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Abstract001

We introduce AdamS, a simple yet effective002
alternative to Adam for large language model003
(LLM) pretraining and post-training. By lever-004
aging a novel denominator, i.e., the root mean005
square of a properly weighted momentum and006
the current gradient, AdamS eliminates the need007
for second-moment estimates. Hence, AdamS008
is efficient, matching the memory and com-009
pute footprint of SGD with momentum while010
delivering superior optimization performance.011
Moreover, AdamS is easy to adopt: it can di-012
rectly inherit hyperparameters of AdamW, and013
is entirely model-agnostic, integrating seam-014
lessly into existing pipelines without modifica-015
tions to optimizer APIs or architectures. The016
motivation behind AdamS stems from the ob-017
served (L0, L1) smoothness properties in trans-018
former objectives, where local smoothness is019
governed by gradient magnitudes. In this set-020
ting, momentum offers a naturally smoothed021
gradient estimate. We establish rigorous the-022
oretical convergence guarantees and provide023
practical guidelines for hyperparameter selec-024
tion. Empirically, AdamS demonstrates strong025
performance across diverse tasks and architec-026
tures, including pretraining runs on GPT-2 and027
Llama2 (up to 13B parameters). It also excels028
in reinforcement learning post-training, partic-029
ularly in the DeepSeek R1-Zero replication030
task, underscoring its versatility across train-031
ing paradigms. With its efficiency, simplicity,032
and theoretical grounding, AdamS stands as a033
compelling alternative to existing optimizers.034

1 Introduction035

Due to the scaling law (Kaplan et al., 2020) of036

neural networks, it has been enthusiastic in the AI037

community to pre-train large foundation models038

with enormous data over the past years (Touvron039

et al., 2023a; Brown et al., 2020; Zhang et al., 2022;040

Rae et al., 2021; Chowdhery et al., 2022; Du et al.,041

2021; Liu et al., 2024; Dubey et al., 2024; Yang042
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Figure 1: Training loss curves for pretraining Llama2-
13B models. The proposed AdamS achieves conver-
gence comparable to baseline methods—without the
need to store AdamW’s second-order estimates.

et al., 2024). Training such large foundation mod- 043

els become super challenging because of tremen- 044

dous engineering efforts, computational cost (Rajb- 045

handari et al., 2019; Guo et al., 2025), and potential 046

training spikes (Zhang et al., 2022; Molybog et al., 047

2023; Chowdhery et al., 2022). 048

One reason for such high cost comes from the 049

widely used optimizer Adam (Kingma and Ba, 050

2014) or AdamW (Loshchilov and Hutter, 2019): 051

the optimizers require storing both the state of mo- 052

mentum and the state of second-moment estimates, 053

which consumes 2 ∼ 4 times GPU memories of 054

the model size, huge for models with hundreds of 055

billions of parameters. 056

In this paper, we try to reduce such cost by 057

proposing a simple yet effective optimizer AdamS, 058

an alternative to AdamW. AdamS eliminates the 059

need for second-moment estimates, by leverag- 060

ing a novel denominator: the root mean square 061

of a carefully weighted combination of momen- 062

tum and the current gradient. As a consequence, 063

AdamS matches the memory and compute footprint 064

of stochastic gradient descent (SGD) with momen- 065

tum while delivering superior performance as good 066

as AdamW. 067

The design of AdamS is inspired by the obser- 068
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vation that transformer-based models, which dom-069

inate modern large language models (LLMs), ex-070

hibit unique smoothness properties in their opti-071

mization landscapes. Specifically, the local smooth-072

ness of these objectives is governed by gradi-073

ent magnitudes, which suggests that the learning074

rate should be proportional to the reciprocal of075

the gradient norm at each iteration, the core in-076

sight why Adam optimizer beats SGD on training077

transformer-like architectures (Wang et al., 2022,078

2023b). We employ the fact that momentum, an079

exponential average of historical gradients, can080

provide a good and robust estimate of gradient081

magnitude (Cutkosky and Mehta, 2020; Zhang082

et al., 2020) without the need for complex second-083

moment computations. By leveraging this insight,084

AdamS reduces memory cost of the optimizer states085

by half. Such efficiency of AdamS is particularly086

attractive for large-scale training, where even small087

improvements in efficiency can translate into sig-088

nificant cost savings.089

We note that there has been effort of designing090

new optimizers for less memory cost, i.e., Adafac-091

tor (Shazeer and Stern, 2018), Adam-mini (Zhang092

et al., 2024), Shampoo (Gupta et al., 2018), Lion093

(Chen et al., 2023), for better convergence either094

theoretical or practical, i.e, Sophia (Liu et al.,095

2023), NAdam (Dozat, 2016), AdaBound (Luo096

et al., 2019), AdaBelief (Zhuang et al., 2020), and097

RAdam (Liu et al., 2020)—Adam (Kingma and098

Ba, 2014) and its variant AdamW (Loshchilov and099

Hutter, 2019) remain the dominant choices in both100

academic and industrial deep learning implemen-101

tations (Schneider et al., 2022). This reluctance to102

adopt new optimizers stems from the difficulty of103

systematically surpassing AdamW in large-scale104

learning (Kaddour et al., 2023) and the fundamen-105

tal role optimizers play in training. Practitioners106

are hesitant to switch unless a new optimizer offers107

clear advantages, is easy to tune, and integrates108

seamlessly into existing workflows.109

Recognizing this deep-rooted reliance on110

AdamW, we emphasize that AdamS is easy to111

adopt, and can serve as a drop-in replacement of112

AdamW for LLM pretraining and post-training113

tasks. AdamS is entirely model-agnostic, making114

it easy to integrate into existing pipelines without115

modifications to optimizer APIs or architectures.116

More importantly, it inherits AdamW’s hyperpa-117

rameter configuration, thereby mitigating the often118

prohibitive costs of hyperparameter re-tuning and119

minimizing the risk associated with deploying a120

new optimizer at scale. 121

Empirically, AdamS demonstrates strong perfor- 122

mance across a wide range of tasks and architec- 123

tures. In pretraining scenarios, it matches or ex- 124

ceeds the performance of AdamW on models rang- 125

ing from GPT-2 to Llama2, with parameter counts 126

up to 13B as shown in Figure 1. This scalability is 127

particularly important given the growing trend to- 128

ward even larger models and datasets. Additionally, 129

AdamS excels in post-training tasks, including re- 130

inforcement learning (RL), where it achieves state- 131

of-the-art results in tasks such as the DeepSeek 132

R1-Zero replication. This versatility underscores 133

its potential as a general-purpose optimizer for both 134

pretraining and post-training paradigms. 135

On the theoretical side, we establish rigorous 136

convergence guarantees that demonstrate the effec- 137

tiveness of AdamS in optimizing non-convex ob- 138

jectives, which are typical in LLM training. These 139

guarantees are derived under realistic assumptions 140

about the smoothness and noise properties of the 141

optimization landscape. 142

Our contributions can be summarized as follows: 143

• Innovative Optimizer Design: We introduce 144

AdamS, which eliminates the need for second- 145

moment estimates by leveraging a novel 146

normalization strategy based on a weighted 147

momentum-gradient combination. This ap- 148

proach reduce the memory footprint of opti- 149

mizers’ state by 50% while maintaining the 150

ease of adoption. 151

• Theoretical Grounding: We rigorously an- 152

alyze the convergence guarantees of AdamS 153

for optimizing non-convex objectives under 154

relaxed smoothness and weak noise assump- 155

tions, which matches the lower bounds of any 156

gradient-based optimizers. 157

• Empirical Validation: Through extensive 158

experiments, e.g., large-scale pretraining on 159

models like GPT-2 and Llama2 (up to 13B 160

parameters) and reinforcement learning post- 161

training tasks such as DeepSeek R1-Zero 162

replication, we demonstrate that AdamS con- 163

sistently matches AdamW, underscoring its 164

versatility across different training paradigms. 165

In the following sections, we detail the motiva- 166

tion and formulation of AdamS. We then present the 167

theoretical analysis and convergence guarantees, 168

followed by an extensive empirical study spanning 169
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a variety of tasks and architectures. Through this170

comprehensive exploration, we aim to establish171

AdamS as a compelling alternative in the evolving172

landscape of large language model pretraining and173

post-training optimization.174

1.1 Related Works175

The smoothness property of transformer-like176

architectures. The seminal work (Zhang et al.,177

2019) introduced the (L0, L1)-smooth condition178

that assumes local smoothness bounded by the lo-179

cal gradient norm, which is nicely verified by the180

optimization landscape of training transformer-like181

models. Under these assumptions, convergence182

properties of adaptive optimizers, AdaGrad (Faw183

et al., 2023; Wang et al., 2023b), Adam (Wang184

et al., 2022; He et al., 2023; Wang et al., 2023b;185

Li et al., 2023) are established and the benefit over186

SGD is demonstrated. Our design of AdamS is in-187

spired by these local smoothness properties, and188

delivers robust empirical performance, where gra-189

dient magnitudes govern optimization dynamics190

particularly in transformer-like architectures.191

Memory-efficient adaptive learning rate op-192

timizers. In the development of memory-efficient193

adaptive learning rate optimizers, several notable194

methods have been proposed to address the chal-195

lenges of high memory consumption in large-scale196

neural network training. Shazeer and Stern (2018)197

introduced Adafactor, which reduces memory us-198

age by maintaining only per-row and per-column199

sums of the second-moment estimates for weight200

matrices. Anil et al. (2019) proposed SM3, a201

memory-efficient adaptive optimization method202

that approximates second-moment statistics with203

sublinear memory cost by partitioning parame-204

ters and sharing second-moment estimates among205

them. SM3 achieves per-parameter adaptivity with206

reduced memory overhead, facilitating the train-207

ing of larger models and mini-batches. Luo et al.208

(2023) developed CAME to address the instabil-209

ity issues of existing memory-efficient optimiz-210

ers via a confidence-guided adaptive strategy. Lv211

et al. (2023) introduced AdaLomo, which combines212

low-memory optimization techniques with adaptive213

learning rates by employing non-negative matrix214

factorization for second-order moment estimation.215

Zhao et al. (2024) proposed GaLore that projects216

weight gradients onto a low-rank subspace, and up-217

date the model in the low-rank subspace, enabling218

fine-tuning LLM with consumer-grade GPUs with219

24GB memory, where the idea of low-rank projec-220

tion has been initiated in (Yu et al., 2021). Recently, 221

Zhang et al. (2024) proposed Adam-mini, an opti- 222

mizer that reduces memory usage by partitioning 223

model parameters into blocks based on the Hes- 224

sian structure and assigning a single learning rate 225

to each block, reducing memory consumption of 226

optimizer state by approximately 45% to 50%. 227

Despite the proliferation of all these advance- 228

ments, practitioners often hesitate to move away 229

from AdamW because they either need to tune 230

more hyperparameters, or require to be aware of 231

the model architecture, or do not systematically 232

surpassing AdamW in large-scale learning (Kad- 233

dour et al., 2023; Hoffmann et al., 2022). In con- 234

trast, AdamS offers a model-agnostic solution that 235

seamlessly integrates into existing workflows. It re- 236

quires no additional hyperparameters beyond those 237

used in AdamW, allowing for straightforward adop- 238

tion and tuning. Moreover, AdamS matches the 239

memory efficiency of vanilla SGD with momen- 240

tum while delivering performance comparable to 241

AdamW, making it a practical drop-in replacement 242

that one can enjoy benefits with minimal effort. 243

2 Motivation and Design Choices of 244

AdamS 245

This section outlines the motivation behind our opti- 246

mizer design—specifically, the rationale for adopt- 247

ing the root mean square of a properly weighted 248

momentum itself and the current gradient as an 249

adaptive denominator. We then formalize the algo- 250

rithm and analyze its properties. 251

2.1 Motivation and (L0, L1) smoothness 252

In classical optimization settings, gradient de- 253

scent provably decreases the loss at each itera- 254

tion—provided the learning rate is smaller than the 255

inverse of the smoothness constant. However, this 256

principle fails to hold for transformer-based mod- 257

els, where stochastic gradient descent (SGD) with 258

momentum exhibits poor convergence empirically. 259

Recent work by (Zhang et al., 2019) identifies a key 260

observation: Transformer training objectives vio- 261

late standard smoothness assumptions and instead 262

obey a relaxed (L0, L1)-smoothness condition. Un- 263

der this regime, the local smoothness depends on 264

the gradient magnitude, enabling pathological cur- 265

vature that can arbitrarily slow SGD’s progress 266

(Wang et al., 2023a). The (L0, L1)-smoothness 267

assumption is as follows. 268
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Assumption 2.1 ((L0, L1)-smooth condition). As-269

suming that f is differentiable and lower bounded,270

there exist constants L0, L1 > 0, such that271

∀w1,w2 ∈ Rd satisfying ∥w1 −w2∥ ≤ 1
L1

,272

∥∇f(w1)−∇f(w2)∥273

≤(L0 + L1∥∇f(w1)∥)∥w1 −w2∥.274

Assumption 2.1 is a general form of (L0, L1)-275

smooth condition, equivalent to the Hessian-bound276

form (Zhang et al., 2019) when Hessian exists.277

When Assumption 2.1 holds, the local smooth-278

ness of the objective function is bounded by the279

the linear form of the gradient norm (i.e., L(w) ≤280

L0 + L1∥∇f(w)∥. We know that the smoothness281

constant L(w) governs how much the gradient can282

change locally. If L(w) scales with ∥∇f(w)∥,283

the curvature (and thus the risk of overshooting)284

increases with the gradient’s magnitude. This ne-285

cessitates a smaller learning rate when the gradient286

is large and allows a larger rate when the gradient287

is small.288

A brief derivation (see details in Appendix B)289

gives a range of ηt that guarantees decreasing290

function value at each step, i.e., ηt ≤ 1/(L0 +291

L1∥∇f(wt)∥), which ensures convergence by bal-292

ancing the descent and curvature terms. This adap-293

tively scales η inversely with the grad’s magnitude.294

In practice, we do not know the exact values of295

L0 and L1, a typical choice of ηt should be296

ηt =
C

∥∇f(wt)∥+ ϵ
,297

for some constant or scheduled constant C after298

taking account of avoiding explosion near minima.299

Such an argument can be extended to coordinate-300

wise sense, which necessitates per-coordinate adap-301

tive learning rates.302

We note that Adam adapts learning rates using303

second-moment estimates, i.e., the exponential av-304

erage of of the square of historical gradients to305

approximate the gradient magnitude. We draw in-306

spiration from (Zhang et al., 2020), which demon-307

strates that momentum—the exponential moving308

average of historical gradients—can itself serve as a309

robust proxy for gradient magnitudes. Building on310

this insight, we propose replacing second-moment311

estimation with a novel denominator derived from312

a weighted combination of momentum and the cur-313

rent mini-batch gradient. This approach retains314

the benefits of adaptive learning rate tuning while315

eliminating the computational overhead of tracking316

second moment statistics.317

2.2 The Design of AdamS 318

The desing of AdamS is given by Algorithm 1.
Specifically, the denominator is

νt ← β2m
⊙2
t−1 + (1− β2)g

⊙2
t .

Algorithm 1 AdamW v.s. AdamS

1: Input: momentum parameter β1, denominator
parameter β2, weight decay λ, learning rate η,
objective f , regularizer ϵ

2: Initialize: w0, m0 ← 0,ν0 ← 0, t← 0
3: while wt not converged do
4: t← t+ 1
5: gt ← ∇wf(wt−1)
6: update state tracking
7: mt ← β1mt−1 + (1− β1)gt
8: AdamW: νt ← β2νt−1 + (1− β2)g

⊙2
t

9: AdamS: νt ← β2m
⊙2
t−1+(1−β2)g

⊙2
t

10: update model parameters
11: wt ← (1− ηtλ)wt−1 − ηt

(
1√
νt+ϵ ⊙mt

)
12: end while
13: return wt

319

2.3 The Properties of AdamS 320

We next compare the behavior of AdamS and that 321

of AdamW. 322

Analytical comparison. The numerators of 323

AdamS and AdamW are the same. For the denomi- 324

nator, we make some estimation as a thought verifi- 325

cation. We consider the following sequence {Xt}, 326

where Xt ∼ N (µ, σ2) are independent. Then the 327

distribution of the exponentially weighted moving 328

average (EMA) of their squared values 329

St = (1− β2)X
2
t + β2St−1, t = 1, 2, . . . , T. 330

follows a weighted sum of noncentral chi-squared 331

distributions. As t becomes large, such a distribu- 332

tion tends to be a non-centered Gaussian distribu- 333

tion. We compute the mean and variance of St, 334

E[St] = (µ2 + σ2)(1− βt
2), 335

Var(St) =
(
2σ4 + 4µ2σ2

) 1− β2
1 + β2

(1− β2t
2 ). 336

Consequently, E[S∞] = (µ2 + σ2), and 337

Var(S∞) = (2σ4 + 4µ2σ2)(1− β2)/(1 + β2). 338

On the other side, the distribution of the expo- 339

nential moving average of Xt, i.e., Mt = (1 − 340
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β1)Xt + β1Mt−1, t = 1, 2, . . . , follows a Gaus-341

sian distribution.342

The denominator of AdamS involves the follow-343

ing quantity, Vt := βM2
t−1 + (1 − β)X2

t . Since344

Xt and Mt−1 are independent, Vt is the sum of two345

independent scaled noncentral chi–squared random346

variables with one degree of freedom. We have347

E[V∞] = µ2 + σ2

(
1− 2ββ1

1 + β1

)
,348

Var(V∞) =2σ4

[
β2

(
1− β1
1 + β1

)2

+ (1− β)2

]
349

+ 4µ2σ2

[
β2 1− β1

1 + β1
+ (1− β)2

]
.350

By comparing E[S∞] and E[V∞], we note that351

if µ ≫ σ, i.e., a regime achievable under large352

batch sizes where gradient noise becomes negligi-353

ble, AdamS’s behavior increasingly resembles that354

of AdamW. This alignment with AdamW’s dynam-355

ics under low-noise conditions mirrors practical356

LLM pretraining setups, where large batch sizes357

are standard.358

Empirical comparison between the update359

matrices of AdamS and AdamW. We analyze the360

update matrices of AdamW and AdamS along the361

training trajectory of a GPT-2 Small model. The de-362

tailed experimental setup is provided in Section 4.1.363

To quantify the similarity between the updates,364

we compute the cosine similarity between the up-365

date matrices of AdamS and AdamW throughout366

the training process with AdamW. The results are367

presented in Figure 2. For comparison, we also368

include the cosine similarity between AdamW and369

the recently proposed Adam-mini (Zhang et al.,370

2024). The results show that AdamS exhibits a371

strong alignment with AdamW, closely matching372

its update direction.373

The magnitude of AdamS update. For β1 =374

0.9, we plot the update magnitude of AdamS when375

the gradient/momentum values span [−13, 13],376

covering most values in practice, in Figure 3. We377

can see that overly large β2 values can destabilize378

updates by inflating the denominator’s sensitivity379

to outliers. To mitigate this, we recommend not380

setting β2 too large, and a typical value of β2 =381

0.95 works well and aligns with empirical choice382

of AdamW for LLM pretraining.383

Memory cost and throughput of AdamS.384

AdamS effectively reduces optimizer state memory385

usage by half. However, the extent of improvement386

in throughput and maximum batch size compared387
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Figure 2: The cosine similarities between the update
matrices of AdamS and AdamW (upper), Adam-mini
and AdamW (lower) for all layers of GPT2-Small model
. Across the training trajectory, the update direction of
AdamS closely aligns with that of AdamW.

to the original AdamW depends on the model size 388

and GPU type, as the primary bottleneck may be 389

either memory or computation. Notably, as model 390

size increases, the benefits of AdamS become more 391

pronounced, aligning well with practical large lan- 392

guage model (LLM) training scenarios. As shown 393

in Table 1, AdamS can improve over AdamW in 394

terms of throughput by almost 36%, i.e., reducing 395

the time 6.9s to 4.4s of passing a batch of tokens, 396

for GPT2-XL pretraining. 397
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Figure 3: The update magnitude of AdamS when the
grad/momentum changes with β1 = 0.1 and β =
0.9, 0.95, 0.99, 0.999.
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Model Optimizer Max batch Throughput

774M
AdamW 10 2.0s
AdamS 10 2.0s

1.5B
AdamW 1 6.9s
AdamS 3 4.4s

Table 1: Memory cost and throughput comparison be-
tween AdamW and AdamS. The maximum batch size
(Max batch) is the largest allowable batch without Out of
Memory and the throughput (Throughput) is measured
by the time (in seconds) for one iteration of passing
480K tokens with gradient accumulation. Experiment
setup: 8 A100 GPUs with 40GB memory, training with
GPT2-XL (1.5B) and GPT2-Large (774M).

3 Convergence of AdamS398

This section establishes the theoretical convergence399

of AdamS. We first introduce another key assump-400

tion on the gradient noises.401

Assumption 3.1 (Sub-gaussian noise). We as-402

sume that the stochastic noise gt is unbiased, i.e.,403

E|Ftgt = Gt. We further assume gt is centered404

with sub-gaussian norm, i.e., there exists some pos-405

itive constant R, such that P|Ft(∥gt−∇f(wt)∥ ≥406

s) ≤ 2e−
s2

2R2 .407

Assumption 3.1 is one of the weakest assump-408

tions on the noise in existing literature, and gen-409

eralizes bounded gradient assumption (Défossez410

et al., 2022) and bounded noise assumption (Li411

et al., 2023). Based on Assumption 2.1 and 3.1412

Theorem 3.2. Let Assumptions 2.1 and 3.1 hold.413

Then, setting ηt = Õ( 1√
T
), β1 = 1− Θ̃( 1√

T
), and414

β2 = 1− Θ̃( 1
T ) with 1−β1

η ≥ C, where C is some415

constant defined in Eq. (4) , we have that AdamS416

in Algorithm 1 satisfies417

E min
t∈[1,T ]

∥∇f(wt)∥ ≤ Õ
(

1
4
√
T

)
.418

Proof. The proof is relegated to Appendix C due419

to space constraints.420

The derived convergence rate matches the known421

lower bound of Ω(1/
√
T ) for any gradient-based422

optimizer, including AdamW (Arjevani et al.,423

2022). This result not only demonstrates that424

the convergence rate in Theorem 3.2 is tight —-425

achieving the theoretically optimal bound —- but426

also provides a rigorous theoretical guarantee for427

AdamS’s efficiency in optimizing Transformer ar-428

chitectures.429

4 Empirical Performance of AdamS 430

In this section, we apply AdamS for large language 431

model pretraining tasks and post-training tasks to 432

demonstrate that AdamS can achieve performance 433

comparable to AdamW with similar hyperparame- 434

ters while requiring significantly less memory. 435

4.1 GPT2 experiments 436

In this experiment, we demonstrate that AdamS 437

achieves performance comparable to AdamW for 438

pretraining GPT2 (Radford et al., 2019) on the 439

OpenWebText dataset (Gao et al., 2020) using the 440

popular nanoGPT codebase1. We evaluate three 441

variants: GPT2 Small (125M parameters), GPT2 442

Medium (355M parameters), and GPT2 Large 443

(770M parameters). 444

Baselines. We primarily compare AdamS with 445

AdamW (Loshchilov and Hutter, 2019), the most 446

widely used optimizer in language modeling tasks, 447

and Lion (Chen et al., 2023), a recently proposed 448

optimizer that eliminates the need for second- 449

moment estimates, discovered by symbolic search. 450

We adopt typical hyperparameter choices, fol- 451

lowing the settings used in (Zhang et al., 2024; 452

Liu et al., 2023). For AdamW, we set (β1, β2) = 453

(0.9, 0.95) with a weight decay of 0.1, and we use a 454

learning rate of 6×10−4 for the GPT2 Small model 455

and lr = 3×10−4 for the GPT2 Medium and GPT2 456

Large models. For Lion, as suggested by Chen et al. 457

(2023), we use (β1, β2) = (0.95, 0.98), set the 458

learning rate to 0.1× lrAdamW, and choose a weight 459

decay of 10 × weight_decayAdamW. For AdamS, 460

we use the same hyperparameters as AdamW; that 461

is, lr = lrAdamW, (β1, β2) = (0.9, 0.95), and 462

weight_decay = weight_decayAdamW. 463

Implementation. Following standard practices, 464

for all GPT-2 models, we set the context length 465

to be 1024 tokens. We use a batch size of 480 466

and employ a cosine learning rate schedule, setting 467

the final learning rate to 0.1 × lr as suggested by 468

Rae et al. (2021). We employ gradient clipping by 469

norm with a threshold of 1.0, and we use a fixed 470

warm-up period of 2,000 steps. The algorithms 471

are implemented in PyTorch (Paszke et al., 2019), 472

and training is conducted in float16 precision on 473

clusters equipped with Nvidia Ampere or Hopper 474

GPUs for the GPT2-Small, Medium, and Large 475

models. 476

Results. The results are shown in Figure 4 477

and Table 2. As observed in Figure 4, the per- 478

1https://github.com/karpathy/nanoGPT
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Figure 4: Validation loss curves for pretraining GPT-2 models. Across three different model sizes and with the same
hyperparameters as AdamW, the proposed AdamS achieves convergence comparable to baseline methods—without
the need to store AdamW’s second-moment estimates.

formance of AdamS closely mirrors the AdamW479

curves across all three model sizes throughout the480

training process. This is achieved using the same481

hyperparameters as those for AdamW. Further de-482

tails are provided in Table 2. Additionally, we483

confirm this behavior over 300K training iterations,484

which corresponds to processing over 14.4 billion485

tokens. Due to resource constraints, we were un-486

able to train larger models or process more tokens.487

4.2 Llama2 Pretraining Experiments488

In this experiment, we confirm the behavior of489

AdamS for pretraining an even larger model490

Llama2-13B (Touvron et al., 2023b). It is trained491

with the well-known Torchtitan library2 on the C4492

dataset (Raffel et al., 2020).493

Hyperparameter choice. For AdamW, we use494

(β1, β2) = (0.9, 0.95), a peak learning rate of495

10−4, and a weight decay of 0.1. For AdamS,496

we use the same hyperparameters as AdamW.497

For Lion, we use the recommended settings:498

lr = 0.1 × lrAdamW and weight_decay = 10 ×499

weight_decayAdamW.500

Implementation. The training setup involves501

a batch size of 2 × 8, a context length of 2048,502

and gradient clipping with a maximum norm of503

1.0. The learning rate schedule includes a fixed504

100-step warmup followed by linear decay. The505

training is conducted in bfloat16 precision on one506

node equipped with 8 Nvidia Hopper GPUs with507

80G memory. Due to budget limitations, we train508

the model for 30K steps, which corresponds to509

processing over 0.96B tokens.510

Results. The results are summarized in Fig-511

ure 1. As shown in Figure 1, AdamS achieves512

performance nearly identical to AdamW across the513

training trajectory under the same hyperparameters.514

Notably, training with AdamS reduces memory con-515

2https://github.com/pytorch/torchtitan

sumption by 20% when using a popular training 516

recipe, i.e., Fully Sharded Data Parallel (FSDP) 517

technique (Paszke et al., 2019) on 4 NVIDIA Hop- 518

per GPUs. Additionally, by eliminating the need 519

to communicate second-moment estimates across 520

GPUs and nodes, AdamS alleviates communica- 521

tion bottlenecks, a critical advantage for low-end 522

GPU clusters where inter-card bandwidth is often 523

a limiting factor. 524

4.3 RL Post-training of LLMs 525
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Figure 5: Mean critic scores for reinforcement learning
(RL) post-training using the GRPO algorithm on the
CountDown task are presented for the Qwen2.5-3B and
DeepSeek-R1-Distill-Llama-8B models. The proposed
AdamS closely resembles AdamW’s performance trajec-
tory, achieving similar convergence curves. In contrast,
Lion with default hyperparameters demonstrates signifi-
cantly slower convergence under the same conditions.

In this experiment, we leverage the TinyZero 526

project (Pan et al., 2025) that provides a clean, min- 527
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Table 2: Comparison of Lion, AdamW and AdamS on training GPT2 with the OpenWebText dataset.

Model size Iteration Budget Optimizer Peak LR Weight decay (β1, β2) Valid. PPL

124M 100K AdamW 6e-4 0.1 (0.9, 0.95) 2.902
Lion 6e-5 1.0 (0.95, 0.98) 2.886

AdamS 6e-4 0.1 (0.9, 0.95) 2.890

300K AdamW 6e-4 0.1 (0.9, 0.95) 2.867
Lion 6e-5 1.0 (0.95, 0.98) 2.847

AdamS 6e-4 0.1 (0.9, 0.95) 2.866

imal, and accessible reproduction of the DeepSeek528

R1-Zero framework (Guo et al., 2025). We choose529

two models Qwen2.5-3B (Team, 2024) and R1-530

Distilled-Llama8B (Guo et al., 2025) and evaluate531

the DeepSeek R1-Zero method on the Countdown532

Numbers Game. In this task, the model is asked to533

use a set of randomly chosen numbers along with534

basic arithmetic operations (+,−,×,÷) to reach535

a specified target number, with each number used536

only once.537

Hyperparameter choice. For the baseline538

AdamW setup, we use the default learning rate539

of 1× 10−6, (β1, β2) = (0.9, 0.999), and a weight540

decay of 1 × 10−2. We test the Group Relative541

Policy Optimization (GRPO) reinforcement learn-542

ing algorithm (Shao et al., 2024; Guo et al., 2025)543

with all other hyperparameters maintained as in the544

original project. For AdamS, we adopt the same545

hyperparameters as AdamW, except that we set546

β2 = 0.95 for good stability, as explained in Sec-547

tion 2.2 and Figure 3. For Lion, we follow the548

recommendations from the original paper by set-549

ting lr = 0.1 × lrAdamW, weight_decay = 10 ×550

weight_decayAdamW, and (β1, β2) = (0.95, 0.98).551

Implementation. The TinyZero framework im-552

plements the DeepSeek R1-Zero reinforcement553

learning objective, which encourages the models to554

generate an extended chain-of-thought before pro-555

ducing a final answer. This approach aims to guide556

the models in developing a structured reasoning557

process for the Countdown Numbers Game.558

Results. The results are shown in Figure 5.559

Across two distinct base models—Qwen2.5-3B and560

the distilled DeepSeek-R1-Distill-Llama-8B—the561

score curves of AdamS closely align with those of562

AdamW, even occasionally surpassing its valida-563

tion performance. This consistency underscores564

AdamS’s ease of adoption across diverse tasks, re-565

quiring no specialized tuning. In contrast, Lion,566

when applied with its default hyperparameters, ex-567

hibits much slower convergence under identical 568

experimental conditions. 569

This point holds significant practical value: 570

while many optimizers excel in some specific 571

scenarios with carefully tuned hyperparameters, 572

AdamS’s robust performance easily generalizes to 573

unseen tasks without much hyperparameter tuning, 574

making it a scalable solution for both current and 575

future applications. 576

5 Discussion and Conclusion 577

We have proposed a well-motivated design of LLM 578

optimizer, AdamS, which can serve as the newly 579

default optimizer for training large-scale language 580

model training, because of its efficiency, simplicity, 581

and theoretical rigor. By replacing second-moment 582

estimation with a momentum-weighted root mean 583

square denominator, the method achieves compu- 584

tational parity with SGD while matching the per- 585

formance of Adam-family optimizers in both pre- 586

training and post-training scenarios. Its seamless 587

integration into existing frameworks—enabled by 588

AdamW-compatible hyperparameters and model- 589

agnostic design—removes adoption barriers, offer- 590

ing practitioners a "plug-and-play" upgrade. 591

The theoretical property of AdamS has also been 592

extensively analyzed, including the update mag- 593

nitude estimation and convergence under relaxed 594

smoothness assumption. This theoretical insight, 595

coupled with empirical validation across architec- 596

tures (e.g., GPT-2, Llama2) and training paradigms 597

(e.g., RL post-training), demonstrates robustness 598

to scale and task diversity. Notably, AdamS’s elim- 599

ination of communication overhead for second- 600

moment statistics positions it as a scalable solution 601

for communication-bounded environments. 602

Future work may explore AdamS’s applicability 603

to emerging architectures and its synergies with 604

advanced parallelism strategies for next-generation 605

LLM development. 606

8



Limitations607

While AdamS achieves promising performance608

across tasks and model scales, several limita-609

tions deserve discussion. First, our experiments610

were constrained by computational resources, par-611

ticularly in pretraining scenarios (e.g., Llama2-612

13B). Validating AdamS’s efficacy at extreme613

scales—such as models beyond 100B parameters,614

datasets exceeding 1T tokens, or emerging archi-615

tectures like Mixture of Experts (MoE)—remains616

critical for confirming its scalability in production-617

grade pipelines. Such studies would require compu-618

tational resources far beyond our current capacity.619

Second, fairly benchmarking optimizers has in-620

herent challenges due to confounding variables621

like learning rate schedules, weight decay policies,622

optimizer-specific hyperparameters (e.g., AdamS’s623

momentum weighting), and implementation effi-624

ciency. While our work compares AdamS against625

strong baselines (AdamW, Lion) using established626

hyperparameters, we limited exhaustive hyperpa-627

rameter searches across all optimizers to maintain628

parity.629

These limitations underscore the need for630

community-driven standardization of optimizer631

evaluations and deeper exploration of AdamS’s be-632

havior in extreme-scale regimes. To foster repro-633

ducibility, we will release all code, configurations,634

and training protocols to facilitate reproducibility635

and encourage broader investigation.636
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A Comparison with Lion900

Algorithm 2 Lion Optimizer (Chen et al., 2023)

1: Input: momentum parameters β1, β2, weight decay λ, learning rate η, objective function f
2: Initialize starting point w0, initial m0 ← 0, t← 0
3: while wt not converged do
4: t← t+ 1
5: gt ← ∇wf(wt−1)
6: update model parameters
7: ut ← β1mt−1 + (1− β1)gt
8: wt ← wt−1 − ηt(sign(ut) + λwt−1)
9: update momentum tracking

10: mt ← β2mt−1 + (1− β2)gt
11: end while
12: return wt

B Derivation of the Learning Rate under (L0, L1) Smoothness901

The smoothness constant L(w) governs how much the gradient can change locally. If L(w) scales with902

∥∇f(w)∥, the curvature (and thus the risk of overshooting) increases with the gradient’s magnitude. This903

necessitates a smaller learning rate when the gradient is large and allows a larger rate when the gradient is904

small.905

Here is a brief derivation for the above intuition.906

Descent Lemma: For L(w)-smooth f , the update wt+1 = wt − η∇f(wt) satisfies:907

f(wt+1) ≤f(wt)− η∥∇f(wt)∥2 +
η2L(wt)

2
∥∇f(wt)∥2.908

Substitute L(wt) ≤ L0 + L1∥∇f(wt)∥:909

f(wt+1) ≤ f(wt)− η∥∇f(wt)∥2 +
η2(L0 + L1∥∇f(wt)∥)

2
∥∇f(wt)∥2.910

Ensure Decrease: For f(wt+1) ≤ f(wt), require:911

−η∥∇f(wt)∥2 +
L0 + L1∥∇f(wt)∥

2
η2∥∇f(wt)∥2 ≤ 0.912

Factor out η∥∇f(wt)∥2:913

η∥∇f(wt)∥2
(
−1 + η

L0 + L1∥∇f(wt)∥
2

)
≤ 0.914

This implies:915

η ≤ 2

L0 + L1∥∇f(wt)∥
.916

C Proof of Theorem 3.2917

This section collects the proof of Theorem 3.2. Overall, the proof is inspired by the proof of Theorem 4.2918

in Li et al. (2023), which utilizes stopping time to bound the norm of stochastic gradients.919
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In the following proof, we define 920

σ
△
= max

{√
2R2 log

T

δ
, L

ηt
1− β1

max{ β1√
β2

,
1− β1√
1− β2

}, 3L0

4L1

}
, (1) 921

G
△
= max{3L0

4L1
, 72L1(f(w1)− f∗),

√
72L1σ2ηt((1− β1)T + 1), 60

√
L1R2σ2ηt

√
2T log(1/δ)}, (2) 922

F
△
=

G2

3(3L0 + 4L1G)
, (3) 923

C
△
=

√
4L2

ε4
(G+ σ + ε). (4) 924

We consider the following stopping time: 925

τ := min{t | f(wt)− f∗ > F} ∧min{t | ∥∇f(wt)− gt∥ > σ} ∧ (T + 1). (5) 926

Due to Lemma C.2 and the definition of F (Eq. (3)), one can easily see that for any t < τ , ∥∇f(wt)∥ ≤ 927

G. 928

Also, as we are dealing with optimizers with coordinate-wise learning rates, we introduce the following 929

norm to ease the burden of writing. Specifically, let b ∈ Rd be a vector with each coordinate positive. For 930

any a ∈ Rd, we define 931

∥a∥b =
√
⟨a⊙ b,a⟩. 932

C.1 Useful Lemmas 933

The following lemma bounds the change of f through its local second-order expansion. 934

Lemma C.1. Let Assumption 2.1 holds. Then, for any three points w1,w2 ∈ Rd satisfying ∥w1−w2∥ ≤ 935
1
L1

, we have 936

f(w2) ≤ f(w1) + ⟨∇f(w1),w2 −w1⟩+ 1

2
(L0 + L1∥∇f(w1)∥)∥w2 −w1∥2. 937

Proof. By the Fundamental Theorem of Calculus, we have 938

f(w2) 939

=f(w1) +

∫ 1

0
⟨∇f(w1 + a(w2 −w1)),w2 −w1⟩da 940

=f(w1) + ⟨∇f(w1),w2 −w1⟩+
∫ 1

0
⟨∇f(w1 + a(w2 −w1))−∇f(w1),w2 −w1⟩da 941

≤f(w1) + ⟨∇f(w1),w2 −w1⟩+
∫ 1

0
∥∇f(w1 + a(w2 −w1))−∇f(w1)∥∥w2 −w1∥da 942

(⋆)

≤f(w1) + ⟨∇f(w1),w2 −w1⟩+
∫ 1

0
(L0 + L1∥∇f(w1)∥)∥a(w2 −w1)∥∥w2 −w1∥da 943

≤f(w1) + ⟨∇f(w1),w2 −w1⟩+ 1

2
(L0 + L1∥∇f(w1)∥)∥w2 −w1∥2, 944

where Inequality (⋆) uses the fact ∥w2 −w1∥ ≤ 1
L1

, so that Assumption 2.1 can be applied. 945

The proof is completed. 946

The following lemma bounds the gradient norm through the function value when Assumption 2.1 holds. 947

Lemma C.2. Under Assumptions 2.1, we have ∥∇f(w)∥2≤ 3(3L0 + 4L1 ∥∇f(w)∥)(f(w)− f∗). 948

Proof. Denot L := 3L0 + 4L1 ∥∇f(w)∥. Let v := w − 1
2L∇f(w). Then one can easily see 949

∥v −w∥ ≤ 1

2L1
, 950
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and thus Lemma C.1 can be applied. Therefore, we have951

f∗ − f(w) ≤ f(v)− f(w) ≤ ⟨∇f(w),v −w⟩+ L

2
∥v −w∥2 = −3L ∥∇f(w)∥2

8
≤ −L ∥∇f(w)∥2

3
.952

The proof is completed.953

The following lemma bounds the update of AdamS:954

Lemma C.3. For any t, let wt be the parameter of AdamS after the t-th iteration. Then,955

∥wt+1 −wt∥ ≤ ηt
√
dmax{ β1√

β2
,
1− β1√
1− β2

}.956

Therefore, under the hyperparameter selection of Theorem 3.2, we have ∥wt+1 −wt∥ = O( 1√
T
).957

Proof. We have958

∥wt+1 −wt∥ = ηt

∥∥∥∥ 1
√
νt + ε

⊙mt

∥∥∥∥ = ηt

∥∥∥∥∥∥ 1√
β2m

⊙2
t−1 + (1− β2)g

⊙2
t + ε

⊙mt

∥∥∥∥∥∥ .959

On the other hand, by Young’s inequality, we have that coordinate-wisely960

m⊙2
t ≤ β2

1m
⊙2
t−1 + (1− β1)

2g⊙2
t .961

The proof is completed.962

The following lemma bounds the adaptive conditioner νt.963

Lemma C.4. If t < τ , we have the i-th coordinate νt,i of νt satisfies964

0 ≤ √νt,i ≤ G+ σ.965

Proof. The first inequality is obvious.966

For the second inequality, one can easily see that gt,i satisfies the same inequality according to the967

definition of τ . According to the definition of νt, we have968

νt,i = (1− β2)g
2
t,i + β2((1− β1)

t−1∑
s=0

βt−1−s
1 gs,i)

2.969

Applying the estimation of gs,i completes the proof.970

The following lemma provides a rough bound of the gap between∇f(wt) and mt.971

Lemma C.5. Let ∆t = mt −∇f(wt). If t ≤ τ , we have ∥∆t∥ ≤ 2σ.972

Proof. We prove this claim by induction. First, note that for t = 1, we have

∥∆1∥ = ∥g1 −∇f(w1)∥ ≤ σ ≤ 2σ.

Now suppose ∥∆t∥ ≤ 2σ for some 2 ≤ t ≤ τ . According to the update rule of mt, we have973

∆t =β1(∆t−1 +∇f(wt−1)−∇f(wt)) + (1− β1)(gt −∇f(wt)),974

which implies975

∥∆t∥ ≤ (1 + β1)σ + ∥∇f(wt−1)−∇f(wt)∥ ≤ (1 + β1)σ + Lηtmax{ β1√
β2

,
1− β1√
1− β2

}
√
d ≤ 2σ,976

where in the second inequality, we use ∥wt−1 −wt∥ ≤ 1
L1

when T is large enough and thus Assumption977

2.1 can be applied, and Lemma C.3, and in the last inequality, we use the definition of σ (Eq. 1).978

As (1− β1)σ = Θ(log T/
√
T ), which is large than O(1/

√
T ) when T is large enough. The proof is979

completed.980
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The following lemma bounds the gap between∇f(wt) and mt recursively. 981

Lemma C.6. Let ∆t = mt −∇f(wt). With probability 1− δ, 982

τ−1∑
t=1

(
4(G+ σ + ε)

ε2
∥∆t∥2 − ∥∇f(wt)∥2

)
≤4σ2((1− β1)T + 1) + 20R2σ2

√√√√2
T∑
t=2

log(1/δ) 983

=O(σ2
√

T log(1/δ)). 984

Proof. According to the definition of mt, we have 985

∆t =β1(∆t−1 +∇f(wt−1)−∇f(wt)) + (1− β1)(gt −∇f(wt)). (6) 986

As T is large enough, by Lemma C.3, we have ∥wt −wt−1∥ ≤ 1
L1

. Therefore by Assumption 2.1, 987

∥∇f(wt−1)−∇f(wt)∥ ≤ L∥wt −wt−1∥ ≤
ηL

ε
∥mt−1∥ ≤

ηL

ε
(∥∇f(wt−1)∥+ ∥∆t−1∥) , (7) 988

Therefore, 989

∥(∆t−1 +∇f(wt−1)−∇f(wt))∥2 990

≤ 1

β1
∥∆t−1∥2 +

1

1− β1
∥∇f(wt−1)−∇f(wt)∥2 991

≤ 1

β1
∥∆t−1∥2 +

1

1− β1

4η2L2

ε2
(∥∇f(wt−1)∥2 + ∥∆t−1∥2) 992

where the first inequality uses Young’s inequality, and the second inequality uses Eq. (7). 993

Due to our choice of β1 and η, we have β2
1

1−β1

4η2L2

ε2
= O(1/

√
T ), which is smaller than 1− 1

2(1− β1) 994

when T is large enough. Therefore, 995

β2
1∥(∆t−1 +∇f(wt−1)−∇f(wt))∥2 ≤

(
1

2
+

β

2

)
∥∆t∥2 +

β2
1

1− β1

4η2L2

ε2
∥∇f(wt−1)∥2. 996

Therefore, applying the above inequality back to Eq. (6), we have if t ≤ τ , 997

∥∆t∥2 998

=β2
1∥∆t−1 +∇f(wt−1)−∇f(wt)∥2 + 2β1(1− β1)⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩ 999

+ (1− β1)
2∥gt −∇f(wt)∥2 1000

≤1 + β1
2
∥∆t−1∥2 +

β2
1

1− β1

4η2L2

ε2
∥∇f(wt−1)∥2 + (1− β1)

2∥gt −∇f(wt)∥2 1001

+ 2β1(1− β1)⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩, (8) 1002

where in the last equation we use Young’s inequality. 1003

On the other hand, note that 1004

β1(1− β1)

τ∑
t=2

⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩ 1005

=β1(1− β1)

T∑
t=2

1τ≥t⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩. 1006

As E|Ft [1τ≥t⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩] = 0, we have that 1007

Vt
△
= 1τ≥t⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩ 1008
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is a martingale difference sequence. Also, according to Lemma C.5, we have when T is large enough,1009

∥∆t−1 +∇f(wt−1)−∇f(wt)∥ ≤ 3σ, thus by Assumption 3.1, we have Vt is subgaussian with constant1010

3σR. Then by the Azuma-Hoeffding inequality, we have with probability at least 1− δ/2,1011

∣∣∣∣∣
T∑
t=2

Vt

∣∣∣∣∣ ≤ 5R2σ2

√√√√2
T∑
t=2

log(1/δ).1012

Also, due to Assumption 3.1, we have with probability at least 1− δ/2T ,1013

∥gt −∇f(wt)∥2 ≤
√
2R2 log

T

δ
≤ σ.1014

Applying the above inequalities back to Eq. (8),1015

1− β1
2
∥∆t−1∥2 ≤

1− β1
2
∥∆t−1∥2 ≤∥∆t−1∥2 − ∥∆t∥2 +

β2
1

1− β1

4η2L2

ε2
∥∇f(wt−1)∥21016

+ (1− β1)
2∥gt −∇f(wt)∥2 + 2β1(1− β1)Vt.1017

Taking a summation over t from 2 to τ , we have with probability at least 1− δ,1018

1− β1
2

τ−1∑
t=1

(
∥∆t∥2 −

ε2

4(G+ σ + ε)
∥∇f(wt)∥2

)
1019

≤
τ∑

t=2

1− β1
2
∥∆t−1∥2 −

β2
1

1− β1

4η2L2

ε2
∥∇f(wt−1)∥21020

≤∥∆1∥2 − ∥∆τ∥2 + (1− β1)
2σ2T + 10(1− β1)R

2σ2

√√√√2

T∑
t=2

log(1/δ)1021

≤2σ2((1− β1)
2T + 1) + 10(1− β1)R

2σ2

√√√√2

T∑
t=2

log(1/δ),1022

where the first inequality is due to the assumption in Theorem 3.2 that η
1−β1

≥ C, where C is defined in1023

Eq. (4).1024

The proof is completed.1025

C.2 Proof of the full theorem1026

Proof of Theorem 3.2. Recall that by Lemma C.31027

∥wt+1 −wt∥ = O(
1√
T
).1028

When T is large enough, wt and wt+1 will fulfill the requirement of Lemma C.1, which gives1029

f(wt+1)− f(wt) ≤⟨∇f(wt),wt+1 −wt⟩+
L0 + L1∥∇f(wt)∥

2
∥wt+1 −wt∥2.1030

If t < τ , we further have ∥∇f(wt)∥ ≤ G. Therefore, if t < τ , the above inequality can be further1031

16



bounded by 1032

f(wt+1)− f(wt) 1033

≤⟨∇f(wt),wt+1 −wt⟩+
L0 + L1G

2
∥wt+1 −wt∥2 1034

=− ⟨∇f(wt), ηt
1

√
νt + ε

⊙∇f(wt)⟩+ ⟨∇f(wt), ηt
1

√
νt + ε

⊙ (∇f(wt)−mt)⟩ 1035

+
L0 + L1G

2
η2t

∥∥∥∥ 1
√
νt + ε

⊙mt

∥∥∥∥2 1036

=− ηt ∥∇f(wt)∥2 1√
νt+ε

+ ⟨∇f(wt), ηt
1

√
νt + ε

⊙ (∇f(wt)−mt)⟩ 1037

+
L0 + L1G

2
η2t ∥mt∥2 1

(
√
νt+ε)2

1038

(◦)
≤ − ηt ∥∇f(wt)∥2 1√

νt+ε
+

1

4
ηt ∥∇f(wt)∥2 1√

νt+ε
+ ηt ∥∆t∥2 1√

νt+ε
1039

+ (L0 + L1G)η2t ∥∆t∥2 1
(
√
νt+ε)2

+ (L0 + L1G)η2t ∥∇f(wt)∥2 1
(
√
νt+ε)2

1040

=− 3

4
ηt ∥∇f(wt)∥2 1√

νt+ε
+ ηt ∥∆t∥2 1√

νt+ε
1041

+ (L0 + L1G)η2t ∥∆t∥2 1
(
√
νt+ε)2

+ (L0 + L1G)η2t ∥∇f(wt)∥2 1
(
√
νt+ε)2

1042

where ∆t is defined as ∆t = mt −∇f(wt) and inequality (◦) uses Young’s inequality. 1043

According to Lemma C.4, we further have 1044

f(wt+1)− f(wt) 1045

≤− 3

4
ηt ∥∇f(wt)∥2 1√

νt+ε
+ ηt ∥∆t∥2 1√

νt+ε
1046

+
(L0 + L1G)η2t

ε
∥∆t∥2 1√

νt+ε
+

(L0 + L1G)η2t
ε

∥∇f(wt)∥2 1√
νt+ε

. 1047

With large enough T , we have ηt ≤ ε
4(L0+L1G) , and thus 1048

f(wt+1)− f(wt) 1049

≤− 1

2
ηt ∥∇f(wt)∥2 1√

νt+ε
+ 2ηt ∥∆t∥2 1√

νt+ε
1050

≤− 1

2(G+ σ + ε)
ηt ∥∇f(wt)∥2 + 2

ηt
ε
∥∆t∥2 1√

νt+ε
1051

≤− 1

2(G+ σ + ε)
ηt ∥∇f(wt)∥2 + 2

ηt
ε2
∥∆t∥2 . 1052

After taking sum over t and rearranging, we have 1053

τ−1∑
t=1

(
∥∇f(wt)∥2 −

2(G+ σ + ε)

ε2
∥∆t∥2

)
≤ 2(G+ σ + ε)

ηt
(f(w1)− f(wτ )) . 1054

Multiplying both sides of the above inequality by 2 and adding the inequality in Lemma C.6, we obtain 1055
with probability at least 1− δ, 1056

τ−1∑
t=1

∥∇f(wt)∥2 ≤2(G+ σ + ε)

ηt
(f(w1)− f(wτ )) + 4σ2((1− β1)T + 1) + 20R2σ2

√√√√2

T∑
t=2

log(1/δ) (9) 1057

=Õ(1/
√
T ). 1058
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In the following proof, we will bound the probability of the event {τ ≤ T}. Note if we can show1059

P(τ > T ) ≥ 1− δ, the proof is completed, as conditional on {τ > T},
∑τ−1

t=1 ∥∇f(wt)∥2 in the above1060

inequality will become
∑T

t=1 ∥∇f(wt)∥2.1061

Obviously, the stopping time τ (eq. (5)) can be decomposed as τ := min{τ1, τ2}, where τ1 and τ2 are1062

two stopping times defined as1063

τ1 :=min{t | f(wt)− f∗ > F} ∧ (T + 1),1064

τ2 :=min{t | ∥∇f(wt)− gt∥ > σ} ∧ (T + 1),1065

We then bound P(τ1 ≤ T ) and P(τ2 ≤ T ) respectively.1066

Bound of P(τ2 ≤ T ). We bound this term by a similar practice as Lemma C.6. According to the definition1067

of τ21068

P(τ2 ≤ T ) =P

 ⋃
1≤t≤T

{∥∇f(wt)− gt∥ > σ}

1069

≤
∑

1≤t≤T

P (∥∇f(wt)− gt∥ > σ)1070

≤2Te−
σ2

2R21071

≤δ

2
,1072

where the last inequality uses the definition of σ.1073

Bound of P(τ1 ≤ T ). Simple rearranging of Eq. (9) gives that, with probability 1− δ
2 ,1074

2(G+ σ + ε)

ηt
(f(wτ )− f∗)1075

≤
τ−1∑
t=1

∥∇f(wt)∥2 +
2(G+ σ + ε)

ηt
(f(wτ )− f∗)1076

≤2(G+ σ + ε)

ηt
(f(w1)− f∗) + 4σ2((1− β1)T + 1) + 20R2σ2

√√√√2
T∑
t=2

log(1/δ).1077

Therefore, by dividing both sides of the above inequality, we obtain1078

f(wτ )− f∗1079

≤(f(w1)− f∗) +
ηt

2(G+ σ + ε)
4σ2((1− β1)T + 1) +

ηt
2(G+ σ + ε)

20R2σ2

√√√√2

T∑
t=2

log(1/δ)1080

≤ G2

3(3L0 + 4L1G)
1081

=F,1082

where the last inequality uses the definition of G.1083

Therefore, we have that1084

P(τ1 ≤ T ) ≤ P(Eq. 9 fails to hold) ≤ δ

2
.1085

The proof is completed by P(τ ≤ T ) ≤ P(τ1 ≤ T ) + P(τ2 ≤ T ) ≤ δ.1086

1087
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