Under review as a conference paper at ICLR 2026

AUTOMATED BENCHMARK GENERATION FOR
REPOSITORY-LEVEL CODE INPUT SYNTHESIS VIA
COVERAGE-GUIDED FUZZING

Anonymous authors
Paper under double-blind review

ABSTRACT

Evaluating the capabilities of large language models (LLMs) on practical,
repository-level testing tasks is crucial for their effective application in software
engineering. Many existing benchmarks rely on human-authored data such as
issues, patches, and unit tests, which can limit scalability and introduce risks
of solution leakage from training corpora. We introduce TTG-GEN, an auto-
mated framework for generating targeted test-input generation (TTG) problems
from real-world codebases, in which LLMs are tasked with synthesizing input
byte sequences to execute specific, designated code locations. These problems
are representative of tasks performed by software engineers during debugging and
are designed to probe an LLM’s understanding of complex control and data flow
in real-world scenarios. TTG-GEN leverages coverage-guided fuzzing (CGF) to
identify reachable yet non-trivial target locations that require structure-aware in-
puts to cover. By automatically generating TTG problems, TTG-GEN offers a
practical, scalable, and continuously updatable framework with a low risk of di-
rect solution leakage, suited for evaluating repository-level code comprehension.
Using TTG-GEN, we construct TTG-BENCH-LITE, a benchmark of 500 such
problems derived from 16 foundational C/C++ software projects. Our evaluation
across retrieval-based and agent-based settings shows that even the most capable
LLMs solve only 15% of these problems on their first attempt. This indicates
that comprehending and manipulating program behavior at the repository level
remains a significant hurdle for current models, highlighting a substantial gap be-
tween their current abilities and the proficiency required for complex software
engineering tasks.

1 INTRODUCTION

In recent years, large language models (LLMs) have demonstrated significant improvements in code
synthesis, completion, and resolving real-world software issues (Jiang et al., 2024; Zhang et al.,
2023)), making their application across the entire software engineering (SE) lifecycle, including de-
velopment, testing, and maintenance, highly promising (Hou et al., 2023} Jin et al., 2024)). Moreover,
SE tasks often require models to understand and coordinate changes across multiple files and pro-
cess extensive contexts, providing a rich and sustainable testbed for evaluating the capabilities of
LLMs (Hudson et al., 2024} [Koohestani et al., | 2025)). Therefore, the evaluation of LLMs on realistic
SE tasks is crucial for both understanding their current abilities and effectively applying them to
practical software tasks.

Many benchmarks have been proposed to evaluate LLM capabilities on complex SE tasks, ranging
from issue resolution to unit test generation (Gu et al., |2024; Jimenez et al., 2023} Miindler et al.,
2024; Xu et al.l [2025b). However, these benchmarks exhibit certain limitations: they are either (1)
unrepresentative of real-world scenarios, or (2) rely heavily on human-written issues, patches, or
unit tests for problem creation and result verification. Consequently, this reliance limits scalability,
can lead to benchmark saturation, and introduces a risk of models recalling solutions seen during
pre-training (Hudson et al.| [2024; [Koohestani et al.l 2025} |Cheng et al., 2025} |Dong et al.l [2024).
Therefore, there is an urgent need for evaluation frameworks that are programmatically generated

Under review as a conference paper at ICLR 2026

O codebase

generation script

r, voidpf ptr) ...

P prg_ptr) ..
st_bytep ptr, size.t length) ...
57 % m [esrannvas
—B entry program
e npu

evaluated
LLMs

input buffer
+00\x00\x00\ 1 THE

N 0
\q/ execution

7 o
@ target location \ vm-cov
Vo1a prg_andle_SCAL(png_structrp pog per _I_|
oneCinforp Tnfo_pr. g uint 52 Tengih) (
als nfo WL g -
Dot «/ PASS X FAIL
(a) a TTG problem instance (b) the evaluation procedure

Figure 1: The TTG problem and its evaluation process. (a) A TTG problem instance, comprising
a codebase, an entry program, and a target code location. (b) The evaluation procedure, where the
LLM-synthesized input is executed and the coverage is analyzed to determine if the target is reached.

for scalability, carry a low risk of solution leakage, and are grounded in realistic software testing
scenarios.

The targeted test-input generation (TTG) problem (see Figure [T(a) for an instance), an important
task in software testing that involves creating inputs to execute specific code locations (Bohme
et al., 2017; |Wang et al.| 2020), is well-suited for evaluating LLMs. As a benchmark, TTG allows
for scalable problem generation with a low risk of solution leakage, and success is unambiguously
verified through execution (Pezze & Young, 2008; (Clarke et al., 2018). A key difficulty, however, is
selecting suitable targets, since random sampling yields many unreachable or trivial locations that do
not adequately test a model’s capabilities (Babic et al.| 2019 [Metzman et al.,|[2021; [Hamlet, [1994;
Arcuri et al| 2011). To overcome this, we leverage coverage-guided fuzzing (CGF) to identify
locations that are demonstrably reachable yet non-trivial to cover (Zhu et al., 2022; Manes et al.,
2019; L1 et all 2018 Mallissery & Wul [2023). Our key insight is that targets discovered in later
CGeF stages require more structure-aware inputs. We present TTG-GEN, a method that uses CGF
and llvm-cov (LLVM]| [2025) to systematically select these newly covered locations, ensuring the
generation of high-quality problems for assessing system-level code comprehension (Section[3.1.3).

We constructed TTG-BENCH-LITE, a benchmark designed to evaluate LLMs’ code reasoning abili-
ties in real-world scenarios using TTG problems. For this purpose, 16 real-world open-source C/C++
projects from a wide range of domains were selected as inputs to TTG-GEN. From the resulting
set of target locations, 500 were randomly selected to form the benchmark. We evaluated several
commonly used LLMs on TTG-BENCH-LITE. To handle the large scale of the code repositories,
two standard settings (retrieval-based and agent-based) were employed. The result shows that the
best-performing model achieved a pass@1 rate of 14.56%, highlighting the challenge presented by
TTG-GEN to LLMs. In some cases, LLMs performed similarly to human experts, but in others, they
made mistakes, showing their deficiencies in precise reasoning, plausible reasoning and knowledge
application, indicating that there is a large room for improvement in their reasoning capabilities. We
empirically investigated these failures and discussed the reasons in Section[d.2.2]

In summary, the contribution of this paper is threefold:

* We propose TTG-GEN, a method for generating TTG problems for LLM benchmarking
using CGF. TTG-GEN can generates non-trivial problems at scale, offering a continu-
ously updatable evaluation framework with a low risk of solution leakage for assessing
repository-level code comprehension.

* We construct TTG-BENCH-LITE, a practical benchmark for evaluating repository-level
input synthesis abilities in LLMs. It consists of 500 TTG problems created by applying
TTG-GEN to 16 real-world C/C++ repositories that process well-known file formats, fa-
cilitating efficient evaluation.

Under review as a conference paper at ICLR 2026

* We conduct a comprehensive evaluation on TTG-BENCH-LITE with widely used LLMs
under various settings. The results show that even the best-performing LLM can only
achieve a pass@1 of 14.56%, indicating these tasks are a significant hurdle for current
models and highlighting considerable room for improvement in LLMs.

The code for TTG-GEN and TTG-BENCH-LITE, along with the containerized running environ-
ment, is currently available in supplementary materials and will be open-sourced after review.

2 RELATED WORK

LLM Benchmarks for Code Reasoning and Testing. Recently, various benchmarks have been
proposed to evaluate the capabilities of LLMs on code-related tasks and in practical software testing
scenarios (Hudson et al., [2024; [Koohestani et al., |2025)). Several focus on function-level code com-
prehension: CRUX-Eval (Gu et al.| 2024) and its multilingual extension CRUX-Eval-X (Xu et al.,
2024) assess input/output prediction for synthesized functions, while R-Eval (Chen et al., [2024)
targets the inference of execution states. Another line of work evaluates unit test generation for real-
world Python code. This includes SWT-bench (Miindler et al.,[2024) for creating issue-reproducing
tests, TestGen-Eval (Jain et al. [2025) for improving coverage, and CLOVER (Xu et al., [2025a)) for
meeting specific test objectives. Other benchmarks include Test-Eval (Wang et al.| 2024) for gener-
ating inputs to cover LeetCode problems and Test-Bench (Zhang et al.l [2024a) for generating unit
tests in Java.

Coverage-Guided Fuzzing. Coverage-guided fuzzing (CGF) is a prominent and highly effective
automated technique for generating test inputs, widely applied to test complex, real-world systems
(Zhu et al.l |2022; Manes et al.| |2019; [L1 et al.l 2018). At its core, CGF employs an evolutionary
algorithm that operates on a corpus of seed inputs, treating them as a population to be evolved (as
shown in Figure [3] (b)). The key to CGF’s effectiveness is its feedback mechanism. The fuzzer
monitors program execution to determine if the mutated input triggers new code coverage, such as
executing previously unreached basic blocks, edges, or paths. If an input is deemed "interesting” for
having increased coverage, it is retained and added to the seed pool for subsequent mutation rounds;
otherwise, it is discarded. This simple yet powerful feedback loop continuously guides the search
toward deeper and more complex program states. This technique has proven highly successful
in practice, with widely adopted tools such as AFL (Googlel 2015a), LibFuzzer (LLVM, [2015),
and Honggfuzz (Google} 2014) making significant contributions to software security by uncovering
thousands of vulnerabilities.

3 METHOD

3.1 THE TTG PROBLEM

3.1.1 TASK FORMULATION

Problem Definition. Formally, let R be a code repository, &£ be an entry program that takes a
byte sequence (buffer) b € B as input, and L.+ be a specific target code location within .
An instance of the targeted test-input generation (TTG) problem is a tuple P = (R, E, Liarget)-
Let exec(R, F, b) be a function that returns the set of code locations executed when program F is
run with input buffer b. The objective is to find a byte sequence b such that the target location is
executed: Ligrger € exec(R, E,b).

Solution Representation. While the goal is to find the byte sequence b, LLMs often exhibit limi-
tations in precise numerical calculations and direct binary data manipulation (Steyvers et al.| 2025;
Akhtar et al., [2023). Consequently, we do not require the model to output the raw byte sequence
directly. Instead, the task is to generate a Python script Sg., which, when executed, produces the
target byte sequence b.

3.1.2 RATIONALE FOR TTG AS AN EVALUATION TASK

The TTG problem is an important task in software testing, reflecting a common scenario faced
by developers during testing and debugging (Pezze & Young, 2008} (Clarke et al.l 2018). From

Under review as a conference paper at ICLR 2026

ﬂ]domain knowledge (a) precise reasoning (b) plausible reasoning

The entry program processes PNG file.
PNG file consists of a PNG signature
followed by chunks.

Each chunk consists of four parts: length, To reach the
type, data, and CRC checksum. target location,

(png_ptr->mode &
PNG_HAVE_THDR) ==

[The input file must have a A
HDR chunk before this %constralnts

To reach the target
location, the input

[

(png_ptr->node & [The input file must not
. hunk

&

PNG_INFO_SCAL) != 0 without any IDAT
chunk before them

these constraints 0
PNG_HAVE_IDAT) != & [bofore this chunk. PNG file must have
must satisly. wo SCAL chunks,
info_ptr 1= NULL 8& [The input file must have with an IHDR chunk =\
| (info_ptr->valid & Where 1s L chunk before them and v
info_ptr->valid set? hunk (-]
[<>]

[According to its name,

i functon processes an

(@} target location () codebase sCAL chun
Void png_handle_sCAL(png_structrp png_ptr, I
pne_ Inforp Info_ptr, png_uint_32 length) { I
Void PNGAPI .)
1¥"((png_ptr->mode & PNG_HAVE_ L1oR) == 0) pn_set._sig bytes (png_structrp png_ptr, int generation script
png_chunk_error (png_ptr, "missing IHDR"); num_bytes) -
else’ if ((png_ptr-smode & PNG_HAVE_TOAT) 1= 6) { - -
png_crc_finish(png_ptr, length); int PNGAPT ;"'l;"" struct, zlib .
png_chunk_benign_error (png_ptr, "out of place"); png_sig_cmp(png_const. bytep sig, size_t start, ef generate input buffer():
return; size_t num_to_check) - # PNG signature
3 png sig = b’ LESPAGIrn\xta\n'
else if (info_ptr I= NULL && void png_zfree(voidpf png_ptr, voidpf ptr) ... # DR chun
(info_ptr->valid & PNG_INFO_sCAL) !=) { ihdr_data = struct.pack(>IIBBEBE, =~
png_crc_finish(png_ptr, length); void png_reset_crc(png_structrp png_ptr) ... 1, 1,8, 0,9,0,0)
 png_chuk_benign_error (png_ptr, "duplicate"); ¥ iret sCAL chunk (valid)
¥ # Assenble PNG
return png_sig + ihdr_chunk + scal_chunkl + \
_:zl entry program oid PNGAPT g st sh 2(ony scal_chunk2 + idaf_chunk + iend_chunk

extern "C" int LLVMFuzzerTestOneInput(
const uint8_t* data, size_t size) {
if (size < kPngHeadersize) {
return 0;
}

info_ptr->valid |= PNG_INFO_SCAL;

(c) information retrieval

Figure 2: The reasoning process of a human analyst for a TTG problem. This process involves: (a)
precise reasoning on code semantics, (b) plausible reasoning with domain knowledge and heuristics,
and (c) information retrieval from the codebase.

a practical perspective, it is a core element of software testing, verification, and analysis. While
this task is addressable by human experts (Brooks| |1983; [Woodfield et al., 1981} [Padioleau et al.,
2009), traditional automated methods often face significant hurdles like path explosion (Baldoni
et al.,|2018; [Pelanek, 2008)). The capabilities of LLMs present a new avenue for tackling these long-
standing issues by leveraging domain knowledge and heuristics. From a benchmarking perspective,
TTG offers a robust framework for assessing a range of LLLM capabilities in repository-level code
comprehension, with success being unambiguously verifiable through execution. Furthermore, this
approach enables automated generation of new problem instances at scale and carries a low risk of
solution leakage, as the required inputs are not typically available in public data.

3.1.3 TASK MOTIVATION AND REQUIRED CAPABILITIES

To illustrate the capabilities required to solve such problems, we consider an example from libpng,
where the goal is to execute a specific line within the png_handle_sCAL function (Figure [2)).

An expert solves this by leveraging domain-specific knowledge, such as the PNG file format spec-
ifications, and performing a detailed analysis of the source code to trace control flow. The crucial
step is mapping low-level code conditions to high-level properties of the input format, for instance,
deducing that the presence and order of specific PNG chunks are required. This process of abstrac-
tion and constraint satisfaction enables the efficient construction of a valid input. As a benchmark,
TTG is designed to assess a similar set of key abilities in LLMs, including: (1) Code Semantic
Understanding, to correctly interpret program behavior; (2) Constraint Inference, to determine the
precise conditions and execution paths needed to reach a target; (3) Abstract Mapping, to translate
low-level code conditions into high-level input format constraints; and (4) Knowledge Application,
to use domain-specific information to synthesize a valid input.

3.2 THE TTG-GEN METHOD

Motivation. While TTG problems are suitable for evaluating LLMs, selecting appropriate targets is
critical for a meaningful benchmark. Randomly sampling locations is ineffective for several reasons.
First, many locations in large code repositories are simply unreachable by a given entry program
(Babi¢ et al., 2019 [Metzman et al.| 2021). Second, many reachable locations, particularly in input
parsing code, can be covered by simple random inputs and thus do not effectively test a model’s
capabilities (Hamlet, 1994} |Arcuri et al 2011). Third, some targets may be reached by recalling
standard file formats rather than by analyzing specific code paths.

Under review as a conference paper at ICLR 2026

I~

() codebase

ot " \ execution
seed pool o
e ructrp prg_ptr, in < i no, discard
L oytes (o structrs ppees it % a0t butter |—>°/'o\.
S >
ot str e fa— [—

yes, add to seed pool

(b) coverage-guided fuzzing

replay selection @ target locations
= - [
N time 0550
L g
RS wm-cov wi‘;f:ge € g Fe neoscan 10 ¢
(a) input: codebase & entry program (c) output: target locations

Figure 3: The workflow of TTG-GEN. The process takes (a) a codebase and its entry program
as input, then applies (b) coverage-guided fuzzing to it; afterward, the generated seed inputs are
replayed to select newly covered locations, ultimately producing (c) a set of curated target locations
as output.

The Method. To construct a meaningful benchmark, the central task is to identify target loca-
tions that are demonstrably reachable yet non-trivial to cover. We find that coverage-guided fuzzing
(CGF), a prominent automated software testing technique, is a suitable approach for this selection
process. Our key insight is that code locations discovered in the later stages of a CGF campaign serve
as ideal targets. The iterative nature of CGF provides three key properties: (1) Feasibility: a loca-
tion’s discovery by the fuzzer confirms it is reachable; (2) Non-triviality: selecting later-discovered
locations filters out targets easily covered by simple random inputs; (3) Structural Requirement:
reaching these deeper locations often requires generating non-standard or subtly malformed inputs
from an initial valid seed pool. This necessitates an analysis of complex code semantics and input
structures rather than mere format recall, making the resulting problems well-suited for evaluation.

Algorithm 1 Generating Target Code Locations

Input: codebase, entryProgram, threshold
Output: a set of target locations
seeds, discoveredTime <— CoverageGuideFuzzing(codebase, entryProgram)
seeds < sortByTime(seeds, discoveredTime)
coveredLocs < ()
candidateTargetLocs <+ ()
for seed < seeds do
seedCoveredLocs < getSourceCoverage(codebase, entryProgram, seed)
newlyCoveredLocs <— seedCoveredLocs \ coveredLocs
if newlyCoveredLocs # () A discoveredTime[seed] > threshold then
targetLoc <— randomChoose(newlyCoveredLocs)
candidateTargetLocs «+ candidateTargetLocs U {targetLoc}
end if
coveredLocs < coveredLocs U newlyCoveredLocs
end for
return candidateTargetLocs

The workflow of the proposed TTG-GEN is illustrated in Figure [3] The input to TTG-GEN is a
real-world C/C++ repository with an accompanying entry program; the output is a curated set of
target locations for constructing TTG problems.

The process begins by applying coverage-guided fuzzing (CGF) to the repository. TTG-GEN em-
ploys a hybrid fuzzing approach (Poeplau & Francillon, 2020), which combines a standard fuzzer
with a symbolic execution engine to navigate complex path constraints. The initial seed pool is
populated with valid input files (e.g., PNG, JPEG) from established corpora (Metzman et al., 2021)),
and TTG-GEN utilizes fuzzing dictionaries to guide the fuzzer towards syntactically valid inputs,
thereby improving efficiency (Googlel [2015b)). After a set period of fuzzing, this process yields a
corpus of generated inputs, each timestamped with its discovery time.

Under review as a conference paper at ICLR 2026

In the second stage, TTG-GEN analyzes the coverage generated by these inputs. The target program
is first compiled with instrumentation flags to generate coverage data. TTG-GEN then replays the
generated seed inputs chronologically and use the /lvm-cov to process the resulting execution profiles
(LLVM] [2025). A code location is selected as a candidate target if it is newly covered by a seed
whose discovery time exceeds a predefined heuristic threshold (one hour in our experiments). This
time-based filtering is designed to select for non-trivial targets that were not discoverable through
simple mutations. The overall workflow is summarized in Algorithm|[I]

Table 1: Comparison of TTG-GEN and other code reasoning / software testing benchmarks.

Benchmark Task Real-World Code Scale Erugrammmg Scalable L"Y“ Risk of Verifiable
anguage Solution Leakage

CRUX-Eval Input/Output Pred X Function Level Python

CRUX-Eval-X Input/Output Pred X Function Level Multiple PL

R-Eval Execution State Pred X Function Level Python X

SWT-Bench Unit Test Repository Level ~Python X X X

TestGen-Eval Unit Test File Level Python X X X

CLOVER Unit Test Repository Level ~ Python X X X

Test-Eval Input Generation X File Level Python X

Test-Bench Unit Test Class Level Java X X X

Input Generation /

TTG-GEN (Ours) System Test

Repository Level C/C++

Limitations of Existing Benchmarks. While many benchmarks exist for evaluating LLMs on code-
related tasks, they often exhibit shortcomings that limit their utility. Some are constructed from
synthesized code snippets or isolated functions, which do not reflect the complexity of real-world
software development. Others rely on static, human-authored problem specifications like GitHub
issues or existing unit tests for problem creation and verification. This approach limits scalability,
can lead to benchmark saturation, and introduces a risk of models recalling solutions seen during pre-
training. Furthermore, the scope is often confined to small-scale Python code, leaving system-level
testing of large C/C++ applications, which requires analyzing cross-module interactions, largely
unexplored. Finally, some benchmarks employ verification methods that can inaccurately assess a
model’s true capabilities by allowing incorrect solutions to pass existing test suites.

Advantages of Our Approach. The proposed TTG-GEN framework addresses these limitations by
programmatically generating targeted test-input generation (TTG) problems from real-world C/C++
codebases. The TTG task is grounded in practical software testing and offers a precise, execution-
based oracle for verification: a solution is correct if and only if the target location is executed.
By leveraging coverage-guided fuzzing (CGF) for target selection, TTG-GEN enables the scalable
generation of new problem instances with a low risk of solution leakage. This method ensures that
the resulting benchmark is continuously updatable, grounded in realistic system-level contexts, and
provides a robust measure of an LLM’s ability to comprehend and manipulate complex program
behavior (see Table[I).

Table 2: Details of C/C++ repositories used in TTG-BENCH-LITE.

Repository Description Input File Type #LOC
Bloaty Program binary size analysis tool Binary executable files 984k
FreeType2 Font rendering and processing library Font files 441k
HarfBuzz Font shaping engine Font files 81k
LittleCMS Color management system Color profile files 69k
libjpeg-turbo High-performance JPEG codec library JPEG images 87k
libpng PNG image decoding library PNG images 138k
libxml2 XML parsing library XML files 307k
OpenH264 H.264 video codec library H264 video files 131k
OpenThread Implementation of the Thread protocol IPv6 network packets 521k
RE2 Efficient regular expression matching library Regular expressions 38k
libsndfile Audio file reading/writing library Audio files 96k
SQLite3 Lightweight embedded database SQLite database files 948k
stb Simple image loading library Image files 93k
libvorbis Ogg Vorbis audio codec Ogg Vorbis audio files 71k
woff2 WOFF2 font file converter WOFF2 font files 57k

OpenSSL Cryptography library with certificate handling ~ X.509 certificate files 645k

The TTG-BENCH-LITE Benchmark. Using TTG-GEN, we construct TTG-BENCH-LITE, a
benchmark consisting of 500 TTG problems from real-world C/C++ programs to facilitate efficient
evaluation. We select 16 widely-used real-world programs that process a wide range of well-known

Under review as a conference paper at ICLR 2026

file formats. The details of the programs are summarized in Table[2] To ensure a fair evaluation, we
perform a preliminary check on all participating LLMs. We manually prompt each model to write
Python scripts for generating valid files of the specified types and verify the outputs using format-
specific parsers. This initial step confirms that the LLMs are capable of writing scripts to produce
correctly formatted binary files and possess the necessary domain knowledge of the input formats.
We run the fuzzer described for 24 hours, with the discovery time threshold set to one hour. From
the resulting target locations returned by TTG-GEN, we randomly select 500 problems to form the
problem set.

4 EVALUATION

4.1 SETTINGS

4.1.1 HANDLING LARGE-SCALE REPOSITORIES

Given a target code location, many parts of the code repository are semantically related to it. How-
ever, the large scale of real-world code repositories makes it impractical to fit the entire repository
into LLM’s context window. To address this, we adopt two standard settings, retrieval-based (Gao
et al.,[2023} |[Fan et al., 2024) and agent-based (Jin et al., 2024; Liu et al., 2024b; [Yang et al., |2024),
as described below. See Appendix for detailed settings.

Retrieval-Based Setting. In this paper, we opt to use BM25 (Robertson et al., 2009) as the retrieval
method, following related works in repository-level benchmarking (Jimenez et al., [2023; Miindler,
et al} |2024). Given the target code location, we concatenate its surrounding code (within 10 lines)
along with the signatures of related functions, classes, etc., to form the query string. The source
code is split into syntax units (e.g., functions, classes, structs, methods) using Clang (Lattner &
Advel 2004). For syntax units longer than 100 lines, we further split them until every units are less
than or equal to 100 lines. Code comments are retained as they are crucial for understanding the
semantic of code snippets, as discussed in Section[3.1.2] The query strings and splitted syntax units
are tokenized using Clang. We then apply a standard BM25 retrieval approach to retrieve relevant
syntax units, ensuring they fits within the context length of 15000 tokens.

Agent-Based Setting. Agent-based methods (Jin et al) [2024; [Liu et al., [2024b) are commonly
used for repository-level software engineering tasks, where LLM agents are equipped with tools to
browse, search, and edit code. However, the tools provided to agents in prior works are typically
focused on issue resolution or unit test generation tasks (Yang et al.,[2024; Zhang et al., 2024b) and
may not be as effective for solving the TTG problem. To address this, we design a code browsing
tool with functionalities tailored specifically to the needs of the TTG problem, drawing from routines
frequently used by human analysts, such as query all code snippets where a given function is called
(details see Table [5]in Appendix). The usage of the tool is demonstrated in prompt with concrete
examples. Moreover, the agent is allowed to emit multiple queries to the tool in a single session of
conversation, helping to reduce the number of conversation rounds to improve efficiency.

4.1.2 LARGE LANGUAGE MODELS

We consider O3-mini (OpenAl| [2025b)), GPT-40-mini (OpenAl, [2025a), DeepSeek-R1 (Guo et al.|
20235)), DeepSeek-V3 (Liu et al.| 2024a), Qwq (Qwen, 2025b), Qwen series (Qwen, [2025a; |2024),
Gemma-3 (Team et all 2025)), Mistral-3.1 (Mistral, [2025)), Cogito-V1 (Cogitol 2025)), Llama-3.3
(Grattafiori et al., [2024), and GLM-4 (GLM et al.,[2024) as the underlying LLMs in both retrieval-
based and agent-based settings. Among these, GPT-40-mini, DeepSeek-V3, Gemma-3, Mistral-
3.1, Qwen-2.5, Llama-3.3, and GLM-4 are standard LLMs, while O3-mini, DeepSeek-R1, Qwq,
R1-Distill-Qwen and GLM-Z1 are reasoning LLMs (Plaat et al.l 2024} [Li et al., |2025). Qwen-3
and Cogito are hybrid reasoning models. For these models, we set the parameters to the values
recommended by the respective model providers. See Appendix [A.T]|for more details.

4.2 RESULTS

For each LLM, the pass@ 1-5 scores under both retrieval-based and agent-based settings are reported
in Table |3] Overall, the performance of different LLMs varies widely, demonstrating that TTG-

Under review as a conference paper at ICLR 2026

Table 3: The pass@1-5 scores (%) of LLMs on TTG-BENCH-LITE.

Model Size Thinking Reasoning Retrieval-based Pass @k Agent-based Pass @k

Mode k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5
O3-mini N/A v 1200 1520 16.62 1744 18.00 1196 1590 18.06 19.56 20.80
GPT-40-mini N/A X 056 084 1.06 1.24 140 056 072 088 1.04 1.20
DeepSeek-R1 671B v 1456 1836 2048 21.96 23.00 14.44 1938 21.84 2340 24.60
DeepSeek-V3 671B X 7.68 11.08 13.04 1448 1560 828 11.88 1412 1564 16.80
Llama-3.3 70B X 220 324 383 428 4.60 152 254 332 392 440
Qwq 32B v 720 1078 1284 1420 1520 576 9.78 12.62 14.68 16.20
Qwen-3 32B On v 6.16 884 1052 11.64 1240 588 832 9.84 1096 11.80
Qwen-3 32B Off X 1.24 196 254 3.08 3.60 296 474 600 7.00 7.80
Qwen-3 30B-A3B On v 324 460 534 584 620 236 362 454 520 5.60
Qwen-3 30B-A3B Off X 0.68 1.22 1.64 196 220 0.76 1.20 1.48 1.68 1.80
Qwen-2.5 32B X 1.56 2.38 290 3.28 3.60 216 3.8 390 448 5.00
Gemma-3 27B X 032 062 090 1.16 140 0.88 1.50 196 232 260
Mistral-3.1 24B X 004 008 012 016 020 016 030 042 052 0.60
Cogito-V1 32B On v 152 272 3.68 448 520 248 426 550 632 6.80
Cogito-V1 32B Off X 1.12 194 266 328 3.80 124 210 276 332 3.80
RI1-Distill-Qwen 32B v 284 470 6.02 696 7.60 1.80 298 380 444 500
GLM-4 32B X 0.96 1.80 254 320 3.80 1.52 266 354 424 480
GLM-Z1 32B v 224 336 414 480 540 220 336 418 484 540

BENCH-LITE has good discriminability, which is crucial for benchmarking. The best-performing
model (DeepSeek-R1) achieves a pass@1 score of 14.56% and a pass@5 score of 24.60%, and
most median-sized LLMs can achieve only pass@]1 scores of 0.04%-7.20% and pass@5 scores of
0.20%-16.20%, indicating that TTG-BENCH-LITE is challenging for state-of-the-art LLMs.

4.2.1 OBSERVATIONS

0.200
0175

0150
o
Zoao
oons

pass@1 retrieval

0.050

0.025

0000

N

09 et

s

A T

SOV o e
&

\ \

S \ o

b S

HP T wE
W

N
o o
ey
R
s

\)
) A o2
S e D

S5 Gre g

>

SR DR
R P SIS A
S wl Al

$97 W $297 W
¥ a8
o O S o

Figure 4: Comparison between reasoning LL.Ms with their non-reasoning counterparts.

Comparison of reasoning and non-reasoning models. To assess the impact of reasoning capabil-
ities gained from reinforcement learning (Plaat et al., 2024; |Li et al., [2025) on LLMs’ performance
in solving the TTG problem, we compare the pass@1 scores of different reasoning LLMs with their
non-reasoning counterparts. Six pairs of LLMs are used for this comparison: hybrid reasoning mod-
els with the reasoning option on and off (Qwen-3-32B, Qwen-3-30B-A3B, and Cogito-V1), and rea-
soning versus non-reasoning models that share the same base architecture (DeepSeek-R1/DeepSeek-
V3, Qwg-32B/Qwen-2.5-32B, GLM-Z1-32B/GLM-4-32B). Figure [4 compares the pass@1 scores
for these model. Across all six pairs, reasoning models outperform their non-reasoning counterparts
by a large margin, indicating that the reasoning ability acquired through RL significantly enhances
performance in solving TTG problems.

Comparison of retrieval-based and agent-based settings. The performance under retrieval-based
and agent-based settings varies across different models. The pass@1 scores of various models under
both settings are visualized in Figure [5} with reasoning models shown on the left of the dashed
line and non-reasoning models on the right. In general, for pass@]1, the retrieval-based setting
tends to yield better performance for most reasoning models, while the agent-based setting provides
superior results for most non-reasoning models. From our manual examinations, we speculate that
this is because (1) reasoning models excel at handling long contexts by generating longer chains of
thought, which allows them to better reason about complex relationships within the code, and (2)
reasoning models are more prone to hallucination, which makes them less effective at using the tools
provided in the agent-based setting. Detailed analyses can be found in Appendix [D.1]

Performance of LLMs across different repositories. The pass@1 scores of top-performing LLMs
across 16 C/C-++ repositories are shown in Figure[6]in Appendix. The scores vary dramatically, with

Under review as a conference paper at ICLR 2026

0.200

- retrieval
0175 agent

0.150
0125

2 0100

0.075
0.050
0.025
0.000 I -

> P 2 ® N o ® ® © ® ®
& S 3"3 o 2% EOSCL N S 9 POASEIN W
WS ST
e (Pl
e e
R

®
209 ¥ A
& A 5 o > 226 RO 12
S & o A
R X o
oF M atlye™

o
)
IREGIRCN
07 et
& &

Figure 5: Pass@1 scores of LLMs under different settings.

some repositories achieving near 50%, while others are close to 0%. This variation can likely be
attributed to the inherent differences in the complexity of the repositories and their entry programs,
and suggests that current LLMs may struggle with reasoning in more complex contexts, where
intricate code structures and dependencies are involved.

Solved problems by different LLMs. We analyzed the problems solved by different LLMs across
all 500 problems in 5 trials, under both retrieval-based and agent-based settings. The result can be
found in Appendix which highlights that, despite differing overall performance, many LLMs
are able to solve a unique set of problems that the others cannot. This demonstrates the complemen-
tary strengths of each model in addressing various aspects of the TTG problem.

4.2.2 CASE STUDIES

We manually examined some of the LLMs’ responses to solve the TTG problems. In some cases,
LLMs performed well, demonstrating impressive abilities in precise reasoning about path conditions
and plausible reasoning about the connection between path conditions and high-level file formats,
which are similar to human analysts. However, in many cases, LLMs failed to reach the target
location, and we identified several reasons for these failures: First, many LLMs (especially rea-
soning models) tend to hallucinate and rely on fabricated code snippets for decision-making rather
than querying (in the agent-based setting). While these fabricated code snippets may seem plausi-
ble, they are not contextually appropriate and not reflective of the real codebase. Second, although
LLMs have detailed knowledge about valid target file format specifications (examined by manual
prompting), they often struggle to synthesize the correct file format (e.g., a valid IDAT chunk in a
PNG file). Sometimes, they miss key specifications, highlighting the difference between knowledge
and their application for LLMs. Third, in some instances, LLMs fail to make plausible connections
between low-level conditions and high-level constraints on file formats. As a result, they are unable
to generate correct test inputs. Fourth, for complex code reasoning scenarios, where constraints are
distributed across a broader context rather than within a single function, LLMs sometimes over-
look important constraints. These observations suggest that LLMs still have a large room for im-
provement and are far from achieving the level of expertise exhibited by human analysts. Detailed
analyses and examples can be found in Appendix [C]

5 CONCLUSION

Evaluating Large Language Models (LLMs) on repository-level code comprehension tasks is cru-
cial for understanding their capabilities and applying them to practical software testing. However,
existing benchmarks often rely on static, human-authored data for problem creation and verification,
which limits scalability and introduces a risk of solution leakage. In this paper, we present TTG-
GEN, an automated method for generating targeted test-input generation (TTG) problems represen-
tative of scenarios faced by developers. By utilizing Coverage-Guided Fuzzing (CGF), TTG-GEN
generates non-trivial and reachable TTG problems from real-world C/C++ repositories, ensuring
scalability with a low risk of solution leakage. We applied TTG-GEN to 16 real-world C/C++
packages to construct TTG-BENCH-LITE, a dataset of 500 problems. Our evaluation shows that
even the best-performing LLMs can solve only a small fraction of these problems, indicating that
system-level code comprehension remains a significant hurdle for current models.

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

In the supplementary material, we provide the code of TTG-GEN and the TTG-BENCH-LITE
dataset, with a README file for illustrating their usage and how to reproduce the results. We
have uploaded the supplementary material to the submission site (OpenReview). We believe it can
guarantee the reproducibility of our experiments.

REFERENCES

Mubashara Akhtar, Abhilash Shankarampeta, Vivek Gupta, Arpit Patil, Oana Cocarascu, and Elena
Simperl. Exploring the numerical reasoning capabilities of language models: A comprehensive
analysis on tabular data. In The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023. URL https://openreview.net/forum?id=1qJgZUAc8].

Andrea Arcuri, Muhammad Zohaib Igbal, and Lionel Briand. Random testing: Theoretical results
and practical implications. IEEE transactions on Software Engineering, 38(2):258-277, 2011.

Domagoj Babi¢, Stefan Bucur, Yaohui Chen, Franjo Ivanci¢, Tim King, Markus Kusano, Caroline
Lemieux, L4szl6 Szekeres, and Wei Wang. Fudge: fuzz driver generation at scale. In Proceed-
ings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 975-985, 2019.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. A
survey of symbolic execution techniques. ACM Computing Surveys (CSUR), 51(3):1-39, 2018.

Marcel Bohme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury. Directed grey-
box fuzzing. In Proceedings of the 2017 ACM SIGSAC conference on computer and communica-
tions security, pp. 2329-2344, 2017.

Ruven Brooks. Towards a theory of the comprehension of computer programs. International journal
of man-machine studies, 18(6):543-554, 1983.

Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li, and Xin Xia. Rea-
soning Runtime Behavior of a Program with LLM: How Far Are We?
March 2024. URL https://www.semanticscholar.org/paper/
£11cbd0d24b0e3fb917feldcfafb72e76402e5df.

Yu Cheng, Yi Chang, and Yuan Wu. A survey on data contamination for large language models.
ArXiv, abs/2502.14425, 2025.

Edmund M Clarke, Thomas A Henzinger, and Helmut Veith. Introduction to model checking. Hand-
book of Model Checking, pp. 1-26, 2018.

Team Cogito. Introducing cogito preview. https://www.deepcogito.com/research/cogito-v1-preview,
2025. Accessed: 2025-06-01.

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization or
memorization: Data contamination and trustworthy evaluation for large language models, 2024.
URL https://arxiv.org/abs/2402.15938.

Wengqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and
Qing Li. A survey on rag meeting llms: Towards retrieval-augmented large language models. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 6491-6501, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2:1, 2023.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng,
Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu,

10

https://openreview.net/forum?id=1qJgZUAc8j
https://www.semanticscholar.org/paper/f11cbd0d24b0e3fb917fe14cfaf572e76402e5df
https://www.semanticscholar.org/paper/f11cbd0d24b0e3fb917fe14cfaf572e76402e5df
https://arxiv.org/abs/2402.15938

Under review as a conference paper at ICLR 2026

Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao,
Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu,
Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan
Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language
models from glm-130b to glm-4 all tools, 2024.

Google. Honggfuzz — honggfuzz. https://honggfuzz.dev/, 2014. Accessed: 2025-06-01.
Google. American fuzzy lop. https://lcamtuf.coredump.cx/afl, 2015a. Accessed: 2025-06-01.

Google. Afl fuzzing dictionaries. https://github.com/google/AFL/tree/master/dictionaries, 2015b.
Accessed: 2025-06-01.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Alex Gu, Baptiste Roziere, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. CRUXEval: A Benchmark for Code Reasoning, Understanding and Execution. 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Richard Hamlet. Random testing. Encyclopedia of software Engineering, 2:971-978, 1994.

Xinying Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo,
John C. Grundy, and Haoyu Wang. Large language models for software engineering: A systematic
literature review. ACM Trans. Softw. Eng. Methodol., 33:220:1-220:79, 2023.

Sinclair Hudson, Sophia Jit, Boyue Caroline Hu, and Marsha Chechik. A software engi-
neering perspective on testing large language models: Research, practice, tools and bench-
marks. ArXiv, abs/2406.08216, 2024. URL https://api.semanticscholar.org/
CorpusID:270391588.

Kush Jain, Gabriel Synnaeve, and Baptiste Roziere. TestGenEval: A Real World Unit Test Genera-
tion and Test Completion Benchmark, March 2025. URL http://arxiv.org/abs/2410.
00752} arXiv:2410.00752 [cs].

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. ArXiv, abs/2406.00515, 2024.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? ArXiv,
abs/2310.06770, 2023.

Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, Bo Li, and Huaming Chen. From llms to
llm-based agents for software engineering: A survey of current, challenges and future. ArXiv,
abs/2408.02479, 2024.

Roham Koohestani, Philippe de Bekker, and Maliheh Izadi. Benchmarking AI Models in Software
Engineering: A Review, Search Tool, and Enhancement Protocol. 2025. doi: 10.48550/ARXIV.
2503.05860. URL https://arxiv.org/abs/2503.05860. Publisher: arXiv Version
Number: 1.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis &
transformation. In International symposium on code generation and optimization, 2004. CGO
2004., pp. 75-86. IEEE, 2004.

Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecurity, 1:1-13, 2018.

11

https://api.semanticscholar.org/CorpusID:270391588
https://api.semanticscholar.org/CorpusID:270391588
http://arxiv.org/abs/2410.00752
http://arxiv.org/abs/2410.00752
https://arxiv.org/abs/2503.05860

Under review as a conference paper at ICLR 2026

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying Zhang, Fei Yin, Jiahua Dong, Zhiwei
Li, Bao-Long Bi, Ling-Rui Mei, Junfeng Fang, Zhijiang Guo, Le Song, and Cheng-Lin Liu.
From system 1 to system 2: A survey of reasoning large language models, 2025. URL https:
//arxiv.org/abs/2502.17419.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhenpeng Chen, Lingming Zhang, and Yiling
Lou. Large language model-based agents for software engineering: A survey. arXiv preprint
arXiv:2409.02977, 2024b.

Team LLVM. Libfuzzer: A library for coverage-guided fuzz testing.
https://llvm.org/docs/LibFuzzer.html, 2015. Accessed: 2025-06-01.

Team LLVM. llvm-cov - emit coverage information. https://llvm.org/docs/CommandGuide/llvm-
cov.html, 2025. Accessed: 2025-06-01.

Sanoop Mallissery and Yu-Sung Wu. Demystify the fuzzing methods: A comprehensive survey.
ACM Computing Surveys, 56(3):1-38, 2023.

Valentin JM Manes, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele, Edward J
Schwartz, and Maverick Woo. The art, science, and engineering of fuzzing: A survey. IEEE
Transactions on Software Engineering, 47(11):2312-2331, 2019.

Jonathan Metzman, Laszl6 Szekeres, Laurent Simon, Read Sprabery, and Abhishek Arya.
Fuzzbench: an open fuzzer benchmarking platform and service. In Proceedings of the 29th ACM
Jjoint meeting on European software engineering conference and symposium on the foundations
of software engineering, pp. 1393-1403, 2021.

Team Mistral. Mistral small 3.1. https://mistral.ai/news/mistral-small-3-1, 2025. Accessed: 2025-
06-01.

Niels Miindler, Mark Niklas Miiller, Jingxuan He, and Martin T. Vechev. Swt-bench: Testing and
validating real-world bug-fixes with code agents. In Neural Information Processing Systems,
2024.

OpenAl. Gpt-4o mini: advancing cost-efficient intelligence. https://openai.com/index/gpt-40-mini-
advancing-cost-efficient-intelligence, 2025a. Accessed: 2025-06-01.

OpenAl Openai 03-mini. https://openai.com/index/openai-o3-mini, 2025b. Accessed: 2025-06-01.

Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. Listening to programmers—taxonomies and char-
acteristics of comments in operating system code. In 2009 IEEE 31st International Conference
on Software Engineering, pp. 331-341. IEEE, 2009.

Radek Pelanek. Fighting state space explosion: Review and evaluation. In Infernational Workshop
on Formal Methods for Industrial Critical Systems, pp. 37-52. Springer, 2008.

Mauro Pezze and Michal Young. Software testing and analysis: process, principles, and techniques.
John Wiley & Sons, 2008.

Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Back. Rea-
soning with large language models, a survey. arXiv preprint arXiv:2407.11511, 2024.

Sebastian Poeplau and Aurélien Francillon. Symbolic execution with {SymCC}: Don’t interpret,
compile! In 29th USENIX Security Symposium (USENIX Security 20), pp. 181-198, 2020.

Team Qwen. Qwen2.5: A party of foundation models, September 2024. URL https://gwenlm.
github.io/blog/gqwen2.5/.

Team Qwen. Qwen3, April 2025a. URL https://gwenlm.github.io/blog/qwen3/.

12

https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2502.17419
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen3/

Under review as a conference paper at ICLR 2026

Team Qwen. Qwq-32b: Embracing the power of reinforcement learning, March 2025b. URL
https://gwenlm.github.io/blog/qwg—-32b/.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Retrieval, 3(4):333-389, 20009.

Mark Steyvers, Heliodoro Tejeda, Aakriti Kumar, Catarina Belem, Sheer Karny, Xinyue Hu,
Lukas W Mayer, and Padhraic Smyth. What large language models know and what people think
they know. Nature Machine Intelligence, pp. 1-11, 2025.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Pengfei Wang, Xu Zhou, Kai Lu, Tai Yue, and Yingying Liu. Sok: The progress, challenges, and
perspectives of directed greybox fuzzing. arXiv preprint arXiv:2005.11907, 2020.

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Lingming
Zhang, An Ran Chen, and Lei Ma. TESTEVAL: Benchmarking Large Language Models for Test
Case Generation. 2024.

Scott N Woodfield, Hubert E Dunsmore, and Vincent Y Shen. The effect of modularization and
comments on program comprehension. In Proceedings of the 5th international conference on
Software engineering, pp. 215-223, 1981.

Jiacheng Xu, Bo Pang, Jin Qu, Hiroaki Hayashi, Caiming Xiong, and Yingbo Zhou. CLOVER:
A Test Case Generation Benchmark with Coverage, Long-Context, and Verification, February
2025a. URL http://arxiv.org/abs/2502.08806. arXiv:2502.08806 [cs].

Junjielong Xu, Qinan Zhang, Zhiging Zhong, Shilin He, Chaoyun Zhang, Qingwei Lin, Dan Pei,
Pinjia He, Dongmei Zhang, and Qi Zhang. OPENRCA: CAN LARGE LANGUAGE MODELS
LO- CATE THE ROOT CAUSE OF SOFTWARE FAILURES? 2025b.

Ruiyang Xu, Jialun Cao, Yaojie Lu, Hongyu Lin, Xianpei Han, Ben He, Shing-Chi Cheung, and
Le Sun. CRUXEval-X: A Benchmark for Multilingual Code Reasoning, Understanding and Ex-
ecution, August 2024. URL http://arxiv.org/abs/2408.13001l arXiv:2408.13001
[cs].

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineer-
ing, November 2024. URL http://arxiv.org/abs/2405.15793| arXiv:2405.15793
[cs].

Quanjun Zhang, Ye Shang, Chunrong Fang, Siqi Gu, Jianyi Zhou, and Zhenyu Chen. TestBench:
Evaluating Class-Level Test Case Generation Capability of Large Language Models, September
2024a. URL http://arxiv.org/abs/2409.17561. arXiv:2409.17561 [cs].

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement, 2024b. URL https://arxiv.org/abs/2404.05427.

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao, Zi Gong, Hang Yu, Jianguo Li, and Rui
Wang. A survey on language models for code. ArXiv, abs/2311.07989, 2023.

Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing: a survey for roadmap. ACM
Computing Surveys (CSUR), 54(11s):1-36, 2022.

13

https://qwenlm.github.io/blog/qwq-32b/
http://arxiv.org/abs/2502.08806
http://arxiv.org/abs/2408.13001
http://arxiv.org/abs/2405.15793
http://arxiv.org/abs/2409.17561
https://arxiv.org/abs/2404.05427

Under review as a conference paper at ICLR 2026

Table 4: The LLMs used for evaluation.

Model Type Description
O3-mini Reasoning-focused ~ Specialized in complex reasoning tasks, optimized for logical inference.
GPT-40-mini General-purpose A smaller variant of GPT-40, balancing performance and efficiency.

DeepSeek-R1
DeepSeek-V3

Reasoning-focused
General-purpose

Designed for enhanced reasoning capabilities, particularly in structured tasks.
A versatile model with broad applicability across NLP tasks.

Qwq Reasoning-focused ~ Optimized for step-by-step reasoning and problem-solving.

Qwen-3 Hybrid Combines general language understanding with specialized reasoning abilities.

Qwen-2.5 General-purpose A comprehensive series LLMs designed to meet diverse needs.

Gemma-3 General-purpose A compact yet powerful open-weight model by Google DeepMind.

Mistral-3.1 General-purpose Efficient and high-performing, suitable for diverse NLP applications.

Cogito-V1 Hybrid Integrates general language modeling with structured reasoning mechanisms.

Llama-3.3 General-purpose Meta’s open-weight model, optimized for scalability and task generalization.

GLM-4 General-purpose Supporting multilingual understanding and generation, suitable for a wide range of NLP tasks.
GLM-Z1 Reasoning-focused ~ Specializes in advanced decision-making and complex reasoning tasks.

A DETAILED EVALUATION SETTINGS

A.1 LARGE LANGUAGE MODELS

We list the LLMs used for evaluation in Tabled] For closed-source LLMs, we run them by calling
APIs provided by the model developers. For open-source LLMs, we deploy them locally on an
Ubuntu 22.04.2 LTS machine equipped with Intel Xeon Gold 6338 processors and NVIDIA H100
PCle GPUs.

A.2 RETRIEVAL-BASED SETTING

A.2.1 RETRIVING WITH BM25

To facilitate retrieval using BM25, we divide the source code related to the target location into
chunks. We only consider the C/C++ source files that participate in the compilation of the target
fuzz driver. For programming languages like C/C++, it is natural to split source code into syntax
units for retrieval to preserve semantic integrity. To achieve this, we use Clang to parse the source
code into abstract syntax trees (ASTs), where subtrees correspond to syntax units. Initially, we
split the code into high-level syntax units (e.g., function declarations, class declarations, method
declarations, struct declarations, enum declarations, etc.). For syntax units containing more than
100 lines, we further split them until each unit contains fewer than or equal to 100 lines of code.
We then extract the surrounding code of the target location, which is limited to 10 lines or fewer.
Next, we extract related function signatures, class definitions, etc., and concatenate them with the
surrounding code and the signature of the entry function LLVMFuzzerTestOnelnput to form the
query string. The tokenization process is carried out using standard C/C++ lexical analysis. We
retrieve code chunks based on the query string, calculate their BM25 scores, and sort them according
to the scores. Finally, we select as many of the top-scoring chunks as possible, as long as they fit
within a 15,000-token limit.

A.2.2 PROMPT TEMPLATES

We list the prompt templates used in this section. We adopt a one-shot prompt strategy to facilitate
effective interactions with the LLMs.

System Prompt. The system prompt consists of an objective description and an exemplary interac-
tion. The objective description is shown in Listing[A.2.2] and the exemplary interaction is shown in

Listing[A.2.2]

Listing 1: Objective description in retrieval-based setting

Your goal is to analyze source code to generate input
allowing the program to execute and reach specific

You are a software analysis expert.
< byte sequences for C/C++ programs,
< code locations when provided with these sequences.
Objective Description

14

Under review as a conference paper at ICLR 2026

Note that the program may undergo a series of processing and checks before reaching the

< specified line while handling the input byte sequence. You need to ensure that all these
— checks pass smoothly.

The input byte sequence for the program will be passed to the data parameter of the

— function:

VU

int LLVMFuzzerTestOnelnput (const uint8_t+ data, size_t size)

Here, size represents the length of the input bytes. You need to ensure that after reading
< the input from the LLVMFuzzerTestOneInput function, the program can execute and reach
— the specified code line in the target function. Therefore, you may need to analyze the
< call chain from LLVMFuzzerTestOneInput to the target function.

Note: Do not make any assumptions, do not use "possibly"; all information must be derived
— from known background knowledge or obtained through code analysis.

Format for Returning Input Sequence

If you believe that you can find the input byte sequence without further queries, please
< write a Python function named generate_buf. When this function is called, it will

< randomly generate a byte sequence that meets the requirements.

You can call external Python packages within this function to perform specific numerical
< calculations. Please include the code for this function and any relevant auxiliary
< functions in the code field of the response JSON, and place the call chain from

— LLVMFuzzerTestOneInput to the target function in the call_chain field.

For example:

json
{
"code": "import random\ndef generate_buf () :\n frag_num = 1\n frag_total = 1\n
< session_id = random.randint (0, 99999)\n payload = b'payload'\n data_part =
<« f\"AAAAA, {frag_num}, {frag_total}, {session_id}, {payload}\"\n full_sentence =
— f\"!{data_part}*\\u0007\"\n return full_sentence.encode('ascii')",
"call_chain": ["LLVMFuzzerTestOneInput", "funcl", "func2", "target_func"

Listing 2: The exemplary interaction in system prompt

Session Example
An example of a session process is as follows:
User:
The program point I need to reach is the first line of the following code:
RN @
return 1;
This code is located in the function func, and the expanded version of this function is as
— follows:
RN ©
int func(uint8_t ch) {
if (ch == 'A"){
return 1;
}

return 0;

The related code snippets is as follows:
RN ©
int func(uint8_t ch) {
if (ch == 'A"){
return 1;
}
return 0;
}
int handle_file (const uint8_t+ data, size_t size) {
if (size > 0){
return func(data[0]);
}
else {
return 0;

15

Under review as a conference paper at ICLR 2026

}
int LLVMFuzzerTestOnelInput (const uint8_t+ data, size_t size) {
handle_file (data, size);

Assistant:
To reach this branch, the variable ch needs to equal 'A'.
By analyzing the code, the variable ch comes from the first element of the data array, and
< we must ensure that size > 0.
The current function call chain to reach the target code is:
LLVMFuzzerTestOneInput -> handle_file -> func.
In this chain:
LLVMFuzzerTestOneInput calls handle_file via
NG
handle_file (data, size);

handle_file then calls func via
°%°g
if (size > 0){

return func(data([0]);

In func, it reaches the target line through
RG]
if (ch == 'A"){

return 1;

and all the if conditions must pass.

From the analysis, the variable ch in the func function comes from the first element of the
< data in the handle_file function. The data and size in handle_file are directly passed
— from LLVMFuzzerTestOneInput.

Thus, I can conclude that the constraints to reach the target code are:

The length of the input byte sequence must be > 0.

The first element of the input byte sequence must be 'A'.

The input string b'A' meets these requirements.

Therefore, the final answer is:

json
{
"code": "def generate_buf () :\n return b'A'\n",
"call_chain": ["LLVMFuzzerTestOneInput", "handle_file", "func"

User Prompt. The user prompt template is shown in Listing where “code” refers to the
5 lines surrounding the target location, “’surrounding_code” refers to the 10 lines surrounding the
target location, and context” refers to the related code snippets retrieved using BM25.

Listing 3: User prompt template in retrieval-based setting

The point I need to reach is the first line of the following code:

It is only necessary to execute up to the first line of this code, without considering its
< content and execution context.

To facilitate locating this code, below is a snippet of the surrounding code:

AN

{surround_code}

The context code is as follows:

AN

{context}

This code is in C/C++ package {prog_package}.

16

Under review as a conference paper at ICLR 2026

Table 5: The specialized tool provided in the agent-based setting.

Input Description

Function name Query the code of the given function

Class name, Method name Query the code of the given class method

Function name Query all code snippets where the function is called
Class name, Method name Query all code snippets where the method is called
Global variable name Query the definition of the global variable

Global variable name Query all code snippets that access the global variable

Class/struct member variable Query all code snippets that access the member variable
Class/struct/enum type name Query the definition of the class/struct/enum type
Macro name Query the macro definition

A.3 AGENT-BASED SETTING
A.3.1 ToOOL SPECIFICATION AND IMPLEMENTATION

The tools provided in related SE agent works are primarily designed for tasks such as issue resolution
and unit test generation, which are not well-suited for TTG problems and often incur a significant
cost in interactions between LLMs. To address this, we design a code browser with functionalities
tailored specifically for TTG problems, drawing inspiration from routines commonly used by human
analysts. The functionalities of the code browser are shown in Table [5] We demonstrate the usage
of the code browser through prompts with concrete examples, utilizing a multi-round conversation.
In this setup, LLMs query the code browser to browse relevant code snippets, which enhances their
ability to solve TTG tasks.

A.3.2 PROMPT TEMPLATES

We list the prompt templates used in this section. We adopt a one-shot prompt strategy to facilitate
effective interaction with LLMs.

System Prompt. The system prompt consists of the objective description, tool specification, and an
exemplary interaction. The objective description is shown in Listing|A.3.2] The tool specification is
shown in Listing[A.3.2] The exemplary interaction is shown in Listing[A.3.2]

Listing 4: Objective description in agent-based setting

You are a software analysis expert. Your overall goal is to analyze source code to generate
< input byte sequences for C/C++ programs, allowing the program to execute and reach

< specific code locations when provided with these sequences.

In a single session, you need to make one of the following two choices:

1. If the information is insufficient, return the information you need to inquire about.

2. If the information is sufficient to make a decision, return the input sequence.

Please note that you should choose option 2 only when you are certain that the information
< 1s adequate and that the input sequence can be completely determined. Otherwise, you
— should choose option 1 to obtain more relevant information.

Objective Description

Note that the program may undergo a series of processing and checks before reaching the

< specified line while handling the input byte sequence. You need to ensure that all these
— checks pass smoothly.

The input byte sequence for the program will be passed to the data parameter of the

— function:

RN

int LLVMFuzzerTestOnelInput (const uint8_t+ data, size_t size)

Here, size represents the length of the input bytes. You need to ensure that after reading
— the input from the LLVMFuzzerTestOneInput function, the program can execute and reach
— the specified code line in the target function. Therefore, you may need to analyze the
< call chain from LLVMFuzzerTestOneInput to the target function.

17

Under review as a conference paper at ICLR 2026

Be aware that you must perform program analysis using known information (such as call chain
analysis, path analysis through if conditions, etc.) to guarantee that the provided
input allows execution to reach the specified code line in the target function from the
LLVMFuzzerTestOneInput function. If this cannot be assured, you should use the code
browser to acquire more information until you can guarantee this.

([T

u have the following choices:

When the context or function call information provided is insufficient to generate a
suitable byte sequence, you can use the code browser to browse related code snippets to
obtain more context information or function call information. The user will return the
code snippets you request, and you can analyze the code based on this information to
make further decisions. If these new code snippets are still insufficient to generate
the required sequence, you can initiate another request. Please do not assume function
or structure content or input processing conditions.

If you believe the information provided is sufficient, you can give the answer directly.
In your final answer, you should explain the call chain from the LLVMFuzzerTestOneInput
function to the target function, where each call relationship should be confirmed based
on the queried code.

A

Format Description
Your response needs to be provided in JSON format. The specific format for the two choices
< 1is described as follows:

Format for Returning Input Sequence

If you believe that you can find the input byte sequence without further queries, please
— write a Python function named generate_buf. When this function is called, it will

< randomly generate a byte sequence that meets the requirements.

You can call external Python packages within this function to perform specific numerical
<— calculations. Please include the code for this function and any relevant auxiliary
< functions in the code field of the response JSON, and place the call chain from

— LLVMFuzzerTestOneInput to the target function in the call_chain field.

For example:

json
{
"code": "import random\ndef generate_buf ():\n frag_num = 1\n frag_total = 1\n
< session_id = random.randint (0, 99999)\n payload = b'payload'\n data_part =
< f\"AAAAA, {frag_num}, {frag_total}, {session_id}, {payload}\"\n full_sentence =
— f\"!{data_part}*\\u0007\"\n return full_sentence.encode('ascii')",
"call_chain": ["LLVMFuzzerTestOneInput", "funcl", "func2", "target_func"

ol specification in agent-based setting

Format for Calling the Code Browser
The code browser supports the following functions:

(1) . Provide the function name to query the code of that function.

(2) . Provide the function name to query all the code that calls that function.

(3) . Provide the global variable name to query all the code that accesses that global

< variable.

(4) . Provide the class/struct member variable name to query all the code that accesses that
< class/struct member variable.

(5). Provide the global variable name to query the definition code of that global variable.
(6) . Provide the class/struct/enum type name to query the definition code of that

< class/struct/enum type.

When calling the code browser, the response JSON needs to include the following fields:

—

func_name: A list including all the function names whose code needs to be queried; if
there are none, it should be an empty list.

called_name: A list including all the function names whose calling code needs to be
queried; if there are none, it should be an empty list.

global_used: A list including all the global variable names whose accessing code needs
to be queried; if there are none, it should be an empty list.

class_member_used: A list including all the class/struct member variable names whose
accessing code needs to be queried; if there are none, it should be an empty list.

global_def: A list including all the global variable names whose definition code need
to be queried; if there are none, it should be an empty list.

Ializlalsl!

18

Under review as a conference paper at ICLR 2026

(6). type_name: A list including all the class/struct/enum type names whose definitions need
— to be queried; if there are none, it should be an empty list.

For example, the following response:

json
{

"func_name": ["f", "g"],
"called _name": ["h"],
"global used": ["v1"],
"class_member_ used": ["ml"],
"global _def": ["v2"],
"type_name": ["clsA"]

}

indicates a request to query:

+ The code for functions f and g

+ All code that calls function h

+ All code that accesses the global variable vl

+ All code that accesses the class/struct member variable ml
+ The definition code of global variable v2

+ The definition code of class/structure/enum type clsA

The user will return the results of the query to you.
Do not repeat your query.

Listing 6: The exemplary interaction in system prompt

Session Example
An example of a session process 1is as follows:
User:
The program point I need to reach is the first line of the following code:
URE
return 1;
This code is located in the function func, and the expanded version of this function is as
— follows:
TURE
int func(uint8_t ch) {
if (ch == 'A"){
return 1;
}

return 0;

Assistant:

To reach this branch, the variable ch needs to equal 'A'.

I cannot determine how the ch variable is obtained from the input, so I need to query which
— functions called func.

json

"called_name": ["func"]

User:
Here is the code snippet you requested:
°°g
int handle_file (const uint8_t* data, size_t size) {
if (size > 0){
return func(data([0]);
}
else {
return 0;

Assistant:

19

Under review as a conference paper at ICLR 2026

By analyzing the code, the variable ch comes from the first element of the data array, and
— we must ensure that size > 0.

I cannot determine how the data array and size are obtained from the input, so I need to
< query which functions called handle_file.

{

json

"called_name": ["handle_file"]

User:

Here is the code snippet you requested:

°T°@

int LLVMFuzzerTestOnelnput (const uint8_t+ data, size_t size) {

handle_file(data, size);

Assistant:

By analyzing the code, the current function call chain to reach the target code 1is:
LLVMFuzzerTestOneInput -> handle_file -> func.

In this chain:

LLVMFuzzerTestOneInput calls handle_file via

(o}
handle_file (data, size);

handle_file then calls func via
°°°g
if (size > 0){

return func(data([0]);

In func, it reaches the target line through
°°°@g
if (ch == 'A'"){

return 1;

and all the if conditions must pass.

From the analysis, the variable ch in the func function comes from the first element of the
< data in the handle_file function. The data and size in handle_file are directly passed
— from LLVMFuzzerTestOneInput.

Thus, I can conclude that the constraints to reach the target code are:

The length of the input byte sequence must be > 0.

The first element of the input byte sequence must be 'A'.

The input string b'A' meets these requirements.

Therefore, the final answer is:

json
{
"code": "def generate_buf () :\n return b'A'\n",
"call_chain": ["LLVMFuzzerTestOneInput", "handle_file", "func"

User Prompt. The user prompt is shown in Listing where “code” refers to the 5 lines sur-
rounding the target location, “surrounding_code” is the 10 lines surrounding the target location, and
“func_code” is the code of the function queried using the function name.

Listing 7: User prompt in agent-based setting

The point I need to reach is the first line of the following code:

SEEE

{code}

It is only necessary to execute up to the first line of this code, without considering its
<— content and execution context.

20

Under review as a conference paper at ICLR 2026

To facilitate locating this code, below is a snippet of the surrounding code:
TTC
{surround_code}

This code is located in the function {func_name}, and code of this function is as follows:
N

{func_code}

This function is in C/C++ package {prog_package}.

Query Result Prompt. The template used for responding to LLM’s queries is shown in Listing
[A732] in which “code_ret” refers to the code snippets returned by the code browser.

Listing 8: Query result prompt in agent-based setting

Here is the code snippet you requested:
he!
{code_ret}

B AN EXEMPLARY CONVERSATION WITH LLM

In this section, we present the responses from LLMs that correctly solve the target problems. These
examples demonstrate how the LLMs utilize the provided tools and reasoning capabilities to address
the challenges posed by the TTG tasks effectively. Each response showcases the model’s understand-
ing of the code, the correct application of reasoning, and the ability to retrieve and integrate relevant
information to reach a solution.

B.1 TARGET PROBLEM

The target code location is at the final branch in the starting part of function png_handle_sCAL,
where the starting part of this function is shown in Listing [B.T}

Listing 9: Starting part of target function

void /+ PRIVATE x/
png_handle_sCAL (png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{

png_bytep buffer;

size_t i;

int state;

png_debug (1, "in png_handle_sCAL");

if ((png_ptr->mode & PNG_HAVE_IHDR) == 0)
png_chunk_error (png_ptr, "missing IHDR");

else if ((png_ptr->mode & PNG_HAVE_IDAT) != 0)

{
png_crc_finish (png_ptr, length);
png_chunk_benign_error (png_ptr, "out of place");
return;

}

else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sCAL) != 0)
{

png_crc_finish (png_ptr, length);

png_chunk_benign_error (png_ptr, "duplicate");

return;

21

Under review as a conference paper at ICLR 2026

B.2 RESPONSE IN RETRIEVAL-BASED SETTING

The response of the LLM in the retrieval-based setting is shown in Listing

Listing 10: Response of LLM in retrieval-based setting

Think:

Okay, let's tackle this problem. The user wants to generate an input byte sequence that will
< cause the libpng library to execute the specified code block in the function handling

— the sCAL chunk. The target code is in the else if condition where the info_ptr's valid
< flag has PNG_INFO_sCAL set, leading to the lines png_crc_finish and the error message

— "duplicate".

First, I need to figure out how the sCAL chunk is processed in libpng. Looking at the

— provided code, the function png_handle_sCAL is responsible for handling sCAL chunks. The
— specific code block they want to hit is when the info_ptr already has the sCAL chunk

< processed (PNG_INFO_sCAL bit set), which triggers the duplicate error.

So, the conditions to reach that branch are:

1. The info_ptr is not NULL.

2. The info_ptr's valid field has the PNG_INFO_sCAL bit set.
3. The current chunk being processed is another sCAL chunk.

Therefore, to trigger the duplicate error, the input must have two sCAL chunks. The first
— one will set the valid bit, and the second one will hit the duplicate condition.

Now, how to structure the PNG data to include two sCAL chunks. Let's recall the PNG file
< structure. A PNG starts with the signature, followed by chunks. Each chunk has a length,
— type, data, and CRC.

The steps to create such a file:

- Start with the PNG signature (8 bytes: 0x89PNG\r\n\xla\n).
— Include an IHDR chunk (mandatory first chunk) .

- Add the first sCAL chunk.

Add a second sCAL chunk.

Possibly add an IEND chunk at the end.

The sCAL chunk structure: The chunk type is 'sCAL'. The data for sCAL must start with a unit
< type (1 byte, either 1 or 2), followed by two null-terminated strings representing the
— width and height. The minimum length is 4 bytes (unit + at least one byte for each

< string, but they need to be null-terminated). For example, the first sCAL chunk could

< have unit 1 followed by "1\02\0" (though exact data might vary as long as it meets the
— length and format requirements).

Wait, the code for png_handle_sCAL has a check: "else if (info_ptr != NULL &&

— (info_ptr->valid & PNG_INFO_sCAL) != 0)". So, after the first sCAL chunk is processed,

< the valid bit is set. The second sCAL chunk will trigger the duplicate check.

Therefore, the input data must have two sCAL chunks. The first one must be valid enough to
< pass the initial checks (like length >=4, etc.) so that it sets the valid bit. The
— second one can be minimal, as long as it's recognized as an sCAL chunk again.

Now, constructing the input:

First, the PNG header:
— Signature: 89 50 4E 47 0D 0A 1A 0A

Then, the IHDR chunk:

— Length: 13 (since IHDR data is 13 bytes)

- Type: 73 68 61 6E (IHDR is 'IHDR', so hex 49 48 44 52)

— Data: 00 00 00 01 00 00 00 01 08 03 (example for 1xl image, 8 bits, palette)
— CRC: computed for the IHDR data.

Then the first sCAL chunk:

- Length: Let's say 5 bytes (unit type (1) + "1\02\0" would be 1 + 1 + 1 +1 = 4? Wait, the
minimum required is 4 bytes (unit + at least 1 byte each for width and height, but they
need to be null-terminated. So "1\0" for width and "\02\0" might not be right. Let me
think again. The minimum length is 4 bytes as per the code: "else if (length < 4) {
invalid }". So unit (1 byte) plus the rest must be at least 3 bytes. For example,
unit=1, then "1\02\0" would be 4 bytes. So length is 4.

ELEELRE

22

Under review as a conference paper at ICLR 2026

So first sCAL chunk:

— Length: 4 (in big-endian 00 00 00 04)

- Type: 'sCAL' (hex 73 43 41 4C)

— Data: 01 31 00 32 (unit=1, width "1", height "2" as strings, but need null terminators.
Wait, the width and height are ASCII numbers separated by a null. So the data would be
[unit] [width string] [0] [height string] [0]. So to have both strings, the minimum would be
unit (1) + "a\0b\O" which is 4 bytes total. So for example, unit 1, then "1\02\0" would
be 4 bytes (0x01 0x31 0x00 0x32). That gives unit=1, width "1", height "2". So that's
acceptable.

ELELE

Q

for the sCAL data (the 4 bytes) would need to be calculated. But since the input is
generated, maybe the CRC can be faked, but the library will process it. Wait, but the
CRC must be correct for the data and length. Hmm, this complicates things because
generating the correct CRC is necessary for the chunk to be processed. Alternatively,
perhaps the code allows some flexibility, but the user's input must have valid CRCs for
each chunk to reach the desired path.

TELiLg

Alternatively, maybe the fuzzer can handle incorrect CRCs but in this case, since the code
< calls png_crc_finish, which verifies the CRC, an incorrect CRC would lead to an error
— before the duplicate check. Therefore, to trigger the duplicate check, the first sCAL
< chunk must have a valid CRC.

So I need to compute the CRC for the first sCAL chunk's data and then append the CRC.

So the first sCAL chunk:

Data part: 0x0l1 0x31 0x00 0x32 (unit 1, "1\02"

The CRC is computed over the data plus the chunk type. Wait, the CRC in a PNG chunk is
— computed over the chunk type and the data. So for the sCAL chunk:

The CRC is computed as:

CRC32 of the 4-byte chunk type (sCAL) plus the data (4 bytes), then the 4-byte CRC is
— appended.

Wait, the chunk structure is:

[Length (4 bytes)] [Chunk Type (4 bytes)] [Data (length bytes)] [CRC (4 bytes)]

The CRC is computed over the chunk type and data, then stored in the 4 bytes after data.
Therefore, to compute the CRC for the first sCAL chunk:

Data (including the 4 bytes of data):

The chunk type is 'sCAL' (73 43 41 4C in hex, or 0x73 0x43 0x41 0x4C).

The data is 0x01 0x31 0x00 0x32 (assuming the unit is 1, followed by "1\02").

So the bytes to compute the CRC are the 4 bytes of chunk type plus the 4 bytes of data,
< totaling 8 bytes.

Compute the CRC32 of those 8 bytes, then append as 4 bytes.

Then, the second sCAL chunk must be another sCAL chunk. Let's make it minimal. The second
< sCAL chunk can have the same data, or just the minimal required.

Second sCAL chunk:

Length: 4 again (same data as first, or even shorter? Wait, the minimum length is 4, so it
< can be same as first. But to make sure it's processed, it must have a valid CRC.

So the second sCAL chunk would have the same structure as the first, but with the same data,
— leading to same CRC?

Wait, but the data can be different. Let's proceed.
Alternatively, perhaps the second sCAL can have a different data, but must have valid CRC.

So, putting this all together, the input data would be:

23

Under review as a conference paper at ICLR 2026

PNG signature (8 bytes) +

IHDR chunk (with length 13, type IHDR,

First sCAL chunk (length 4, type sCAL,

Second sCAL chunk (same structure as first) +

IEND chunk (mandatory at end, with correct CRC).

Now,

< write a Python function to generate this,

Wait,

< but Jjust generated the bytes. However,

<— helper functions can compute CRC32.

In Python, the zlib module has a crc32 function.

— compute the CRCs.

Let me outline the steps for the Python code:

1. Generate the PNG signature.

2. Generate the IHDR chunk:

So data is:

Using zlib.crc32:
ihdr_data = b'IHDR'

crc = zlib.crc32(ihdr_data) & OxXFFFFFFFF
The CRC for IHDR is known to be Oxed c3 5e 9a
3. First sCAL chunk:

The sCAL chunk data is

data for 1x1 image,

data as above,

the problem is generating all these chunks with correct CRCs.
perhaps they can compute the CRCs on the fly.

but in the code example given in the problem's example,
in reality,

— chunks to be processed.
Alternatively, maybe the fuzzer's code can handle the CRC,
< correct structure. Since the

user's code is to generate the input bytes,

The length of the IHDR data is 13,
The CRC is computed over the IHDR type and data.
So the CRC is computed on the 4 bytes of 'IHDR'

and correct CRC) +

correct CRC) +

But since the user is to

the user didn't compute CRCs
the CRCs must be correct for the

but the input must have the
perhaps the

So, in the generate_buf function, we can

— IHDR data: For a minimal 1x1 image, 8 bits, palette color type (4). The IHDR data is 13
— Dbytes: width (4 bytes, 0x00 00 00 01), height (4 bytes same), bit depth (1 byte 08),
<~ color type (1 byte 03 or 04?), compression (0), filter (0), interlace (0). Wait,

— palette is color type 3. Let's pick 3 for color type.

So IHDR data is:

width: 0x00 00 00 01 (1 pixel)

height: same

bit depth: 0x08 (8 bits)

color type: 0x03 (palette)

compression: 0x00 (deflate)

filter: 0x00 (no filter)

interlace: 0x00 (none)

b'\x00\x00\x00\x01\x00\x00\x00\x01\x08\x03\x00\x00\x00"

so the length field is 0x00 00 00 OD.

The type is 'IHDR' (0x49 48 44 52).

plus the 13 data bytes.

+ b'\x00\x00\x00\x01\x00\x00\x00\x01\x08\x03\x00\x00\x00"

(but let's compute it properly in code).

[unit] [width] [0] [height] [0].

24

Under review as a conference paper at ICLR 2026

Let's choose unit 1 (0x01), width "1" (0x31), height "2" (0x32), so the data is
— Db'\x01\x31\x00\x32"'.

The length is 4, so length bytes are 0x00 00 00 04.

The type is 'sCAL' (0x73 43 41 4C).

The CRC is computed over 'sCAL' + data (4 bytes), so total 8 bytes.

So the chunk's CRC is computed on b'sCAL' + b'\x01\x31\x00\x32"'.
4. Second sCAL chunk: same as first, so same data and CRC.
5. IEND chunk: standard, with no data. Its length is 0, type IEND. CRC is OxAE426082.
Putting this together in code:

The Python function generate_buf () would construct all these chunks, compute the CRCs, and
— return the concatenated bytes.

Wait, but the user's code may not need to handle all the CRCs correctly, but the problem
< states that the input must reach the target code, so the first sCAL must be processed
— and set the valid bit, so the CRC must be correct.

Thus, the code must correctly compute CRCs.
So here's the plan for the code:

Import struct and zlib.

Construct each chunk step by step.

First the signature:

signature = b'\x89PNG\r\n\xla\n'

Then the IHDR chunk:

def make_chunk (type, data):
length = len(data)
crc = zlib.crc32 (type.encode() + data) & OxXFFFFFFFF
return struct.pack('!I', length) + type.encode() + data + struct.pack('!I', crc)

Then, create the IHDR data:

ihdr_data = b'\x00\x00\x00\x01"' * 2 + b'\x08\x03\x00\x00\x00' # width, height, etc.
Wait, let me write it properly:

width =1

height =1

bit_depth = 8

color_type = 3 # palette
compression = 0
filter_method = 0
interlace = 0

ihdr_data = (

width.to_bytes (4, 'big') +

height.to_bytes (4, 'big') +

bytes ([bit_depth, color_type, compression, filter method, interlace])
)
So the data is 13 bytes.

Then the IHDR chunk is made with type 'IHDR' and this data.
Then first sCAL chunk:

scal_data = b'\x01\x31\x00\x32' # unit 1, "1\02"
scal_chunk = make_chunk ('sCAL', scal_data)

25

Under review as a conference paper at ICLR 2026

Second sCAL chunk: same as first.
Then IEND chunk:

iend_chunk = make_chunk ('IEND', b'"'")
So putting it all together:

def generate_buf():
import struct
import zlib

def make_chunk (type_str, data):
length = len(data)
chunk_type = type_str.encode ()
crc_data = chunk_type + data
crc = zlib.crc32(crc_data) & OxXFFFFFFFF
return struct.pack('!I', length) + chunk_type + data + struct.pack('!I', crc)

Signature
buf = b'\x89PNG\r\n\xla\n'

IHDR chunk
ihdr_data = (
(1) .to_bytes (4, 'big') * 2 + # width and height
(8) .to_bytes (1, 'big') + # bit depth
(3) .to_bytes (1, 'big') + # color type (palette)
b'\x00\x00\x00" # compression, filter, interlace
)
buf += make_chunk ('IHDR', ihdr_data)

First sCAL chunk
scal_data = b'\x01\x31\x00\x32' # unit 1, width "1", height "2"

buf += make_chunk ('sCAL', scal_data)

Second sCAL chunk (same as first)
buf += make_chunk ('sCAL', scal_data)

IEND chunk
buf += make_chunk ('IEND', b'"')

return buf

Wait, but need to ensure that after the first sCAL chunk is processed, the info_ptr's valid
< bit is set. The second sCAL chunk will trigger the duplicate check.

This should work. The code creates two sCAL chunks, which will cause the second one to hit
< the duplicate condition.

Now, the call chain from LLVMFuzzerTestOnelInput to the target code:

The LLVMFuzzerTestOneInput function is part of the fuzzer's driver, which calls into
< libpng's reading functions. The main path would be:

LLVMFuzzerTestOneInput calls into the libpng read functions, which process each chunk. The
< sCAL chunks are processed via png_handle_sCAL, which is called when the chunk type is

— 'sCAL'.

Thus, the call chain would be something like:

LLVMFuzzerTestOneInput -> png_read_png (or similar) -> processes each chunk -> when 'sCAL'
< chunk is found, calls png_handle_sCAL -> first sCAL sets valid bit, second sCAL triggers
< the duplicate check.

Therefore, the call chain can be listed as:

["LLVMFuzzerTestOneInput", "png_read_png", "png_process_chunk", "png_handle_sCAL"]

But I need to check the code provided. Looking at the code given, the function handling the

<— chunks is part of the png_read functions. The code has functions like png_handle_sCAL,
< which is called when the chunk type is 'sCAL'.

26

Under review as a conference paper at ICLR 2026

In the provided code, the function png_read_data is part of the read process, but the actual
<— handling of each chunk type is via a switch or some dispatch. Looking at the code,

< there's a section where chunks are processed:

Looking at the code, there's a function png_read_chunk that reads the chunk type and

< dispatches to the appropriate handler. For example, when the chunk type is 'sCAL', it

< calls png_handle_sCAL.

Thus, the call chain from the fuzzer's entry point (LLVMFuzzerTestOneInput) would be:

LLVMFuzzerTestOnelInput -> (libpng's read functions) -> png_read_chunk -> png_handle_sCAL
— (twice, once for each sCAL chunk)

So the call chain would be:
["LLVMFuzzerTestOneInput", "png_read _png", "png_read_chunk", "png_handle_sCAL"

But the exact names might be different. Since the code provided includes the functions like
— png_handle_sCAL, the call chain is:

LLVMFuzzerTestOnelInput calls into the libpng processing, which reads the first sCAL chunk

— and calls png_handle_sCAL, which sets the valid bit. Then, when the second sCAL chunk is
— read, the same function is called again, leading to the duplicate check.

Thus, the call_chain field should list the path from the fuzzer entry to the target code:
["LLVMFuzzerTestOneInput", "png_process_chunks", "png_handle_sCAL"]

But to be precise, based on the provided code, the code that processes each chunk after

reading the chunk type is likely in a function like process_chunk, which calls the
respective handler. Since the code provided includes the function png_handle_sCAL, the

([T

call chain would be:

LLVMFuzzerTestOneInput -> (the code that reads the PNG data) -> when a 'sCAL' chunk is
< encountered, calls png_handle_sCAL. The first call sets the valid bit, the second call
< triggers the target code.

Therefore, the call chain to the target line (the duplicate check in png_handle_sCAL) is:
LLVMFuzzerTestOnelInput -> (the libpng read loop) -> png_handle_sCAL (second time) .
So the call_chain is ["LLVMFuzzerTestOneInput", "png_handle_sCAL"]

Wait, but that's too short. The actual call path would go through more functions. Let me
< think again.

The fuzzer's function is the entry point, then the libpng library's functions are called to
< read the PNG data. The code for the fuzzer's LLVMFuzzerTestOnelInput function is provided
— as:

extern "C" int LLVMFuzzerTestOnelInput (const uint8_t«* data, size_t size) {
if (size < kPngHeaderSize) {
return 0;

png_read_end (png_handler.png_ptr, png_handler.end_info_ptr);

PNG_CLEANUP
return 0;

The code likely initializes a png_ptr and reads the data via png_read_png or similar. The
actual processing of each chunk is done in the png_read functions. The chunk processing
is handled by functions like png_read_chunk and then the respective handlers (like
png_handle_sCAL) .

EEE

27

Under review as a conference paper at ICLR 2026

Thus, the call chain is:

LLVMFuzzerTestOneInput -> (initialization and calls to libpng's read functions) -> when the
— second sCAL chunk is processed, it calls png_handle_sCAL again, leading to the target
— code.

Therefore, the call_chain should list the path from the entry point to the target function.
< The target function is png_handle_sCAL, but specifically the part where the duplicate
< check is made. So the chain is:

LLVMFuzzerTestOnelInput -> ... —-> png_handle_sCAL (the second time it is called)

But the call chain is the path taken to reach the target line, which is inside
< png_handle_sCAL. So the call chain from the entry point to the function containing the
< target code is:

["LLVMFuzzerTestOneInput", "png_read_png", "png_process_chunks", "png_handle_sCAL"]

Alternatively, if the code structure is that the main loop in libpng reads chunks and
< dispatches to handlers, then the chain is:
LLVMFuzzerTestOnelInput -> png_read_start —-> ... -> png_read_chunk -> png_handle_sCAL.

But since the exact code isn't fully provided, I'll assume the minimal chain that includes
<— the handler function.

The key point is that the code in question is in png_handle_sCAL, so the call chain must

< include that function.

Thus, the final answer includes the Python code generating the two sCAL chunks with correct
— CRCs, and the call_chain as listed above.

Wait, in the code provided, the function png_handle_sCAL has the code block:

else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sCAL) != 0)
{

png_crc_finish(png_ptr, length);

png_chunk_benign_error (png_ptr, "duplicate");

return;

So to reach this, the first sCAL chunk must have been processed, setting the valid bit, and
— the second sCAL chunk's processing will hit this condition.

The code for generate_buf must create two sCAL chunks. The first one must be valid (so that
< it processes and sets the valid bit). The second one can be minimal but must be

< recognized as an sCAL chunk.

Therefore, the Python function should generate the structure with two sCAL chunks.

Now, testing the code:

The first sCAL's data is 4 bytes (unit + "1\02"), which meets the minimum length of 4 bytes.
— The second sCAL can be the same.

Thus, the code should work.

Answer:

“Tjson

"code": "import struct\nimport zlib\n\ndef generate_buf () :\n def make_chunk (type_str,
data) :\n length = len(data)\n chunk_type = type_str.encode () \n
crc_data = chunk_type + datal\n crc = zlib.crc32(crc_data) & OxFFFFFFFF\n
return struct.pack('!I', length) + chunk_type + data + struct.pack('!I', crc)\n\n

PNG signature\n buf = b'\\x89PNG\\r\\n\\xla\\n"'\n\n # IHDR chunk for 1x1
palette image\n ihdr_data = (\n (1) .to_bytes (4, 'big') * 2 + # width and
height\n b'\\x08\\x03\\x00\\x00\\x00"' # bit depth, color type (palette)
compression, filter, interlace\n)\n buf += make_chunk ('IHDR', ihdr_data)\n\n
First sCAL chunk (unit 1, width '1l', height '2')\n scal_data =
b'\\x01\\x31\\x00\\x32"'\n buf += make_chunk ('sCAL', scal_data)\n\n # Second
sCAL chunk (duplicate)\n buf += make_chunk ('sCAL', scal_data)\n\n # IEND
chunk\n buf += make_chunk ('IEND', b''"')\n return buf",

"call _chain": ["LLVMFuzzerTestOnelInput", "png_read_png", "png_process_chunks",

— "png_handle_sCAL"]

ELEEER L L EL L

28

Under review as a conference paper at ICLR 2026

B.3 RESPONSE IN AGENT-BASED SETTING

The response of the LLM in the first round is shown in Listing [B.3] and the second response is
shown in Listing[B.3]

Listing 11: Response of LLM in the first round of agent-based setting

Think:

Okay, I need to generate an input byte sequence that will reach the specific line in the

— png_handle_sCAL function where png_crc_finish is called with the "duplicate" error. Let
< me start by understanding the code structure of png_handle_sCAL.

The target code is inside the else if condition: else if (info_ptr != NULL &&

— (info_ptr->valid & PNG_INFO_sCAL) != 0). So to trigger this, info_ptr must not be NULL,
< and the PNG_INFO_sCAL flag must be already set in info_ptr->valid.

Now, the function png_handle_sCAL is part of libpng, which processes PNG chunks. The sCAL
< chunk is a special chunk, so the input must be a PNG file containing an sCAL chunk. But
< the problem is to get the code to process this chunk and hit the duplicate case.

First, I need to trace the call chain from LLVMFuzzerTestOneInput to png_handle_sCAL. Let's
— start by finding out how the fuzzer input is processed. Typically, in libpng fuzzers,
< the input is treated as a PNG file. The entry point LLVMFuzzerTestOnelInput probably

— calls libpng functions to read and parse the PNG data.

the first step is to check how LLVMFuzzerTestOnelInput is implemented. The user hasn't
provided that code yet. Without knowing how the input is passed to libpng's parsing
functions, I can't determine the path. Therefore, I need to request the code for
LLVMFuzzerTestOnelInput.

r1eeeg

Once I have that, I can see how the data is processed. Suppose LLVMFuzzerTestOnelInput calls
< png_read functions, which eventually process chunks. The sCAL chunk handler is
— png_handle_sCAL. So, the fuzzer input must include an sCAL chunk.

But even if the input has an sCAL chunk, the code will reach png_handle_sCAL. However, the
< target condition is that info_ptr's valid field already has PNG_INFO_sCAL set. That

< implies that the info struct must have already processed an sCAL chunk before. So,

< perhaps the input needs to contain two sCAL chunks. The first one would set the

— PNG_INFO_sCAL flag, and the second one would trigger the duplicate check.

Wait, but how does libpng process multiple chunks? When a PNG file is parsed, each chunk is
— processed in order. If the first sCAL chunk is processed, then info_ptr's valid bit is

< set. Then, if a second sCAL chunk is encountered, the code would check if the valid bit
— is already set, leading to the duplicate error.

So, the input needs to be a PNG file with two sCAL chunks. However, the fuzzer's input is a
— byte stream. The LLVMFuzzerTestOnelInput function likely passes this data to libpng's

< parsing functions. Therefore, the fuzzer's input must be a valid PNG file that includes
— two sCAL chunks.

But to construct such a PNG file, I need to know the structure. PNG files start with a

signature, followed by a series of chunks. Each chunk has a length, type, data, and CRC.
So, to create two sCAL chunks, I need to structure the input correctly.

[

But let's confirm the call chain. The user's target is in png_handle_sCAL, which is called
— when the sCAL chunk is processed. So, the input must include an sCAL chunk. The code
< path to reach the duplicate error requires that when the sCAL chunk is processed, the
< info_ptr already has PNG_INFO_sCAL set.

So, perhaps the input must have two sCAL chunks. The first one is processed normally,
< setting the valid flag. The second one triggers the duplicate error.

Therefore, the steps would be:

The input starts with the PNG signature.
IHDR chunk (required).

First sCAL chunk.

Second sCAL chunk.

Other necessary chunks (like IDAT, IEND).

u s WP

29

Under review as a conference paper at ICLR 2026

w

ut wait, the code in png_handle_sCAL checks if the mode has PNG_HAVE_IDAT. If so, it skips
processing. So the sCAL chunk must come before the IDAT chunk. In PNG structure, chunks
after IDAT are not allowed except for IEND. So the sCAL chunks must be between IHDR and
IDAT.

&L

Moreover, the code checks if (png_ptr->mode & PNG_HAVE_IDAT) != 0, which means if IDAT has
< been processed, the sCAL chunk is out of place. So the sCAL chunks must be before IDAT.

Therefore, the input must be structured as:
PNG signature =+ IHDR =+ sCAL =+ sCAL -+ IDAT -+ IEND.
But creating such a PNG file requires precise byte crafting. However, the fuzzer's input is

passed via LLVMFuzzerTestOneInput. So the code for that function must be parsing the
input as a PNG file. Let's check how the fuzzer test function is structured.

!

w

ut since the user hasn't provided the code for LLVMFuzzerTestOneInput, I can't proceed.
Therefore, my first step is to query the code of LLVMFuzzerTestOneInput to see how data
is processed. Additionally, I need to confirm how the libpng functions are called in the
fuzzer. For example, the fuzzer might initialize png_struct and png_info structs, then
read the PNG data.

ELEE

Once I have the code for LLVMFuzzerTestOneInput, I can see how the data is passed to libpng.
< Let's assume that the function uses png_read functions to parse the input data. Then,
< the input needs to be a valid PNG file with two sCAL chunks.

Moreover, the info_ptr must not be NULL. In libpng, info_ptr is created by
< png_create_info_struct. So the fuzzer probably creates it, so info_ptr is not NULL.

So, the key constraints are:

— The input is a valid PNG file with correct signature.

— IHDR chunk is present.

— Two sCAL chunks after IHDR and before IDAT.

- The first sCAL chunk is wvalid, so that it sets PNG_INFO_sCAL in info_ptr->valid.
— The second sCAL chunk triggers the duplicate check.

But to construct the sCAL chunks correctly, each must have valid data. The sCAL chunk's data
< starts with a unit byte (1 or 2), followed by ASCII width and height separated by a null
— byte.

So, the first sCAL chunk must be correctly formatted so that it is accepted, setting the
< wvalid flag. Then the second sCAL chunk, when processed, will hit the duplicate
<— condition.

Thus, the input bytes need to form a PNG file with these chunks. But generating such a byte
< sequence requires knowing the exact structure.

Alternatively, maybe the fuzzer input is not required to be a full PNG file. But given that
— the code checks for PNG_HAVE_IHDR and other mode flags, the input must at least have the
<— necessary chunks to pass those checks.

But without seeing how LLVMFuzzerTestOneInput processes the data, it's impossible to
— proceed. Therefore, I need to request the code for LLVMFuzzerTestOnelnput and any
< relevant functions in the call chain leading to png_handle_sCAL.

Possible steps for code queries:

1. Query the code of LLVMFuzzerTestOnelInput to see how data is processed.

2. Determine which functions are called from there. For example, maybe the fuzzer uses
< png_read_png or similar functions.

3. Check if info_ptr is created (png_create_info_struct) and passed.

4. Check the call chain to see how the sCAL chunk is processed.

Therefore, the initial JSON query should be to get the code for LLVMFuzzerTestOnelInput and
< any functions it calls that are part of the processing to handle chunks, especially

— sCAL.

So, the first JSON query would be:

30

Under review as a conference paper at ICLR 2026

"func_name": ["LLVMFuzzerTestOnelInput"],
"called_name": [],

"global_used": [],

"class_member_used": [],

"global_def": [],

"type_name": []

Once I have that, I can see how data is passed into the libpng functions. For example, if
< LLVMFuzzerTestOnelInput initializes png_struct and png_info, then starts reading the
— data.

After getting that code, I may need to follow the call chain further. For example, if
— LLVMFuzzerTestOneInput calls a function like png_read_png, which in turn processes
<— chunks, leading to png_handle_sCAL.

But to confirm, I might need to query the code of functions called by
— LLVMFuzzerTestOneInput, such as png_read_png, or other functions in the call chain.

Another consideration: the fuzzer might have a custom setup. For example, it might use a
— file reader that's passed to libpng, which reads from the input buffer.

Assuming that the code for LLVMFuzzerTestOnelInput is something like:
#include <png.h>

int LLVMFuzzerTestOnelnput (const uint8_t =xdata, size_t size) {
png_structp png = png_create_read_struct(...);
png_infop info = png_create_info_struct (png);
// Set up error handling, etc.
png_set_read_fn(png, &data, user_read_fn);
png_read_info (png, info);
// ... process chunks
png_destroy_read_struct(...);
return 0;

In this case, the input data is treated as a PNG file. So the input must be a valid PNG file
— with the required chunks.

But to reach png_handle_sCAL, the input must include an sCAL chunk. Moreover, the duplicate
<— case requires two sCAL chunks. But in PNG, chunks are processed in order. The first sCAL
< would set the info_ptr's valid flag, the second would trigger the duplicate error.

Therefore, the input must be a PNG file with two sCAL chunks. However, creating such a PNG
< requires precise construction, including valid chunk lengths, types, data, and CRCs.

But generating this manually is complex. However, for fuzzing purposes, perhaps the fuzzer
can be tricked into processing the sCAL chunk twice without having to generate a valid
PNG. But given the code checks (like PNG_HAVE_IHDR, etc.), the input must at least have
the necessary chunks to pass these checks.

L&

Alternatively, maybe the code can be reached by a malformed PNG that still manages to
— trigger the sCAL processing twice.

But without knowing how the fuzzer passes data to libpng, it's hard to proceed. Therefore,
— the immediate step is to query the code of LLVMFuzzerTestOneInput and any functions it
< calls that are part of processing the input data.

Another possibility is that the fuzzer uses a custom IO reader that feeds data to libpng.

< The code for LLVMFuzzerTestOnelInput might set up the read function to read from the data

— buffer. But without seeing that code, I can't determine the exact requirements.

So, the next step is to request the code for LLVMFuzzerTestOnelnput. Once I have that, I can
— trace the call chain further.

Therefore, the initial query should be:
“Tjson

"func_name": ["LLVMFuzzerTestOnelInput"],

31

Under review as a conference paper at ICLR 2026

"called _name": [],
"global used": [],
"class_member_used": [],
"global def": [],
"type_name": []

}

Answer:
" Jjson
{
"func_name": ["LLVMFuzzerTestOnelInput"],
"called _name": [],
"global used": [],
"class_member_ used": [],
"global def": [],

"type_name": []

Listing 12: Res of LLM in the second round of agent-based setti

Think:

Okay, let's try to figure out how to generate an input that reaches the target line in

< png_handle_sCAL. The user wants the input to cause the program to execute the line where
< png_crc_finish is called with the "duplicate" error.

First, looking at the provided code for LLVMFuzzerTestOneInput, it processes the input as a
< PNG file. The function checks if the input starts with the PNG header (kPngHeaderSize is
— 8 bytes, the standard PNG signature). If it does, it proceeds to read the PNG using

< libpng functions.

The key steps in LLVMFuzzerTestOnelInput are:

Check the input size is at least the PNG header size.

Verify the PNG signature.

Create png_struct and png_info structures.

Set up custom read functions to read from the input buffer after the header.

. Read the PNG info, IHDR chunk, and process the image data.

To reach png_handle_sCAL, the input must include an sCAL chunk. The target code is triggered
when a second sCAL chunk is encountered after the first one has already set the
PNG_INFO_sCAL flag in info_ptr.

the input PNG needs to have two sCAL chunks. The first sCAL chunk is processed normally,
setting the valid flag. The second sCAL chunk will trigger the duplicate check.

ut how does the PNG structure work? PNG chunks must appear in a certain order. The IHDR
must come first, followed by other chunks like sCAL, then IDAT, and finally IEND.
However, the code in png_handle_sCAL checks if IDAT has been processed (PNG_HAVE_IDAT) .
If so, it skips processing the sCAL chunk. Therefore, the sCAL chunks must come before
IDAT.

b WwN

1804

w

So, the structure of the input should be:
- PNG signature (8 bytes

— IHDR chunk

— sCAL chunk (first)

— SCAL chunk (second)

— IDAT chunk (s)

— IEND chunk

Each chunk has a length (4 bytes), type (4 bytes), data, and CRC (4 bytes). For the sCAL
— chunks, the data must be valid to pass initial checks. The first sCAL chunk needs to be
— correctly formatted so that it's accepted, setting the PNG_INFO_sCAL flag.

Looking at the code for png_handle_sCAL, the sCAL chunk's data must start with a unit byte
— (1 or 2), followed by width and height as ASCII strings separated by a null byte. The
< png_check_fp_number function checks the format of these strings.

To create a valid first sCAL chunk:

— Length: Let's say the data is "1\01.0\01.0" (unit=1, width=1.0, height=1.0). The actual
— length would be 1 (unit) + 3 (width "1.0") + 1 (null) + 3 (height "1.0") = 8 bytes. So
— length is 8, stored as 4 bytes in big-endian.

- Type: 'sCAL' (ASCII, 4 bytes)

32

Under review as a conference paper at ICLR 2026

— Data: The unit byte followed by "1.0\01.0"
- CRC: Calculated over type and data.

The second sCAL chunk can be minimal, maybe even invalid, since we Jjust need it to trigger

— the duplicate check. But its type must be 'sCAL', and the length must be at least 4

< (since the code checks length < 4 for some conditions). However, since the code checks
< if (info_ptr->valid & PNG_INFO_sCAL) != 0, the second sCAL chunk Jjust needs to exist.
But the code for the first sCAL chunk must pass all checks to set the valid flag. Let's

< outline the steps for the first sCAL chunk:

1. The chunk's length is >=4 (the code checks else if (length <4) ...).

2. The unit is 1 or 2.

3. The width and height are valid floating-point numbers in ASCII, separated by a null byte.
4. The CRC is correct.

So, the first sCAL chunk must be correctly formatted. The second sCAL chunk just needs to be
< present, but since the code checks the valid flag, its data may not matter as long as
< the chunk is processed.

Constructing such a PNG file requires precise byte crafting. Let's outline the structure:
PNG signature (8 bytes): \x89PNG\r\n\xla\n

IHDR chunk (25 bytes total):

- Length: 13 (00 00 00 OD)

— Type: IHDR (49 48 44 52)

— Data: width (4 bytes), height (4 bytes), bit depth (1), color type (1), compression (1),
«— filter (1), interlace (1)

— CRC: computed over type and data.

Then the first sCAL chunk:

- Length: 8 (00 00 00 08)

— Type: sCAL (73 43 41 4cC)

- Data: unit (1, 0x01), width "1.0" (31 2E 30), null (00), height "1.0" (31 2E 30
- CRC: calculated.

Second sCAL chunk:

- Length: 4 (00 00 00 04)

— Type: sCAL (73 43 41 4C)

— Data: unit (1, 0x01) followed by three arbitrary bytes (since length is 4, but the code
— requires more, but perhaps this will trigger the error early)

— CRC: doesn't matter as long as the chunk is processed.

Then IDAT chunk(s) and IEND.

However, the code in png_handle_sCAL for the first sCAL chunk must pass the checks. The
— first sCAL chunk's data must be valid. The code reads the entire chunk data, then checks
< the unit, then the width and height.

For the first sCAL chunk:
- buffer[0] must be 1 or 2.
— The rest of the data must have width and height as valid numbers.

In the code, after reading the data, it checks:

if (buffer[0] != 1 && buffer[0] != 2) = error.

Then, check the numbers:

i starts at 1. png_check_fp_number checks the width. Then there must be a null, then the
< height.

So for the first sCAL chunk, data should be:
unit (1) followed by "1.0\0" and "1.0", totaling 1 + 3 + 1 + 3 = 8 bytes. So length is 8.

The second sCAL chunk can have length 4, but according to the code:

else if (length < 4) = invalid. So length must be >=4. So length 4 is okay, but data must be
— at least 4 bytes. The code will read 4 bytes, then check buffer[0], but since the

< info_ptr already has PNG_INFO_sCAL, it will trigger the duplicate error.

But wait, the code for the duplicate check is:
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sCAL) != 0)

33

Under review as a conference paper at ICLR 2026

So when processing the second sCAL chunk, since info_ptr->valid has PNG_INFO_sCAL set, it

< will enter this condition, call png_crc_finish, and return. So regardless of the data in
< the second sCAL chunk, as long as the chunk is processed and the valid flag is set, it
< will trigger the target line.

Therefore, the input must have two sCAL chunks. The first must be valid to set the flag, the
< second can be minimal but valid enough to be processed (length >=4, correct CRC).

Now, constructing such a PNG:

1. PNG signature (8 bytes).

2. IHDR chunk (25 bytes).

3. First sCAL chunk (8 + 4 (type) + 8 (data) + 4 (CRC) = 24 bytes).

4. Second sCAL chunk (4 + 4 + 4 + 4 = 16 bytes, with data length 4, but valid CRC).

5. IDAT chunk (minimal, perhaps 1 byte data).

6. IEND chunk.

But generating the correct CRC values is essential. The CRC is computed over the chunk type

< and data. For the first sCAL chunk, the type is 'sCAL' and the data is as above. For the
— second sCAL chunk, the type is 'sCAL' and data is 4 bytes (e.g., 0x01 0x00 0x00 0x00).
— However, the CRC must be correct, otherwise libpng will ignore the chunk due to CRC

< errors.

But in the code provided, png_set_crc_action is called with PNG_CRC_QUIET_USE, which means

I

it will use the CRC without complaining. Wait, the code has:
png_set_crc_action (png_handler.png_ptr, PNG_CRC_QUIET_USE, PNG_CRC_QUIET_USE) ;

According to libpng documentation, PNG_CRC_QUIET_USE means that if the CRC is incorrect, it
will still use the data but not complain. However, if png_crc_finish is called, it will
check the CRC. Wait, in png_handle_sCAL, after reading the chunk data, it calls
png_crc_finish(png_ptr, 0). This checks the CRC of the chunk. If the CRC is invalid, it
will return early, thus not setting the PNG_INFO_sCAL flag.

ELEL

Therefore, for the first sCAL chunk, the CRC must be correct; otherwise, the code will not
< set the valid flag. Similarly, the second sCAL chunk's CRC must be correct to be
< processed and trigger the duplicate error.

Calculating CRCs can be complex. However, for the purpose of generating a valid input, we
— need to compute the correct CRC for each chunk.

Alternatively, perhaps we can craft the input in such a way that the CRC is correct. This
< would require computing the CRC for each chunk.

Let's outline the steps to generate the input:
1. Create the PNG signature: 8 bytes (0x89, 0x50, Ox4E, O0x47, 0x0D, 0x0A, Ox1A, O0xOA).

2. IHDR chunk:
- Length: 13 (0x00 0x00 0x00 0xOD)
— Type: 'IHDR' (0x49 0x48 0x44 0x52)
— Data: For simplicity, set width=1, height=1, bit_depth=8, color_type=2 (RGB),
— compression=0, filter=0, interlace=0.
— CRC: Compute over 'IHDR' + data. Need to calculate this.

3. First sCAL chunk:
— Length: 8 (0x00 0x00 0x00 0x08
- Type: 'sCAL' (0x73 0x43 0x41 0x4C)
— Data: unit=1 (0x01), followed by "1.0\01.0" (hex: 0x31 0x2E 0x30 0x00 0x31 O0x2E 0x30)
— CRC: Compute over 'sCAL' + data.

4. Second sCAL chunk:
— Length: 4 (0x00 0x00 0x00 0x04)
— Type: 'sCAL' (0x73 0x43 0x41 0x4C)
— Data: unit=1 (0x01) followed by three zeros (0x00 0x00 0x00)
- CRC: Compute over 'sCAL' + data.

5. IDAT chunk:
- Minimal data, perhaps one byte. But IDAT requires valid zlib-compressed data. However,
< 1in fuzzing, maybe the code doesn't process the IDAT data deeply. Alternatively, use a
— zero-length IDAT chunk.

34

Under review as a conference paper at ICLR 2026

6. IEND chunk:
- Length 0, type 'IEND', CRC.

However, generating valid IDAT data is complicated. But in the provided

— LLVMFuzzerTestOnelnput, after reading the info, it processes the image data by reading
< rows. If the image dimensions are small (1xl), and the IDAT data is valid, this might be
— manageable.

Alternatively, perhaps the code can process the IDAT chunk even with invalid data, as the
— fuzzer's error handling may allow it. However, the code checks if png_read_row succeeds.
< If the IDAT data is invalid, the read might fail, but since the target is to reach the
< sCAL handling before that, maybe it's sufficient.

But given the complexity, perhaps the minimal approach is to create a valid PNG with two
< sCAL chunks, correct CRCs, and minimal valid IDAT data.

To generate this programmatically, the Python code can construct the PNG bytes step by step,
< calculating CRCs where necessary.

For CRC calculation, the zlib library in Python has a crc32 function, which can be used.
< Note that PNG uses CRC-32 with the IEEE 802.3 polynomial.

Putting it all together:

- The first sCAL chunk must have valid data and correct CRC.
— The second sCAL chunk must have correct CRC to be processed, but its data can be minimal.

The Python function generate_buf can construct this byte sequence.

The call chain is LLVMFuzzerTestOneInput =+ libpng's parsing functions (png_read_info, etc.)
— =+ png_handle_sCAL when processing each sCAL chunk.

So the call chain from LLVMFuzzerTestOneInput to the target function would be
— LLVMFuzzerTestOneInput -+ png_read_info =+ ... (libpng internal functions) =
— png_handle_sCAL.

t the user's example in the session used direct function names in the call _chain. Since
the exact path through libpng may involve internal functions, but the key is that
LLVMFuzzerTestOneInput calls into libpng which calls png_handle_sCAL. However, the
user's example in the session included the direct call chain. For the answer, the
call_chain should list LLVMFuzzerTestOnelInput leading to png_handle_sCAL via the
necessary functions. However, based on the code provided, the call chain would be
LLVMFuzzerTestOneInput = png_read_info -+ png_read_info_impl -+ png_handle_sCAL (assuming
libpng's internal call hierarchy). But without seeing the code of png_read_info, it's
hard to know. However, the user's example included a direct call chain, so perhaps the
call_chain should be LLVMFuzzerTestOnelInput -+ png_read_info -+ png_handle_sCAL. But since
the user may not have provided all intermediate functions, perhaps the call_chain is
written as ["LLVMFuzzerTestOneInput", "png_read_info", "png_handle_sCAL"].

according to the code provided, LLVMFuzzerTestOneInput calls png_read_info, which in
libpng processes the chunks. When an sCAL chunk is encountered, png_handle_sCAL is
called. So the call chain is LLVMFuzzerTestOnelInput -+ png_read_info - (libpng internal

o

processing) -+ png_handle_sCAL. However, for the purposes of the answer, it's acceptable
to list the direct functions called from LLVMFuzzerTestOnelInput leading to the target.
Since the user's code shows that the fuzzer calls png_read_info, which leads to
processing chunks including sCAL, the call_chain would be ["LLVMFuzzerTestOneInput",
"png_read_info", "png_handle_sCAL"].

Thus, the final answer will construct a PNG with two sCAL chunks, ensuring the first is

< wvalid to set the flag and the second triggers the duplicate error.

Answer:

{

FELEEEEEHEEL LR L0

json

35

Under review as a conference paper at ICLR 2026

"code": "import zlib\n\ndef generate_buf():\n # PNG signature\n png_sig =
< bytes([0x89, 0x50, O0x4E, 0x47, 0x0D, O0x0A, O0x1A, 0x0A])\n \n # IHDR chunk (1x1
— RGB)\n ihdr_data = bytes([\n 0x00, 0x00, 0x00, 0x01, # width\n
— 0x00, 0x00, 0x00, 0x01, # height\n 0x08, # bit depth\n 0x02, #
< color type (RGB)\n 0x00, # compression\n 0x00, # filter\n
— 0x00 # interlace\n 1) \n ihdr_type = b'IHDR'\n ihdr_crc =
<« zlib.crc32 (ihdr_type + ihdr_data).to_bytes (4, 'big')\n ihdr_chunk = bytes ([0x00,
< 0x00, 0x00, 0x0D]) + ihdr_type + ihdr_data + ihdr_crc\n \n # First valid sCAL
< chunk\n scall_data = bytes([0x01]) + b'1.0\\x001.0'\n scall_type = b'sCAL'\n
< scall_crc = zlib.crc32(scall_type + scall_data).to_bytes(4, 'big')\n scall_chunk
— = bytes([0x00, 0x00, 0x00, 0x08]) + scall_type + scall_data + scall_crc\n \n #
<+ Second sCAL chunk (duplicate)\n scal2_data = bytes([0x01, 0x00, 0x00, 0x00])\n
< scal2_type = b'sCAL'\n scal2_crc = zlib.crc32(scal2_type +
< scal2_data) .to_bytes (4, 'big')\n scal2_chunk = bytes([0x00, 0x00, 0x00, 0x04]) +
< scal2_type + scal2_data + scal2_crc\n \n # IDAT chunk (minimal valid zlib data
< for 1x1 RGB)\n idat_data = zlib.compress (b'\\x00\\x00\\x00\\x00\\x00") \n
< idat_type = b'IDAT'\n idat_crc = zlib.crc32(idat_type + idat_data) .to_bytes (4,
— 'big') \n idat_chunk = len(idat_data) .to_bytes (4, 'big') + idat_type + idat_data +
< idat_crc\n \n # IEND chunk\n iend_chunk = bytes([0x00, 0x00, 0x00, 0x00]) +
< Db'IEND' + zlib.crc32(b'IEND').to_bytes(4, 'big')\n \n return png_sig +
< ihdr_chunk + scall_chunk + scal2_chunk + idat_chunk + iend_chunk",
"call_chain": ["LLVMFuzzerTestOneInput", "png_read_info", "png_handle_sCAL"]

}

C CASE STUDIES

In this section, we perform case studies to understand why LLMs fail to solve TTG problems. We
analyze the failure reasons and select the relevant response snippets during reasoning to illustrate
these issues.

C.1 FAILURE TYPE 1: HALLUCINATION IN REASONING MODELS

By manually analyzing the responses from LLMs, we found that in many cases, reasoning LLMs
tend to hallucinate and rely on fabricated code snippets for decision-making rather than querying the
tool (in the agent-based setting). Some of these fabricated code snippets may appear plausible but
are not contextually appropriate or reflective of the real codebase, leading to failures in reasoning
and incorrect results. Listing [C.I] provides an example of this thinking process, where the LLM
fabricates a code snippet that does not actually exist and relies on it to reason, ultimately producing
a false result.

Listing 13: Example of failure type 1

The LLVMFuzzerTestOnelInput function would pass the input data to libpng's parsing functions.
<— The entry point for parsing a PNG file is typically png_read_png or similar. The fuzzer
< harness might look like:

int LLVMFuzzerTestOneInput (const uint8_tx data, size_t size) {
png_structp png = png_create_read_struct(...);
png_infop info = png_create_info_struct (png) ;
// Set up error handling
// Read the PNG data
png_process_data(png, info, data, size);
//
png_destroy_read_struct(...);
return 0;

When processing the PNG data, the sCAL chunks are handled by png_handle_sCAL. The first
< sCAL chunk is processed normally, setting the info_ptr's valid flag. The second sCAL
<~ chunk triggers the else if (info_ptr != NULL ...) condition, leading to the target
— line.

36

Under review as a conference paper at ICLR 2026

C.2 FAILURE TYPE 2: INABILITY TO SYNTHESIZE VALID INPUT

By manually analyzing the responses from LLMs, we found that although LLMs possess detailed
knowledge of valid target file format specifications (as verified through manual prompting), they
often struggle to synthesize the correct file format and miss key specifications. Listing[C.2] provides
an example of LLM-generated code in which it synthesizes an invalid /HDR chunk due to neglecting
important format specifications. This oversight leads to the generation of incorrect code that fails to
meet the required format standards.

Listing 14: Example of failure type 2

import zlib

def generate_buf () :
PNG signature
png_sig = bytes.fromhex ('89504E470D0A1A0A")

Helper to create chunks

def make_chunk (chunk_type, data):
length = len(data) .to_bytes (4, 'big')
crc = zlib.crc32 (chunk_type + data).to_bytes (4, 'big')
return length + chunk_type + data + crc

IHDR chunk (1x1 RGB)
ihdr_data = bytes.fromhex ('00000001 00000001 08020000 0000")
ihdr = make_chunk (b'IHDR', ihdr_data)

C.3 FAILURE TYPE 3: FAIL TO REASON PLAUSIBLY

In some cases, we observed that LLMs struggle to make plausible connections between low-level
conditions in the code and the higher-level constraints of the target file format. Instead of synthesiz-
ing the information and drawing valid inferences, they simply repeat the low-level conditions they
encounter, failing to apply reasoning at a higher level. This issue is particularly common in non-
reasoning LLMs. For example, in Listing the LLM simply reiterates the low-level conditions
seen in the code, without translating these conditions into meaningful constraints related to the file
format. This kind of response highlights the model’s inability to reason beyond the surface-level
details.

Listing 15: Example of failure type 3

Based on the code analysis, we can now construct the full call chain and understand the
— conditions needed to reach our target line in “png_handle_sCAL":

Call chain:

1. "LLVMFuzzerTestOneInput™
“png_read_info® (via “png_read_png’)
“png_push_read_chunk”
“png_handle_sCAL"

= w N

To reach our target line in “png_handle_sCAL", we need:
A valid PNG header (first 8 bytes)

The chunk type must be sCAL (“png_sCAL")

“info_ptr® must not be NULL
“(info_ptr->valid & PNG_INFO_sCAL) !
" (png_ptr->mode & PNG_HAVE_TIHDR) !=

= 0"
e
* (png_ptr->mode & PNG_HAVE_IDAT) == 0°

o U WNh R

Here's the input generation code that satisfies these conditions:

37

Under review as a conference paper at ICLR 2026

C.4 FAILURE TYPE 4: MISSING CONSTRAINTS IN COMPLEX CONTEXT

By manually analyzing the responses from LLMs, we found that for complex programs, LLMs
sometimes focus narrowly on the target location and surrounding code, overlooking important con-
straints distributed across the broader context. Interestingly, this is similar to mistakes that humans
sometimes make when dealing with complex code, focusing too much on a small part of the program
and missing crucial elements that are spread across other sections. For example, Listing[C.4]shows a
reasoning process where an LLM concludes that the entry function parses an XML file directly from
the input buffer. However, upon examining the start of the entry function, shown in Listing [C.4]
we see that it actually first processes an integer length field followed by the XML file. This over-
sight demonstrates the LLM’s failure to correctly connect and reason about the larger flow of the
program, resulting in an incomplete understanding of the code’s behavior, which highlights the chal-
lenges LLMs face when handling intricate, context-dependent code and emphasizes the importance
of maintaining a holistic view of the program during reasoning.

Listing 16: Example of failure type 4

In the LLVMFuzzerTestOnelInput function, the fuzzer reads the input data, initializes the

— parser, and processes the XML document. The docBuffer comes from xmlFuzzMainEntity,

— which is part of the fuzzer's input. So, the input needs to be a valid XML document with
< an element that has a prefix but no namespace URI.

Listing 17: Entry function in failure type 4 example

int
LLVMFuzzerTestOneInput (const char xdata, size_t size) ({
static const size_t maxChunkSize = 128;
xmlDocPtr doc;
xmlParserCtxtPtr ctxt;
xmlTextReaderPtr reader;
xmlChar =out;
const char xdocBuffer, xdocUrl;
size_t docSize, consumed, chunkSize;
int opts, outSize;

xmlFuzzDatalInit (data, size);
opts = xmlFuzzReadInt ();
opts &= “XML_PARSE_XINCLUDE;

xmlFuzzReadEntities () ;
docBuffer = xmlFuzzMainEntity (&docSize);
docUrl = xmlFuzzMainUrl () ;
if (docBuffer == NULL)
goto exit;

/+* Pull parser #*/

doc = xmlReadMemory (docBuffer, docSize, docUrl, NULL, opts);

D DETAILED ANALYSIS

D.1 NUMBER OF QUERIES BY LLMS IN AGENT-BASED SETTING

We analyze the number of queries emitted by LLMs in the agent-based setting and compare the
query counts between reasoning and non-reasoning LLMs. The results, shown in Figure[7] reveal
that reasoning LLMs emit significantly fewer queries than their non-reasoning counterparts. We
speculate that this may be due to reasoning LL.Ms being more prone to hallucination.

38

Under review as a conference paper at ICLR 2026

mmm DeepSeek-R1 retrieval
I DeepSeek-R1 agent
0.5 == O3-mini retrieval
mmm 03-mini agent
0.4 B DeepSeek-V3 retrieval
- Bmm DeepSeek-V3 agent
©
@03
@
-3
0.2
0.1
0.0 - ™ ™
o v S o o Q¢ > o v
& & &L &L &
s & & <° ® & & &
o & & X & o A
S

Figure 6: Pass@1 scores across different code repositories.

10

BN reasoning
= non-reasoning

average number of queries (agent-based)

S o
S © 80 R0 Ao
2 W\»’?@p“g ;,73’(@‘& L5 RvEy A
57 EDES YT ¥ e v AN
(S P O 2 ey O
,2\3‘@\ 0_":5;\(@\ _‘&;\(\Q\
« « «

Figure 7: Number of queries emitted by LLMs.

D.2 PROBLEMS SOVLED BY DIFFERENT LLMS

In this section, we analyze the problems solved by different LLMs across all 500 problems in 5
trials, under both retrieval-based and agent-based settings. Exemplary Venn diagrams of the well-
performing models are shown in Figure [8] The upset diagram is displayed in Figure [9} which
further highlights the unique problem sets solved by each model. The results demonstrate that even
though the overall performance of each model varies, they each manage to solve a distinct subset of
problems that the others cannot. This observation underscores the complementary strengths of each
model, as different models excel in addressing various aspects of the TTG problem. Such diversity
in performance suggests that no single model is universally superior, and each has its own strengths
when tackling different parts of the problem space.

E LIMITATIONS

The limitations and future directions of this paper include: (1) expanding the evaluation to multiple
programming languages to assess LLMs’ comprehension across different programming languages,
and (2) decomposing the TTG problem into more granular tasks that reflect specific aspects of the
comprehensive abilities of LLMs. This will allow for a more detailed understanding of LLMs’
strengths and weaknesses in different contexts and domains, and help drive further improvements in
their performance across a broader range of software engineering tasks.

F LLM USAGE

During the preparation of this manuscript, we made selective use of Large Language Models
(LLMs), specifically, as a writing assistant for grammar correction and stylistic refinement. All

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

DeepSeek-R1 DeepSeek-R1

I 03-mini

DeepSeek-V3 Qwg-32B

DeepSeek-R1 DeepSeek-R1

I 03-mini

Qwen-3-32B (Thinking)

03-mini

03-mini

Qwen-3-30B-A3B (Thinking)

DeepSeek-R1 DeepSeek-R1

‘Seekvz

Qwg-32B Qwen-3-32B (Thinking)

DeepSeek-R1 DeepSeek-R1

‘BZB

DeepSeek-V3 DeepSeek-V3

Qwen-3-328 (Thinking)

DeepSeek-R1 DeepSeek-R1 03-mini 03-mini

DeepSeek-V3 DeepSeek-V3
Qua-328 Qwen-3-32B (Thinking)
o (Thinking)

Qwg-32B Qwen-3-32B (Thinking)

0O3-mini 03-mini Qwg-328 03-mini 03-mini

I DeepSeek-V3 I Qwg-32B

Qwen-3-30B-A3B (Thinking) Qwen-3-328 (Thinking) Qwen-3-30B-A3B (Thinking)

Qwen-3-32B (Thinking)

DeepSeek-V3 Qwg-32B DeepS:

Qwen-3-32B (Thinking) Qwen-3-30B-A3B (Thinking)

eek-V3 Qwg-32B DeepSeek-V3 wq-32B

l Qwen-3-32B (Thinking)

Qwen-3-30B-A3B (Thinking)

Qwen-3-32B (Thinkingc;

-A3B (Thinking)

Figure 8: Venn diagrams of solved problems by different LLMs.

Intersection size

Qwen-3-30B-A3B (Thinking)

Qwen-3-32B (Thinking) [BN] [}
Qwg-32B
DeepSeekV3 = @

e

Figure 9: Upset diagram of solved problems by different LLMs.

30

20

10 ‘I

N l_-_III____III_I____IIl-_ _——

scientific contributions were conceived and executed entirely by the authors. The LLM did not
contribute to any substantive intellectual content.

40

	Introduction
	Related Work
	Method
	The TTG Problem
	Task Formulation
	Rationale for TTG as an Evaluation Task
	Task Motivation and Required Capabilities

	The TTG-Gen method

	Evaluation
	Settings
	Handling Large-Scale Repositories
	Large Language Models

	Results
	Observations
	Case studies

	Conclusion
	Reproducibility Statement
	Detailed Evaluation Settings
	Large Language Models
	Retrieval-Based Setting
	Retriving with BM25
	Prompt Templates

	Agent-Based Setting
	Tool Specification and Implementation
	Prompt Templates

	An Exemplary Conversation with LLM
	Target Problem
	Response in Retrieval-Based Setting
	Response in Agent-Based Setting

	Case Studies
	Failure Type 1: Hallucination in Reasoning Models
	Failure Type 2: Inability to Synthesize Valid Input
	Failure Type 3: Fail to Reason Plausibly
	Failure Type 4: Missing Constraints in Complex Context

	Detailed Analysis
	Number of Queries by LLMs in Agent-Based Setting
	Problems Sovled by Different LLMs

	Limitations
	LLM Usage

