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Abstract

We introduce AdamsS, a simple yet effective
alternative to Adam for large language model
(LLM) pretraining and post-training. By lever-
aging a novel denominator, i.e., the root mean
square of a properly weighted momentum and
the current gradient, AdamsS eliminates the need
for second-moment estimates. Hence, Adams$S
is efficient, matching the memory and com-
pute footprint of SGD with momentum while
delivering superior optimization performance.
Moreover, AdamsS is easy to adopt: it can di-
rectly inherit hyperparameters of AdamW, and
is entirely model-agnostic, integrating seam-
lessly into existing pipelines without modifica-
tions to optimizer APIs or architectures. The
motivation behind AdamS stems from the ob-
served (Lo, L1) smoothness properties in trans-
former objectives, where local smoothness is
governed by gradient magnitudes. In this set-
ting, momentum offers a naturally smoothed
gradient estimate. We establish rigorous the-
oretical convergence guarantees and provide
practical guidelines for hyperparameter selec-
tion. Empirically, AdamS demonstrates strong
performance across diverse tasks and architec-
tures, including pretraining runs on GPT-2 and
Llama2 (up to 13B parameters). It also excels
in reinforcement learning post-training, partic-
ularly in the DeepSeek R1-Zero replication
task, underscoring its versatility across train-
ing paradigms. With its efficiency, simplicity,
and theoretical grounding, AdamsS stands as a
compelling alternative to existing optimizers.

1 Introduction

Due to the scaling law (Kaplan et al., 2020) of
neural networks, it has been enthusiastic in the Al
community to pre-train large foundation models
with enormous data over the past years (Touvron
etal., 2023a; Brown et al., 2020; Zhang et al., 2022;
Rae et al., 2021; Chowdhery et al., 2022; Du et al.,
2021; Liu et al., 2024; Dubey et al., 2024; Yang
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Figure 1: Training loss curves for pretraining Llama2-
13B models. The proposed AdamsS achieves conver-
gence comparable to baseline methods—without the
need to store AdamW’s second-order estimates.

et al., 2024). Training such large foundation mod-
els become super challenging because of tremen-
dous engineering efforts, computational cost (Rajb-
handari et al., 2019; Guo et al., 2025), and potential
training spikes (Zhang et al., 2022; Molybog et al.,
2023; Chowdhery et al., 2022).

One reason for such high cost comes from the
widely used optimizer Adam (Kingma and Ba,
2014) or AdamW (Loshchilov and Hutter, 2019):
the optimizers require storing both the state of mo-
mentum and the state of second-moment estimates,
which consumes 2 ~ 4 times GPU memories of
the model size, huge for models with hundreds of
billions of parameters.

In this paper, we try to reduce such cost by
proposing a simple yet effective optimizer AdamsS,
an alternative to AdamW. AdamsS eliminates the
need for second-moment estimates, by leverag-
ing a novel denominator: the root mean square
of a carefully weighted combination of momen-
tum and the current gradient. As a consequence,
AdamS matches the memory and compute footprint
of stochastic gradient descent (SGD) with momen-
tum while delivering superior performance as good
as AdamW.

The design of Adams is inspired by the obser-



vation that transformer-based models, which dom-
inate modern large language models (LLMs), ex-
hibit unique smoothness properties in their opti-
mization landscapes. Specifically, the local smooth-
ness of these objectives is governed by gradi-
ent magnitudes, which suggests that the learning
rate should be proportional to the reciprocal of
the gradient norm at each iteration, the core in-
sight why Adam optimizer beats SGD on training
transformer-like architectures (Wang et al., 2022,
2023b). We employ the fact that momentum, an
exponential average of historical gradients, can
provide a good and robust estimate of gradient
magnitude (Cutkosky and Mehta, 2020; Zhang
et al., 2020) without the need for complex second-
moment computations. By leveraging this insight,
AdamS reduces memory cost of the optimizer states
by half. Such efficiency of AdamsS is particularly
attractive for large-scale training, where even small
improvements in efficiency can translate into sig-
nificant cost savings.

We note that there has been effort of designing
new optimizers for less memory cost, i.e., Adafac-
tor (Shazeer and Stern, 2018), Adam-mini (Zhang
et al., 2024), Shampoo (Gupta et al., 2018), Lion
(Chen et al., 2023), for better convergence either
theoretical or practical, i.e, Sophia (Liu et al.,
2023), NAdam (Dozat, 2016), AdaBound (Luo
et al., 2019), AdaBelief (Zhuang et al., 2020), and
RAdam (Liu et al., 2020)—Adam (Kingma and
Ba, 2014) and its variant AdamW (Loshchilov and
Hutter, 2019) remain the dominant choices in both
academic and industrial deep learning implemen-
tations (Schneider et al., 2022). This reluctance to
adopt new optimizers stems from the difficulty of
systematically surpassing AdamW in large-scale
learning (Kaddour et al., 2023) and the fundamen-
tal role optimizers play in training. Practitioners
are hesitant to switch unless a new optimizer offers
clear advantages, is easy to tune, and integrates
seamlessly into existing workflows.

Recognizing this deep-rooted reliance on
AdamW, we emphasize that AdamsS is easy to
adopt, and can serve as a drop-in replacement of
AdamW for LLM pretraining and post-training
tasks. AdamsS is entirely model-agnostic, making
it easy to integrate into existing pipelines without
modifications to optimizer APIs or architectures.
More importantly, it inherits AdamW’s hyperpa-
rameter configuration, thereby mitigating the often
prohibitive costs of hyperparameter re-tuning and
minimizing the risk associated with deploying a

new optimizer at scale.

Empirically, AdamsS demonstrates strong perfor-
mance across a wide range of tasks and architec-
tures. In pretraining scenarios, it matches or ex-
ceeds the performance of AdamW on models rang-
ing from GPT-2 to Llama2, with parameter counts
up to 13B as shown in Figure 1. This scalability is
particularly important given the growing trend to-
ward even larger models and datasets. Additionally,
AdamS excels in post-training tasks, including re-
inforcement learning (RL), where it achieves state-
of-the-art results in tasks such as the DeepSeek
R1-Zero replication. This versatility underscores
its potential as a general-purpose optimizer for both
pretraining and post-training paradigms.

On the theoretical side, we establish rigorous
convergence guarantees that demonstrate the effec-
tiveness of AdamsS in optimizing non-convex ob-
jectives, which are typical in LLM training. These
guarantees are derived under realistic assumptions
about the smoothness and noise properties of the
optimization landscape.

Our contributions can be summarized as follows:

* Innovative Optimizer Design: We introduce
AdamsS, which eliminates the need for second-
moment estimates by leveraging a novel
normalization strategy based on a weighted
momentum-gradient combination. This ap-
proach reduce the memory footprint of opti-
mizers’ state by 50% while maintaining the
ease of adoption.

Theoretical Grounding: We rigorously an-
alyze the convergence guarantees of AdamsS
for optimizing non-convex objectives under
relaxed smoothness and weak noise assump-
tions, which matches the lower bounds of any
gradient-based optimizers.

Empirical Validation: Through extensive
experiments, e.g., large-scale pretraining on
models like GPT-2 and Llama2 (up to 13B
parameters) and reinforcement learning post-
training tasks such as DeepSeek R1-Zero
replication, we demonstrate that AdamsS con-
sistently matches AdamW, underscoring its
versatility across different training paradigms.

In the following sections, we detail the motiva-
tion and formulation of AdamsS. We then present the
theoretical analysis and convergence guarantees,
followed by an extensive empirical study spanning



a variety of tasks and architectures. Through this
comprehensive exploration, we aim to establish
AdamS as a compelling alternative in the evolving
landscape of large language model pretraining and
post-training optimization.

1.1 Related Works

The smoothness property of transformer-like
architectures. The seminal work (Zhang et al.,
2019) introduced the (Lo, L1)-smooth condition
that assumes local smoothness bounded by the lo-
cal gradient norm, which is nicely verified by the
optimization landscape of training transformer-like
models. Under these assumptions, convergence
properties of adaptive optimizers, AdaGrad (Faw
et al., 2023; Wang et al., 2023b), Adam (Wang
et al., 2022; He et al., 2023; Wang et al., 2023b;
Li et al., 2023) are established and the benefit over
SGD is demonstrated. Our design of AdamsS is in-
spired by these local smoothness properties, and
delivers robust empirical performance, where gra-
dient magnitudes govern optimization dynamics
particularly in transformer-like architectures.
Memory-efficient adaptive learning rate op-
timizers. In the development of memory-efficient
adaptive learning rate optimizers, several notable
methods have been proposed to address the chal-
lenges of high memory consumption in large-scale
neural network training. Shazeer and Stern (2018)
introduced Adafactor, which reduces memory us-
age by maintaining only per-row and per-column
sums of the second-moment estimates for weight
matrices. Anil et al. (2019) proposed SM3, a
memory-efficient adaptive optimization method
that approximates second-moment statistics with
sublinear memory cost by partitioning parame-
ters and sharing second-moment estimates among
them. SM3 achieves per-parameter adaptivity with
reduced memory overhead, facilitating the train-
ing of larger models and mini-batches. Luo et al.
(2023) developed CAME to address the instabil-
ity issues of existing memory-efficient optimiz-
ers via a confidence-guided adaptive strategy. Lv
et al. (2023) introduced AdalLomo, which combines
low-memory optimization techniques with adaptive
learning rates by employing non-negative matrix
factorization for second-order moment estimation.
Zhao et al. (2024) proposed Gal.ore that projects
weight gradients onto a low-rank subspace, and up-
date the model in the low-rank subspace, enabling
fine-tuning LLM with consumer-grade GPUs with
24GB memory, where the idea of low-rank projec-

tion has been initiated in (Yu et al., 2021). Recently,
Zhang et al. (2024) proposed Adam-mini, an opti-
mizer that reduces memory usage by partitioning
model parameters into blocks based on the Hes-
sian structure and assigning a single learning rate
to each block, reducing memory consumption of
optimizer state by approximately 45% to 50%.
Despite the proliferation of all these advance-
ments, practitioners often hesitate to move away
from AdamW because they either need to tune
more hyperparameters, or require to be aware of
the model architecture, or do not systematically
surpassing AdamW in large-scale learning (Kad-
dour et al., 2023; Hoffmann et al., 2022). In con-
trast, Adams offers a model-agnostic solution that
seamlessly integrates into existing workflows. It re-
quires no additional hyperparameters beyond those
used in AdamW, allowing for straightforward adop-
tion and tuning. Moreover, AdamS matches the
memory efficiency of vanilla SGD with momen-
tum while delivering performance comparable to
AdamW, making it a practical drop-in replacement
that one can enjoy benefits with minimal effort.

2 Motivation and Design Choices of
AdamS$

This section outlines the motivation behind our opti-
mizer design—specifically, the rationale for adopt-
ing the root mean square of a properly weighted
momentum itself and the current gradient as an
adaptive denominator. We then formalize the algo-
rithm and analyze its properties.

2.1 Motivation and (L¢, L) smoothness

In classical optimization settings, gradient de-
scent provably decreases the loss at each itera-
tion—provided the learning rate is smaller than the
inverse of the smoothness constant. However, this
principle fails to hold for transformer-based mod-
els, where stochastic gradient descent (SGD) with
momentum exhibits poor convergence empirically.
Recent work by (Zhang et al., 2019) identifies a key
observation: Transformer training objectives vio-
late standard smoothness assumptions and instead
obey a relaxed (Lg, L1 )-smoothness condition. Un-
der this regime, the local smoothness depends on
the gradient magnitude, enabling pathological cur-
vature that can arbitrarily slow SGD’s progress
(Wang et al., 2023a). The (Lg, L1)-smoothness
assumption is as follows.



Assumption 2.1 ((Lg, L1)-smooth condition). As-
suming that f is differentiable and lower bounded,
there exist constants Lg,L; > 0, such that
Yy, wy € RY satisfying [Jw; — wal| < -,

|V f(w1) = V f(w2)]
<(Lo + L[|V f(w1)]])[lwr — w2].

Assumption 2.1 is a general form of (Lo, L1)-
smooth condition, equivalent to the Hessian-bound
form (Zhang et al., 2019) when Hessian exists.

When Assumption 2.1 holds, the local smooth-
ness of the objective function is bounded by the
the linear form of the gradient norm (i.e., L(w) <
Lo+ L1||V f(w)]||. We know that the smoothness
constant L(w) governs how much the gradient can
change locally. If L(w) scales with |V f(w)]|,
the curvature (and thus the risk of overshooting)
increases with the gradient’s magnitude. This ne-
cessitates a smaller learning rate when the gradient
is large and allows a larger rate when the gradient
is small.

A brief derivation (see details in Appendix B)
gives a range of 7, that guarantees decreasing
function value at each step, i.e., 7y < 1/(Lo +
L1||V f(wy)||), which ensures convergence by bal-
ancing the descent and curvature terms. This adap-
tively scales 7 inversely with the grad’s magnitude.

In practice, we do not know the exact values of
Ly and L, a typical choice of 7, should be

B C
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for some constant or scheduled constant C' after
taking account of avoiding explosion near minima.
Such an argument can be extended to coordinate-
wise sense, which necessitates per-coordinate adap-
tive learning rates.

We note that Adam adapts learning rates using
second-moment estimates, i.e., the exponential av-
erage of of the square of historical gradients to
approximate the gradient magnitude. We draw in-
spiration from (Zhang et al., 2020), which demon-
strates that momentum—the exponential moving
average of historical gradients—can itself serve as a
robust proxy for gradient magnitudes. Building on
this insight, we propose replacing second-moment
estimation with a novel denominator derived from
a weighted combination of momentum and the cur-
rent mini-batch gradient. This approach retains
the benefits of adaptive learning rate tuning while
eliminating the computational overhead of tracking
second moment statistics.

Uiz

2.2 The Design of Adams$

The desing of AdamsS is given by Algorithm 1.
Specifically, the denominator is

v Bam% 4+ (1 — Ba)g?.

Algorithm 1 v.s. Adam$S

1: Input: momentum parameter (31, denominator
parameter (35, weight decay A, learning rate 7,
objective f, regularizer €

2: Initialize: wg, mg < 0,9 < 0,1+ 0

3: while w; not converged do

4. t<+—t+1

5: gt < wa(wt_l)

6:  update state tracking

7. my <+ Bimy + (1 - B1)ge

8:

90 AdamS: v < omP? + (1 fB2)g)?
10:  update model parameters

11: Wi < (]. — ntA)wt—l — Nt (ﬁ ® mt)
12: end while
13: return w;

2.3 The Properties of AdamS

We next compare the behavior of AdamsS and that
of AdamW.

Analytical comparison. The numerators of
AdamS and AdamW are the same. For the denomi-
nator, we make some estimation as a thought verifi-
cation. We consider the following sequence { X},
where X; ~ N (1, 0?) are independent. Then the
distribution of the exponentially weighted moving
average (EMA) of their squared values

Sp=(1- ﬁZ)XtQ + [2Si—1, t=1,2,...,T.

follows a weighted sum of noncentral chi-squared
distributions. As ¢ becomes large, such a distribu-
tion tends to be a non-centered Gaussian distribu-
tion. We compute the mean and variance of S;,

E[Si] = (u® + %) (1 - B),
11— 52 (1 Qt).

_ (o4 2 2 _
Var(S;) = (20" + 4p°0°) 175, 5

Consequently, E[S,] = (u?> + o?), and

Var(Ss) = (20* + 4p20?)(1 — B2) /(1 + Ba2).
On the other side, the distribution of the expo-

nential moving average of Xy, i.e., My = (1 —



B1) Xt + B M1,
sian distribution.
The denominator of AdamsS involves the follow-
ing quantity, V; := S M? | + (1 — B) X?. Since
X and M;_, are independent, V; is the sum of two
independent scaled noncentral chi—squared random
variables with one degree of freedom. We have

t=1,2,..., follows a Gaus-

_ 2, of, 268
EVo] =p"+0 <1 1+51>’
_ 4 2 1_51 2 2
Var(Va) =20 [5 (1+Bl> +(1—B)]
2 2 21_ﬁ1 2
+4p‘o [51+ﬂ1+(1_5)]'

By comparing E[S] and E[V], we note that
if g4 > o, i.e., a regime achievable under large
batch sizes where gradient noise becomes negligi-
ble, AdamsS’s behavior increasingly resembles that
of AdamW. This alignment with AdamW’s dynam-
ics under low-noise conditions mirrors practical
LLM pretraining setups, where large batch sizes
are standard.

Empirical comparison between the update
matrices of AdamS and AdamW. We analyze the
update matrices of AdamW and AdamS along the
training trajectory of a GPT-2 Small model. The de-
tailed experimental setup is provided in Section 4.1.

To quantify the similarity between the updates,
we compute the cosine similarity between the up-
date matrices of AdamS and AdamW throughout
the training process with AdamW. The results are
presented in Figure 2. For comparison, we also
include the cosine similarity between AdamW and
the recently proposed Adam-mini (Zhang et al.,
2024). The results show that AdamsS exhibits a
strong alignment with AdamW, closely matching
its update direction.

The magnitude of AdamS update. For 5; =
0.9, we plot the update magnitude of AdamS when
the gradient/momentum values span [—13, 13],
covering most values in practice, in Figure 3. We
can see that overly large 32 values can destabilize
updates by inflating the denominator’s sensitivity
to outliers. To mitigate this, we recommend not
setting (32 too large, and a typical value of 8y =
0.95 works well and aligns with empirical choice
of AdamW for LLM pretraining.

Memory cost and throughput of AdamsS.

AdamS effectively reduces optimizer state memory
usage by half. However, the extent of improvement
in throughput and maximum batch size compared
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Figure 2: The cosine similarities between the update
matrices of AdamS and AdamW (upper), Adam-mini
and AdamW (lower) for all layers of GPT2-Small model
. Across the training trajectory, the update direction of
AdamsS closely aligns with that of AdamW.

to the original AdamW depends on the model size
and GPU type, as the primary bottleneck may be
either memory or computation. Notably, as model
size increases, the benefits of AdamsS become more
pronounced, aligning well with practical large lan-
guage model (LLM) training scenarios. As shown
in Table 1, AdamsS can improve over AdamW in
terms of throughput by almost 36%), i.e., reducing
the time 6.9s to 4.4s of passing a batch of tokens,
for GPT2-XL pretraining.

AdamS update magnitude
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Figure 3: The update magnitude of AdamS when the
grad/momentum changes with 8y = 0.1 and § =
0.9,0.95,0.99, 0.999.



Model Optimizer Max batch Throughput
AdamW 10 2.0s
774M AdamS 10 2.0s
AdamW 1 6.9s
1.5B Adam$ 3 4.4s

Table 1: Memory cost and throughput comparison be-
tween AdamW and AdamsS. The maximum batch size
(Max batch) is the largest allowable batch without Out of
Memory and the throughput (Throughput) is measured
by the time (in seconds) for one iteration of passing
480K tokens with gradient accumulation. Experiment
setup: 8 A100 GPUs with 40GB memory, training with
GPT2-XL (1.5B) and GPT2-Large (774M).

3 Convergence of AdamS

This section establishes the theoretical convergence
of AdamS. We first introduce another key assump-
tion on the gradient noises.

Assumption 3.1 (Sub-gaussian noise). We as-

sume that the stochastic noise g; is unbiased, i.e.,

El g: = G4. We further assume g; is centered

with sub-gaussian norm, i.e., there exists some pos-

itive constant R, such that PM(||g; — V f (w;)]|| >
2

s) < 2 22

Assumption 3.1 is one of the weakest assump-
tions on the noise in existing literature, and gen-
eralizes bounded gradient assumption (Défossez
et al., 2022) and bounded noise assumption (Li
et al., 2023). Based on Assumption 2.1 and 3.1

Theorem 3.2. Let Assumptions 2.1 and 3.1 hold.

Then, setting n; = @(ﬁ), Br=1~- é(ﬁ), and

B2 =1— (:)(%) with % > C, where C'is some
constant defined in Eq. (4) , we have that AdamS
in Algorithm 1 satisfies

~ 1
E mi <O|l—-—=].
i V5w <0 ()

Proof. The proof is relegated to Appendix C due
to space constraints. 0

The derived convergence rate matches the known
lower bound of Q(1/+/T) for any gradient-based
optimizer, including AdamW (Arjevani et al.,
2022). This result not only demonstrates that
the convergence rate in Theorem 3.2 is tight —-
achieving the theoretically optimal bound —- but
also provides a rigorous theoretical guarantee for
AdamS’s efficiency in optimizing Transformer ar-
chitectures.

4 Empirical Performance of AdamS

In this section, we apply Adams for large language
model pretraining tasks and post-training tasks to
demonstrate that AdamsS can achieve performance
comparable to AdamW with similar hyperparame-
ters while requiring significantly less memory.

4.1 GPT2 experiments

In this experiment, we demonstrate that AdamsS
achieves performance comparable to AdamW for
pretraining GPT2 (Radford et al., 2019) on the
OpenWebText dataset (Gao et al., 2020) using the
popular nanoGPT codebase'. We evaluate three
variants: GPT2 Small (125M parameters), GPT2
Medium (355M parameters), and GPT2 Large
(770M parameters).

Baselines. We primarily compare AdamsS with
AdamW (Loshchilov and Hutter, 2019), the most
widely used optimizer in language modeling tasks,
and Lion (Chen et al., 2023), a recently proposed
optimizer that eliminates the need for second-
moment estimates, discovered by symbolic search.

We adopt typical hyperparameter choices, fol-
lowing the settings used in (Zhang et al., 2024;
Liu et al., 2023). For AdamW, we set (31, 82) =
(0.9,0.95) with a weight decay of 0.1, and we use a
learning rate of 6 x 10~* for the GPT2 Small model
and Ir = 3x 10~ for the GPT2 Medium and GPT2
Large models. For Lion, as suggested by Chen et al.
(2023), we use (f1,52) = (0.95,0.98), set the
learning rate to 0.1 X Iragamw, and choose a weight
decay of 10 x weight_decayq,,w- For Adams,
we use the same hyperparameters as AdamW; that
iS, Ir = erdamWa (61, ,82) = (0.9, 0.95), and
weight_decay = weight_decay p g, mw-

Implementation. Following standard practices,
for all GPT-2 models, we set the context length
to be 1024 tokens. We use a batch size of 480
and employ a cosine learning rate schedule, setting
the final learning rate to 0.1 X Ir as suggested by
Rae et al. (2021). We employ gradient clipping by
norm with a threshold of 1.0, and we use a fixed
warm-up period of 2,000 steps. The algorithms
are implemented in PyTorch (Paszke et al., 2019),
and training is conducted in float16 precision on
clusters equipped with Nvidia Ampere or Hopper
GPUs for the GPT2-Small, Medium, and Large
models.

Results. The results are shown in Figure 4
and Table 2. As observed in Figure 4, the per-

"https://github.com/karpathy/nanoGPT
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Figure 4: Validation loss curves for pretraining GPT-2 models. Across three different model sizes and with the same
hyperparameters as AdamW, the proposed AdamsS achieves convergence comparable to baseline methods—without

the need to store AdamW'’s second-moment estimates.

formance of Adams$ closely mirrors the AdamW
curves across all three model sizes throughout the
training process. This is achieved using the same
hyperparameters as those for AdamW. Further de-
tails are provided in Table 2. Additionally, we
confirm this behavior over 300K training iterations,
which corresponds to processing over 14.4 billion
tokens. Due to resource constraints, we were un-
able to train larger models or process more tokens.

4.2 Llama2 Pretraining Experiments

In this experiment, we confirm the behavior of
AdamS for pretraining an even larger model
Llama2-13B (Touvron et al., 2023b). It is trained
with the well-known Torchtitan library? on the C4
dataset (Raffel et al., 2020).

Hyperparameter choice. For AdamW, we use
(51,82) = (0.9,0.95), a peak learning rate of
1074, and a weight decay of 0.1. For AdamsS,
we use the same hyperparameters as AdamW.
For Lion, we use the recommended settings:
Ir = 0.1 X Irpadamw and weight_decay = 10 x
weight_decay 5 g,mw-

Implementation. The training setup involves
a batch size of 2 x 8, a context length of 2048,
and gradient clipping with a maximum norm of
1.0. The learning rate schedule includes a fixed
100-step warmup followed by linear decay. The
training is conducted in bfloat16 precision on one
node equipped with 8 Nvidia Hopper GPUs with
80G memory. Due to budget limitations, we train
the model for 30K steps, which corresponds to
processing over 0.96B tokens.

Results. The results are summarized in Fig-
ure 1. As shown in Figure 1, AdamS achieves
performance nearly identical to AdamW across the
training trajectory under the same hyperparameters.
Notably, training with AdamsS reduces memory con-

Zhttps://github.com/pytorch/torchtitan

sumption by 20% when using a popular training
recipe, i.e., Fully Sharded Data Parallel (FSDP)
technique (Paszke et al., 2019) on 4 NVIDIA Hop-
per GPUs. Additionally, by eliminating the need
to communicate second-moment estimates across
GPUs and nodes, AdamS$ alleviates communica-
tion bottlenecks, a critical advantage for low-end
GPU clusters where inter-card bandwidth is often
a limiting factor.

4.3 RL Post-training of LLMs

CountDown task with Qwen2.5-3B
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Figure 5: Mean critic scores for reinforcement learning
(RL) post-training using the GRPO algorithm on the
CountDown task are presented for the Qwen2.5-3B and
DeepSeek-R1-Distill-Llama-8B models. The proposed
AdamsS closely resembles AdamW’s performance trajec-
tory, achieving similar convergence curves. In contrast,
Lion with default hyperparameters demonstrates signifi-
cantly slower convergence under the same conditions.

In this experiment, we leverage the TinyZero
project (Pan et al., 2025) that provides a clean, min-



Table 2: Comparison of Lion, AdamW and AdamsS on training GPT2 with the OpenWebText dataset.

Model size Tteration Budget Optimizer Peak LR Weight decay (81, B2) Valid. PPL
124M 100K AdamW  6e-4 0.1 (0.9,0.95)  2.902
Lion 6e-5 1.0 (0.95,0.98) 2.886
Adam$S 6e-4 0.1 (0.9,0.95) 2.890
300K AdamW 6e-4 0.1 (0.9,0.95) 2.867
Lion 6e-5 1.0 (0.95,0.98) 2.847
AdamS ~ 6e-4 0.1 (0.9,0.95)  2.866

imal, and accessible reproduction of the DeepSeek
R1-Zero framework (Guo et al., 2025). We choose
two models Qwen2.5-3B (Team, 2024) and R1-
Distilled-Llama8B (Guo et al., 2025) and evaluate
the DeepSeek R1-Zero method on the Countdown
Numbers Game. In this task, the model is asked to
use a set of randomly chosen numbers along with
basic arithmetic operations (4, —, X, <) to reach
a specified target number, with each number used
only once.

Hyperparameter choice. For the baseline
AdamW setup, we use the default learning rate
of 1 x 1075, (B1, B2) = (0.9,0.999), and a weight
decay of 1 x 1072, We test the Group Relative
Policy Optimization (GRPO) reinforcement learn-
ing algorithm (Shao et al., 2024; Guo et al., 2025)
with all other hyperparameters maintained as in the
original project. For AdamS, we adopt the same
hyperparameters as AdamW, except that we set
B2 = 0.95 for good stability, as explained in Sec-
tion 2.2 and Figure 3. For Lion, we follow the
recommendations from the original paper by set-
ting Ir = 0.1 X Irpagamw, weight_decay = 10 x
weight_decay s gumw- and (51, 82) = (0.95,0.98).

Implementation. The TinyZero framework im-
plements the DeepSeek R1-Zero reinforcement
learning objective, which encourages the models to
generate an extended chain-of-thought before pro-
ducing a final answer. This approach aims to guide
the models in developing a structured reasoning
process for the Countdown Numbers Game.

Results. The results are shown in Figure 5.
Across two distinct base models—Qwen2.5-3B and
the distilled DeepSeek-R1-Distill-Llama-8B—the
score curves of AdamsS closely align with those of
AdamW, even occasionally surpassing its valida-
tion performance. This consistency underscores
AdamS’s ease of adoption across diverse tasks, re-
quiring no specialized tuning. In contrast, Lion,
when applied with its default hyperparameters, ex-

hibits much slower convergence under identical
experimental conditions.

This point holds significant practical value:
while many optimizers excel in some specific
scenarios with carefully tuned hyperparameters,
AdamS’s robust performance easily generalizes to
unseen tasks without much hyperparameter tuning,
making it a scalable solution for both current and
future applications.

5 Discussion and Conclusion

We have proposed a well-motivated design of LLM
optimizer, AdamsS, which can serve as the newly
default optimizer for training large-scale language
model training, because of its efficiency, simplicity,
and theoretical rigor. By replacing second-moment
estimation with a momentum-weighted root mean
square denominator, the method achieves compu-
tational parity with SGD while matching the per-
formance of Adam-family optimizers in both pre-
training and post-training scenarios. Its seamless
integration into existing frameworks—enabled by
AdamW-compatible hyperparameters and model-
agnostic design—removes adoption barriers, offer-
ing practitioners a "plug-and-play" upgrade.

The theoretical property of AdamsS has also been
extensively analyzed, including the update mag-
nitude estimation and convergence under relaxed
smoothness assumption. This theoretical insight,
coupled with empirical validation across architec-
tures (e.g., GPT-2, Llama2) and training paradigms
(e.g., RL post-training), demonstrates robustness
to scale and task diversity. Notably, AdamS’s elim-
ination of communication overhead for second-
moment statistics positions it as a scalable solution
for communication-bounded environments.

Future work may explore AdamS’s applicability
to emerging architectures and its synergies with
advanced parallelism strategies for next-generation
LLM development.



Limitations

While AdamS achieves promising performance
across tasks and model scales, several limita-
tions deserve discussion. First, our experiments
were constrained by computational resources, par-
ticularly in pretraining scenarios (e.g., Llama2-
13B). Validating AdamS’s efficacy at extreme
scales—such as models beyond 100B parameters,
datasets exceeding 1T tokens, or emerging archi-
tectures like Mixture of Experts (MoE)—remains
critical for confirming its scalability in production-
grade pipelines. Such studies would require compu-
tational resources far beyond our current capacity.

Second, fairly benchmarking optimizers has in-
herent challenges due to confounding variables
like learning rate schedules, weight decay policies,
optimizer-specific hyperparameters (e.g., AdamS’s
momentum weighting), and implementation effi-
ciency. While our work compares AdamsS against
strong baselines (AdamW, Lion) using established
hyperparameters, we limited exhaustive hyperpa-
rameter searches across all optimizers to maintain
parity.

These limitations underscore the need for
community-driven standardization of optimizer
evaluations and deeper exploration of AdamS’s be-
havior in extreme-scale regimes. To foster repro-
ducibility, we will release all code, configurations,
and training protocols to facilitate reproducibility
and encourage broader investigation.
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A Comparison with Lion

Algorithm 2 Lion Optimizer (Chen et al., 2023)

Input: momentum parameters 31, B2, weight decay A, learning rate 7, objective function f

1:

2: Initialize starting point wy, initial mg < 0,¢ < 0
3: while w; not converged do
4 t+t+1

50 gi + Ve f(wi—)
6: update model parameters

70w frmyor + (1 — B1)ge
8wy w1 — ny(sign(ug) + Aw;_q)
9:  update momentum tracking

100 my < Bomy_1 + (1 — Ba2)gy

11: end while

12: return wy

B Derivation of the Learning Rate under (L, ;) Smoothness

The smoothness constant L(w) governs how much the gradient can change locally. If L(w) scales with
IV f(w)]|, the curvature (and thus the risk of overshooting) increases with the gradient’s magnitude. This
necessitates a smaller learning rate when the gradient is large and allows a larger rate when the gradient is

small.
Here is a brief derivation for the above intuition.
Descent Lemma: For L(w)-smooth f, the update w;+1 = w; — nV f(w;) satisfies:

*L(wy)

F(wen) <F(we) = ]V F (we) > + =2V (w2

Substitute L(wy) < Lo + L1||V f(wy)]|:

(Lo + L[V f (wi)[])

; 191 )|

2
Flwen) < flwe) = ||V f(w,)]? +

Ensure Decrease: For f(w;+1) < f(w;), require:

Lo+ L1||V f(wy)

VIO 219 s < 0.

—l|V f (we) || +

Factor out n||V f (w)]|%:

<0.

1V (w0)| <_1 gk +L1HVf(wt)H)

2

This implies:
_ 2
"= Lo+ LV (wol

C Proof of Theorem 3.2

This section collects the proof of Theorem 3.2. Overall, the proof is inspired by the proof of Theorem 4.2

in Li et al. (2023), which utilizes stopping time to bound the norm of stochastic gradients.

12



In the following proof, we define

N T Nt B1 3Lo
a_max{mL ,ma {f \/m} 4L1} @

Géma {iL , 7201 (f(w \/72L10217t 1-61)T+1) 60\/L1R20 e/ 27T log(1/0)}, 2)
A G?
F= 3(3Lo +4L.G)’ 3
2
c2 [ Gt @)

We consider the following stopping time:

Ti=min{t | f(w) — f* > F} Amin{t [ [V (wi) = gefl > o} A (T +1). (5)

Due to Lemma C.2 and the definition of F' (Eq. (3)), one can easily see that forany t < 7, |V f(w;)| <
G.

Also, as we are dealing with optimizers with coordinate-wise learning rates, we introduce the following
norm to ease the burden of writing. Specifically, let b € R? be a vector with each coordinate positive. For
any a € RY, we define

llallp = v/ {a ® b,a).

C.1 Useful Lemmas
The following lemma bounds the change of f through its local second-order expansion.

Lemma C.1. Let Assumption 2.1 holds. Then, for any three points w', w? € RY satisfying |[w' —w?|| <

L , we have
1
Fw?) < f(w!) +(Vf(w'), w? —w') + S (Lo + La[|V f(wh) [ ]|w? = w'||*.
Proof. By the Fundamental Theorem of Calculus, we have

f(w?)
1
:ﬂww+/XVAw*+ww%ww»mﬂ—wwm
0
1
=f(w") + (Vf(wh), w? —w') + /O (VI(w' +a(w? - w')) = Vf(w'), w® - w')da

1
<fw') + (Vi(wh),w’ —w') + [ [Vf(w! +a(w? —w')) - Vf(w")][w? - w'||da
0
1

<f(wh) +(Vf(wh),w’ - w?) +/O (Lo + L1V f(w) ) lla(w? — wh)|[lw® — w'||da
<flwh) + (Vf(w'), w? —w') + é(Lo + L[V f(w) [ w? — w'|?,

where Inequality (%) uses the fact [|w? — w!|| < L% so that Assumption 2.1 can be applied.
The proof is completed. O

The following lemma bounds the gradient norm through the function value when Assumption 2.1 holds.
Lemma C.2. Under Assumptions 2.1, we have |V f (w)||* < 3(3Lo 4 4Ly ||V f (w)|)) (f (w) — f*).

Proof. Denot L := 3Ly + 4L ||V f(w)]|. Let v := w — 57V f(w). Then one can easily see

v —w] < 57
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and thus Lemma C.1 can be applied. Therefore, we have

2 2
£t = Jaw) < f0) — f(w) < (i), 0 —w) + = o —w]? = - HIVIE o LRI

The proof is completed. O

The following lemma bounds the update of AdamS:
Lemma C.3. For anyt, let w; be the parameter of AdamsS after the t-th iteration. Then,

||wt+1 ’th < nt\fmax{\/» \/1_7}

Therefore, under the hyperparameter selection of Theorem 3.2, we have ||lwi41 — wy|| = O (%)

Proof. We have

|wer1 — wel| = m ©my ! ©my
\/527"1?_21 + (1 - B2)g”
On the other hand, by Young’s inequality, we have that coordinate-wisely
P2 < Bim? 4 (1 - Br)?gf”.
The proof is completed. O

The following lemma bounds the adaptive conditioner v;.

Lemma CA4. Ift < 7, we have the i-th coordinate vy ; of v; satisfies
0< /v <G+o.

Proof. The first inequality is obvious.
For the second inequality, one can easily see that g, ; satisfies the same inequality according to the
definition of 7. According to the definition of 14, we have

t—1
vii = (1= B2)g7; + B2((1 - B1) Y B oga)>.
s=0
Applying the estimation of g, ; completes the proof. O

The following lemma provides a rough bound of the gap between V f(w;) and m;.
Lemma C.5. Let Ay = my — V f(wy). Ift < 7, we have ||A¢]| < 20.

Proof. We prove this claim by induction. First, note that for ¢ = 1, we have
A1) = llgr = Vf(w1)]| <o < 20.
Now suppose ||A¢]| < 20 for some 2 < ¢ < 7. According to the update rule of m;, we have
A =L1(Ap—1 + Vf(wi—1) = Vf(we)) + (1 = B1)(ge — V f(wy)),

which implies

1Al < (14 Br)o + [IVf(wi1) = Vf(wi)]| < (14 Br)o + Lo maX{\ﬁ \/1_—}\f < 20,

where in the second inequality, we use [|w;—1 — w¢|| < 7~ when T is large enough and thus Assumption
2.1 can be applied, and Lemma C.3, and in the last 1nequa11ty, we use the definition of o (Eq. 1).

As (1 — B1)o = O(log T/V/T), which is large than O(1/+/T) when T is large enough. The proof is
completed. O
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The following lemma bounds the gap between V f(w,) and m, recursively.

Lemma C.6. Let Ay = my — V f(wy). With probability 1 — 6,

B T
Z ( G+0+5) LA — 19 £ ()] > <40®((1— B1)T +1) + 20R%%,| 2> log(1/9)
- t=2

=0(o%\/Tlog(1/6)).
Proof. According to the definition of m;, we have
Ap =P1(As—1 + Vf(wi1) = Vf(we)) + (1= B1)(ge — V fwy)). (6)

As T is large enough, by Lemma C.3, we have |[w; — w;_1|| < 7-. Therefore by Assumption 2.1,

IV f(wi—1) = Vf(wy)] < Lljw; — wyq| < *Hmt <= (va(wt Ol +11Aal)), D
Therefore,

(A1 + Vf(wt—l) — Vf(wy))|

IIAt 1+ (wi—1) = V f(wy)|?

1 4n2L2
- b

where the first inequality uses Young’s inequahty, and the second inequality uses Eq. (7).

Due to our choice of 3; and 7, we have 1615 LY = O(1/VT), which is smaller than 1 — (1 — 3)
when T is large enough. Therefore,

1A ?+ IV £ (wi—)[* + [| A= ]?)

Q‘._. Q‘,_.

2712
B3 + V) = Vi) < (34 2) 18l + 22 9 s

Therefore, applying the above inequality back to Eq. (6), we have if ¢t < 7,

1A
=B A1 + Vf(wi—1) — VI(w)|]* +2681(1 — B1) (A1 + Vf(wi_1) — Vf(wi), g — Vf(we))
+ (1= B1)lge — Vf(wy)]?

212
< A I+ (- 50— V)P

+ Qﬁl(l = B1)(Ar—1 + Vf(wi1) = Vf(wy),g: — Vf(wy)), (®)

1A-1]* +

where in the last equation we use Young’s inequality.
On the other hand, note that

T

Bi(l = B1) Y (vt + Vf(wio1) = Vf(we), g — Vf(wy))

t=2

T
=01(1—B1) Z Lr>t(Ai—1 + Vi(wi—1) — Vf(wy), gt — Vf(wy)).

t=2

AsEV [15(A 1 + V(wi1) = Vf(w), 90 — Vf(w))] = 0, we have that
Vi 2 Lot(Dvy + Vf(wio1) — VI(wy), g — Vf(wy))
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is a martingale difference sequence. Also, according to Lemma C.5, we have when T is large enough,
A1 + Vf(wi—1) — Vf(w)| < 3o, thus by Assumption 3.1, we have V; is subgaussian with constant
30 R. Then by the Azuma-Hoeffding inequality, we have with probability at least 1 — 6/2,

T

YW

t=2

< 5R?%0?

T
ZZlog(l/(S).
t=2

Also, due to Assumption 3.1, we have with probability at least 1 — 6 /27,

T
lge — Vf(we)|* < 1/2R?log 5 <o

Applying the above inequalities back to Eq. (8),

11—/
2

— 5B
2

BQ 47]2L2
I )|

+ (1= B1)llge — Vf(wy)|]> + 261 (1 — B1) Vi

1
1A * < 1A ]* < Aeal* — [|Ad]* +

Taking a summation over ¢ from 2 to 7, we have with probability at least 1 — 6,

- T—1 2
L (1 - s g V)

t=1

1 5P
<3 S AP = 2 T 9 ) P
t=2

<A = A + (1 = $1)°0*T + 10(1 = B1) R?o”

<202((1 — B1)*T +1) +10(1 — 1) R?*0?

where the first inequality is due to the assumption in Theorem 3.2 that # > C, where C'is defined in
Eq. (4).

The proof is completed. O
C.2 Proof of the full theorem

Proof of Theorem 3.2. Recall that by Lemma C.3

1
[wisr —wi] = O(—=).

VT

When T is large enough, w; and w;; will fulfill the requirement of Lemma C.1, which gives

Lo+ L1||V f(wy)
2

flweg1) — flwy) <(Vf(we), wep —wy) + | w1 — wy*.

If t < 7, we further have ||V f(w;)|| < G. Therefore, if t < 7, the above inequality can be further

16



bounded by

flwiyr) — f(wr)

<V f(wy), wey1 — wy) + wnwz%l —wy||?
- <Vf(wt)ﬂ7t\/17tl+ - © Vf(we)) +(Vf(we),m \/17t1+ 2O (Vf(w) —my))
Lo —I—LlG 1 2
2 NZE ©
=TS @Iy (V) e © (T w) —m)
Lo+ LG 2
# Hth .
r+s>

o

)
_77t||CJ(wt)” 77t||cf(wt)H2 1 ‘77t||AtH
+ Ui te

+ (Lo + L1G)ni HAtll A + (Lo + L1G)n; HVf(wt)H A
5 VUi te
=— *mIIVf(wt) A +?7t||Atll%
+ (Lo + LGt HAtH + (Lo + LiG)nf |V f (wy)]>
+e> F+s>2

where A, is defined as A; = my — V f(w;) and inequality (o) uses Young’s inequality.
According to Lemma C.4, we further have

flwi1) — f(wy)
<- Zﬁt |V f(wy) 2
Noras

+ HAtHL
5 \/W+

Lo+ L1G)n?
(GRS T
€ VPt +e

1A 2+
VPLte
With large enough T, we have n; < m, and thus

f(wigr) — fwy)
<= Sl VF@OI L+ 2m AP,

< - - 2 A
< s I+ y .

1
S (s L 17 (i) I +2 VNS

After taking sum over ¢ and rearranging, we have

T—1
> (19 stwn P - 2EETE D ya2) < 2EHTED () s,
t=1

Multiplying both sides of the above inequality by 2 and adding the inequality in Lemma C.6, we obtain
with probability at least 1 — 4,

S 195l <2 EETED () — pw) +40H (1 BT + 1) + 20807 23 log1/5)  O)

=0(1/VT).
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In the following proof, we will bound the probability of the event {r < T'}. Note if we can show
P(r > T) > 1 — §, the proof is completed, as conditional on {7 > T}, 7 |V f (w;)||* in the above
inequality will become Zthl IV £ (wy) ||

Obviously, the stopping time 7 (eq. (5)) can be decomposed as 7 := min{7y, 72}, where 71 and 7, are
two stopping times defined as

7 c=min{t | f(w) — f* > F}A (T +1),
o :=min{t | |V f(wy) —g¢|| > o} A (T + 1),

We then bound P(7; < T') and P(m < T') respectively.
Bound of P(75 < T'). We bound this term by a similar practice as Lemma C.6. According to the definition
of P)

P, <T) =P | |J {IVS(we) —gell > 0}
1<t<T

< Z (IVf(we) — gel| > o)

1<t<T
02
<9Te 3w
1)
§§7

where the last inequality uses the definition of o.
Bound of P(7; < T'). Simple rearranging of Eq. (9) gives that, with probability 1 — g,

2(G+o+¢)

5w - )
T—1
<1V sl + 2D ) — )
t=1
§‘2(G +nj = (f(w1) = f*) +40*((1 — B1)T + 1) + 20R%¢>

Therefore, by dividing both sides of the above inequality, we obtain

flwr) — f*
* U 2 "t 2 2
< — — 4 1-61)T+1)4+ ——20R 2 1 (1/6
GQ
P —
~3(3Lo +4L,1G)
:F’
where the last inequality uses the definition of G.
Therefore, we have that
1)
P(m1 < T') < P(Eq. 9 fails to hold) < 3

The proof is completed by P(7 < T) < P(1; <T)+P(ro <T) < 6.
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