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ABSTRACT

Industrial signal analysis has emerged as a critical problem for the industry. Due
to severe heterogeneity within industrial signals, which we summarize as the M5
problem, previous works could only deal with small sub-problems by training
specialized models, which lacks robustness and incurs huge burdens during devel-
opment and deployment. However, we argue that the M5 problem can be dealt by
scaling up, where dealing with the multi-sampling-rate is the first step. In this pa-
per, we propose FISHER, a Foundation model for multi-modal Industrial Signal
compreHEnsive Representation. To support arbitrary sampling rates, FISHER
considers the increment of sampling rate as the concatenation of sub-band infor-
mation. Specifically, FISHER takes the STFT sub-band as the modeling unit and
adopts a teacher-student SSL framework for pre-training. To evaluate the model
performance, we also develop the RMIS benchmark, which consists of 19 datasets
across four modalities. FISHER is compared with 15 SOTA speech/audio/music
encoders, demonstrating versatile and outstanding capabilities with a general per-
formance gain of at least 3.23%. Meanwhile, FISHER possesses much more effi-
cient scaling curves, where even FISHER-tiny with 5.5M parameters outperforms
huge baseline encoders up to 2B. We further reveal that the key to success is adap-
tively utilizing the full signal bandwidth regardless of the sampling rate. Both
FISHER and RMIS will be open-sourced.

1 INTRODUCTION

Recent years saw rapid deployment of supervisory control and data acquisition (SCADA) systems
in modern manufacturing. These SCADA systems employ ubiquitous sensors of various modalities
to continuously monitor and analyze the production lines, generating a huge volume of streaming
industrial signals round-the-clock. Nowadays, the installation of SCADA systems do not present any
major technical challenge. However, how to efficiently analyze these signals and accurately detect
malfunctions are critical challenges for the industries, due to the unique heterogeneity of industrial
signals. In this paper, we boil it down to the M5 problem:

¢ Multi-modal. Sound, vibration, voltage, current, temperature, etc.

* Multi-sampling-rate. The sampling rate is often selected as twice the Nyquist bandwidth
to reduce cost. Common sampling rates range from 3 kHz to 50 kHz.

e Multi-scale. Due to the differences in operating mechanisms (sliding, rotation, static, etc)
and working conditions, the signal characteristics are diverse.
e Multitask. Anomaly detection, fault diagnosis, remaining useful life (RUL) estimation, etc.

¢ Minim fault. Fault data are often scarce, and the class distribution is often imbalanced.

Compared with speech data, audio data, and music data, industrial signal data are not scarce. How-
ever, due to the M5 problem, large-scale pre-training has rarely been explored for industrial signal.
Previous works mainly focus on small sub-problems, such as sound-based anomaly detection (Jiang
et al., 2023} [2024; [Wilkinghoff] |2024), vibration-based bearing fault diagnosis (Wang et al., 2023
Peng et al.|, |20235)), and vibration-based RUL estimation (Wang et al., 2018). These works usually
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Figure 1: Model Performances on the RMIS benchmark, where the higher the score is, the better the
model is. Compared with top baselines, FISHER achieves superior performances with much smaller
model sizes, demonstrating versatile capabilities and efficient scaling properties.

train specialized models on small-scale datasets, resulting in models being deficient in robustness
under diverse working conditions. Moreover, it incurs huge burdens in the development and deploy-
ment of SCADA systems, since each sub-problem must be dealt by an exclusive model.

Therefore, we aim to develop a universal and powerful signal encoder for heterogeneous industrial
signals, in order to 1) significantly improve the quality of the signal representation and 2) greatly
reduce the complexity of developing and deploying SCADA systems. Recent advances in vision
foundation model (Siméoni et al., |2025)), large language model (LLM) (Xu et al., 2025} |Guo et al.,
2025)), and large audio language model (LALM) (Goel et al.,[2025} [Dinkel et al.l 2025)) have shown
that large-scale pre-training can mitigate external heterogeneity, uncover internal similarities and
thereby building up powerful foundation model that generalizes well on various tasks. As for indus-
trial signals, we argue that their heterogeneity mainly lies in appearance, while there are still some
internal similarities that have yet to be explored, which are listed as follows:

* Sound and vibration, the two most common modalities, are essentially different observations
of vibration, since sound is recorded by the oscillation of the microphone diaphragm.

* Different signals are perceptions of the same mechanical event by different physical laws.
* Machines are assembled from components. Signals of different machines are comparable.

Thus, we conjecture that it is also viable to overcome the M5 problem and build up foundation
models for industrial signals via large-scale pre-training. Specifically, the multi-modal, multi-scale,
and multitask problems can be gradually alleviated by scaling up (Kaplan et al., 2020), while the
minim fault problem can be dealt by the external knowledge injected during pre-training (Jiang et al.,
2024; Zheng et al.,|2024). The multi-sampling-rate problem, however, is a crucial and unavoidable
problem for scaling up pre-training, since information is sparsely encoded in the full bandwidth of
the signal. Almost all speech/audio pre-trained models only accept inputs with a fixed sampling
rate, and data of higher sampling rates must be resampled. This incurs a huge loss of high frequency
information, which is crucial for industrial signals as demonstrated in Section[5.5] As a solution, the
model must be able to cope with arbitrary sampling rates in order to leverage the full bandwidth.

In this work, we propose FISHER, short for Foundation model for multi-modal Industrial Signal
compreHEnsive Representation. As the first work in our series, FISHER mainly deals with the
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unavoidable multi-sampling-rate problem. As known, higher sampling rates incorporate more infor-
mation about the signal, thus FISHER models the increment of sampling rate as the concatenation
of additional sub-band information. Specifically, the raw signal, regardless of its modality, is rep-
resented by short time Fourier transform (STFT) with fixed-duration window and hop size. The
spectrogram is then split into sub-bands with predefined bandwidth and the model processes these
sub-bands individually. The model is trained by a teacher-student self distillation framework (Chen
et al.| 2024)), where the student is guided by the representations of the teacher, and the teacher is an
exponential moving average (EMA) version of the student.

To comprehensively evaluate the model, we also develop the RMIS benchmark, short for
Representation of M5 Industrial Signals. The RMIS benchmark incorporates 19 sub-datasets with
two typical signal analysis tasks, i.e. anomaly detection (no fault as prior) and fault diagnosis (clas-
sify specific fault type). All models are evaluated by k-nearest neighbor (KNN) inference to demon-
strate the inherent capabilities.

We compare FISHER with top speech/audio/music foundation models and LALM audio encoders,
where FISHER showcases versatile performances and efficient scaling properties. FISHER achieves
an overall score of 62.23% on the RMIS benchmark, surpassing all baselines by 3.23%. Meanwhile,
FISHER possesses a much more efficient scaling curve, achieving superior performances with much
smaller sizes. We further demonstrate that the performance gain is attributed to its ability to adap-
tively utilize the full signal bandwidth, whereas all baselines can only utilize a portion of it. Our
main contributions are:

* We demonstrate for the first time that it is feasible to train unified foundation models for
industrial signals that generalize on multiple signal analysis tasks across modalities.

* We propose FISHER, a Foundation model for Industrial Signal compreHEnsive
Representation. FISHER models the STFT sub-bands via teacher-student self-distillation,
which enables it to process arbitrary industrial signals without resampling.

* We propose the RMIS benchmark to evaluate the inherent abilities on signal analysis tasks,
where we compare top speech/audio/music encoders and LALM audio encoders.

» FISHER achieves superior performances on the RMIS benchmark with much smaller model
sizes, showcasing more efficient scaling properties.

2 RELATED WORKS

Industrial signals are continuous one-dimensional series, which means that relevant experiences
from speech and audio can be leveraged. Recent years saw huge advancements in speech encoders,
such as the Wav2Vec 2.0 series (Baevski et al.| 2020), WavLM (Chen et al.,2022) and the Whisper
series (Radford et al.|[2023)). Compared with speech, general audio is sparser, lacks annotations, and
more closely resembles industrial signals. Top audio encoders conformably adopt SSL pre-training,
where the most popular paradigm is the MAE framework (He et al) [2022). Typical works are
AudioMAE (Huang et al., 2022) and DaSheng (Dinkel et al.,2024b)). Another choice is the teacher-
student self-distillation framework in Data2Vec 2.0 (Baevski et al.,|[2023), CED (Dinkel et al.,|20244a))
and EAT (Chen et al., |2024). Iterative self-tokenization and prediction is also effective, such as
BEATSs (Chen et al., [2023b) and MuQ (Zhu et al., 2025). With the rise of LALM, these models
are utilized as the audio encoder to LLM, such as Whisper in |Xu et al.| (2025); Ding et al.| (2025)),
BEATSs in|Tang et al.|(2023)) and DaSheng in Dinkel et al.| (2025)).

On the other hand, pre-trained models are revolutionizing the field of industrial signal analysis with
the advantage of versatility. In anomalous sound detection (ASD), fine-tuning audio pre-trained
models has become the dominant approach (Jiang et al.| |2024; [Lv et al.,|2024). For vibration-based
fault diagnosis, transferring image pre-trained backbones was once the research hotspot (Wen et al.,
2020; |Li et al.} [2022) since images and industrial signals are both sparse. Some recent works em-
ploy LLM to directly model the signal series (Zhang et al.|[2022; Pang et al.,|2024). BearLLM (Peng
et al., [2025) builds up a LALM-like model for bearing fault analysis with a vibration encoder pre-
trained on vibration data. However, since common faults in fault diagnosis are supported by consid-
erable data volume, they usually have in-depth theoretical analysis such as characteristic frequency.
Thus, mechanism-aware small models are still competitive for fault diagnosis (Chen et al., 2023a).
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Figure 2: Pipeline of FISHER and RMIS. FISHER converts signals into STFT spectrograms and
splits them into sub-bands with fixed bandwidth w. These sub-bands are processed individually by
the ViT backbone and the [CLS] embeddings are concatenated as the signal representations. The
ViT backbone is trained by teacher-student self-distillation, where the teacher encoder is an EMA
version of the student encoder. The model is evaluated on the RMIS benchmark by KNN inference.

3 FISHER

3.1 SUB-BAND MODELING

In FISHER, the input signal is first converted to STFT. While most audio pre-trained models adopt
the log-mel spectrogram as the input representation, FISHER reverts to STFT since:

* Malfunctions often appear in high frequencies, which would be diluted in mel scale.

* The harmonic relationships of frequencies are vital, which would be smoothed in mel scale.

To deal with the multi-sampling-rate problem, the STFT window size /N is mapped to fixed time
duration t,,;,,. That is, let f; denote the signal sampling rate, then N = t,,;,,- fs. In this way, the
frequency resolution of STFT will be constant for arbitrary sampling rates:
f S f s 1
Af =25 = =

f N twin f s twin
where Af is the frequency gap between adjacent frequency grid. Similarly, the STFT hop size is
also mapped to fixed time duration ¢j,,,, such that signals with the same time duration will have
spectrograms with the same time shape regardless of the sampling rate.

)

To deal with the variable frequency shape, FISHER emphasizes the importance of sub-band and
considers it as the building blocks of the overall information. On the one hand, as depicted in
Figure[3] the information gain of a higher sampling rate lies in the additional sub-bands. As known,
all sensors employ anti-aliasing filtering to prevent signal aliasing. Therefore, the spectrogram does
not contain any information about frequencies higher than half the sampling rate. On the other hand,
sampling rates of common large-scale datasets, i.e. 16 kHz, 32 kHz, 44.1 kHz and 48 kHz, are
integer multiples of a fundamental frequency fpqse, such as 2 kHz and 4 kHz, making sub-band
a natural unit for modeling multi-sampling-rate signals. Thus, we take the sub-band as the unit
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(a) 16 kHz (b) 32 kHz (c) 48 kHz (a) normal (b) broken

Figure 4: STFT Spectrograms of two vibra-
tion signals from the WTPG dataset. Both
are extremely stationary throughout the en-
tire clip (more than 300 s), causing the split
segments to be highly identical. If random
splitting were adopted, the detection results
would grow extremely high (up to 99%),
making it impossible for comparison.

Figure 3: STFT Spectrograms of the same source
under different sampling rates. Here we adopt
fixed-duration window and hop size. A higher sam-
pling rate comprises additional high frequency sub-
bands that carry extra information, while its low
frequency sub-bands are almost identical with that
of a lower sampling rate. Thus, it is heuristic to se-
lect the sub-band as the modeling unit.

for modeling, and build up the information of the whole spectrogram by concatenating sub-band
information just like building blocks. That is, the signal representation is the concatenation of sub-
band representations. The higher the sampling rate is, the more informative the representation is.

We now describe the sub-band modeling process in detail, which is illustrated in Figure[2] A batch
of signals are first resampled to a batch-specific sampling rate srpqic, to align the spectrogram
shape for batching, where sryq:cn is randomly selected from all the harmonics of fp,s that are
less than a maximum frequency f,,... The aligned signals are then converted to log amplitude
STFT spectrograms of shape (B, T, F'), where B is the batch size, and 7" and F' are the time and
frequency shapes respectively. Each spectrogram is then split into sub-bands with bandwidth w and
concatenated along the batch axis, thereby transferring the variability from the frequency axis to the
batch axis. These sub-bands have a shape of (Bxn, T, w), where w = fyase-twin is the frequency
gap on the spectrogram corresponding to fpqse, and n = Lg] is the number of sub-bands. They are

then processed individually by the network and their representations are concatenated afterwards.

3.2 NEURAL PROCESSING

FISHER adopts an encoder-decoder architecture with a teacher-student self distillation scheme for
pre-training, which has been demonstrated effective in multiple self-supervised learning (SSL) mod-
els (Chen et al 2024} [Baevski et al.} 2022} [Siméoni et al., [2025). FISHER comprises three sub-
networks: a student encoder FE;,,, a student decoder D, and a teacher encoder F;.,. Both en-
coders adopt the identical ViT (Dosovitskiy et al., 2021) structure with fixed sinusoidal position
encoding and post-norm, while the parameters of E}., are the exponential moving average (EMA)
of the parameters of Egy,,:

0Ba = T0B,., + (1 =7)08,,, 2

where 0p,,, and 0., are the parameters of Ey., and E, respectively, and 7 is the EMA decay
factor. Ey, is updated per step. Dy, is a shallow convolutional neural networks (CNN).

As illustrated in Figure 2] both encoders accept the STFT sub-band as the input, where it is further
split into a patch sequence following the ViT style. For the student branch, the patch sequence
is masked by inverse block masking adopted in EAT (Chen et all, [2024) with a large mask ratio
of 80%, and masked patches are discarded. Here we follow the mask cloning strategy in EAT to
efficiently increase the batch size, yet we constrain the maximum number of cloned sub-bands in a
batch as my, to prevent fluctuation in GPU memory. The unmasked patches are then appended with
a [CLS] token at front and sent into F;,,. After encoded by E;,,, the output of the [CLS] token is
selected as the student sub-band representation Spq1,4, and the output of these unmasked patches are
merged with the masked parts in the original spatial locations, where the values of the masked parts
are initialized from normal Gaussian. Dy, takes in the merged sequence and outputs the student
patch representation Spqscp,. For the teacher branch, Ej., processes the unmasked patch sequence,
and the embeddings of all its layers are averaged to derive the teacher sub-band representation tpq,q
and teacher patch representation ¢,,:.,. The self distillation process is supervised from both the
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sub-band level and the patch level:

{ Lband - ||sband - Sg(tband)”%
Lpatch - ”Spatch - Sg(tpatch)H%

3)
where sg(-) denotes stop gradient. The final loss is the combination of the two losses:

L= Lband + Lpatch (4)

It is noted that sub-bands are processed individually during training. During inference, only Egy, is
employed and its sub-band representations are concatenated to form the overall representation.

4 RMIS BENCHMARK

To evaluate the comprehensive representation Table 1: Key features of datasets in the RMIS

capability of the model for M5 industrial sig- benchmark. ~Split denotes whether an official
nals, we develop the RMIS benchmark, which  train-test split is provided for the dataset.
comprises six anomaly detection datasets and

13 fault diagnosis datasets, whose key features (a) Anomaly Detection
are presented in Table[I] To demonstrate the in- -

.. .1 . Num  Sampling .
trinsic versatility of the model, we evaluate the Dataset ~ Modality  ~. o " pai. ~  Volume  Split
model by KNN inference without fine-tuning DCASE20  Sound 2 6Kz 1530 v
on any dataset. Each dataset produces a dataset DCASE21  Sound 2 16kHz  165h v
score, which is based on either the area un- DCASE22  Sound 2 l16kHz  139h v
der the receiver operating characteristic curve DCASE23  Sound 2 I6kHz — 30h v

p g L / DCASE24  Sound 2 16kHz  49h v
(AUC) or accuracy, and we take the arithmetic DCASE25  Sound 2 16 kHz 45h v
mean of corresponding dataset scores as the
task score. Finally, the overall benchmark score (b) Fault Diagnosis
is thp ar1thm§tlc mean of tyvo task scores to Dataset Modality glum Sagplling Volume  Split
eliminate the impact of data imbalance. ass ate
TICA Sound 6  48kHz  47h X
TIEE Sound 3  441kHz  1h v
WTPG Vibration 5 48 kHz 14h X
4.1 ANOMALY DETECTION MaFaulDa_sound  Sound 10 50 kHz 3h X
. . . . MaFaulDa_vib Vibration 10 50 kHz 16h X
Anomaly detection is to predict whether a sig- SDUST bearing ~ Vibration 10~ 25.6kHz ~ 25h X

1i 1 1 h SDUST _gear Vibration 7 25.6 kHz 17h X
nal 1s normal or anomalous when no anoma- UMGEDsound ~ Sound 11 512kHz 59h X
lies are provided for training, which empha- UMGED_vib  Vibration 11~ 512kHz 176h X

- . UMGED vol ~ Voltage 11 512kHz 117h X
sizes the scarcity of fault data. We evaluate UMGED.cur  Current 11 S12kHz 117h X
the model on the datasets of the annual DCASE PU_vib Vibration 3 64kHz  3h X
ASD challenge, including DCASE20 (Koizumi PU-cur Curent 3 G4kHz 6h X

et al.l 2019; [Purohit et al. 2019; Koizumi

et al.l 2020), DCASE21 (Tanabe et al., 2021; [Kawaguchi et al.l 2021} Harada et al., |2021)),
DCASE22 (Dohi et al| 2022bfa), DCASE23 (Dohi et al| [2023; Harada et al. [2023b),
DCASE24 (Nishida et al., [2024; [Harada et al., [2023al) and DCASE25 (Nishida et al.l [2025). We
use the official split and evaluate the model by the challenge criteria, which is based on AUC. For
each dataset, we report the harmonic mean over both the development and the evaluation subsets.
All models adopt the identical KNN-based anomaly detection pipeline as AnoPatch (Jiang et al.,
2024), which is introduced in Appendix [A.T.1|to make the paper self-contained.

4.2 FAULT DIAGNOSIS

Fault diagnosis is to identify the specific fault type or health state of a signal with labeled data
provided in advance. The fault diagnosis part in the RMIS benchmark is sourced from seven pub-
licly available datasets: IDMT-ISA-COMPRESSED-AIR (IICA) (Johnson et al.l 2020), IDMT-
ISA-ELECTRIC-ENGINE (IIEE) (Grollmisch et all 2019), the WT-planetary-gearbox-dataset
(WTPG) (Liu et al) [2023), the Machinery Fault Dataset (MaFaulDa) (Ribeiro, [2016), the UM-
GearEccDataset (UMGED) (Li et al., 2025), the SDUST dataset (Wang et al., 2024; |[Zhang et al.,
2024; |[Han et al.| [2023;[2022) and the PU Dataset (Lessmeier et al.,[2016)). Details of these datasets
are presented in Appendix [A.2] To reveal the modality specific performance, we first divide these
data by the modality, resulting in 13 datasets. For each dataset, we flatten all multi-channel signals
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Figure 5: Ranking heatmap on the RMIS benchmark. We rank the scores of all models on each
dataset. The brighter the color is, the better the model is. Audio encoders are distinguishably
better than speech encoders, while LALM audio encoders are slightly better than speech encoders.
FISHER demonstrates strong versatility on all datasets, especially on fault diagnosis tasks where
signals are recorded in high sampling rates.

into single-channel and split them into segments if they are longer than 10 s. For KNN inference, k
is default to 5 for all models. All datasets are evaluated by macro-average accuracy.

To ensure proper difficulty of the task, the RMIS benchmark conduct sealed train-test split for
datasets without official train-test split, where segments from the same channel of the same record-
ing can not be partitioned into both the training and the test sets. Industrial signals are sometimes
extremely stationary along the time axis due to the constant working condition, causing the split seg-
ments to be highly identical. If random splitting were adopted, these highly similar segments would
appear in both the training and test sets, causing the task to be exceedingly simple. Therefore, we
trace each channel of the original recording and allocate its segments into either the train set or the
test seﬂ The train-test split ratio is default to 1:1, except for UMGED datasets which are 4:1. We
ensure that all classes are presented in both sets and evaluate the model under 10 different splits. To
eliminate the impact of fixed split ratio, the split ratio is further analyzed in Section[5.4]

5 EXPERIMENT

5.1 DETAILS OF FISHER

FISHER is trained under three scales, namely Table 2: Unique Hyperparameters of FISHER
FISHER-tiny (5.5M), FISHER-mini (10M) and — T ———
FISHER-small (22M), which are in line with ~ Seale p 0 frase © "o 7 pod  sigel 0 0
the hierarchy of ViT. Table[]lists unique hyper- 5o ssm 2000 100 192 3 YT

LSV o))

parameters for each version. As for the shared ~ mini  10M 4000 100 256 4 32 64
hyperparameters, t,, and tj,, are fixed as Slm]:llh hzz:a . 2000 - 20 A284Aﬁ dfﬁ hélﬁ)U 128
25 ms and 10 ms, f,q, is 32 kilz. All models 3300 hebach e nd o s s orcach GPU
contain 12 layers and the patch size is 16x16.

All models are pre-trained on the combined dataset of Audioset (Gemmeke et al., 2017), Freesound?}
MTG-Jamendo (Bogdanov et al.} 2019) and Music4all (Santana et al.,|2020) with a total volume of
17k hours. We train each model for 400k steps on four NVIDIA RTX A6000 GPUs. For each
model, we adopt a warm-up scheduler with a peak learning rate of 0.0005 and a warm-up step of
40k. During evaluation, FISHER directly processes the original signal without resampling.

"For the PU dataset, the signal under each working condition is recorded for 20 times, resulting in 20 highly
identical segments. Thus, we allocate these segments based on the working condition.
https://freesound.org/
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Table 3: Results on the RMIS Benchmark (1)

Anomaly Detection Fault Diagnosis
Model Variant DCASE MaFaulDa SDUST UMGED PU
Mean IICA TIIEE WTPG Mean
20 21 22 23 24 25 sound vib bearing gear sound vib  vol cur vib  cur

base  64.76 55.14 55.77 55.69 5276 55.69 56.64 46.77 96.61 60.81 60.72 78.34 54.12 9501 9.08 9.34 11.93 15.58 67.00 43.42 49.90 53.27
large  65.61 5523 54.44 48.09 50.51 33.98 51.31 4549 7248 7833 6283 8735 4998 97.04 10.12 840 9.18 1250 69.24 48.86 50.14 50.72
IB 6550 5522 55.81 54.12 51.83 51.60 55.68 44.23 94.97 84.84 4940 77.08 49.95 96.72 8.39 10.89 849 993 6459 40.69 49.24 52.46
2B 6549 5547 56.35 5547 5391 54.53 56.87 42.09 78.81 84.49 5996 84.14 5031 9824 837 12.06 10.80 11.13 72.67 44.07 50.55 53.71

tiny  62.85 54.42 5372 54.09 52.53 54.01 5527 40.36 55.16 71.86 44.40 7692 S51.17 9699 6.71 952 948 1251 66.00 41.12 44.78 50.03

base  65.66 54.89 56.12 56.90 53.70 56.14 57.24 40.10 77.24 8395 36.35 80.82 5130 9690 898 9.71 9.02 1021 69.95 42.70 47.48 52.36

Whisper small  64.02 54.44 54.85 5550 53.79 54.67 56.21 41.12 7021 8355 3872 7675 4923 9584 8.63 1050 8.68 9.89 68.89 43.57 46.58 51.40
medium 6541 54.76 55.58 56.02 54.13 55.21 56.85 41.28 66.84 85.62 37.31 76.66 4893 96.11 929 11.79 8.09 9.61 67.65 44.02 46.40 51.63

large 6227 53.65 54.51 53.97 52.53 54.54 55.25 47.57 70.44 87.24 59.32 7336 50.85 94.08 9.14 10.10 834 8.05 68.80 40.68 48.31 51.78

Wav2Vec 2.0

base  66.60 56.84 57.58 59.57 57.64 57.77 59.33 60.51 96.40 92.69 6242 88.61 61.86 97.12 7.17 9.80 10.65 15.88 74.94 53.81 56.30 57.82

base  70.86 58.60 57.45 62.48 56.10 57.32 60.47 77.87 70.93 63.60 45.50 83.39 57.31 96.51 547 951 11.09 13.78 76.96 49.50 50.88 55.67
large  72.78 59.93 5829 63.29 57.32 58.03 61.61 75.18 82.86 62.33 42.69 79.37 70.65 96.86 6.91 9.66 12.63 12.48 78.57 49.67 5230 56.95

base30 72.69 58.03 58.84 59.35 56.48 58.65 60.67 64.48 96.65 61.28 68.32 91.90 64.03 9546 7.89 939 1249 18.87 68.33 50.38 54.57 57.62
large  73.81 57.06 57.94 60.29 57.78 60.34 61.20 65.80 94.06 68.91 5847 88.42 62.64 9632 9.57 11.60 11.22 15.54 75.74 54.73 54.85 58.03

tiny  66.99 56.17 56.75 60.09 56.40 58.40 59.15 47.93 74.23 89.43 53.77 84.56 59.02 96.06 8.09 12.96 1031 12.65 71.50 49.95 51.57 55.36
mini 6748 56.35 56.59 60.05 57.44 5826 59.36 50.21 84.26 89.26 56.95 84.88 59.24 9550 836 11.66 10.13 12.43 71.50 48.56 52.53 55.95
small  67.50 56.65 56.87 60.76 57.88 58.15 59.63 50.49 80.23 91.20 54.67 84.67 58.00 96.12 8.05 12.15 10.26 13.14 72.89 49.08 52.38 56.01
base  67.60 56.67 56.95 60.99 57.89 5845 59.76 52.26 90.08 89.20 57.64 8595 60.20 95.84 8.12 11.57 10.03 13.63 72.14 5091 53.66 56.71

base  69.25 57.28 56.02 60.95 56.39 55.82 59.28 74.42 99.10 46.84 63.53 92.06 61.37 9830 5.64 445 11.74 20.08 74.93 4242 5345 56.37
0.6B  68.35 56.76 5535 59.85 56.34 5541 58.68 75.14 99.25 4541 57.26 91.11 5823 97.59 527 428 11.69 14.68 75.78 42.63 52.18 55.43
1.2B 69.52 57.06 55.82 61.14 56.32 56.01 59.31 73.18 99.00 4889 58.16 90.79 5550 97.99 542 452 11.76 17.32 7599 44.11 52.51 5591

MuQ msd 6691 56.75 56.04 57.69 55.64 56.09 58.19 62.23 9533 37.98 4122 88.08 60.67 9638 6.11 572 1507 9.00 78.57 4220 49.12 53.65

Qwen2-Audio 7B 6732 5538 56.46 57.19 56.07 56.27 58.12 45.59 73.56 89.91 59.63 8335 60.13 97.12 7.63 1026 9.17 10.63 73.17 47.46 5135 54.73

57.20 56.83 46.74 55.40

08 56.76 49.77 Wz

7B 67.10 55.46 56.10 58.70 56.15 56.03 58.26 63.78 59.63 86.39 35.69 76.94 6831 9825 7.75 1554 920 729 6747 4128 49.04 53.65

tiny  70.43 59.01 58.86 63.92 55.78 56.56 60.76 85.13 98.06 45.79 58.56 92.53 75.66 97.82 7.92 20.19 15.02 25.58 70.77 49.72 57.13 5895
small  72.50 60.20 59.13 64.25 56.76 57.45 61.72 84.74 98.11 50.75 61.52 92.11 67.76 97.63 885 17.90 12.91 19.09 70.86 49.37 56.28 59.00

ECHO

tiny  70.86 58.76 56.40 58.62 53.64 5637 59.11 8531 98.72 83.84 7579 92.58 71.81 99.20 11.90 23.58 21.10 28.24 7236 56.21 63.13 61.12
FISHER mini  70.19 5840 57.62 61.07 54.59 55.75 59.60 86.02 99.05 84.74 7574 9320 70.09 98.55 13.69 20.52 22.95 29.97 72.01 5573 63.25 61.43
small  71.04 59.48 59.64 62.63 55.62 58.46 61.15 90.23 9896 86.77 72.61 95.86 76.35 99.08 1272 1835 17.42 2552 7490 5429 63.31 62.23

Different colors denote speech encoders, , music encoders, LALM audio encoders, other encoders and our model respectively.

5.2 BASELINES

We are curious about 1) how well current state-of-the-art (SOTA) speech/audio/music encoders can
encode and understand industrial signals 2) pre-training on what kinds of data are effective for signal
analysis 3) what kinds of pre-training/post-training are suitable for signal representation. Therefore,
we select 15 SOTA encoders as baselines, including two speech encoders, seven audio encoders, one
music encoder, four LALM audio encoders and an encoder inspired by FISHER. Details of these
baselines are elaborated in Appendix [A.3]

5.3 RESULTS ON THE RMIS BENCHMARK

Table |§| presents the numerical scores on the RMIS benchmark, where the higher the score is, the
better the model is. Three conclusions about FISHER can be made. First of all, FISHER is the most
versatile model for industrial signal analysis, which achieves a RMIS score of 62.23% and surpasses
all baselines by at least 3.23%. FISHER is especially skilled for the fault diagnosis task, which
incorporates large amount of high frequency signals. We will further demonstrate in Section [5.3]
that the performance gain comes from adaptively utilizing the full signal bandwidth, while most
baselines lose critical information during down-sampling. Secondly, FISHER demonstrates superior
performances with much smaller model sizes. Three scales of FISHER with barely 5.5M, 10M and
22M parameters, outperform all baselines by at least 2.12%, 2.43% and 3.23%. Therefore, FISHER
is more suitable for real-world deployment. Finally, FISHER is much more efficient for scaling on
signal analysis tasks. As presented in Figure [I] the scaling curve of FISHER is constantly above
the curves of all baselines. It is noted that large pre-trained models do not demonstrate dominant
performance in industrial signal analysis as they have in speech and audio analysis, which suggests
that models require tailored adjustments on industrial signals to enhance the analytical capabilities.
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Figure 6: Performance of FISHER vs. Number of Available Sub-bands

Meanwhile, it is intriguing to notice some new findings on how to build signal foundation model
by comparing these baselines. First of all, audio encoders are distinguishably better than speech
encoders as depicted in Figure[5] It suggests that 1) speech data are probably not suitable for pre-
training signal foundation model due the difference in inductive bias 2) network structure must
be capable of dealing with sparse input. Secondly, LALM audio encoders are slightly better than
speech encoders, indicating that additional post-training is beneficial for improving the analytical
capabilities. Finally, as presented in Figure|l} the performances of most models continuously grow
as the model size scales up, suggesting that scaling on signal analysis tasks is possible. However, the
model requires specialized designs for industrial signal (such as how to deal with multi-sampling-
rate) in order to further scale up, and the scaling law could be a bit different for industrial signal. We
further discuss this part in Appendix [A.4]

5.4 MULTIPLE SPLIT RATIOS

In the RMIS benchmark, 12 out of 13 fault diagnosis datasets do not provide official split. Since
previous works adopt various split ratios, we further analyze the model performance under multiple
split ratios to eliminate its the impact. Specifically, we first plot the performance curve under variable
split ratios ranging from 0.05 to 0.95 (train set ratio). For each split ratio, the model is still evaluated
under 10 different train-test splits. Then we estimate the area under the multi-split curve. The
results are presented in Table 5] There is a strong correlation between the score under fixed split
ratio and the area under the multi-split-ratio curve, with a Pearson correlation of 0.967. Therefore,
it is reasonable to evaluate the model under a fixed split ratio in the RMIS benchmark.

5.5 HIGH FREQUENCY GAIN

PaSST (Koutini et al., [2022)), ECHO (Zhang et al., 2025b) and FISHER are the only models that
accept input with sampling rates higher than 16 kHz. On the RMIS benchmark, these models all
surpass their respective contemporary models, suggesting that high frequency components are cru-
cial for analyzing industrial signals. To valid it, we constrain the number of sub-bands available to
FISHER (starting from low frequency), and evaluate it on the RMIS benchmark. As depicted in
Figure[6] the model performance grows steadily until it reaches the maximum sampling rate of the
anomaly detection datasets. On fault diagnosis datasets with higher sampling rates, the performance
continues to grow monotonically. This reveals that the success of FISHER is mainly attributed to
the capability of to utilize the full bandwidth of the original signal.

6 CONCLUSION

In the paper, we hypothesized that the heterogeneous M5 industrial signals can be modeled in a
unified model due to the intrinsic similarity. As a result, we proposed FISHER, which models the
information gain of higher sampling rate as the concatenation of sub-band information. We also
developed the RMIS benchmark to evaluate versatility on different signal analysis tasks, where
FISHER excels all baselines by a wide margin with much efficient scaling properties. How to derive
more powerful representation of industrial signal and effectively scale on downstream tasks will be
the focus of our future work.
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ETHICS STATEMENT

Our research promotes responsible Al development by advancing industrial safety and efficiency.
The proposed FISHER model and RMIS benchmark are intended to improve anomaly detection and
fault diagnosis, leading to more reliable machinery, safer working conditions, and the safeguarding
of human health and well-being. Furthermore, the datasets used are publicly available and contain
no commercially sensitive information. We are committed to fostering ethical research that serves
the public good and contributes to a more sustainable future.

REPRODUCIBILITY STATEMENT

The SSL scheme, the model architecture and the training configurations are elaborated in the paper.
The model checkpoints, the inference code of FISHER and the full evaluation pipeline of the RMIS
benchmark will soon be open-sourced. The full training pipeline of FISHER will be open-sourced
once accepted.
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Table 4: Detailed Task Setup for Fault Diagnosis Datasets

Dataset Machine Task Classes
1ICA Air Compressor Leakage tubeleak_iO, tubeleak_niO, ventleak_iO, ventleak_niO, ventlow_iO, ventlow_niO
1IEE Electric Engine Fault good, broken, heavy load

WTPG Planetary Gearbox Fault broken, healthy, missing tooth, root crack, wear

normal, horizontal misalignment, vertical misalignment, imbalance,
MaFaulDa Bearing Fault underhang cage fault, underhang outer race, underhang ball fault,
overhang cage fault, overhang outer race, overhang ball fault

SDUST _bearing Bearing Fault NC, OF0.2, OF0.4, OF0.6, IF0.2, IF0.4, IF0.6, RF0.2, RF0.4, RF0.6,
SDUST gear Planetary Gearbox Fault NC, planetary frac‘tufe, planetary pitting, planetary wear,
sun fracture, sun pitting, sun wear
UMGED Gear Eccentricity  E00, E02, E04, E06, E08, E10, E12, E14, E16, E18, E20
PU Bearing Fault healthy, IR, OR

A APPENDIX

A.1 DETAILS OF THE RMIS BENCHMARK
A.1.1 ANOMALY DETECTION

For ASD tasks in the RMIS benchmark, all models adopt the identical KNN-based anomaly de-
tection pipeline as AnoPatch (Jiang et all 2024) after extracting the embeddings, where normal
embeddings from the training set form memory banks, and the anomaly score of each query em-
bedding from the test set is the average distance to the nearest neighbors. The distance metric is
selected as cosine distance and k is kept as 1 for all datasets. To reveal the intrinsic capability of
the model, we do not tune the hyperparameters of KNN on each ASD dataset. For the DCASE20
dataset, anomaly detection is conducted per machine id, where a memory bank is constructed for
embeddings of each machine id, and each query embedding is inferred by the memory bank with the
same machine id. For the rest DCASE datasets, anomaly detection is conducted per section. Since
domain shift is involved, two memory banks are constructed for each section, one for the source
embeddings and the other for the target embeddings.

A.2 FAULT DIAGNOSIS

Table[d]presents the detailed task setup for fault diagnosis datasets, including detailed class mapping.
For bearing fault diagnosis tasks, fault types are commonly similar, where NC, IF (some denote as
IR), OF (some denote as OR), RF corresponds to normal condition, inner race fault, outer race fault
and rolling element fault respectively.

A.3 BASELINE DETAILS

Fifteen baselines are compared in this paper. We now describe the details of these baselines. For each
baseline, we follow the official embedding procedure and select the top performing open-sourced
checkpoints on the RMIS benchmark for fair comparison. We sort these baselines into 5 categories:
speech encoders, audio encoders, music encoders, LALM audio encoders, and other encoders.

A.3.1 SPEECH ENCODERS

We compare two classic speech pre-trained models: Wav2vec2.0 and Whisper.

For Wav2Vec 2.0 (Baevski et al., 2020), we utilize four official checkpoints: wav2vec2-base-960h
(base), wav2vec2-x1s-r-300m (large), wav2vec2-xls-r-1b (1B), wav2vec2-x1s-r-2b (2B). During
evaluation, we first extract the frame-level embeddings from the encoder and mean-pool them along
the time axis to form the utterance-level embeddings.

For Whisper (Radford et al.l [2023)), we only utilize the encoder. We evaluate the encoders of five
official pre-trained checkpoints (without fine-tuning): tiny, base, small, medium, and large-v3. Dur-
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Table 5: Area under the Multi-Split Curve for Datasets without Official Split (1)

MaFaulDa SDUST UMGED PU
Model Variant IICA WTPG Mean
sound  vib  bearing gear sound  vib vol cur vib cur
base 46.05 5732 57.17 7394 5237 89.69 10.67 11.76 1221 14.97 6528 41.99 4445
large  44.68 73.60 59.72 8278 4892 91.87 11.53 11.33 10.28 12.82 64.86 4631 46.56
1B 4351 8046 4658 73.11 4846  91.12 1093 1345 990 1081 64.03 41.54 4449
2B 4151  80.13  55.09 7936 49.09 93.16 11.12 1481 11.57 11.58 6848 43.62 46.63

Wav2Vec 2.0

Whisper small ~ 40.60 77.57 3843 7255 4755 90.70 1047 1292 10.03 10.60 66.15 43.03 43.38
medium 4097 80.61 37.01 7256 4790 91.14 10.78 14.18 9.80 1059 64.76 43.00 43.61
large 43.15 8217 3186 71.82 4732 8895 11.18 1264 10.05 9.55 66.34 4056 4257

large 62.58 63.60 55.69 8428 6043 90.58 10.78 13.70 11.32 13.88 71.54 5223 49.22

MuQ msd 5908 3825 4035 8451 5948 8997 881 856 1491 989 7350 4202 4411

Qwen2-Audio 7B 4503 8484 3984 8103 5599 9284 1031 1457 1036 11.02 6942 4579 46.75
 Qwen25-Omni 7B 4349 8440 3586 8239 57.02 9329 1052 1382 1049 1206 7017 4528 4657
CAudio Flamingo3 7B 4643 8561 4004 8301 5647 9372 101 1424 1038 1077 6897 47.63 4728
| MiDaShengLM 7B 60.80 80.89 3481 7345 6532 9390 9.69 1678 1049 886 6408 4097 4667

LCHO dny 7889 4660 5495 8896 7154 9281 014 1777 1407 2126 69.61 4864 5119

small 7848 49.13  57.80 8847 6478 9234 1027 16.65 1280 1639 69.23 48.63 50.42

tiny 80.66 77.88 70.92 87.85 67.58 96.02 1291 19.71 17.94 23.07 68.19 53.08 56.33
FISHER mini 8132 78.06 70.75 8885 6553 9519 14.85 1792 19.07 23.81 6851 5222 56.34
small ~ 84.59 8093 67.77 9140 71.72 9632 13.55 16.64 1553 20.80 70.76 51.68 56.81

Difterent colors denote speech encoders, , music encoders, LALM audio encoders, other encoders and our model respectively.

ing evaluation, we first extract the frame-level embeddings from the last layer and mean-pool them
along the time axis to form the utterance-level embeddings.

A.3.2 AuDIO ENCODERS

We compare several top audio encoders: PaSST, AudioMAE, BEATSs, OpenBEATs, EAT, CED, and
DaSheng, whose pre-training scenarios are more aligned with the RMIS Benchmark.

For PaSST (Koutini et al.l 2022)), we utilize the official passt-s-f128-p16-s10-ap.476-swa check-
point. We use the internal mel-spectrogram parameters and apply mean-pooling over the sequence
dimension to obtain the representation. As the model is pre-trained on 32 kHz audio, it is the only
model in our evaluation that takes 32 kHz input, serving to demonstrate that a higher sampling rate
brings limited performance gain.

For AudioMAE (Huang et al.| 2022), we utilize the official base checkpoint. During evaluation, we
extract the patch embeddings from the last ViT layer of the encoder and take the mean along the
sequence to form the signal representation.

For BEAT's (Chen et al.L[2023b)), we utilize the official iter3 checkpoint, which outperforms the iterl,
iter2 and iter3+ checkpoints on the RMIS benchmark. The representation procedure is identical with
AudioMAE.
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For OpenBEATSs (Bharadwaj et al.,|2025)), we utilize the official base and large checkpoints from the
latest publicly released iter3 version. Since the model architecture is identical to BEATS, all other
procedures follow those used for BEATS.

For EAT (Chen et al.,[2024), we utilize the official base30 and large checkpoints. During evaluation,
we take the [CLS] embedding as the signal representation.

For CED (Dinkel et al.l [2024a), we utilize checkpoints of all four scales, which is similar with the
scale hierarchy of FISHER. Therefore, CED is most favored for comparison to reveal the superiority
of the pre-training scheme. The representation procedure is also identical to AudioMAE.

For DaSheng (Dinkel et all [2024b)), we utilize the official base, 0.6B and 1.2B checkpoints to
evaluate the performances of models with much larger size. During evaluation, we extract the frame-
level embeddings from the last layer and mean-pool them to retrieve the signal representation.

A.3.3 MusIC ENCODERS

Recent years saw specialized pre-trained models for music data, thus we also incorporate a music
encoder in the comparison: MuQ (Zhu et al., 2025). We utilize the official msd checkpoint. We
obtain the frame-level embeddings of the signal following the official procedure, and mean-pool
them to form the utterance-level embeddings. As the only baseline pre-trained exclusively on large-
scale music data, it serves as a domain-specific baseline for comparison.

A.3.4 LARGE AUDIO LANGUAGE MODELS

We are curious about 1) how well current LALMs can understand and analyze industrial signals
2) can text-audio supervised fine-tuning (SFT) further improve the model performance on signal
analysis. As pointed out in the MMAR benchmark (Ma et al.| 2025)), the capability of the audio en-
coder in the LALM is the bottleneck for advanced audio understanding. Therefore, we also evaluate
the audio encoders of SOTA LALMs, including Qwen2-Audio, Qwen2.5-Omni, Audio Flamingo
3, and MiDaShengLLM. For these models, we employ the official pre-trained checkpoints without
task-specific fine-tuning and extract the audio encoders for evaluation.

For Qwen2-Audio (Xu et al.l |2025), the audio encoder is initialized from Whisper-large-v3 and
further pre-trained on large-scale audio-text pairs. We extract embeddings from the final layer of the
encoder and apply mean-pooling over the sequence dimension to obtain the signal representation.

For Qwen2.5-Omni (Xu et al. 2025), the audio encoder is initialized from Whisper-large-v3 and
further pre-trained in a multi-modal setting. We extract embeddings from the final layer of the
encoder and apply mean-pooling over the sequence dimension to obtain the signal representation.

For Audio Flamingo 3 (Goel et al.,[2025)), the audio encoder is a unified AF-Whisper encoder initial-
ized from Whisper-large-v3 and further pre-trained for long-form audio understanding. We extract
embeddings from the final layer of the encoder and apply mean-pooling over the sequence dimension
to obtain the signal representation.

For MiDaShenglLM (Dinkel et al., [2025), the audio encoder shares the same architecture as
DaSheng-0.6B but with different weights. The feature extraction procedure is identical to that of
vanilla DaSheng. As it is further trained on text-audio pairs, we feel it necessary to investigate
whether fine-tuning on text-audio pairs can further improve the model performance on the RMIS
benchmark.

A.3.5 OTHER ENCODERS

ECHO (Zhang et al.}[2025b) is a follow-up work of FISHER with mostly identical designs, while it
additionally injects frequency-aware information into the positional encoding. Therefore, we feel it
necessary to add it into comparison. Specifically, we evaluate the official tiny and small checkpoints
(the only sizes publicly released). We extract signal representations by concatenating features from
multiple frequency bands, following the author-provided procedure.
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A.4 EFFICIENT SCALING ON SIGNAL ANALYSIS

In this paper, we also investigate how to effectively scale on signal analysis tasks, which has rarely
been discussed in previous works. As known, the scaling law (Kaplan et al.,|2020) emphasizes key
factors for developing large Al models, namely model size, data volume, computational resource and
test time. By scaling these factors up, the model performance will grow steadily and is predictable.
While model size, data volume and computational resource must be scaled up cohesively in pre-
training, test-time scaling (TTS) (Zhang et al., [2025a) focuses on adaptively adjusting test time
resources and strategies for better performance.

It is worthy to note that directly scaling up pre-training has encountered bottlenecks on signal anal-
ysis. For all baselines, the performance grows steadily as the model size scales from tiny to base
(around 100M), yet unexpectedly drops as the scaling continues, which seems to contradict the scal-
ing law. As a comparison, on general audio understanding benchmarks such as Audioset (Gemmeke
et al.,2017), HEAR (Turian et al., [2022) and MMAR (Ma et al., 2025), the performance can further
improve as the model size scales up from 100M to billions. We believe that this is due to the poor
quality of signal data for pre-training large-scale models. Industrial signals are sometimes extremely
stationary and invariant. Despite the seemingly ample volume of signal data incorporated in the pre-
training dataset, these data exhibit a high level of similarity and only a small amount of data remains
after deduplication. These efficient data are only sufficient for training models of limited scale, and
the inflection point is probably situated around 100M. If the model size is further increased, the
model will be overfitted on other types of data, causing the performance on signal representation
tasks to drop gradually.

Therefore, greater emphasis should be accorded to data preparation when scaling up the model. The
training data should be enlarged with more unique and non-duplicated signals, such as signals of
new modalities, new machinery, new working conditions, etc. Thus, it is necessary to carry out
data cleaning on a broader scale and with finer granularity. Meanwhile, due to the high tendency
of signal repetition, the proportion of data volume in the training configuration of the signal model
should be larger than that of the speech model. As an example, FISHER-tiny trained with excessive
data, performs unexpectedly well on the RMIS benchmark.

On the other hand, TTS appears to be effective on the RMIS benchmark. As an example, FISHER
utilizes extra resources for inferring signals with higher sampling rates, which can be regarded as
a form of TTS. We believe signal analysis requires deep thinking and long reasoning, just like the
way how skilled workers take time to diagnose the malfunction. Therefore, TTS is believed to be a
potential breakthrough point.

A.5 USE OF LLMSs

We use LLMs to assist in related work retrieval, code writing and paper polishing.
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