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Abstract

Diffusion models have demonstrated state-of-the-art performance across vision, language,
and scientific domains. Despite their empirical success, prior theoretical analyses of the
sample complexity suffer from poor scaling with input data dimension or rely on unrealistic
assumptions such as access to exact empirical risk minimizers. In this work, we provide a
principled analysis of score estimation, establishing a sample complexity bound of O(e™%).
Our approach leverages a structured decomposition of the score estimation error into sta-
tistical, approximation, and optimization errors, enabling us to eliminate the exponential
dependence on neural network parameters that arises in prior analyses. It is the first such
result that achieves sample complexity bounds without assuming access to the empirical
risk minimizer of score function estimation loss.

1 Introduction

Diffusion models have emerged as a powerful class of generative models, achieving impressive performance
across tasks such as image synthesis, molecular design, and audio generation. Central to the training of these
models is the estimation of the score function, which characterizes the reverse-time dynamics in the diffusion
process. Diffusion models are widely adopted in computer vision and audio generation tasks (Ulhaq &
Akhtarl |2022; Bansal et al., |2023)), text generation (Li et al., 2022)), sequential data modeling (Tashiro et al.,
2021)), reinforcement learning and control (Zhu et al., 2023|), and life sciences (Jing et al.l [2022; Malusare
& Aggarwall [2024]). For a more comprehensive exposition of applications, we refer readers to survey paper
(Chen et al.l |2024]).

While diffusion models exhibit strong empirical performance, understanding their sample complexity is
essential to guarantee their efficiency, generalization, and scalability, enabling high-quality generation with
minimal data in real-world, resource-constrained scenarios. Some of the key works studying the sample
complexity are summarized in Table[I] A key limitation of sample complexity analyses of diffusion models
done thus far is the lack of the presence of finite-time sample complexity results under reasonable assumptions.
This makes the theoretical analysis of diffusion models fall short of other machine learning areas such as
reinforcement Learning (Kumar et al., 2023} |Gaur et al., 2024)), bi-level-optimization (Grazzi et al., [2023;
Gaur et al.,|2025)) and graphical models (Fattahi et al.;|2019; [Tran et al.||2019). In this work we aim to bridge
that gap and obtain a sample complexity results on the same footing as results from the aforementioned
areas. The iteration complexity or convergence has been studied in |Li et al.| (2024b); Benton et al.| (2024);
Li & Yan| (2024); Huang et al.| (2024)); [Dou et al.| (2024)); [Liang et al.| (2025a3b)), while they assume bounded
score estimates thus not providing the sample complexity which requires estimating the score function.

We note that works such as (Zhang et al., |2024; [Wibisono et al., [2024; |Oko et al., |2023; |Chen et al.l 2023))
have sample complexity results that depend exponentially on the data dimension, making the result less
useful in high-dimensional settings. Recently, |Gupta et al.| (2024) improved upon this by obtaining O(e~?)
sample complexity without exponential dependence on data dimension. . However, this work assumes access
to the empirical risk minimizer (ERM) of the score estimation loss, a significant restriction that was explicitly
highlighted as an open problem in |Gupta et al.|(2024) itself. While this assumption is present in all prior
works, it is an unrealistic assumption regardless.
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Reference Sample Empirical Risk
Complexity Minimizer Assumption
Zhang et al.| (IZOQ4I) 0] (e*d) Yes
Wibisono et al.| (]2024[) 0) (e*(d)) Yes
Oko et al.| (2023) O (e7O@) Yes
Chen et al. (2023) 0 (€—O(d)) Yes
Gupta et al.| (]2024[) Q (e79) Yes
This work O(e™?) No

Table 1: Summary of sample complexity results for diffusion models, assuming no upper bound on score
estimation error. For further details on how the sample complexity bounds are derived for |Gupta et al.

(2024), see Appendix ?7.

In this paper, we do not make these assumptions and establish an improved state-of-the-art sample complexity
bound of O(e~*). This represents a key step toward bridging the gap between the theory and practice of
diffusion models. Specifically, we address the following fundamental question.

How many samples are required for a sufficiently expressive neural network to estimate the score function
well enough to generate high-quality samples using a DDPM algorithm?

Our analysis directly connects the quality of the learned score function to the total variation distance between
the generated and target distributions, offering more interpretable and practically relevant guarantees. Ad-
ditionally, our work accounts for the unavailability of the empirical risk minimizer. Using our novel analysis
of the score estimation error, we obtain the sample complexity bounds without exponential dependence on
the data-dimension. Our principled analysis accounts for the statistical and optimization errors while not
assuming access to the empirical risk minimizer of the score estimation loss, and achieves state-of-the-art
sample complexity bounds.

The statistical error occurs due to the finite sample size used to obtain the score estimate. Existing methods
used to bound statistical errors assume bounded loss functions, which is not true in the case of diffusion
models. We thus use a novel analysis that uses the conditional normality of the score function to obtain
upper bounds for the statistical error.

Finally, the optimization error occurs due to a finite number of SGD steps during the estimation of the score
function. It is precisely the error that was not accounted for in the previous works due to the assumption
that they have access to the empirical risk minimizer. We use the quadratic growth property implied by
the Polyak-Lojasiewicz (PL) condition assumed in Assumption [2f and a novel recursive analysis of the error
at each stochastic gradient descent (SGD) step to upper bound this error. While the PL assumption is
restrictive and not globally applicable, PL is essentially the weakest standard assumption that yields global
convergence rates strong enough to close a finite-sample optimization analysis , Our goal is
to remove the assumption of access to an empirical risk minimizer and instead provide an explicit, finite-time
SGD guarantee that appears as an optimization error term in the three-way decomposition. To achieve this,
some form of global error-gradient relationship is required. Among commonly used assumptions, the PL
inequality is a canonical and comparatively mild choice: it is compatible with nonconvex landscapes and is
significantly weaker than convexity, while still enabling global convergence guarantees for SGD.

The main contributions of our work are summarized as:

+ Finite time sample complexity bounds. We derive state-of-the-art sample complexity bound
of O(e~*) for score-based diffusion models, without exponential dependence on the data dimension
or neural network parameters. Our analysis avoids the unrealistic assumptions used in prior works
such as access to an empirical loss minimizer.
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¢ Principled error decomposition. We propose a structured decomposition of the score estimation
error into approximation, statistical, and optimization components, enabling the characterization of
how each factor contributes to sample complexity.

It is to be noted that the sample complexity obtained in our work is exponential with respect to neural
network parameters for our work in contrast with works such as (Gupta et all [2024), where the sample
complexity is polynomial with respect to the neural network parameters. We leave for future work results
which obtain upper bounds without the ERM assumption which are polynomial in the neural network
parameters.

Unconditional and Conditional Diffusion Models. Diffusion models have emerged as leading frame-
works across vision, audio, and scientific domains. Foundational works such as [Sohl-Dickstein et al.| (2015)
and introduced and refined Denoising Diffusion Probabilistic Models (DDPMs), enabling
high-quality sample generation. Subsequent advances include improved noise schedules (Nichol & Dhariwall
2021)), score-based SDE formulations (Song et all, [2021)), and efficient latent-space generation via Latent
Diffusion Models (LDMs) (Rombach et al [2022)). Conditional diffusion models extend these techniques for
guided generation tasks, with applications in time-series [Tashiro et al| (2021), speech [Huang et al.| (2022,
and medical imaging [Dorjsembe et al| (2023). Conditioning mechanisms range from classifier-based [Dhari-
wal & Nichol| (2021)) to classifier-free guidance Ho & Salimans) (2022), which enabled text-to-image models
like Imagen |Saharia et al| (2022)) and Stable Diffusion Rombach et al| (2022)). Recent innovations focus
on adaptive control Castillo et al.| (2025), compositionality [Liu et al. (2023), and multi-modal conditioning
[Avrahami et al.| (2022).

Related Works: Despite the empirical success of diffusion models, theoretical understanding regarding the
sample complexity remains limited. Assuming accurate score estimates, authors in|Chen et al.|(2022) showed
that score-based generative models can efficiently sample from a sub-Gaussian data distribution. Assuming
a bounded score function, iteration complexity bounds have been extensively studied in recent works [Li
let al. (2024Db); Benton et al. (2024); [Li & Yan| (2024)); Huang et al. (2024)); Dou et al| (2024); [Liang et al.
(2025a5b). Some works, such as [Zhang & Pilanci| (2024), establish iteration complexity for score matching.
In particular, Benton et al.| (2024); |Li et al.| (2024b) establishes iteration complexity guarantees for DDPM
algorithms. Several studies propose accelerated denoising schedules to improve these rates ;
[Liang et al.| (2025b)); Dou et al.| (2024)). Additionally, improved convergence rates under low-dimensional data
assumptions are demonstrated in [Li & Yan| (2024)); Huang et al.| (2024); [Liang et al| (2025a). In contrast
to these works, our analysis addresses the sample complexity of score-based generative models, where the
errors introduced by the neural network approximation, data sampling, and optimization are also accounted
for.

Sample complexity bounds for diffusion models have been studied via diffusion SDEs under smoothness and
spectral assumptions in (Chen et al. (2023)); Zhang et al.| (2024); Wibisono et al.| (2024)); |Oko et al.| (2023]).
However, these bounds are exponential in the data dimension. Further, authors of |Gupta et al.| (2024) use
the quantile-based approach to get the sample complexity bounds. In this work, we further improve on these
guarantees. The detailed comparison of sample complexities with the key approaches mentioned above is
provided in Table [T}

2 Preliminaries and Problem Formulation

We begin by outlining the theoretical basis of score-based diffusion models. In particular, we adopt the
continuous-time stochastic differential equation (SDE) framework, which provides a principled basis for
modeling the generative process. We then outline its practical discretization and formally define our problem.

Score-based generative models enable sampling from a complex distribution py by learning to reverse a noise-
adding diffusion process. This approach introduces a continuous-time stochastic process that incrementally
perturbs the data distribution into a tractable distribution (typically Gaussian), and then seeks to reverse
that transformation.
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A canonical forward process used in diffusion models is the Ornstein—Uhlenbeck (OU) process (Dksendal,
2003)), defined by the following SDE

dry = —adt +V2dB;, 20 ~ po,x C RY, (1)

where B; denotes standard Brownian motion. The solution of this SDE in closed form is given by

Ty~ e tzg+ V1 —e 2, with e ~ N(0,1). (2)

As t — oo, the process converges to the stationary distribution N (0, I). Let p; denote the marginal distribu-
tion of x;. This defines a continuous-time smoothing of the data distribution, where p; becomes increasingly
Gaussian over time.

The reverse process is typically achieved using stochastic time-reversal theory (Anderson |1982), which yields
a corresponding reverse-time SDE as follows.

drr_y = (w14 + 2V logpr_i(xr 1)) dt + V2dBy, (3)

where V log pi(z) is known as the score function of the distribution p;. Simulating this reverse process starting
from zp ~ pr =~ N(0, ) yields approximate samples from the original distribution pyg. This motivates a
sampling strategy where we begin from zr ~ N(0, I) for sufficiently large T', and then integrate the reverse
SDE backward to ¢ = 0 using estimated score functions. In practice, the backward process is run up to
a fixed time point tg known as the early stopping time and not ¢ = 0. This is done in order to improve
performance and training speed (Lyu et al.| [2022; |Favero et al., [2025)).

The continuous-time reverse SDE (Equation [3)) is discretized over a finite sequence of times 0 < to < t1 <
ooty <t = (T — k) < T. The score function s;(z) := Vlogp:(z) is approximated at these discrete
points using a learned estimator §;,. This discretization underlies the DDPM framework (Ho et al.l 2020]),
where the reverse process is implemented by iteratively denoising the sample using the estimated scores at
each time step. The detailed procedure is provided in Algorithm [I]in the Appendix [B] We employ stochastic
gradient descent (SGD) to learn the score function at each tjy, using either a constant learning rate, as
justified in our analysis later.

Problem formulation: Let the score function at time ¢, be approximated using a parameterized family
of neural networks F& = {sg : § € O}, where each sq : R? x [0, T] — R? is represented by a neural network
of depth D and width W with smooth activation functions. Given ny i.i.d. samples {x;}¥_, from the data
distribution p, , the score network is trained by minimizing the following loss:

L1(8) = Eonp,, [lIso(tr) = Viogpy, (2)]7] (4)

Objective. Our goal is to quantify how well the learned generative model p;, approximates the true data
distribution p in terms of total variation (TV) distance. Specifically, we aim to show the number of samples
needed so that with high probability, the TV distance TV (ps,,ps,) is bounded by O(e), where € is the L?
estimation error of the score function. This reduces the generative performance analysis to establishing tight
sample complexity bounds on the score estimation error. We additionally define the following probability
distributions:

D, = Distribution obtained after backward process till time to steps starting form pr
pfﬁis := Distribution obtained by backward process till time tq starting from pr
at discretized time steps
Dt, := Distribution obtained by backward process till time ty starting from pr
at discretized time steps using the estimated score functions
Dt := Distribution obtained by backward process till time to starting from N(0, 1)

at discretized time steps using the estimated score functions

where t; denotes the early stopping time.
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3 Sample Complexity of Diffusion Models

In this section, we derive explicit sample complexity bounds for diffusion-based generative models. By
leveraging tools from stochastic optimization and statistical learning theory, we provide bounds on the num-
ber of data samples required to accurately estimate the time-dependent score function s;(x) := V log p:(z)
across the forward diffusion process. Note that accurate score estimation is critical for ensuring high-quality
generation while sampling through the reverse-time SDE.

We first state the assumptions required throughout this work.

Assumption 1 (Bounded Second Moment Data Distribution.). The data distribution py of the data variable
xo has an absolutely continuous CDF, is supported on a continuous set I' € R?, and there exists a constant
0 < O < oo such that E(||zo]|?) < C4.

Works such as [Gupta et al| (2024)); [Wibisono et al|] (2024) also assume a second bounded moment as we
have done here. [Zhang et al| (2024) assumes a sub-gaussian assumption while works such as |Chen et al.
(2022); |Oko et al|(2023)), assume that the data distribution is supported on a bounded set, thereby excluding
commonly encountered distributions such as Gaussian and sub-Gaussian families. In contrast, our analysis
only requires the data distribution to have a finite second moment, making our results applicable to a
significantly broader class of distributions. Note that the works that assume a sub-Gaussian assumption or
bounded assumption are able to account for the error incurred due to a finite stopping time, while works
such as |Gupta et al.| (2024) and this work do not. In this work, we show that if we assume a sub-Gaussian
data distribution, we can also account for the error due to a finite stopping time.

Assumption 2 (Polyak - Lojasiewicz (PL) condition.). The loss Li(0) for oll k € [0, K] satisfies the
Polyak—L.ojasiewicz condition, i.e., there exists a constant p > 0 such that

SIVEOI? 2 4 (L4(6) — £2(0)), V6 € O, 6

where 6* = argmingeco, L£(0) denotes the global minimizer of the population loss.

The Polyak-Lojasiewicz (PL) condition is significantly weaker than strong convexity and is known to hold
in many non-convex settings, including overparameterized neural networks trained with mean squared error
losses 2022). Prior works such as [Gupta et al.| (2024) and Block et al| (2020) implicitly assume
access to an exact empirical risk minimizer (ERM) for score function estimation, as reflected in their sample
complexity analyses (see Assumption A2 in |Gupta et a1.| (]2024[) and the definition of f in Theorem 13 of
[Block et al.[(2020))). This assumption, however, introduces a major limitation for practical implementations,
where exact ERM is not attainable.

In contrast, the PL condition allows us to derive sample complexity bounds under realistic optimization
dynamics, without requiring exact ERM solutions. To our knowledge, this is the first theoretical analysis
of score-based generative models that explicitly accounts for inexact optimization, addressing a key gap in
existing literature. Additionally, we establish convergence guarantees with both constant and decreasing
step sizes.

Assumption 3 (Approximation error of the Class of Neural Networks). For all t € [0,T], there exists a
neural network parameter 0 € Oy such that

EWVPt | |89 (Q?, t) -V logpt(x) | |2 S €approx (6)

This error is independent of the sampling algorithm, and describes the error due to neural network
parametrization. In learning theory, it is common to treat the approzimation error of a model class as
a constant so that analyzes can focus on the estimation/ optimization terms dependent on the sample. This
convention appears in standard excess-risk decompositions for fixed hypothesis classes (Shalev-Shwartz &
[Ben-David|, [2014). In PAC-Bayesian analyses, approximation errors are denoted by a constant once the class
is fixed 2025). In (NTK/RKHS) analyses of neural networks, where it is assumed the target function
lies in, or is well approximated by the specified function class, the misspecification error is represented as




Under review as submission to TMLR

a constant term (Bing et all [2025). In reinforcement learning algorithm analysis such as policy gradient,
a task-dependent “inherent Bellman” or function-approximation error that remains constant while deriving
performance rates (Mondal & Aggarwall [2024; [Fu et al., 2021} |Gaur et al.| [2024; |Ganesh et all [2025). Note
that in |Gupta et al. (2024), Assumption A.2 states that the error in estimating the loss function is ’suffi-
ciently small’. In practice, this assumption is used to make the score function estimation error arbitrarily
small, as is done in Theorem C.3, where it is stated that the there exists a neural network such that the error
in estimating the loss function is O(e®). Thus, this is a stronger assumption as compared to our Assumption

Note that in certain works, such as (Jiao et al. [2023), it is shown that the network size has to be exponential

in data dimension in order to achieve a small approximation error. However, in practice, that would require
an impractically large neural network size. In practice neural network size is of the same order as the data
dimension. Thus for a fixed neural network size that we assume in this work, it makes sense to assume the
approximation error as a constant.

Assumption 4 (Smoothness and bounded gradient variance of the score loss.). For all k € [0, K], the
population loss Ly (0) is k-smooth with respect to the parameters 0, i.e., for all 6,60" € Oy,

IVLr(0) = VLLO)| < r[l6 — 6] (7)
We assume that the estimators of the gradients VL (6) have bounded variance.

E||VL(0) — VLL(O)]* < o*. (8)

Together, these assumptions form a minimal yet sufficient foundation for analyzing score estimation in
practice. Smoothness and bounded gradient variance implied by the sub-Gaussian assumption are mild and
generally satisfied for standard neural architectures such as GELU activations. The PL condition has been
shown to emerge in over-parameterized networks or under lazy training regimes, where the function class
is expressive enough to approximate the ground-truth score function (Liu et all 2022). Notably, these
conditions are not only specific to our setting they have been widely adopted in recent works studying the
optimization landscape of deep diffusion models (Salimans & Hol 2022; [Liu et al., [2022). Note that in no
prior works were such assumptions stated since they assumed access to the empirical risk minimizer.

It is to be noted that assumptions 2} B} and [] are not included in prior works, since they assumed access
to the ERM. Since we do not make that assumption, these additional assumptions are needed for obtaining
upper bounds on the Total variation between the true and generated distributions.

Theorem 1 (Total Variation Distance Bound). Let py, denote the distribution obtained by the backward
process till time to starting form pr, and Py, (x) be the distribution generated by the backward process at
discretized time steps {ty}, starting from N(0,I) using the estimated score functions 8, (z) where k € [0, K].
Let d be the data dimension, and ny be the number of samples for score estimation at time step t;.

Assume that the data distribution satisfies Assumption the loss function L (0) satisfies Assumptions@,
for all k € [0, K] and the learning rate for estimating L;,(0) using SGD satisfies 0 <n < L for all k € [0, K].

Further assume
-4
e = Q (WP 2108 (1K <)), (9)
0 oL

Then, with probability at least 1 — 6, the total variation distance between the py, and Py, satisfies

VK

Furthermore, by setting T = Q (log (1)).,k = Q(¢) and K = Q(e~2), we obtain

1 1
TV (piy, Dry) < O(exp*T) + O <> + 0O <e~ (T + log H)) + €approx (10)

Tv(ptoaf)to) S O(E) + €approx (11)

with probability at least 1 — §.
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Theorem [l establishes that the total variation distance between the true data distribution and the diffusion
model’s output can be made arbitrarily small specifically, @(e) by properly scaling model capacity and
algorithmic parameters. To the best of our knowledge, these are the only known sample complexity bounds
for score-based diffusion models, improving upon the prior results as discussed in the introduction without
assuming access to empirical risk minimizer for the score estimation loss.

Usage of p,, instead of p; in Theorem We have shown that the estimated distribution py, is O(e)-
close in total variation (TV) to py,, where p;, denotes the data distribution py pushed forward by ¢, steps
of the forward process. We do not claim that py, is O(e)-close in TV to the true data distribution pgy (i.e.,
we do not bound TV (pg, p,)), because doing so would require additional assumptions on py. For example,
Fu et al| (2024) (in Lemma D.5) assumes a sub-Gaussian data distribution to show that TV(pg,ps,) <
o (\/% log(l /to)). We also note that all other works listed in Table (1| similarly provide upper bounds on
TV (pty, Pto ), n0t on TV (pg, Pty )-

However, it is to be noted that using the sub-Gaussian assumption, our analyis can be extended to a bound
TV(po, Pt,) via the triangle inequality:

Tv(p()?ﬁto) S TV(pOapto) + Tv(pt(nﬁtg)'

We formally present the data assumption and the resulting theorem as follows

Assumption 5 (Sub-Gaussian Data Distribution.). The data distribution py of the data variable xo has an

absolutely continuous CDF, is supported on a continuous set I' € R%, and there exists a constant 0 < Cy < 00
t2

such that for every t > 0 we have P(|zg| >t) < 2- exp_C?,

Theorem 2 (Total Variation Distance Bound Under Sub-Gaussian Assumption). Assume that the data
distribution satisfies Assumptz’on@ the loss function Li(0) satisfies Assumptions for allk € [0, K] and
the learning rate satisfies for estimating Li(0) using SGD satisfies 0 < n < % for all k € [0,K]. Further

assume
AK [ e
e =Q (WP log [ =2 ) () ). (12)
5 ) \s;

Then, with probability at least 1 — 0, the total variation distance between the py and Py, satisfies

TV (po, 1) < O (Vo log(1/t0)) + Olexp™ ™) + O (\/%)

+0 <e . (T + log i)) + €approz (13)

Furthermore, by setting to = Q(e?), T = Q (log (%)),FL = Q(e) and K = Q(e~2), we obtain
TV(pO,ﬁto) < O(E) + €approz; (14)
with probability at least 1 — §.

Proof of Theorem [1l

Recall that p;, is derived via score-based sampling, so using the triangle inequality repeatedly to decompose
the TV distance between the true distribution p;, and p:, we obtain

Tv(ptmﬁto) < TV(pto,pg;s) + Tv(pggsvﬁto) + Tv(ﬁtmﬁto) (15)

The bounds on TV (py,, pi*) and TV (py,, pr,) follow from Lemma B.4 of Gupta et al.| (2024) and Proposition
4 of |Benton et al.| (2024), respectively to get
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TV (pry. ) < O (;E) LTV, Bry) + Olexp(~T)) (16)

Note that we have used results from |Gupta et al.| (2024) and Benton et al.| (2024) which assume a bounded
second moment for the data distribution. This is satisfied by Assumption Now from lemma TV (ps, py, )
is upper bounded as follows

K
- 1
TV i) < 50| D Ba, 30, t0) = Vlogpe, (@) (s — 1) (17)
k=0

In order to upper bound TV (pi, py, ), we denote A(k) as

A(R) = Eonp, 186, (@, 1) = Vlog py, ()] (18)

Therefore, bounding the TV distance between p;, and p;, translates to bounding the cumulative error in
estimating the score function at different time steps. We now focus on bounding this term. Specifically, we
have that

L&
TV(pte: bro) < O ( ) 5 ZA ):(te+1 — t) + O(exp(=T)) (19)

Now, for each time step k, we decompose the total score estimation error, denoted by A(k), into three
primary components: approximation error, statistical error, and optimization error. Each of these error
corresponds to a distinct aspect of learning the reverse-time score function in a diffusion model as described
below.

A 2
Eurpy, |36, (@, th) = V1ogpe, (@) 2] < 4Eqny, o |[155, (@ 10) = Vlog pr, ()|

approx
&

FAE g, ) |[lsh, () = s, (210 ]

gxtat
A, ) |50 (@ t5) = s, (200, (20)
£xpt
where, we define the parameters
O = argmin Eop,, [[ls0(z, te) — Vlogp(a, te)||] (21)
0p = arg min % ; Iso (i, tx) — Vlog pr (i, ti)|* (22)

and denote sf, and sfk as the estimated score functions associated with the parameters 8¢ and 6% respectively.
Approzimation error £,°P"* captures the error due to the limited expressiveness of the function class {sg }oco-
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The statistical error £5** is the error from using a finite sample size. Finally, the optimization error Egpt is
due to not reaching the global minimum during training.

One of our key contributions lies in rigorously bounding each of these error components and showing how
their interplay governs the overall generative error. In particular, we derive novel bounds that explicitly
capture the dependencies on sample size, neural network capacity, and optimization parameters, without
any assumption on the access to the empirical risk minimizer of the score estimation loss. We formalize
these results in the following lemmas. Detailed proofs are deferred to Appendices and [C.2] respectively.

Lemma 1 (Approximation Error). EPP'* is defined as follows
EQPPo = mingecoEynp,, [||39(x,tk) — Vlogpt(x,tk)HQ] (23)
Then, under Assumption@for all k € [0, K], we have

Sljpprox < €approx (24)

This result directly follows from Assumption [3{and the definition of PP,

Lemma 2 (Statistical Error). Let ny denote the number of samples used to estimate the score function
at time step ty. If the data distribution satisfies the Assumption |1l and the loss function L (0) satisfies
Assumptions@fw all k € [0, K], then with probability at least 1 — 8, we have

1 2
gztat <0 WD~d- Ogn(é) (25)
k

Proof Outline We present the outline of the proof, full details are deferred to the Appendix.

L'%(0) = Eqrp,, llvo(, tr) — ve, (2)]1* (26)
and | o
L'e(0) = o ; v (i, ti) — vey, ()| - (27)
Thus, we have
L(OF) — Li(07) < Lx(0]) — L (0F) + Li(07) — Li(6}), (28)

We get the inequality by adding the term E(Qg) — E(()Z) to the right hand side of Equation |D this is a
positive quantity since #° is the minimizer of 2(0), where the added term is non-negative due to the empirical
optimality of 02

|£k(60) — £60)] < |£oh) — £io)| + |eom) — 26z (29)

@ (IT)

Now, note that the terms (I) and (II) are unbounded, and thus generalization results such as Lemma
(Theorem 26.5 of (Shalev-Shwartz & Ben-David [2014))), do not apply directly. Thus we define two
supplementary loss functions as

L'y(0) = E:lwmk l[ve(z,tr) — vy, (x)Hz ) (30)
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and

. 1 n
Eul) = 5 X lunCai, ) = v o) (31)

where we define the functions

(Viegpi(x)), if [Z=20]; <
vw(x)), = I, 32
(vn(a)), { =) > (2)
and
(so(w,1)); if |=52 ) <k
vo(x,1)), = %, 33
(vo(a.)), {0 et o (33)

Here (v:(2));,(Vlogpi(x));, (ve(z,t)); and (se(z,t)); denote the jt co-ordinate of vi(z), (Vlogp:(z)),

‘th

|%;fm°|] denotes the j* co-ordinate of the i** sample of the

vg(x,t) and sg(x,t) respectively. Further,

_ |1767”:00 |
Ty

score function in £;(#) which is given by logp, ()

Note that the functions £/ (8) and £ () are bounded and thus the result from (Theorem 26.5 of 1
[Shwartz & Ben-David, 2014))) are applicable. Additionally, we bound the error due to the truncation in
the terms L'y (0) and L' (0) using the conditional normality of the score function given the initial data
distribution as well as bounded second moment of the initial data distribution. This is the component of
the error that accounts for the fact that we have a finite sample size and thus we solve an empirical loss
function given in . The proof of this lemma follows from utilizing the definitions of s¢ and s?. Existing
analyses of statistical errors, such as those given in (Shalev-Shwartz & Ben-David| 2014)), only work when
the loss function is bounded. This is not the case for diffusion models. Thus, we use a novel analysis that
uses the conditional normality of the score function as well as the bounded second moment property of the
data variable in Assumption [I] to obtain the upper bound on the statistical error. The details of the proof
are given in Appendix

Lemma 3 (Optimization Error). Let ny be the number of samples used to estimate the score function at
time step ty,. Assume that the score loss function Ly (0) satisfies the Assumptions[q and[4], for all k € [0, K],
and the learning rate for estimating Ly, using SGD satisfies 0 < n < %, then with probability at least 1 — ¢

log (3)

EP <O | WP ;
k

(34)
Proof Outline

We study mini-batch SGD on the population loss Ly,

(i) L-smoothness, (ii) the (PL) condition with constant p, and (iii) unbiased mini-batch gradients with

g

variance scaling as -
;

. The algorithm is
1 &
Vi1 =0i—ngi,  9i= > Vb5 2i5) (35)
1 ]:1

with constant step size 7 < 1/L and increasing batch size b; = [S1].

The proof starts from the smoothness (descent) inequality applied to the stochastic update:
L772 2
Lr(Oi1) < Li(0:) = n{VLe(0:), i) + = llgill2- (36)

10
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Taking conditional expectation given 6;, unbiasedness yields [(VLx(6;:), g:) | 0] = |[VLk(0:)|3, and the mini-
batch variance bound implies [||g;]|3 | 6i] < [[VLk(0:)]|3 + 02/b;. Using n < 1/L to simplify constants, we
obtain the one-step recursion

L7]202
2b;

[Lr(0ig1) = Li] < (1 —np) [Lx(0:) — LF] + (37)

where the PL condition converts ||[VL(6;)||3 into a multiple of £ (6;) — L. Unrolling this recursion yields
a geometric “optimization” term plus a “noise” term:

T—1
_,Ln?c? N
[Ce(0r) — £1] < (L m)™ A D0 ( =) TR A= [£x(00) — £, (38)
t=1

The increasing batch schedule b, = [5t] makes the variance term decay like 1/¢; the geometric weights ensure
the sum is bounded by a constant multiple of 1/T, giving

£4l6r) = £1] < (1= ™80 +.0( 7 ) (39)

Finally, if n = ZT . b; denotes the total number of samples, then b; =< i implies n = ©(7?) and hence
1/T = ©(1/+/n). Substituting this relation yields the stated sample-based convergence rate

Le(07) — £5] < (1 —nu)T~1A, +o(ﬁ) - o(ﬁ) (40)

and in the large-n regime the geometric transient is negligible, giving [£x(07) — L5] = O(n~'/2). We use the
quadratic growth inequality and the result of Lemma [3] to get the final result. The details of the analysis
are given in Appendix [C:2}

Combining the decomposition in Eq. along with Lemmas we obtain the following bound on A(k)
(defined in Eq. (I8)) with probability at least 1 — &

log (2 log (2
Aty <o (w2 G) ) Lo [wo.a, /e + €appros (41)
Nk Nk
1 2
<O |wWP.a %«5) + €approms (42)
k

where in the second inequality we combine the first two terms appropriately. Setting the sample size

ng =Q <W2D.d2.1 (4(1;{) <0k4>> (43)

we ensure that A(k) < ;:f = 1_(;+%> for all k € {0,..., K}. Summing over all time steps, we obtain with
probability at least 1 — ¢
K K
> Ak (thr — i) < Z T o=z (ter1 — th) (44)
k=0
T K 62 9 1

Note that the term (log (4K )) appears in the upper bound for nj in Eq. since we have to take a union
bound for Lemma [2] and Lemma [3] and then take a union bound over K discretization steps. Substituting

11
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this bound into Eq. , and then substituting the result into Eq. , we obtain that with probability at
least 1 — 4.

1 1
TV(ptO,ﬁtO) S O(expr) —+ O <\/E> -+ O <€ . (T + IOg /§>> + GQPPTOI (46)

Finally, by choosing T' = Q (log (%)), k= Q(e) and K = Q(e~2), we conclude that with probability at least
1-6

Tv(ptoaﬁto) § O(E) + €approx (47)

completing the proof of Theorem [I] O

In summary, our work provides a principled decomposition of the errors in score-based generative models,
highlighting how each component contributes to the overall sample complexity. This leads to the first finite
sample complexity bound of O(e~*) for diffusion models without assuming access to the empirical minimizer
of the score estimation function.

4 Conclusion and Future Work

In this work, we investigate the sample complexity of training diffusion models via score estimation using
neural networks. We derive a sample complexity bound of O(e~%), which, to our knowledge, is the first
such result that does not assume access to an empirical risk minimizer of the score estimation loss. Notably,
our bound does not depend exponentially on the number of neural network parameters. For comparison,
the best-known existing result achieves a bound of O(e~°), but it crucially assumes access to an ERM. All
prior results establishing sample complexity bounds for diffusion models have made this assumption. Our
contribution is the first to establish a sample complexity bound for diffusion models under the more realistic
setting where exact access to empirical risk minimizer of the score estimation loss is not available.

While our analysis focuses on unconditional distributions, extending these guarantees to conditional settings
remains an important direction for future work.

12
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A Note about |Gupta et al.| (2024)

We note that the comparison in this paper uses the results from the updated arXiv version of their work (in
Nov 2025), which incorporates a correction to an error identified in our earlier version.

B Score Estimation Algorithm

In this section, we provide a detailed description of the algorithm used for estimating the score function in
diffusion models.

Algorithm 1 Denoising Diffusion Probabilistic Model (DDPM)

1: Input: Dataset D, timesteps T', stop time %y, schedule {B:}E_;, network e, learning rate 7, iterations
K

2: Precompute: oy = 1 — B4, &y = [[o, @

Training (Score Estimation)

3: fori=1to N do
4:  Sample z; ~ D, k ~ Uniform([1,T7]), ex ~ N (0,I) fori=1,...,n
5 xy, = e thxy + /1 — e 2rgy
6:  Compute loss: L(0) = ||le; — eg(ze,, )|
7. Update 0 < 6 — 1y, - VoL(6)
8: end for
Sampling

9: Sample 7 ~ N(0, )

10: for t =T down to tgop + 1 do
11: 2z~ N(0,I)ift >1else 2=0
12: €= 69(.%‘,5715)

13: [Lt = \/% (xt — 1'8:6“ €)

14: .’Etflzﬂt-i-\/E'Z

15: end for

16: Return zy,

C Proofs of Intermediate Lemmas

In this section, we present the proofs of intermediate lemmas used to bound the statistical error and opti-
mization error in our analysis.

C.1 Bounding the Statistical Error

Proof. Let us define the population loss at time tj, for k € [0, K] as

Li(0) = Eunp,, Is0(x, tr) = Viogpy, ()], (48)

where sy denotes the score function estimated by a neural network parameterized by 6, and x denotes samples
at time ¢ used in Algorithm [I} The corresponding empirical loss is defined as:

~ 1 &
L(0) = > s, tr) — Viogpy, ()| - (49)
1=1
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Let 62 and 6% be the minimizers of £ (#) and Et(G), respectively, corresponding to score functions sy, and
s?k_. By the definitions of minimizers, we can write

Lk(6) — Li(07) < Li(07) — Li(07) + Li(07) — Lr(6}) (50)
< |ewion) - Zuoh) |+ |£rtop) - Ziop)] (51)

™ (IT)

Note that the right-hand side of is greater than the left-handeft-hand side since we have added the
quantity £;(0%)—L,(6%) which is strictly positive since 6% is the minimizer of the function Ly (8) by definition.
We then take the absolute value on both sides of the to get

We now bound terms (I) and (II) using generalization results. From Lemma [5| (Theorem 26.5 of [Shalev-

Shwartz & Ben-David| (2014)), if the loss function 2(9) is uniformly bounded over the parameter space
©” = {0¢,6%}, then with probability at least 1 — &, we have

. ~ log &
Lr(0) - Lo(0)] < RO")+ 0 Oié , Voeco (52)

where R(©") denotes the empirical Rademacher complexity of the function class restricted to ©”. Now since
x is not bounded, this result does not hold. We then define the following two functions

L'1(0) = Barp, lvo(,ti) = vr, ()] (53)
and

~ 1 &

L) = z_; l[vo (i, tr) — ve, ()| - (54)

where we define the functions

Viegpi(z)), if |2Z= . <k
(0r(z)), = ( t(2)); . | K s (55)
I 0 if |[=557; >k
and
(so(w,1)); if|2=52); <k
1), = J %, 56
(vl 1), {O fleLrm] > n (56)

Here (v(2));,(Vlogpi(z));, (vo(x,1)); and (sg(x,t)); denote the jt" co-ordinate of v(z), (Vlogp:(z)),

vg(x,t) and sg(x,t) respectively. Further, |””760#|J denotes the j** co-ordinate of the i*” sample of the
t

score function in £ (#) which is given by logp;(z) = | =520

I

Note that the functions v:(z) and wvg(z,t) are uniformly bounded. Thus using Theorem 26.5 of [Shalev-
Shwartz & Ben-David| (2014)) we have with probability at least 1 — 0,

~ ~ log &
£ (0) - c/k(e)) <R@O)+0O Oi 5], veeeo (57)

Since ©” = {0,,0,} is a finite class (just two functions). We can apply Lemma E.5 to bound the empirical
Rademacher complexity R(f) in terms of the Rademacher complexity R(f) of the function class ©”. Since
R(0) = LE, [maxaee” Dy f(Q)Ui], applying Lemma E.5, we have with probability at least 1 — 24

o~ WP log 1
c’k(e)—c/k(e)ko(d:j/ >+0 \/% . veeco (58)
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This yields that with probability at least 1 — § we have

_ [log 1
,c’k(e)—cfk(e)lgo d-wP. % . Yoeo” (59)

From this we have

—~ log %
|ene) - Luo)]] <0 d- /=25 (60)
Now consider the probability of the event
_ ot )

Ay =4 B (o)i| 5 . (61)

0% .

J

th

Where denotes the k'™ co-ordinate of of the i

et (z0):
%2(%)1 sample of the score function given by
t

J
—t
zi—e "(z0)i
2

We have the probability of this event upper bounded as

9%

—t —t
Pl|E=S 2 >k =E.P | |52 > sl (62)
gt . 0t .
j j
<exp (—k*(1—e")) (63)
< exp (—x?) (64)

We get from since the score variable is conditionally normal given x.

Setting x = log (%"), we have

XTi; — e’tzo

2
0%

)
P < —
G (65)

If we denote the event A = {L'(f) = L(0)}, then by union bound we have P(4) = P(U; ;A ;) <
Zi,j P(A; ;) <6. Let event B denote the failure of the generalization bound, i.e.,

/ Ry Dra / log%

From above, we know P(B) < § under the boundedness condition. Therefore, by the union bound, we have

P(AU B) < P(A) + P(B) < 25, (67)
— P(A°NB%)=1-P(AUB)>1— 2. (68)

19



Under review as submission to TMLR

On this event (A°N B€), we have 2’(0) = E(Q) Hence, with probability at least 1 — 26, we have

£4(08) — Lo (07)] < |Lr(60]) — £:(60)| + |20 (602) ctwk)\ (69)
< | £n(h) = 26| + | £n(6p) — 26|
= |£0(0}) = £11(00)| + 1£1(07) — £4(67)]

-~

£4(6}) = (6| + |£x(67) = 2:(67)]

<|L(08) — Lo(OR)| + | £ (07) — Lo(07)| + O (d WPy loi‘ls) (72)

In order to bound |L£x(0) — L'4(0)]| we have the following

\)

d
1L4(0) = L' 4O <Y Eajoun, ;| (s0(@, 1)) = (Viogpe, (2))F = Eamu, | (ve(2))r — (v, 0))|7  (73)

<.
[

d
<> Eupmun), | 1(Vl0gpi,) — (oo, )21 (74)
j=1 m—e_"z(xo)i >k
' g
d t 2
x— e ¥(xg)
Z ~ug) | | T — (so(z,t))k| 1 (75)
j=1 t j mfe;;mo) >k
t
i
d —t 2
x—e Y xg)
S S Ll
j=1 t R Elama T
' i
d
+ Z 2E$J~~(utk ) (59 (‘ra t))?l (76)
j=1 poeTtw0) | 5y
' i
d —t 2
x—e ¥ xg)
<2) Eayury), || =z | 1
j=1 t joEmeieo | s,
7t
j
d —t
x—e "(xo)
+ > CorEayniu,), (03 et ,@) (77)
Jj=1 J Tt
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d
4+2Cy )
< (aﬁ) D o), | l251

k=1 z—et(zg)
z

7

>K

2
+ o2 B |zo[71 (78)
z—et(zg)

Tt

>k

J

11

We get Equation (76)) from Equation (75 by using the identity (a — b)? < 2|al? + 2|b|?. We get Equation
from Equation (76| by using Lemma [8] We get Equation from Equation by using the identity
(a — b)? < 2|a|? + 2|b]? again. Now we separately obtain upper bounds for the terms I and IT as follows.

d
2 By, | |23 (79)
j=1 zi*e’;(ro)i >k

7
J

d
= ZE$jN(Utk)j |Ij|21 (80)
j=1 zj—et(zg); >k

' J

d
S ZEQTO]EJC]'N(U%)]"”O |‘Tj‘21 (81)
j=1 zize t@o)i | 5.

t

> K

d
< BBy m(unlao | 12512

Jj=

—

xo) (82)

(83)

. P (
17‘,*6’;(10)7: Sk

7t

d
S exp (_KQ) ZEonwON(ut)j\xo |$k;|2 1
j=1

zj—e"t(zg);
p)

7

J >K

d 2
< oxp (%) Y By (o7 + oot 20 59

k=1
d
< exp (—/42) ZEZ (2.0?) (85)
k=1
<0 (exp (—/{2)) (86)

We get Equation (84) from Equation by using Lemma m We get Equation from Equation

from Assumption (1| and by using the upper bound on the Mill’s ration which implies that 1?5;()/{) < k+ %
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We get Equation from Equation from Assumption (1}, which implies that the second moment of z

is bounded.

d
2
D Eapmu); | 12052
j=1

zi—e”t(z0);
)

7t

>K

J

E ‘SL’()|21

|
.M&

e~ (Ut)k

1

j Iife_;(wo)i

Tt

>k

J

<Y E,E |z0]%1

zr~(ut)k|zo

-

<
Il
_

zi—e”t(z0);
p;

7t

1

VR

EIOEIkN(ut)HIO |l‘0|2

<
Il
-

d
< exp (—K?) ZE$0|xo|2
j=1

<0 (exp (%))

>K

Setting x = log dT" Plugging Equation , into Equation . Then we have

1L (0) — L'1(0)] <O (exp (—K7)),

< (i)

V0 = {07, 01}

Now plugging Equation into Equation we get with probability at least 1 — 20

log 1
£4(6)) — Lr(6p)| < O [d- WP 4| 258
n

Finally, using the Polyak-Tojasiewicz (PL) condition for L£;(6), from Assumption [2) we have from the
quadratic growth condition of PL functions the following,

167 — 6211 < 1| Lx(67) — Li(67)]
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and applying Lipschitz continuity of the velocity fields with respect to parameter x

0% (2, 1) — % (2, ) |2 < Lo - 162 — 032 &7
< Ly ] £ (67) = £4(6) %)

log L
<0 d~WD~1/% . (99)

Here L; is the Lipschitz parameter of the neural networks. It is always possible to obtain this Lipschitz
constant as the quantity [v®(z,t) — v®(z,t)||> < L; is non-zero only over a finite domain of x. Taking
expectation with respect to x, we obtain the following.

Eorou,, |I5% (2,11) — 5% (2, t1)||? < 2B, |17 (2, t2) — 8% (2, t2) — v (x) — v} (2)|?

+ 2B, [V (2, 1) — 0% (2, ) |2 (100)

< ARy, |[07% (2, 1) — s (2, ) ||? (101)

+ AB g, |57 (2, ) — 0% (2, 1)

+ 4B, ||vf (z) — o (2) ]2 (102)

<OK2)+0|d WP loi% (103)
0 p_ [logs

SO +O(d- WPy /= (104)

log
<old-wP. |25 (105)
n

This completes the proof. Note that the quantities 4E,.,, ||uf(x) — vl (z)||? and 4E, ., [[u¢(z) — v (z)|?* are
bounded in the same manner as is done in Equation .

O
C.2 Bounding Optimization Error

The optimization error (E,p¢) accounts for the fact that gradient-based optimization does not necessarily
find the optimal parameters due to limited steps, local minima, or suboptimal learning rates. This can be
bounded as follows.

Proof. By L-smoothness with 6;,1 = 0; — ng;,

Ln?
L(0i41) < L(0:) —n(VL(0:), 9:) + 7\\91”2
Taking conditional expectation given 6; and using unbiasedness,
E[(VL(0:),g:) | 0:] = [[VL(6:)]]3-

Moreover,

E[llgill3 | 6:] = E[IVL(0:) + (9: - ( DIz | 6]
= VL) +E[llg: — VLO)I3 | 0:]

2 o’
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Combining the last three displays,
Ln?
E[L(0i11) | 0:] < L(0:) —nlIVLEO:)|5 + - (||V/:( D%+ ) .

Rearranging and using n < 1/L (so that n — 22 > n/2),

Ln?c?
2b;

E[L(8i+1) | 6:] < L(6:) — 2IIVLE.)3 +

Subtracting £* and applying the PL inequality ||VL(60;)||3 > 2u(L(6;) — £*) yields

* o o In?o?
E[L(0i1) — L] 0:] < (1 —nu)(L(0:) — L) + %
7
Taking total expectation gives the recursion
L 2 .2
Aipr < 1=npu)Ai + gbé (106)
Let p:=1—nu € (0,1) and choose the increasing batch size schedule
= [pBi] for some constant 8 > 0.
Unrolling (106)) for ¢ = 1,...,T — 1 gives
T—1
Ln?*c?
Ar < pT71A roi-t : 107
r < p 1+ ; p 2% (107)
Since by > Bt, we bound
=
T—1— t
PO S oL
Let k:=T—-1—-t,sot=T—-1—kand k=0,1,...,7 — 2. Then
§ pT=1-t T2 < Z . 11 1
P k:OT—l— - T-1 T-1 1—p T—-1 nu
Plugging this into (107)) yields
Lp?o? 1 1 1 Lno? 1
Ap < pT7 1Ay + L. = pI A, + o (108)

2 B oqp T-1

Thus, the suboptimality decays as O(1/T') up to a transient geometric term:
1
E[£(07) — £] < (1—nu)™ 1A + o(T) .

Let n denote the total number of samples used up to iteration 7"

With b; = [Si], we have the crude lower bound

ET: T+1) _ BT
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hence

— <
T—-1 —

Nl
IN
[N}
L
|
Q
—
§,_.
NG

Substituting this into (108]) gives

E[ﬁ(@T) —E*] < (l—nu)T_lAl + O(\}ﬁ)

In particular, for sufficiently large n (so the transient term is negligible),

E[L(6r) — £*] = 0(\}%)

Note that 3;, and ék denote our estimate of the loss function and associated parameter obtained from the
SGD. Also note that £* is the loss function corresponding whose minimizer is the neural network s{ and
the neural parameter 67 is our estimated score parameter. Thus applying the quadratic growth inequality.

184, (2, ta) = ¢, (2, ta) 1> < L1k — 011> < [I[£(0x) — L7]]] (109)
<0 <1> (110)

vn

From lemma [2] we have with probability 1 — § that
s, (2, te) — st (. t) 1> < L.[|6F — 6712 (111)
< Lop |L3,(67) — L1.(67)] (112)

log 2
<0 d~WD-1/% . (113)

Thus we have with probability at least 1 — ¢

[18¢(, t) = sy (@, t)|* < 2[13¢, (2, 1) — st (@, t)l| + 2|Isf, (2, tx) — st (2, )] (114)

1 log 2
§O<log ()) +0[d /22, (115)
n n
log 2
<0 d~WD~1/% . (116)

(117)
Taking expectation with respect to x ~ p;, on both sides completes the proof. O

D Intermediate Lemmas

Lemma 4 (TV bound via Girsanov for reverse diffusions). Let X and X on [0,T] solve
dX; = (f(Xt,t) - UQ(t)S*(Xt,t))dt + o (t) dWs, dX, = (f(Xtat) - 02(t)50(Xt,t))dt +o(t) dWs,

with, the same nondegenerate diffusion o(t) € R™? (invertible for a.e. t) and the same initial law at time T .
Let P and Q be the path measures of X and X on C([0,T],R%). Assume Novikov’s condition

T
]EQexp<%/0 lo(0)(s0(%r.1) — 5. (e )3 dt) < oo,
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Then

T 1/2
TV(P,Q) < ;(1}3@/ Ha(t)(se(fft,t)—s*(Xt,t))\@dt) :
0

Proof. Write the drift difference as
Ab(z,t) = —02(t) (s« (z, 1) — sp(z,1)).

By Girsanov’s theorem (under the stated Novikov condition), P <« @ and the Radon—-Nikodym derivative
is the exponential martingale driven by u; = o (t) " Ab(X;,t) = o(t) (se(Xt,t) - s*(f(t,t)). The Cameron—
Martin formula yields
T
|l
0

Applying Pinsker’s inequality TV(P,Q) < /KL(P||Q)/2 gives

1

1
KL(P|Q) = 5 Bq ;

T
/0 [[or(2) (s0( X 1) — 8*(Xt,t))||;dt] .

1/2

T
TV(P,Q) < ;(EQ/O }|a(t)(595*)||;dt>

Finally, the evaluation map C([0,T],R?) — R% w + w(0), is measurable, so by data processing for f-
divergences, TV(L(Xy), L(Xp)) < TV(P, Q). O

Let {z;}7_, and {Z;}1_, be Euler schemes with the same Gaussian noises,

Tpo1 =Tk + (fo — Opsu(@p, tr)) Aty + o)V Aty &y Fpm1 = Tk + (fr — onso(Fn, tr)) Aty + op/ Aty &,

&k ~ N(0,1) i.i.d. Then, with “traj” denoting trajectory measures,

1 N
KL(traj,[trajy) = 5 ZE[H% (0 (ks ti) — su(zn, ta) || Atk}
k=1

and hence by Pinsker’s inequality we get,

1/2
. . 1 & 2
TV (traj,, trajy) < 3 <kz_1E l|low (so — s*)H2 Atk> .

Lemma 5 (Theorem 26.5 of |Shalev-Shwartz & Ben-David| (2014)). Consider data z € Z, the parametrized
hypothesis class hg,0 € O, and the loss function £(h, z) : R? — R, where |¢(h,2)| < c. We also define the
following terms

Lo(h) = EL(h, 2) (118)
Lo(h) = % S t(h, ) (119)
z; €S

which denote the expected and empirical loss functions respectively.

Then,
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With probability of at least 1 — &, for all h € H,

Lp(h) — Ls(h) <2R(L0© 0 S) + 4c %. (120)

where 2R({ o0 © 0 S) denotes the empirical Radamacher complexity over the loss function £, hypothesis pa-
rameter set © and the dataset S

Lemma 6 (Extewnsion of Massart’s Lemma Bousquet et al.| (2003))). Let 0" be a finite function class.
Then, for any 0 € © , we have

n

max Zf(é’)ai] <|I£(O)]]2 < (BW)* (d+ L) (121)

Ey
0e0” — w

where o; are i.i.d random variables such that P(o; = 1) = P(0; = —1) = . We get the second inequality by
denoting L as the number of layers in the neural network, W and B a constant such all parameters of the
neural network upper bounded by B.

Proof. Let hg =z, and for £ =0,...,L — 1 define the layer recursion
heyr = o(Wihe + be),
where W, € R™+1xme b, € R™+1 and ny < W for hidden layers. We work with the /., operator norm:

||W4||oo:mZaxZ|(Wg)ij\ < Bny < BW =a.
J

Since o is 1-Lipschitz with ¢(0) = 0, we have ||o(u)]|co < [|tt]loo and thus

[Petilloc < Welloo 1helloo + llbelloe < e f|Pelloc + B-

With ||ho|lec < d, iterating this affine recursion yields the standard geometric-series bound

L—-1
Ihillee < oFd + BZo/ = ald + B
1=0

ot —1

o —

(a#1),

and for « = 1, ||hp]|eo < d+ BL. The scalar output f(x) is either a coordinate of hz, or obtained by applying
the same 1-Lipschitz activation to a linear form of hr; in either case, |f(z)| < ||hL|lco, giving the stated
bound.

For the o > 1 simplification, use ZiL:_Ol a’ < Lo’ to obtain

If(z)| < a*d+ BLal™t = (BW)L<d+ V?/)

For a < 1, since o < 1, Zf;ol o' < L and hence |f(z)| < d + BL. Finally, substituting W = S/L gives the
size-based form

f(2)] < (BS/L)L<d+ L;)

O

Lemma 7 (Second Moment of a Symmetrically Truncated Normal). Let X ~ N(u,0?), and let a > 0.
Then the second moment of X conditioned on being outside the symmetric interval [pn — a, p+ a] is given by

¢(5)
1— (%)

o

E[X? | |X — | >a] = p* + 0 +oa-

where ¢(z) = \/%e_zz/g is the standard normal probability density function (PDF), and ®(z) is the standard

normal cumulative distribution function (CDF).
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Proof. Let X ~ N(u,0?). We aim to compute the second moment of X conditioned on the event that it lies
outside an interval centered at its mean

E[X? | X — 4l > d]

This represents the expected squared value of X, given that X is in the tails of the distribution (i.e., more
than a units away from the mean).

By definition, the conditional expectation is

E[X?  1{x—u>a)]

E[X?2||X —ul>d =
X2 IX =l > ol = g =

The numerator integrates X2 over the tail regions (—oo, u — a) U (4 + a, 00), while the denominator is the
probability mass in those same regions.

To simplify the integrals, we standardize X. Define the standard normal variable

X —p
g

7 =

~N0,1) = X=p+oZ

Define o« = 2. Then

X —pul>a & |Z]>«

Our conditional second moment becomes

E[X? | |X — ul > a] = El(u+02)? | |2] > o
Expanding the square inside the expectation

(w4 02)* = p? +2u0Z + 0222
Taking the conditional expectation
El(u+02)?||Z] > o] = 4 + 2u0E[Z | |Z| > o] + 0*E[Z? | |Z] > o]
Since the standard normal distribution is symmetric and the region |Z| > « is also symmetric, we have
E[Z||Z] >a]=0

Thus, the expression simplifies to

E[X? | |X — p| > a] = p* + 0’E[Z* | | Z] > q

By definition

f\z\>a 2p(z)dz 2 f;o 22¢(2) dz f;o 22¢(2) dz
E[Z*||Z] > o] = P(Z[>a)  20-%() _ 1-d(a)

Using Intergration by Parts we get,
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/00 2¢(2)dz = p(a)a+ 1 — d(a)
Therefore

pla)a+1—®(a) _
1—d(a) 1— ()

E[Z?||Z| > o] =

Substitute back into the expression for E[X? | |X — u| > d

E[X?| |X — | > a] = u? + o (Ha(a))

Recall that o = £, so the final expression becomes

E[X? | |X —p| >a] = p? + 0% +0a-

O

Lemma 8 (Linear Growth of Finite Neural Networks). Let fo : R — R be the output of a feedforward
neural network with a finite number of layers and parameters and 6 € © where © has a finite number of
elements. Suppose that each activation function o : R — R satisfies the growth condition

lo(z)] < A+ Blz|, forall z €R,
for constants A, B > 0. Then there exists a constant Ce > 0 such that for all x € R?,

|f(2)] < Co(1+ [z]).
Proof. We proceed by induction on the number of layers in the network.

Base case: One-layer network. Let the network be a single-layer function

k
= Zai o(w] z +b;),
i=1
where w; € Rd, b; € R, and a; € R. Then

aZ| o(w z +b;)|.

HM»

Using the growth condition on o, we get
lo(wi x4+ )] < A+ Bl +bi| <A+ B(|wi][l] + [b:]).
Hence

k
Z ai| (A+ B([lwilll|z[l + [b:])) = Co + Culll;

where Cy, C are constants depending only on the network parameters. Therefore

|[f(@)] < CA+ ||z||) with C = max{Cy, C1}.
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Inductive step. Assume the result holds for all networks with L layers, i.e., for any such network fr,(z),

|fr(z)] < CL(1+ ||z]).

Now consider a network with L + 1 layers, defined by
k .
fr(@) =Y a;o(f (@),
j=1

where each f éj )(3:) is an output of a depth-L subnetwork. By the inductive hypothesis

19 (@) < G (L + ||z]).
Applying the activation bound
(£ (@) < A+ B|f (x)] < A+ BC;(1 + |lz).
Then

k k
e @) <Y lagl - o (7 @) < D7 lasl(A+ BC; (1 + ) = Cran (1 + [l

j=1 j=1

for some constant Cr1 > 0. This completes the induction.

Examples of Valid Activation Functions

The condition |0(z)| < A + BJz| holds for most common activations
o ReLU: o(z) = max(0,z) = |o(z)] < |7
o Leaky ReLU: bounded by linear function of |z|

e Tanh: bounded by 1 == A=1,B=0

e Sigmoid: bounded by 1
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