shot unsupervised anomalous sound detection for machine
 560 condition monitoring. In *arXiv e-prints*: 2305.07828, 2023.

562 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 563 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 564 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 565 scale. In *International Conference on Learning Representations*, 2021.

566 Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing
 567 Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for
 568 audio events. In *2017 IEEE international conference on acoustics, speech and signal processing
 569 (ICASSP)*, pp. 776–780. IEEE, 2017.

571 Arushi Goel, Sreyan Ghosh, Jaehyeon Kim, Sonal Kumar, Zhifeng Kong, Sang-gil Lee, Chao-
 572 Han Huck Yang, Ramani Duraiswami, Dinesh Manocha, Rafael Valle, et al. Audio flamingo
 573 3: Advancing audio intelligence with fully open large audio language models. *arXiv preprint
 574 arXiv:2507.08128*, 2025.

575 Sascha Grollmisch, Jakob Abeßer, Judith Liebetrau, and Hanna Lukashevich. Sounding industry:
 576 Challenges and datasets for industrial sound analysis. In *2019 27th European signal processing
 577 conference (EUSIPCO)*, pp. 1–5. IEEE, 2019.

579 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 580 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 581 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

582 Baokun Han, Zujie Yang, Zongzhen Zhang, Huaiqian Bao, Jinrui Wang, Zongling Liu, and Shun-
 583 ming Li. A novel rolling bearing fault diagnosis method based on generalized nonlinear spectral
 584 sparsity. *Measurement*, 198:111131, 2022. ISSN 0263-2241. doi: <https://doi.org/10.1016/j.measurement.2022.111131>.

586 Baokun Han, Xingwang Jiang, Jinrui Wang, and Zongzhen Zhang. A novel domain adaptive fault
 587 diagnosis method for bearings based on unbalance data generation. *IEEE Transactions on Instru-
 588 mentation and Measurement*, 72:1–11, 2023. doi: 10.1109/TIM.2023.3284131.

590 Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Masahiro Yasuda, and
 591 Shoichiro Saito. ToyADMOS2: Another dataset of miniature-machine operating sounds for
 592 anomalous sound detection under domain shift conditions. In *Proceedings of the 6th Detec-
 593 tion and Classification of Acoustic Scenes and Events 2021 Workshop (DCASE2021)*, pp. 1–5,
 Barcelona, Spain, November 2021. ISBN 978-84-09-36072-7.

594 Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, and Masahiro Yasuda. First-
 595 shot anomaly detection for machine condition monitoring: A domain generalization baseline.
 596 *Proceedings of 31st European Signal Processing Conference (EUSIPCO)*, pp. 191–195, 2023a.
 597

598 Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, and Masahiro Yasuda. First-
 599 shot anomaly detection for machine condition monitoring: A domain generalization baseline. In
 600 *arXiv e-prints*: 2303.00455, 2023b.

601 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
 602 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
 603 *vision and pattern recognition*, pp. 16000–16009, 2022.

604 Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski, Michael Auli, Wojciech Galuba, Florian
 605 Metze, and Christoph Feichtenhofer. Masked autoencoders that listen. In *NeurIPS*, 2022.

606 Anbai Jiang, Wei-Qiang Zhang, Yufeng Deng, Pingyi Fan, and Jia Liu. Unsupervised anomaly
 607 detection and localization of machine audio: A gan-based approach. In *ICASSP 2023-2023 IEEE*
 608 *International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE,
 609 2023.

610 Anbai Jiang, Bing Han, Zhiqiang Lv, Yufeng Deng, Wei-Qiang Zhang, Xie Chen, Yanmin Qian,
 611 Jia Liu, and Pingyi Fan. Anopatch: Towards better consistency in machine anomalous sound
 612 detection. In *Interspeech 2024*, pp. 107–111, 2024. doi: 10.21437/Interspeech.2024-1761.

613 David Johnson, Jakob Kirner, Sascha Grollmisch, and Judith Liebtrau. Compressed air leakage
 614 detection using acoustic emissions with neural networks. In *INTER-NOISE and NOISE-CON*
 615 *Congress and Conference Proceedings*, volume 261, pp. 5662–5673. Institute of Noise Control
 616 Engineering, 2020.

617 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 618 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 619 models. *arXiv preprint arXiv:2001.08361*, 2020.

620 Yohei Kawaguchi, Keisuke Imoto, Yuma Koizumi, Noboru Harada, Daisuke Niizumi, Kota Dohi,
 621 Ryo Tanabe, Harsh Purohit, and Takashi Endo. Description and discussion on dcase 2021 chal-
 622 lenge task 2: Unsupervised anomalous detection for machine condition monitoring under domain
 623 shifted conditions. In *Proceedings of the 6th Detection and Classification of Acoustic Scenes and*
 624 *Events 2021 Workshop (DCASE2021)*, pp. 186–190, Barcelona, Spain, November 2021. ISBN
 625 978-84-09-36072-7.

626 Yuma Koizumi, Shoichiro Saito, Hisashi Uematsu, Noboru Harada, and Keisuke Imoto. ToyAD-
 627 MOS: A dataset of miniature-machine operating sounds for anomalous sound detection. In *Pro-
 628 ceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WAS-
 629 PAA)*, pp. 308–312, November 2019.

630 Yuma Koizumi, Yohei Kawaguchi, Keisuke Imoto, Toshiki Nakamura, Yuki Nikaido, Ryo Tanabe,
 631 Harsh Purohit, Kaori Suefusa, Takashi Endo, Masahiro Yasuda, and Noboru Harada. Description
 632 and discussion on DCASE2020 challenge task2: Unsupervised anomalous sound detection for
 633 machine condition monitoring. In *Proceedings of the Detection and Classification of Acoustic*
 634 *Scenes and Events 2020 Workshop (DCASE2020)*, pp. 81–85, November 2020.

635 Khaled Koutini, Jan Schlüter, Hamid Eghbal-zadeh, and Gerhard Widmer. Efficient training of audio
 636 transformers with patchout. In *Proc. Interspeech 2022*, pp. 2753–2757, 2022.

637 Christian Lessmeier, James Kuria Kimotho, Detmar Zimmer, and Walter Sextro. Condition mon-
 638 itoring of bearing damage in electromechanical drive systems by using motor current signals of
 639 electric motors: A benchmark data set for data-driven classification. In *PHM society European*
 640 *conference*, volume 3, 2016.

641 Jiaming Li, Hao Chen, Xian-Bo Wang, and Zhi-Xin Yang. A comprehensive gear eccentricity
 642 dataset with multiple fault severity levels: Description, characteristics analysis, and fault diagno-
 643 sis applications. *Mechanical Systems and Signal Processing*, 224:112068, 2025.

648 Jiaying Li, Han Liu, Jiaxun Liang, Jiahao Dong, Bin Pang, Ziyang Hao, and Xin Zhao. Bearing fault
 649 diagnosis based on an enhanced image representation method of vibration signal and conditional
 650 super token transformer. *Entropy*, 24(8), 2022. ISSN 1099-4300. doi: 10.3390/e24081055.
 651

652 Dongdong Liu, Lingli Cui, and Weidong Cheng. A review on deep learning in planetary gearbox
 653 health state recognition: methods, applications, and dataset publication. *Measurement Science
 654 and Technology*, 35(1):012002, 2023.

655 Zhiqiang Lv, Anbai Jiang, Bing Han, Yuzhe Liang, Yanmin Qian, Xie Chen, Jia Liu, and Pingyi
 656 Fan. Aithu system for first-shot unsupervised anomalous sound detection. Technical report,
 657 DCASE2024 Challenge, June 2024.

658 Ziyang Ma, Yinghao Ma, Yanqiao Zhu, Chen Yang, Yi-Wen Chao, Ruiyang Xu, et al. Mmar: A
 659 challenging benchmark for deep reasoning in speech, audio, music, and their mix. *arXiv preprint
 660 arXiv:2505.13032*, 2025.

661 Tomoya Nishida, Noboru Harada, Daisuke Niizumi, Davide Albertini, Roberto Sannino, Simone
 662 Pradolini, Filippo Augusti, Keisuke Imoto, Kota Dohi, Harsh Purohit, Takashi Endo, and Yohei
 663 Kawaguchi. Description and discussion on DCASE 2024 challenge task 2: First-shot un-
 664 supervised anomalous sound detection for machine condition monitoring. *In arXiv e-prints:
 665 2406.07250*, 2024.

666 Tomoya Nishida, Noboru Harada, Daisuke Niizumi, Davide Albertini, Roberto Sannino, Simone
 667 Pradolini, Filippo Augusti, Keisuke Imoto, Kota Dohi, Harsh Purohit, Takashi Endo, and Yohei
 668 Kawaguchi. Description and discussion on DCASE 2025 challenge task 2: First-shot un-
 669 supervised anomalous sound detection for machine condition monitoring. *In arXiv e-prints:
 670 2506.10097*, 2025.

671 Zhendong Pang, Yingxin Luan, Jiahong Chen, and Teng Li. Parinfogpt: An ilm-based two-stage
 672 framework for reliability assessment of rotating machine under partial information. *Reliability
 673 Engineering & System Safety*, 250:110312, 2024.

674 Haotian Peng, Jiawei Liu, Jinsong Du, Jie Gao, and Wei Wang. Bearllm: A prior knowledge-
 675 enhanced bearing health management framework with unified vibration signal representation. In
 676 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 19866–19874,
 677 2025.

678 Harsh Purohit, Ryo Tanabe, Takeshi Ichige, Takashi Endo, Yuki Nikaido, Kaori Suefusa, and Yohei
 679 Kawaguchi. MIMII Dataset: Sound dataset for malfunctioning industrial machine investigation
 680 and inspection. In *Proceedings of the Detection and Classification of Acoustic Scenes and Events
 681 2019 Workshop (DCASE2019)*, pp. 209–213, November 2019.

682 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 683 Robust speech recognition via large-scale weak supervision. In *Proceedings of the 40th Interna-
 684 tional Conference on Machine Learning*, ICML’23. JMLR.org, 2023.

685 F. M. L. Ribeiro. Mafaulda-machinery fault database, 2016. URL https://www02.smt.ufrj.br/~offshore/mfs/page_01.html#SEC2.

686 Igor André Pegoraro Santana, Fabio Pinhelli, Juliano Donini, Leonardo Catharin, Rafael Biazus
 687 Mangolin, Valéria Delisandra Feltrim, Marcos Aurélio Domingues, et al. Music4all: A new
 688 music database and its applications. In *2020 International Conference on Systems, Signals and
 689 Image Processing (IWSSIP)*, pp. 399–404. IEEE, 2020.

690 Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 691 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3. *arXiv
 692 preprint arXiv:2508.10104*, 2025.

693 Ryo Tanabe, Harsh Purohit, Kota Dohi, Takashi Endo, Yuki Nikaido, Toshiki Nakamura, and Yohei
 694 Kawaguchi. MIMII DUE: Sound dataset for malfunctioning industrial machine investigation and
 695 inspection with domain shifts due to changes in operational and environmental conditions. *IEEE
 696 Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)*, pp. 21–25,
 697 2021. doi: 10.1109/WASPAA52581.2021.9632802.

702 Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma,
 703 and Chao Zhang. Salmonn: Towards generic hearing abilities for large language models. *arXiv*
 704 *preprint arXiv:2310.13289*, 2023.

705

706 Joseph Turian, Jordie Shier, Humair Raj Khan, Bhiksha Raj, Björn W Schuller, Christian J Stein-
 707 metz, Colin Malloy, George Tzanetakis, Gissel Velarde, Kirk McNally, et al. Hear: Holistic
 708 evaluation of audio representations. In *NeurIPS 2021 Competitions and Demonstrations Track*,
 709 pp. 125–145. PMLR, 2022.

710

711 Biao Wang, Yaguo Lei, Naipeng Li, and Ningbo Li. A hybrid prognostics approach for estimating
 712 remaining useful life of rolling element bearings. *IEEE Transactions on Reliability*, 69(1):401–
 713 412, 2018.

714

715 Gang Wang, Dongdong Liu, and Lingli Cui. Auto-embedding transformer for interpretable few-shot
 716 fault diagnosis of rolling bearings. *IEEE Transactions on Reliability*, 73(2):1270–1279, 2023.

717

718 Jinrui Wang, Xuepeng Zhang, Zongzhen Zhang, Baokun Han, Xue Jiang, Huaiqian Bao, and Xingx-
 719 ing Jiang. Attention guided multi-wavelet adversarial network for cross domain fault diagnosis.
 720 *Knowledge-Based Systems*, 284:111285, 2024. ISSN 0950-7051. doi: <https://doi.org/10.1016/j.knosys.2023.111285>.

721

722 Long Wen, Xinyu Li, and Liang Gao. A transfer convolutional neural network for fault di-
 723 agnosis based on resnet-50. *Neural Comput. Appl.*, 32(10):6111–6124, May 2020. ISSN
 724 0941-0643. doi: 10.1007/s00521-019-04097-w. URL <https://doi.org/10.1007/s00521-019-04097-w>.

726

727 Kevin Wilkinghoff. Self-supervised learning for anomalous sound detection. In *ICASSP 2024-
 728 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp.
 729 276–280. IEEE, 2024.

730

731 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
 732 Fan, Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, and Junyang Lin. Qwen2.5-omni technical
 733 report. *arXiv preprint arXiv:2503.20215*, 2025.

734

735 Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan
 736 Guo, Yufei Wang, Niklas Muennighoff, et al. A survey on test-time scaling in large language
 737 models: What, how, where, and how well? *arXiv preprint arXiv:2503.24235*, 2025a.

738

739 Xuepeng Zhang, Jinrui Wang, Zongzhen Zhang, Baokun Han, Huaiqian Bao, and Xingxing Jiang.
 740 Integrated decision-making with adaptive feature weighting adversarial network for multi-target
 741 domain compound fault diagnosis of machinery. *Advanced Engineering Informatics*, 62:102730,
 742 2024. ISSN 1474-0346. doi: <https://doi.org/10.1016/j.aei.2024.102730>.

745

746 Yucong Zhang, Juan Liu, and Ming Li. Echo: Frequency-aware hierarchical encoding for variable-
 747 length signal. *arXiv preprint arXiv:2508.14689*, 2025b.

749

750 Ze Zhang, Michael Farnsworth, Boyang Song, Divya Tiwari, and Ashutosh Tiwari. Deep trans-
 751 fer learning with self-attention for industry sensor fusion tasks. *IEEE Sensors Journal*, 22(15):
 752 15235–15247, 2022.

753

754 Xinhu Zheng, Anbai Jiang, Bing Han, Yanmin Qian, Pingyi Fan, Jia Liu, and Wei-Qiang Zhang.
 755 Improving anomalous sound detection via low-rank adaptation fine-tuning of pre-trained audio
 756 models. In *2024 IEEE Spoken Language Technology Workshop (SLT)*, pp. 969–974. IEEE, 2024.

757

Haina Zhu, Yizhi Zhou, Hangting Chen, Jianwei Yu, Ziyang Ma, Rongzhi Gu, Yi Luo, Wei Tan,
 758 and Xie Chen. Muq: Self-supervised music representation learning with mel residual vector
 759 quantization. *arXiv preprint arXiv:2501.01108*, 2025.

756 **Table 4: Detailed Task Setup for Fault Diagnosis Datasets**
757

758 Dataset	759 Machine	760 Task	761 Classes
IICA	Air Compressor	Leakage	tubeleak_iO, tubeleak_niO, ventleak_iO, ventleak_niO, ventlow_iO, ventlow_niO
IIEE	Electric Engine	Fault	good, broken, heavy load
WTPG	Planetary Gearbox	Fault	broken, healthy, missing tooth, root crack, wear
			normal, horizontal misalignment, vertical misalignment, imbalance, underhang cage fault, underhang outer race, underhang ball fault, overhang cage fault, overhang outer race, overhang ball fault
MaFaulDa	Bearing	Fault	NC, OF0.2, OF0.4, OF0.6, IF0.2, IF0.4, IF0.6, RF0.2, RF0.4, RF0.6,
SDUST_bearing	Bearing	Fault	NC, planetary fracture, planetary pitting, planetary wear, sun fracture, sun pitting, sun wear
SDUST_gear	Planetary Gearbox	Fault	
UMGED	Gear	Eccentricity	E00, E02, E04, E06, E08, E10, E12, E14, E16, E18, E20
PU	Bearing	Fault	healthy, IR, OR

771
772 **A APPENDIX**
773774 **A.1 DETAILS OF THE RMIS BENCHMARK**
775776 **A.1.1 ANOMALY DETECTION**

777 For ASD tasks in the RMIS benchmark, all models adopt the identical KNN-based anomaly de-
778 tection pipeline as AnoPatch (Jiang et al., 2024) after extracting the embeddings, where normal
779 embeddings from the training set form memory banks, and the anomaly score of each query em-
780 bedding from the test set is the average distance to the nearest neighbors. The distance metric is
781 selected as cosine distance and k is kept as 1 for all datasets. To reveal the intrinsic capability of
782 the model, we do not tune the hyperparameters of KNN on each ASD dataset. For the DCASE20
783 dataset, anomaly detection is conducted per machine id, where a memory bank is constructed for
784 embeddings of each machine id, and each query embedding is inferred by the memory bank with the
785 same machine id. For the rest DCASE datasets, anomaly detection is conducted per section. Since
786 domain shift is involved, two memory banks are constructed for each section, one for the source
787 embeddings and the other for the target embeddings.

788 **A.2 FAULT DIAGNOSIS**
789

790 Table 4 presents the detailed task setup for fault diagnosis datasets, including detailed class mapping.
791 For bearing fault diagnosis tasks, fault types are commonly similar, where NC, IF (some denote as
792 IR), OF (some denote as OR), RF corresponds to normal condition, inner race fault, outer race fault
793 and rolling element fault respectively.

794
795 **A.3 BASELINE DETAILS**
796

797 Fifteen baselines are compared in this paper. We now describe the details of these baselines. For each
798 baseline, we follow the official embedding procedure and select the top performing open-sourced
799 checkpoints on the RMIS benchmark for fair comparison. We sort these baselines into 5 categories:
800 speech encoders, audio encoders, music encoders, LALM audio encoders, and other encoders.

801
802 **A.3.1 SPEECH ENCODERS**

803 We compare two classic speech pre-trained models: Wav2vec2.0 and Whisper.

804 For Wav2Vec 2.0 (Baevski et al., 2020), we utilize four official checkpoints: wav2vec2-base-960h
805 (base), wav2vec2-xls-r-300m (large), wav2vec2-xls-r-1b (1B), wav2vec2-xls-r-2b (2B). During
806 evaluation, we first extract the frame-level embeddings from the encoder and mean-pool them along
807 the time axis to form the utterance-level embeddings.

808 For Whisper (Radford et al., 2023), we only utilize the encoder. We evaluate the encoders of five
809 official pre-trained checkpoints (without fine-tuning): tiny, base, small, medium, and large-v3. Dur-

Table 5: Area under the Multi-Split Curve for Datasets without Official Split (\uparrow)

Model	Variant	IICA	WTPG	MaFaulDa		SDUST		UMGED				PU		Mean
				sound	vib	bearing	gear	sound	vib	vol	cur	vib	cur	
Wav2Vec 2.0	base	46.05	57.32	57.17	73.94	52.37	89.69	10.67	11.76	12.21	14.97	65.28	41.99	44.45
	large	44.68	73.60	59.72	82.78	48.92	91.87	11.53	11.33	10.28	12.82	64.86	46.31	46.56
	1B	43.51	80.46	46.58	73.11	48.46	91.12	10.93	13.45	9.90	10.81	64.03	41.54	44.49
	2B	41.51	80.13	55.09	79.36	49.09	93.16	11.12	14.81	11.57	11.58	68.48	43.62	46.63
Whisper	tiny	39.87	67.38	43.29	72.69	49.75	91.80	9.27	12.23	10.47	12.48	63.85	40.95	42.84
	base	39.83	78.08	35.92	76.50	49.75	92.03	10.83	12.64	10.33	10.93	67.26	42.32	43.87
	small	40.60	77.57	38.43	72.55	47.55	90.70	10.47	12.92	10.03	10.60	66.15	43.03	43.38
	medium	40.97	80.61	37.01	72.56	47.90	91.14	10.78	14.18	9.80	10.59	64.76	43.00	43.61
PaSST	large	43.15	82.17	31.86	71.82	47.32	88.95	11.18	12.64	10.05	9.55	66.34	40.56	42.57
	base	58.23	87.20	58.88	84.11	59.74	92.75	9.77	12.60	10.96	14.29	70.56	51.71	50.90
AudioMAE	base	55.61	62.53	45.48	76.71	57.89	93.14	8.85	13.15	10.84	11.65	54.43	36.00	43.86
	iter3	72.62	67.79	49.88	80.19	60.05	93.11	8.77	13.00	11.38	15.01	70.75	45.77	49.03
BEATs	base	72.31	60.57	43.63	79.43	55.34	90.25	8.16	12.25	11.50	12.84	73.39	47.88	47.30
	large	70.11	61.13	40.86	75.05	67.36	91.07	9.36	12.39	13.16	12.16	74.98	47.97	47.97
OpenBEATs	base	61.49	58.89	64.81	87.88	61.14	89.46	9.71	11.17	12.22	16.21	65.27	48.91	48.93
	large	62.58	63.60	55.69	84.28	60.43	90.58	10.78	13.70	11.32	13.88	71.54	52.23	49.22
EAT	tiny	47.03	84.02	50.13	80.38	57.11	91.01	9.46	14.88	10.87	12.19	67.57	48.00	47.72
	mini	48.75	84.72	53.95	80.65	57.06	90.62	9.50	13.78	10.86	12.06	67.74	46.84	48.04
	small	49.08	86.04	51.06	80.75	56.54	91.26	9.35	14.16	10.98	12.64	68.14	48.15	48.18
	base	50.53	84.32	53.75	81.71	58.38	91.07	9.22	13.68	10.88	12.71	68.06	48.90	48.60
DaSheng	base	70.01	47.67	58.49	88.66	59.10	92.21	7.94	6.60	11.67	16.86	71.70	41.67	47.72
	0.6B	70.68	46.71	53.59	87.44	56.53	91.60	7.89	6.59	11.75	13.23	72.60	41.98	46.72
	1.2B	68.75	49.56	54.12	86.66	53.85	91.58	8.11	6.68	11.61	14.99	72.63	43.10	46.80
MuQ	msd	59.08	38.25	40.35	84.51	59.48	89.97	8.81	8.56	14.91	9.89	73.50	42.02	44.11
Owen2-Audio	7B	45.03	84.84	39.84	81.03	55.99	92.84	10.31	14.57	10.36	11.02	69.42	45.79	46.75
Qwen2.5-Omni	7B	43.49	84.40	35.86	82.39	57.02	93.29	10.52	13.82	10.49	12.06	70.17	45.28	46.57
Audio Flamingo 3	7B	46.43	85.61	40.04	83.01	56.47	93.72	10.11	14.24	10.38	10.77	68.97	47.63	47.28
MiDaShengLM	7B	60.80	80.89	34.81	73.45	65.32	93.90	9.69	16.78	10.49	8.86	64.08	40.97	46.67
ECHO	tiny	78.89	46.60	54.95	88.96	71.54	92.81	9.14	17.77	14.07	21.26	69.61	48.64	51.19
	small	78.48	49.13	57.89	88.47	64.78	92.34	10.27	16.65	12.80	16.39	69.23	48.63	50.42
FISHER	tiny	80.66	77.88	70.92	87.85	67.58	96.02	12.91	19.71	17.94	23.07	68.19	53.08	56.33
	mini	81.32	78.06	70.75	88.85	65.53	95.19	14.85	17.92	19.07	23.81	68.51	52.22	56.34
	small	84.59	80.93	67.77	91.40	71.72	96.32	13.55	16.64	15.53	20.80	70.76	51.68	56.81

Different colors denote speech encoders, audio encoders, music encoders, LALM audio encoders, other encoders and our model respectively.

ing evaluation, we first extract the frame-level embeddings from the last layer and mean-pool them along the time axis to form the utterance-level embeddings.

A.3.2 AUDIO ENCODERS

We compare several top audio encoders: PaSST, AudioMAE, BEATs, OpenBEATs, EAT, CED, and DaSheng, whose pre-training scenarios are more aligned with the RMIS Benchmark.

For PaSST (Koutini et al., 2022), we utilize the official passt-s-f128-p16-s10-ap.476-swa checkpoint. We use the internal mel-spectrogram parameters and apply mean-pooling over the sequence dimension to obtain the representation. As the model is pre-trained on 32 kHz audio, it is the only model in our evaluation that takes 32 kHz input, serving to demonstrate that a higher sampling rate brings limited performance gain.

For AudioMAE (Huang et al., 2022), we utilize the official base checkpoint. During evaluation, we extract the patch embeddings from the last ViT layer of the encoder and take the mean along the sequence to form the signal representation.

For BEATs (Chen et al., 2023b), we utilize the official iter3 checkpoint, which outperforms the iter1, iter2 and iter3+ checkpoints on the RMIS benchmark. The representation procedure is identical with AudioMAE.

864 For OpenBEATs (Bharadwaj et al., 2025), we utilize the official base and large checkpoints from the
 865 latest publicly released iter3 version. Since the model architecture is identical to BEATs, all other
 866 procedures follow those used for BEATs.

867 For EAT (Chen et al., 2024), we utilize the official base30 and large checkpoints. During evaluation,
 868 we take the [CLS] embedding as the signal representation.

870 For CED (Dinkel et al., 2024a), we utilize checkpoints of all four scales, which is similar with the
 871 scale hierarchy of FISHER. Therefore, CED is most favored for comparison to reveal the superiority
 872 of the pre-training scheme. The representation procedure is also identical to AudioMAE.

873 For DaSheng (Dinkel et al., 2024b), we utilize the official base, 0.6B and 1.2B checkpoints to
 874 evaluate the performances of models with much larger size. During evaluation, we extract the frame-
 875 level embeddings from the last layer and mean-pool them to retrieve the signal representation.

876

877 A.3.3 MUSIC ENCODERS

880 Recent years saw specialized pre-trained models for music data, thus we also incorporate a music
 881 encoder in the comparison: MuQ (Zhu et al., 2025). We utilize the official msd checkpoint. We
 882 obtain the frame-level embeddings of the signal following the official procedure, and mean-pool
 883 them to form the utterance-level embeddings. As the only baseline pre-trained exclusively on large-
 884 scale music data, it serves as a domain-specific baseline for comparison.

885

886 A.3.4 LARGE AUDIO LANGUAGE MODELS

887

888 We are curious about 1) how well current LALMs can understand and analyze industrial signals
 889 2) can text-audio supervised fine-tuning (SFT) further improve the model performance on signal
 890 analysis. As pointed out in the MMAR benchmark (Ma et al., 2025), the capability of the audio en-
 891 coder in the LALM is the bottleneck for advanced audio understanding. Therefore, we also evaluate
 892 the audio encoders of SOTA LALMs, including Qwen2-Audio, Qwen2.5-Omni, Audio Flamingo
 893 3, and MiDaShengLM. For these models, we employ the official pre-trained checkpoints without
 894 task-specific fine-tuning and extract the audio encoders for evaluation.

895 For Qwen2-Audio (Xu et al., 2025), the audio encoder is initialized from Whisper-large-v3 and
 896 further pre-trained on large-scale audio-text pairs. We extract embeddings from the final layer of the
 897 encoder and apply mean-pooling over the sequence dimension to obtain the signal representation.

898 For Qwen2.5-Omni (Xu et al., 2025), the audio encoder is initialized from Whisper-large-v3 and
 899 further pre-trained in a multi-modal setting. We extract embeddings from the final layer of the
 900 encoder and apply mean-pooling over the sequence dimension to obtain the signal representation.

901

902 For Audio Flamingo 3 (Goel et al., 2025), the audio encoder is a unified AF-Whisper encoder initial-
 903 ized from Whisper-large-v3 and further pre-trained for long-form audio understanding. We extract
 904 embeddings from the final layer of the encoder and apply mean-pooling over the sequence dimension
 905 to obtain the signal representation.

906

907 For MiDaShengLM (Dinkel et al., 2025), the audio encoder shares the same architecture as
 908 DaSheng-0.6B but with different weights. The feature extraction procedure is identical to that of
 909 vanilla DaSheng. As it is further trained on text-audio pairs, we feel it necessary to investigate
 910 whether fine-tuning on text-audio pairs can further improve the model performance on the RMIS
 911 benchmark.

912

913 A.3.5 OTHER ENCODERS

914

915 ECHO (Zhang et al., 2025b) is a follow-up work of FISHER with mostly identical designs, while it
 916 additionally injects frequency-aware information into the positional encoding. Therefore, we feel it
 917 necessary to add it into comparison. Specifically, we evaluate the official tiny and small checkpoints
 918 (the only sizes publicly released). We extract signal representations by concatenating features from
 919 multiple frequency bands, following the author-provided procedure.

918 A.4 EFFICIENT SCALING ON SIGNAL ANALYSIS
919920 In this paper, we also investigate how to effectively scale on signal analysis tasks, which has rarely
921 been discussed in previous works. As known, the scaling law (Kaplan et al., 2020) emphasizes key
922 factors for developing large AI models, namely model size, data volume, computational resource and
923 test time. By scaling these factors up, the model performance will grow steadily and is predictable.
924 While model size, data volume and computational resource must be scaled up cohesively in pre-
925 training, test-time scaling (TTS) (Zhang et al., 2025a) focuses on adaptively adjusting test time
926 resources and strategies for better performance.
927928 It is worthy to note that directly scaling up pre-training has encountered bottlenecks on signal anal-
929 ysis. For all baselines, the performance grows steadily as the model size scales from tiny to base
930 (around 100M), yet unexpectedly drops as the scaling continues, which seems to contradict the scal-
931 ing law. As a comparison, on general audio understanding benchmarks such as Audioset (Gemmeke
932 et al., 2017), HEAR (Turian et al., 2022) and MMAR (Ma et al., 2025), the performance can further
933 improve as the model size scales up from 100M to billions. We believe that this is due to the poor
934 quality of signal data for pre-training large-scale models. Industrial signals are sometimes extremely
935 stationary and invariant. Despite the seemingly ample volume of signal data incorporated in the pre-
936 training dataset, these data exhibit a high level of similarity and only a small amount of data remains
937 after deduplication. These efficient data are only sufficient for training models of limited scale, and
938 the inflection point is probably situated around 100M. If the model size is further increased, the
939 model will be overfitted on other types of data, causing the performance on signal representation
940 tasks to drop gradually.
941942 Therefore, greater emphasis should be accorded to data preparation when scaling up the model. The
943 training data should be enlarged with more unique and non-duplicated signals, such as signals of
944 new modalities, new machinery, new working conditions, etc. Thus, it is necessary to carry out
945 data cleaning on a broader scale and with finer granularity. Meanwhile, due to the high tendency
946 of signal repetition, the proportion of data volume in the training configuration of the signal model
947 should be larger than that of the speech model. As an example, FISHER-tiny trained with excessive
948 data, performs unexpectedly well on the RMIS benchmark.
949950 On the other hand, TTS appears to be effective on the RMIS benchmark. As an example, FISHER
951 utilizes extra resources for inferring signals with higher sampling rates, which can be regarded as
952 a form of TTS. We believe signal analysis requires deep thinking and long reasoning, just like the
953 way how skilled workers take time to diagnose the malfunction. Therefore, TTS is believed to be a
954 potential breakthrough point.
955956 A.5 USE OF LLMs
957958 We use LLMs to assist in related work retrieval, code writing and paper polishing.
959
960
961
962
963
964
965
966
967
968
969
970
971