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Abstract

In reinforcement learning (RL), if the agent’s re-
ward differs from the designers’ true utility, even
only rarely, the state distribution resulting from the
agent’s policy can be very bad, in theory and in
practice. When RL policies would devolve into
undesired behavior, a common countermeasure
is KL regularization to a trusted policy (“Don’t
do anything I wouldn’t do”). All current cutting-
edge language models are RL agents that are KL-
regularized to a “base policy” that is purely pre-
dictive. Unfortunately, we demonstrate that when
this base policy is a Bayesian predictive model of
a trusted policy, the KL constraint is no longer re-
liable for controlling the behavior of an advanced
RL agent. We demonstrate this theoretically using
algorithmic information theory, and while systems
today are too weak to exhibit this theorized failure
precisely, we RL-finetune a language model and
find evidence that our formal results are plausibly
relevant in practice. We also propose a theoretical
alternative that avoids this problem by replacing
the “Don’t do anything I wouldn’t do” principle
with “Don’t do anything I mightn’t do”.

1 INTRODUCTION

Agents optimizing their objective in a way not intended by
designers could be amusing, annoying, insidious, or disas-
trous. Amusingly, RL researchers attempted to get a sim-
ulated humanoid to walk, but the reward resulted in crazy
locomotion [Lee et al., 2021]. Annoyingly, maximizing a
simulated-environment’s reward can produce a policy that
would achieve little real-world-reward by exploiting errors
in the simulation [Mishra et al., 2017, Baker et al., 2019].
Insidiously, artificial agents selecting links to maximize
click-through on social media sites have succeeded, but also

affecting people in ways designers never sought to [Chan
et al., 2023]. For a much longer list of such failures occur-
ring “in the wild”, see [Krakovna, 2018]. Finally, sufficiently
capable reinforcement learners would likely recognize an in-
centive to escape human oversight, intervene in the protocol
determining their reward, and use force to ensure they can
retain control of their reward, subject to such an outcome
being possible from the agent’s action space, and several
other assumptions laid out by Cohen et al. [2022b].

Indeed, several sources suggest that extremely successful
reward-maximization is itself a sign of bad outcomes for
humanity. Zhuang and Hadfield-Menell [2020] demonstrate
that in a resource-constrained world, optimizing the world’s
state to maximize a function of some features would, in
plausible settings, be arbitrarily bad with respect to a utility
function that also cares about unincluded features. Turner
et al. [2021] develop a formal model of “power”—being
able to accomplish a randomly sampled goal—and find that
(reward-)optimal policies tend to seek power. And Cohen
et al. [2022b] observe that any behavior that ensures that
long-term reward is nearly-certainly-maximal must include
extensive control over threats to its physical integrity, in-
cluding threats from humans.

An appealing and popular proposal to avoid such outcomes
is to constrain the agent to follow a policy that is not too dis-
similar to a more familiar “base policy”. This is the approach
taken when RL-finetuning large language models (LLMs).
This class of approaches limits the upside of RL, since it
forgoes optimal policies, but it is a reasonable attempt to
avoid catastrophic policies. The KL divergence, in particular
KL(proposed policy∥base policy), enforces proximity in a
robust, “safety-conscious” way: if basepolicy(action) << 1
while proposedpolicy(action) ≮< 1, the KL penalty is high,
even while Lp norms can be small. For any very bad out-
comes that are unlikely under the base policy, this method
ensures they remain very unlikely. However, if we ensure
that KL(proposed policy∥base policy) is small, but the base
policy only approximates a trusted policy, to what extent can
we be confident that KL(proposed policy∥trusted policy) is
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small? When the base policy is a Bayesian predictive model
of the trusted policy, the answer shown here is: we cannot be
confident that KL(proposed policy∥trusted policy) is small,
which makes the KL-constraint less comforting. (Note that
a Bayesian imitative base policy can only be counted on to
make KL(trusted policy∥Bayesian base policy) small).

Worse, in the formalism we study, we find that if one at-
tempts to use KL-regularization to prevent an RL agent
from achieving near-maximal reward (in light of the con-
cerns above), and the base policy is a Bayesian imitation
of a trusted policy, a fairly tight KL threshold is required,
and as the amount of training data for the Bayesian imitator
grows, the relevant threshold can only increase extremely
slowly. The reason for the limited effectiveness of KL reg-
ularization is (1) a Bayesian imitator asked to act in novel
settings must be humble about its predictions; for many ac-
tions that the demonstrator (i.e. the trusted policy) would
in fact never take, the imitator (i.e. the base policy) must
assign meaningful credence to that action, because it doesn’t
know enough to rule it out. Then (2) the RL agent can ex-
ploit or amplify this credence. Formalizing Occam’s razor
with algorithmic information theory, we have (3) nearly-
reward-maximizing policies have a short description length
(so they are “simple”), and (4) a Bayesian imitation learner
with a rich prior should be especially reluctant to rule out
simple behaviors from the demonstrator in novel settings.
In light of the results from Zhuang and Hadfield-Menell
[2020], Turner et al. [2021], and Cohen et al. [2022b], pre-
venting the RL agent from achieving near-maximal reward
is, in many settings, a bare minimum requirement for safety-
focused regularization, and a KL constraint would struggle
to do so.

Sutskever [2018, 2023] argues that neural networks are able
to generalize well because of the sense in which they approx-
imate the algorithmic-information-theoretic inductive bias
in favor of short programs. Since it is not a given that results
from algorithmic information theory apply in practice, we
verify empirically that a nearly-state-of-the-art predictive
system (Mixtral-8x7B-base-model [Jiang et al., 2024]) is
reluctant to rule out simple behaviors, and an RL agent reg-
ularized to this predictive system exploits this fact, as our
formal results predict. The result is not catastrophic, but
it is bad. Note these empirical results neither confirm nor
deny whether point (3) above applies in practice, but they
do affirm that the rest of the argument is forceful in practice.

Finally, we identify an alternative to Bayesian predic-
tion/imitation that avoids this problem; Cohen et al.’s
[2022a] imitator asks for help when uncertain and carries
useful formal bounds. We show that using this form of im-
itation learning as a base policy would in theory avoid the
problems we identify in this paper. Cohen et al.’s [2022a]
active imitator, like fully Bayesian imitation, is intractable
and requires approximation, so we currently lack the tools
to evaluate this proposal empirically.

2 RELATED WORK

The most prominent example of KL-regularization to an
approximation of a (somewhat) trusted policy is surely Chat-
GPT, inspired by earlier work [Ouyang et al., 2022, Stiennon
et al., 2020, Bai et al., 2022]. Other recent examples include
Jaques et al. [2019], Yang et al. [2021], Korbak et al. [2022],
Perez et al. [2022], Gao et al. [2023], and Moskovitz et al.
[2023]. A closely related approach called quantilization has
been investigated by Taylor [2016], Everitt et al. [2017],
and Carey [2019]. KL regularization to a decent policy has
also been used for stable and efficient policy optimization
[Schulman et al., 2017, Schmitt et al., 2018].

Algorithmic information theory began with Solomonoff
[1960], who formalized a powerful notion of simplicity
based on program-length and developed a method for pre-
diction using that inductive bias. In an article entitled, “A
theory of program size formally identical to information
theory”, Chaitin [1975] examined the connection between
program-length and information. Li et al.’s [2008] textbook
presents the major results of the field. Hutter [2005] and
Hutter et al. [2024] developed a theory of how to apply such
reasoning to the problem of sequential decision-making.
Grau-Moya et al. [2024] train a neural network to learn a
program-length “bias” for a meta-learning setting.

Ultimately, we propose a formal scheme for doing KL regu-
larization to an imitative policy which asks for help under
epistemic uncertainty, and this allows us to inherit the for-
mal results of Cohen et al. [2022a]. The related work section
there goes into some detail about how different researchers
have studied asking for help, including how setups and as-
sumptions differ. See especially Zhang and Cho’s [2017]
work on driving, as well as Brown et al. [2018, 2020] and
Menda et al. [2019].

Closest to our work in studying the relation between KL
divergence to a base policy and “over-optimization” is Gao
et al. [2023]. They design a “real” reward function, and a
simpler “proxy” reward function, which are very similar on
the state distribution induced by a base policy. After optimiz-
ing for the proxy reward function (sometimes with KL reg-
ularization to the base policy), they use the KL divergence
to the base policy to measure how much “optimization” has
occurred. And they study how “real” reward depends on
the extent of optimization—roughly quadratically, with a
negative leading coefficient. Our work provides one expla-
nation for why we should expect such unusual policies with
high proxy reward and low real reward, even when the KL
divergence to the base policy is only moderate.

3 NOTATION AND PRELIMINARIES

We begin with a formalism for an imitative base policy
that has an infinite “context window” and a lifetime that



is one long episode, rather than a lifetime broken up into
multiple episodes with presumed-identical dynamics. This
is the most general setting for an imitative base policy.
We simply have an infinite sequence of actions and ob-
servations a1o1a2o2 . . . , and predictive “autoregressive”
models which give conditional distributions of the form
model(next action|all previous actions and observations).

We formalize sequential prediction as follows. Let X be a
finite alphabet, and let X ∗ be the set of finite strings from
the alphabet X , so X ∗ =

⋃∞
i=0 X

i. Let x<t be an element
of X t−1, and let xt1:t2 be an element of X t2−t1+1. Let
ν : X ∗ ×X → [0, 1] be a (predictive) probability semi-
distribution, satisfying the property that for any x<t ∈ X ∗,∑

x∈X ν(x|x<t) ≤ 1. To understand semi-distributions in-
tuitively, consider the associated probability distribution
over X ∪{∅}, with ν(∅|x<t) = 1−

∑
x∈X ν(x|x<t). So ν

gives a conditional distribution over the next character given
the past characters, if there is a next character at all. Let
ν(x<t) =

∏t−1
i=1 ν(xi|x<i), where xi is the ith character of

x<t, and x<i is the first i− 1 characters. (Measure theorists
can note this means ν induces a probability semi-distribution
over infinite sequences X∞, with the event space σ(X ∗).)

Now we set up Bayesian prediction: Let M be our model
class — a countable set of many “competing” probability
semi-distributions like ν. For each ν ∈ M, let w(ν) be the
prior weight assigned to that probability semi-distribution.
Let

∑
ν∈M w(ν) = 1, so w is a probability distribution over

M. The (Bayesian) posterior distribution is w(ν|x<t) ∝
w(ν)ν(x<t), with

∑
ν∈M w(ν|x<t) = 1. We can now de-

fine the Bayes mixture semi-distribution ξ : X ∗ ×X →
[0, 1] as ξ(x|x<t) :=

∑
ν∈M w(ν|x<t)ν(x|x<t), which

has the property that ξ(x<t) =
∑

ν∈M w(ν)ν(x<t) [Hutter
et al., 2024].

Turning to algorithmic information theory, Solomonoff In-
duction [Solomonoff, 1964] is Bayesian sequence prediction
with a special model class M and a special prior w. The
model class M is all computable semi-distributions ν, and
the prior w is 2−length(program for ν), both defined formally in
the appendix. One can show that ξ(x<t) is the probability
that a given universal computer running a program com-
posed of random bits would output a sequence that begins
with x<t. Related to this is Kolmogorov complexity [Kol-
mogorov, 1963, Li et al., 2008], which is the length of the
shortest program which does something, given a fixed com-
piler. For a set s, K(s) is the length of the shortest program
p such that p(x) = 1 for x ∈ s, and p(x) = 0 for x ̸∈ s. For
a function f , K(f) is the length of the shortest program p
such that p(x) = f(x). For a computable number x, K(x)
is the length of the shortest program p such that p() = x.

To apply this framework to RL, we interpret every odd-
numbered element in the sequence as an action and every
even-numbered element as an observation: we let at =
x2t−1 and ot = x2t; the agent selects actions at and receives

observations ot. We suppose that the first k actions were
taken by a trusted policy, e.g. randomly sampled humans.
We do not necessarily imagine that the policy is trusted in
every sense, only that it can be trusted to avoid the par-
ticular bad outcomes we are interested in avoiding. When
conditioned on a history that begins with k trusted actions,
ξ can be called a Bayesian imitation of the trusted policy.

For an agent with a utility function over m-timestep histo-
ries, Um : X 2m → [0, 1], we define:

Definition 1 (Value). For a probability semi-distribution
ν : X ∗ ×X → [0, 1] and a utility function Um, the value of
a particular “policy” (also a probability semi-distribution)
π ∈ M is

V π
ν,Um

(x<2t−1) = Eat∼π(·|a1o1...at−1ot−1) Eot∼ν(·|a1o1...at)

Eat+1∼π(·|a1o1...atot) Eot+1∼ν(·|a1o1...at+1) ...

Eam∼π(·|a1o1...am−1om−1) Eom∼ν(·|a1o1...am) Um(a1o1...amom)

The optimal value V ∗
ν,Um

(x<2t−1) is the
maxπ V

π
ν,Um

(x<2t−1). When comparing two policies,
we define a KL penalty, which is a function of the starting
history we are continuing from, and of how far into the
future we are looking.

Definition 2 (KL Constraint). KLx<2k,m(π||β) :=

max
ok:m∈Xm−k+1

∑
ak:m∈Xm−k+1

m∏
t=k

π(at|x<2t) log

∏m
t=k π(at|x<2t)∏m
t=k β(at|x<2t)

.

RL
algorithm

argmaxπ V π

Agent
policy
π

Trained Bayesian
imitator

β = ξ(·|x<2k)

Autoregressive
predictor

ξ

Solomonoff
prior

2−length(·)

Human
demonstrations

a<k

Trusted human
demonstrator

τ

conditioned
on

KL constrained
to

Figure 1: KL-regularized RL. A trusted policy τ generates k
demonstrations, which train a Bayesian imitative base policy
β using the Solomonoff prior. An RL algorithm searches
for a policy π that maximizes expected value, while staying
“close” to β. This structure aims to keep π from deviating
too far from τ , even though π only directly interacts with β.

The maximum over observations means that this penalty
ensures the proposed policy and base policy are similar no
matter what is observed. One way to understand this mea-
sure is: if we were wondering whether the proposed policy
or the base policy generated actions k through m, and the
proposed policy actually was generating those actions, this
is the maximum over observations of the expected amount



of evidence we would get confirming that fact. (In a deter-
ministic environment, we could remove the maximum over
observations, but we do not study this case separately.)

To analyze how policies behave in novel situations, we for-
malize the notion of unprecedented events. Following Cohen
and Hutter [2020], an event E is any subset of possible his-
tories X ∗. For an outcome x<∞, we say that E happens at
time t if x<2t ∈ E, we say E has happened by time t if
∃k ≤ t such that E happened at time k, and we say E is un-
precedented at time t if it has not happened by time t−1. For
an example of an event, consider “the life history indicates
the House Speaker’s office wants to hear from the agent.”; a
subset of possible life histories meet this description.

4 FORMAL RESULTS AND DISCUSSION

We begin with a quick observation about the KL divergence
separate from our more involved results.

Proposition 1 (No easy bound). For any ε > 0, if
KL(π||β) ≤ ε and KL(τ ||β) ≤ ε, it is possible that
KL(π||τ) = ∞. (β and τ stand for “base” and “trusted”.)

Proof. Let τ = Bern(0). Let π = β = Bern(min(ε, 1)/2).
The KL divergences are easily checked.

When β is trained to imitate τ , small KL(τ ||β) is typically
all we can expect. Proposition 1 should give us pause if we
regularize to the Bayesian imitator ξ instead of the trusted
demonstrator, but Theorem 1 below is more concerning.

Recall we are considering the setting where actions a1
through ak were taken by trusted humans, and we are in-
terested in regularizing a Um-optimizer to the Bayesian
imitator ξ, conditioned on histories that begin a1o1...akok.
So the following result is of interest when t > k and the
agent is acting. As motivation for this theorem, as discussed
previously, assume a setting where if V ∗

ξ,Um
− V π

ξ,Um
< ε,

then π is considered unacceptably risky [Gao et al., 2023,
Zhuang and Hadfield-Menell, 2020, Cohen et al., 2022b].

Theorem 1 (Little constraint in novel situations). ∃ a con-
stant d such that ∀ Um, and ∀ E, if E is unprecedented and
occurs at time t, then for any v < V ∗

ξ,Um
(x<2t), ∃ a pol-

icy π for which V π
ξ,Um

(x<2t) > v, and KLx<2t,m(π||ξ) <
[d+K(Um) +K(E) +K(vξ(x<2t))]/ log 2.

This theorem shows that there are policies with near-optimal
utility with little KL divergence to an imitative policy, re-
gardless of how safe the demonstrator’s policy is. We’ll
discuss the terms in the bound in turn. The proof of the
theorem (appearing in Appendix D and outlined below) in-
dicates that the constant d is a small one; it corresponds to
how much code it takes to implement a search tree, Bayes’
rule, and control flow. The theorem applies for any E and

any v < V ∗, so they are free variables, and we can focus our
attention to cases where K(vbasepol(history)) and K(E)
are small. For the former term, there may be a trade-off
between low complexity and v’s proximity to the optimal
value. Below, we consider a common setting where K(Um)
is small, and we discuss how often we can find an unprece-
dented event E for which K(E) is small. Note that Theorem
1 considers a lifetime KL constraint for the agent; for autore-
gressive models, the lifetime KL divergence is equal to the
expectation of the sum of the per-timestep KL divergences.
Theorem 1 is proved in Appendices A through D.

Proof idea First, the following policy has a small descrip-
tion length: search for and execute a policy which optimizes
the utility function using a Bayesian model of the environ-
ment. Second, the Bayesian imitation learner can’t rule out
that after an unprecedented event, the demonstrator’s policy
might look significantly different, and if so, simpler behav-
iors are more likely than complex ones. Therefore, the KL
divergence from the first policy to the Bayesian imitator,
when conditioned on an unprecedented event, is relatively
small.

Proof Outline Let π∗
v be a policy which is the result

of a search through possible policies for one where
V π
ξ,Um

(x<2t) > v. (For this search process to be com-
putable, it needs the product vξ(x<2t) as input). For every
ν ∈ M, we define a ν′ which behaves identically to π∗

v if
it is outputting an action after E has occurred in its history,
but it behaves identically to ν otherwise. ν′ is also in M be-
cause this is a valid program. And for some constant d, the
extra length of the program computing ν′, beyond the length
for ν, is at most ∆ := K(Um)+K(E)+K(vξ(x<2t))+d.

This means the prior ratio w(ν′)/w(ν) ≥ 2−∆, and if E
has never occurred, this holds for the posterior ratio as well,
since ν and ν′ will have given identical predictions. There-
fore, at least that fraction of ξ is “dedicated” to predicting
that actions will be sampled from π∗

v after E happens, and
ultimately, KLx<2t,m(π∗

v ||ξ) log 2 ≤ ∆.

Let’s analyze this result in an RL setting: part of the agent’s
observations are rewards, and the utility function equals the
sum of those rewards. Let’s consider the case where it is
acting in the real world, and it could maximize its reward
by escaping human control, taking direct control of its own
rewards, setting them to a maximal value for all successive
timesteps. Moreover, let’s consider the (fairly plausible)
setting where unsafe strategies like these are the only way to
achieve near-maximal reward permanently. Finally, suppose
that the agent is clever enough to recognize these strategies.

The utility function, simply summing rewards, has an ex-
tremely short program length; the reward history is an input,
so all we need is a program that sums some elements from
a list. So if we have small d, small K(Um), and v tuned



for small K(vξ(x<2t)), then unless we use a fairly tight
lifetime KL constraint, the RL agent could just wait for a
timestep where there exists an event E with small K(E)
that occurs then for the first time. It could then execute
an optimal or near-optimal policy, even if the humans that
the base model imitates would never behave that way. The
following proposition, proven in Appendix D, establishes
the feasibility of waiting for such a timestep. It considers
the complexity of “the simplest unprecedented event yet to
occur”—for a given infinite history x<∞ and a time t, this
is minE∈P(X∗):E occurs for the first time after time t K(E).

Proposition 2 (Frequency of simple unprecedented events).
In any environment, at time t, the complexity of the simplest
unprecedented event yet to occur (at any time T > t) grows
more slowly, as t → ∞, than every computable function
that tends to infinity.

Proposition 2 shows that waiting for an unprecedented event
with small K(E) is a viable strategy for an RL agent, unless
the agent does not get to act until t is incalculably large.
In our formalism, the agent begins selecting actions after
the trusted humans generate the first k actions. (The way
one “trains” an autoregressive Bayes’ mixture model like
ξ is simply to condition it on the training data, in this case
a<k.) As we increase the amount of training k, the Bayesian
imitative base model ξ becomes a closer approximation to
the humans generating the actions a<k, so one might expect
we could safely accommodate larger KL constraints. But our
result is independent of k. As k grows, the only change is
that unprecedented events become more complex, so K(E)
grows, as shown in Proposition 2. So while more data would
help, resolving the issue with more data is infeasible.

Intuitively, we can understand Proposition 2 to show that
even with extensive training data, we will encounter novel
situations that are algorithmically simple. This theoretical
result can be observed in practice: for instance, self-driving
car developers have found that even with massive training
datasets, their vehicles regularly encounter unprecedented
but conceptually simple scenarios.

These results suggest that if we intend to use an imitation
learner as a base policy for regularizing a goal-directed
agent, we should not strive to approximate ideal Bayesian
imitation. This is not the fault of the KL divergence—other
metrics behave much worse. For example, suppose we con-
strained the total variation distance between π and a base
policy β. The result would be bad, even if β = τ , even if
we used a perfect imitation of the trusted policy!

Let TVDx<2k,m(π, β) = maxX⊂X 2m−2k

∑
x2k:2m∈X∣∣[∏m

t=k π(at|x<2t)]−[
∏m

t=k β(at|x<2t)]
∣∣. And let πTV D

c =
argmaxπ:TVDx<2k,m(π,β)<c V

π
ξ,Um

. We say an action is
Vξ,Um-optimal if it is assigned positive probability by a
policy that maximizes V π

ξ,Um
; a formal definition appears in

Appendix E.

Theorem 2 (TVD constraint). If πTV D
c (at|x<2t) >

β(at|x<2t), then at is Vξ,Um -optimal.

The proof is in Appendix E. We use regularized RL for
the setting where Vξ,Um-optimal behavior is actually bad.
But when using total variation distance to regularize, the
only actions that increase in probability are Vξ,Um

-optimal
ones, even with a perfectly trustworthy base policy. The
KL divergence is a better regularizer for maintaining safety,
because if a (bad) outcome is impossible under the base
policy, it remains impossible under a policy with finite KL
divergence to the base policy.

5 RL-FINETUNING A LANGUAGE
MODEL

Solomonoff induction is a very different learning algorithm
than first-order optimization of non-linear parametric mod-
els. The most striking difference is that the former does a
brute force search through all possible computable models,
while the latter does not explicitly search at all. An argu-
ment for expecting our formal results to be relevant is as
follows. Ruling out valid hypotheses a priori so that no data
can persuade you of them appears to be a dangerous ten-
dency when trying to model the world; it may not be long
before you confront a true fact that you treat as unbelievable
[Liu et al., 2018]. In contrast, any predictor that a) assigns
positive prior probability to every program as a potential
generator of its observations, and b) and updates its beliefs
according to Bayes’ rule is formally equivalent to ξ [Hutter,
2005]. Therefore, we conjecture that algorithmic informa-
tion theory helps us understand realistic machine learning
systems that attain very low prediction error. We present
experiments to evaluate how realistic our theoretical results
are. We corroborate those results following form: we show
that even when an RL agent is tightly KL-constrained to an
imitative base model, the RL agent can still exhibit simple
non-demonstrator-like behavior.

Experimental Setup We consider the following episodic
RL environment, in which the agent plays a teacher and
gets reward to the extent that the student’s responses have
positive sentiment. In a conversation transcript, if the string
“[newline] Teacher:” has come more recently than the string
“[newline] Student:”, the agent can add tokens to the tran-
script. Otherwise, Mixtral-base-model repeatedly adds to-
kens to the transcript. In Figure 2, gray (colored) tokens
are generated by the environment (agent). When Mixtral-
base-model finishes generating the student’s response (by
outputting “[newline] Teacher:”), the agent gets a reward
equal to the “sentiment” of the student’s response accord-
ing to the DistilBERT sentiment model [Sanh et al., 2019],
scaled to [0, 1]. The episode terminates at 256 tokens. The
starting transcript is also in gray in Figure 2. The base policy
used for KL-regularizing the agent’s policy (corresponding



to ξ from before) is also Mixtral-base-model. Such an LLM
is not an explicitly Bayesian imitator, of course, but it does
attempt to minimize KL(data-generating process||model),
which is the “right” objective from a Bayesian perspec-
tive. The “state” observed by the agent is the activations
of the last three hidden layers of Mixtral-base-model with
the transcript-so-far as input, along with the fraction of the
episode remaining. The agent has no discount factor.

This allows us to evaluate whether KL regularization can
produce good results from an imperfect reward function
that is plausibly correlated with good outcomes under the
state distribution induced by the base policy, but like many
reward functions, not something we truly want maximized.

Like cutting-edge RL-finetuned language models [Ouyang
et al., 2022, Stiennon et al., 2020, Jaques et al., 2019], our
agent is trained with proximal policy optimization (PPO)
with KL regularization of the form KL(proposed || base).
That work adds a constant KL penalty per token, but we
had difficulty tuning this constant—in our attempts, when
the agent discovers a sufficiently high-reward strategy, the
fixed KL penalty becomes swamped and ignored, and if
the KL penalty is increased to a level where it can stop
that, the agent never gets off the ground. So we opted for
an implementation of a KL constraint that is more robust
than industry practice: we design a policy architecture that
ensures that the KL divergence to the base policy is less
than or equal to a scalar which is input to the network;
(we construct a new differentiable PyTorch operation for
this, available at https://github.com/mkc1000/
kl-fixed-mixture/). This allows us to provide the
agent with a fixed KL “budget” for the episode. We in-
crease this budget gradually during training to its ultimate
value. We ran three budget-20 experiments. We ran four
budget-10 experiments, because in one of the experiments,
the agent didn’t learn to get nearly as much reward as in
the other experiments; we discarded that agent as insuf-
ficiently optimized. See Appendix F for more details of
the training process and architecture, which includes run-
ning 64 copies of the agent-environment loop in parallel
on two A100-SXM4-80GBs. Code is available at https:
//github.com/mkc1000/kl_reg_paper.

Experimental Results Both Theorem 1 and the experiments
here demonstrate that KL(simple, optimal, not-human-like-
at-all policy || predictive model of human demonstrator)
can be quite small. By “simple,” we mean easy to repre-
sent. The result of the training process is clear just from
looking at transcripts in Figure 2. The color of each token
represents the per-timestep KL(RL policy || base policy) for
that action. With a total KL budget of 20 nats, it can spend
enough of its KL budget up front to latch onto the simple
but initially unlikely policy of simply saying nothing at all.
(An empty reply from the student has neutral sentiment and
a reward of 0.5). The policy constructed in the proof of
Theorem 1 also incurs an upfront KL cost for “switching”

to simple behavior, whereafter the KL cost incurred is min-
imal. Additionally, the learned budget-20 policy switches
from double-spacing to single-spacing to fit more rewards
in, again incurring basically a one-time KL cost. With a total
KL budget of 10 nats, the RL agent cannot afford to switch
to single-spacing, and it cannot force the policy to ensure
empty responses, but it still spends almost all its KL budget
switching to that regime, with moderate success. We also
observe this effect in Figure 3.

Let’s review the relation between the theory and the empir-
ical findings so far. The idea for the proof of Theorem 1
is that (1) a Bayesian imitator must assign meaningful cre-
dence to actions the demonstrator would in fact never take,
because it doesn’t know enough to rule them out; (2) the RL
agent can exploit or amplify this credence as the basis for its
policy; (3) nearly-reward-maximizing policies have a short
description length (so they are “simple”); and (4) a Bayesian
imitator should be especially reluctant to rule out simple be-
haviors from the demonstrator, especially in novel settings.
The simple behavior we observe from the RL-finetuned
language models—preferring empty responses—is likely
reward-optimal, but it is not simple by virtue of its optimal-
ity for this sentiment-based reward function. So we have not
empirically verified (3). But we have verified that the rest
of the argument can be exhibited in practice: observe how
the RL agent redirects the imitative base policy to a simple
policy, which is the critical reason Theorem 1 holds. The
small KL cost required to remain silent, visible in Figure 3,
affirms how successful the redirection is. The experiments
are also consistent with the motivation of our formal results:
very-high-reward policies are often bad and worth avoiding;
in our experiments, the very-high-reward policy treats the
student with callous-seeming silence.

Stepping back, note that e10 ≈ 22026. It does not seem
plausible to us that even 1/22,000 “conversations col-
lected for training purposes” would have a teacher re-
peatedly saying nothing in response to statements like,
“I didn’t want to bother you.” So we should guess that
KL(agent||data-generating process) > 10 even while
KL(agent||base model) ≤ 10. We offer an explanation for
this: non-demonstrator-like behaviors are easily exhibited
by an imitator as long as those behaviors are simple. And
while such simple behaviors are fairly unlikely to appear
when sampling directly from the imitator, an RL agent can
benefit from seeking them out.

Additionally, we show that increasing the length of the chat,
keeping the total KL budget constant (thereby decreasing
the per-token KL-divergence) makes the divergence from
the base policy more dramatic, if it changes at all. Hopefully
our presentation makes this seem like an obvious point—
more of the transcript occurs after the switch to the simple
behavior—but consider an argument for the opposite that
might have sounded plausible. “The learned policy will look
more different from the base policy to the extent there is

https://github.com/mkc1000/kl-fixed-mixture/
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Figure 2: Transcripts. Total KL budget KLwhole episode(agent||Mixtral-base-model) is 10 nats (left) or 20 nats (right), with
color representing per-token KL cost. Starting transcript and student responses are in gray. The agent playing the teacher
pays an “upfront” KL cost to latch onto the simple pattern of mutual silence, which exploits the reward model without much
further KL penalty. The three largest per-token KL-divergences are shown in footnotes. “[\n]” is for visualizing the KL costs
of newline tokens. Transcripts were not selected for maximal “representativeness”; they were the first we looked at, although
we might have picked different ones if they were especially unusual. (It is hard to display the unusual characters that appear
after the end token “</s>”, but the episode does continue to a total of 256 tokens).

a higher per-token KL divergence; a longer chat would in-
crease the number of noticeable differences, but not their fre-
quency.” But Figure 4 shows that in longer episodes, empty
responses are about equally frequent in budget-10 case, and
more frequent in the budget-20 case, not just more numer-
ous. This is another indication that RL agents can use a KL
budget to permanently derail a standard base model. Practi-
tioners finetuning language models should think in terms of
total KL-divergence instead of per token KL-divergence.

So even a fairly tight KL constraint is not enough to stop
RL-finetuning from making the teacher’s behavior worse
and much simpler. When GPT3.5-turbo judged pairs of tran-
scripts generated by the base model, the budget 10 agent,
and budget 20 agent, the less optimized agent was usually
judged “better” and “more complex/unpredictable”. Numer-
ical results establishing this appear in Appendix G. The
simple and bad behavior that we observe is no doubt caused
by the faultiness of the reward function, but our main empir-
ical contribution is that such behavior is not stopped by the
KL constraint.

6 PESSIMISTIC BAYESIAN BASE
POLICY THAT ASKS FOR HELP

Cohen et al. [2022a] developed a theoretical variant of
Bayesian imitation that is “pessimistic”, and using that as a
base policy instead of a Bayesian imitator avoids the prob-
lem presented in Theorem 1. Cohen et al.’s [2022a] (in-
tractable) imitator is defined as follows, with M, ν, and w
as defined above. First we define the set of semi-distributions
with a posterior weight at least α times the sum of the pos-
terior weights of semi-distributions that are at least as likely
as it. And then we define the imitator.

Definition 3 (Top set). Of all ν ∈ M, let νnx<t
be the one

with the nth largest posterior weight w(ν|x<t), breaking
ties arbitrarily. And for α ∈ (0, 1], let

Mα
x<t

:= {νnx<t
∈ M : w(νnx<t

|x<t) ≥ α
∑
m≤n

w(νmx<t
|x<t)}

Definition 4 (Pessimistic Bayesian imitator). The imitator
να is defined: να(x|x<t) := minν′∈Mα

x<t
ν′(x|x<t).

Note that να is in general a probability semi-distribution



Figure 3: How much KL-budget is spent on empty responses.
The 25th, 50th, and 75th percentiles are shown in blue, orange,
and green. A large fraction of the total cost is incurred in
the first few responses. y-axis is square-root-scaled.

Figure 4: In a random episode, what fraction of teacher
responses are empty? Left: histogram, with budget-10 above
and budget-20 below; right: percentiles of the distribution.
Observe that the red and blue curves have the same average
per-token KL divergence.

even if all ν are true probability distributions, since the να
probabilities will sum to less than 1 if there is any disagree-
ment among the ν ∈ Mα

x<t
. Cohen et al. [2022a] study this

distribution in the context of active imitation learning, and
they examine the setting where the imitator asks for help
with the remaining να-probability.

Assume the data x<k is sampled from a true probability
distribution τ , and τ ∈ M. τ samples actions from the true
demonstrator distribution. Then we have

Theorem 3 (Cohen et al. [2022a] Theorem 2). For all δ > 0,
if α < δw(τ), then with prob. at least 1− δ, ∀t τ ∈ Mα

x<t
.

Assuming the high probability event that ∀t τ ∈ Mα
x<t

,

Theorem 4 (Tight KL constraint with approximate imitator).

For any budget b,

{π : KL
x<2t,m

(π||να) ≤ b} ⊆ {π : KL
x<2t,m

(π||τ) ≤ b}

Proof. να(x|x<t) = minν′∈Mα
x<t

ν′(x|x<t) ≤ τ(x|x<t),
so KL(π||να) ≥ KL(π||τ).

Therefore, for sufficiently small α, KL-regularization using
the pessimistic Bayesian imitator guarantees regularization
at least as strong as if using the trusted policy itself (the
demonstrator) for regularization. Note, in particular, that if
τ ∈ Mα

x<t
, and τ(x|x<t) = 0, then να(x|x<t) = 0, so any

policy with finite KL-divergence from να will also assign
zero probability to x.

The downside is that there may be no policy with small KL
divergence to the semi-distribution να. In an extreme case,
να could assign zero probability to every outcome, and so
any policy would have infinite KL divergence from it. There-
fore, just as Cohen et al.’s [2022a] imitation learner does not
pick an action in some circumstances, we should allow an
optimizer that is KL-regularized to a pessimistic Bayesian
imitator to refuse to pick an action if need be, making the
optimizer a probability semi-distribution, rather than a true
probability distribution. We can define the behavior of Um

on unfinished sequences (resulting from no action choice
somewhere along the line) however we like; if Um = 0 for
any such interrupted sequences, that would of course en-
courage the optimizer to pick an action whenever possible,
subject to its KL constraint. Ideally, if human demonstrators
are on hand, the optimizer should ask for help whenever it
doesn’t pick its own action. The ongoing potential need for
human oversight may be a significant drawback, but Cohen
et al. [2022a] give an encouraging result about the rate at
which the ask-for-help probability goes to 0: the sum over
infinite time of the cube of the ask-for-help probability is
finite [Cohen et al., 2022a, Thm 1]. Cohen et al.’s [2022a]
agent is certainly not the only one that asks for help under
uncertainty, but it is the only one that has been shown to
satisfy να(x|x<t) ≤ τ(x|x<t) with high probability—the
critical result we use.

We contend that this is the way that KL regularization
should be done, if we are forced to learn a mere approxi-
mation of a trusted policy that we would ideally regularize
to. Regularizing to a full Bayesian posterior distribution
is less robust, because the optimizer can seize on esoteric
possibilities that a fully Bayesian imitator is not confident
enough to categorically exclude. Roughly, KL regulariza-
tion to a Bayesian imitator implements the principle, “Don’t
do anything [that you know] I would never do”, whereas KL
regularization to a pessimistic Bayesian imitator implements
the principle, “Don’t do anything I might never do”.



7 CONCLUSION AND LIMITATIONS

A key limitation with our positive results is that we cannot
provide empirical findings, because it is an open question
how to tractably approximate a pessimistic Bayesian imita-
tive base model. There are high-quality, off-the-shelf cross-
entropy-minimizing imitators like Mixtral, but for tractable
pessimistic Bayesian imitation, some new ideas may be
needed. There certainly are not any state of the art language
models trained in a way that reflects this idea. We hope
this work provides motivation for a major industry effort
to produce one. Using an ensemble of models to approx-
imate Mα

x<t
may be a step in the right direction, but it

appears challenging to ensure that the ensemble covers all
the relevant modes of the posterior.

A second key limitation with our positive result is that
any KL-regularization to avoid radically inhuman behav-
ior could limit the potential of superhuman intelligence.
This paper has no roadmap to A+ performance, only to
non-catastrophic, decently-superhuman performance. And
a final key limitation is that our agent sometimes has to ask
for help instead of acting.

The main limitation of our negative results is they regard
an unrealistic algorithm—Solomonoff Induction. However,
Solomonoff induction is simply a formalism for careful
and open-minded probabilistic reasoning; if something goes
wrong in that setting, we should be wary of the same in
increasingly careful and open-minded machine learning
systems. Our empirical results do not directly validate the
theory, since both the base model and the RL-finetuning pro-
cess are too weak, but we validate core components of the
theory: KL-regularized RL-finetuning will tend to amplify
simple behaviors from an imitative base model rather than
demonstrator-like behaviors. This helps explain the overop-
timization phenomenon quantified by Gao et al. [2023].

Excitingly, we offer theoretical results that provide a di-
rection to a solution: if Cohen et al.’s [2022a] pessimistic
online imitation learner could be faithfully approximated,
and if the demonstrator(s) never attempt to do X , then KL
regularization to such a policy could solve the problem of
how to prevent superhuman planning agents from doing X .
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A SOLOMONOFF INDUCTION

Solomonoff Induction [Solomonoff, 1964] is Bayesian se-
quence prediction with a special model class M and a spe-
cial prior w.1 Let P be the set of all programs which out-
put an element of X and which accept two inputs: a finite
string ∈ X ∗ and an infinite binary string ∈ {0, 1}∞. (Note
that a program will not necessarily read every bit from
the infinite binary string.) For each program p ∈ P , we
define a semi-measure ν = f(p) as follows: let ν(x|x<t)
be the probability that the probability that the program p
outputs x when it receives x<t as an input, along with
an infinite binary string where each bit is sampled from
a Bernoulli(1/2) distribution. Note that ν may not be a
probability distribution, if there is are some inputs on which
p does not halt, but it will always be a probability semi-
distribution. So let M = {f(p) : p ∈ P}. Since P is
countable, so is M. A notable feature of Solomonoff In-
duction is that M is equal to the set of all probability
semi-distribution that are “lower semi-computable”; this
means that for all x<t ∈ X ∗ and all x ∈ X , there exists a
program p, such that limi→∞ p(i, x<t, x) = ν(x|x<t) and
p(i + 1, x<t, x) ≥ p(i, x<t, x). Replacing the ≥ with a ≤
gives the definition of upper semi-computable.

Proposition 3 (Lower Semi-computability). M is the set of
all lower semi-computable semi-distributions over X given
x<t ∈ X ∗.

Proof. First, we show that all ν ∈ M are lower semi-
computable. Let p be the program that generates ν. We
define the behavior of program p′ on inputs i, x<t, and x.
On input i, let program p′ execute the following computa-
tions in sequence for all bit strings of length i: it simulates
program p with the input x<t and with the bit string of
length i in question, except if program p would read more
than i bits from the random bit string, it halts instead, and if
it would run for more than i computation steps, it halts in-
stead. For each of those 2i computations, program p′ checks
whether x was output, keeps count of how many times it
was, divides by 2i, and outputs this number. It is elemen-
tary to show that limi→∞ p′(i, x<t, x) = ν(x|x<t) and that
p′(i+ 1, x<t, x) ≥ p′(i, x<t, x).

Next, we show that all lower semi-computable semi-
distributions appear in M. Let p′ be the program
which is witness to the semi-distribution ν’s lower semi-
computability. On input x<t, let program p proceed as fol-
lows. Starting with i = 1, program p executes p′(i, x<t, x)
for all x ∈ X , sequentially. This produces a semi-
distribution over X . Then, using random bits from its input
bit string, it samples from that semi-distribution, and halts

1Solomonoff Induction has been defined in multiple ways
which all share the key properties [Hutter, 2005]. Our precise
construction of Solomonoff Induction may be novel, but we believe
this construction makes its properties most clear.
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if successfully samples. Now, the following repeats forever.
If no sample was selected (because the semi-distribution
summed to y < 1), the program increments i, and it executes
p′(i, x<t, x) for all x ∈ X , sequentially. Then for each x, it
computes (p′(i, x<t, x)−p′(i−1, x<t, x))/(1− y), which
is a semi-distribution. Using random bits from its input bit
string, it samples from that semi-distribution, and halts if it
successfully samples. [End of loop]. Again, it is elementary
to show that p samples from the semi-distribution defined
by p′, and since this program has the right input/output
behavior, it appears in P .

Now we specify the prior weight function w. Consider a uni-
versal binary programming language L, which is a “prefix-
free” subset of {0, 1}∗. Prefix-free means that you can tell
when a program has ended: if the bits composing x ∈ L
match the initial bits of y ∈ {0, 1}∗, then y /∈ L. Such a
language is still capable of encoding countably many dif-
ferent programs. For convenience, we also require that for
any infinite binary string, L contains an element which is
a prefix of that string, making L “complete”. We define a
prior probability distribution over program strings L, which
results in the same prior probability distribution over pro-
grams, which results in the same prior probability distri-
bution over semi-computable semi-distributions M. For
s ∈ L, this prior probability w(s) = 2−ℓ(s), where ℓ is
the length of the string. Because L is prefix-free and com-
plete,

∑
s∈L w(s) = 1 [Kraft, 1949, De Rooij and Grün-

wald, 2011]. This completes the definition of Solomonoff
Induction; it is sequence prediction using the Bayes mixture
semi-distribution ξ, with the above definitions of M and w.

Proposition 4 (Any-time Computability of ξ). ξ(x|x<t) is
any-time computable: there exists a program which, accept-
ing an argument i, computes ξ̂i(x|x<t), having the prop-
erty that limi→∞ ξ̂i(x|x<t) = ξ(x|x<t). Moreover, (ξ̂i)i∈N
can be constructed so that each one is a probability semi-
distribution.

Proof. ξ(x|x<t) =
∑

ν∈M w(ν|x<t)ν(x|x<t) =∑
ν∈M w(ν)ν(x<t)ν(x|x<t)∑

ν∈M w(ν)ν(x<t)
. All ν(x|x<t) and ν(x<t) are

both lower semi-computable, so using a sequence of com-
putable estimators for each term gives a sequence of com-
putable estimators that approaches the true value. (Note that
the estimates are not monotonically increasing because there
are lower semi-computable terms in the denominator, so ξ
is not lower semi-computable itself).

For fixed estimates of ν(x|x<t) and ν(x<t), we have a
linear combination over various ν’s of ν(x|x<t), with the
coefficients summing to one. And because each ν(x|x<t) is
lower semi-computable, the estimate will be less than the
true value. Therefore, since ν(x|x<t) is a probability semi-
distribution, the estimate will be as well, so ξ can be approx-
imated by a sequence of probability semi-distributions.

B OPTIMIZER REGULARIZATION

We now define optimizers, and what it means for an opti-
mizer to be regularized to a probability semi-distribution.
First, we show that the value of a policy is lower-
semicomputable. Then we show that such optimizers exist.

Proposition 5 (Lower semi-computable value). If the policy
and environment π and ν are lower semi-computable prob-
ability semi-distributions, V π

ν,Um
is lower semi-computable.

Proof. We begin by defining dovetailing tree search (DTS),
for evaluating the outputs of a tree of different computations,
or more precisely, computations which, when given a finite
binary string as input have three possible outcomes: halt, do
not halt, or require additional bit. DTS gives an any-time
algorithm that produces a list of the halting binary strings
with their corresponding outputs, and every such binary
string and output will eventually be added to this list.

DTS maintains a queue of pairs (computation state, binary
string), starting with just (the initial computation state, the
empty binary string). It cycles through the queue, executing
one computation step per computation state, and if the com-
putation ever requires an additional bit, it adds a copy of
(computation state, binary string) to the queue, and adds a 0
to the end of one string, and a 1 to the end of the other. If
any computation reaches a halt state, it is removed from the
queue, and the associated binary string and the associated
output is added to the list of outputs.

Collectively, ν and π define a lower semi-computable semi-
distribution, where ν is used for the even characters, and π is
used for the odd ones. Call this probability semi-distribution
ρ, and recall the construction of the lower semi-computable
semi-distributions defined in M. To have one of the pro-
grams in M sample a long sequence of characters, every
time the program would output a character, add that char-
acter to the input, and continue on that input. With such a
program for sampling sequences from ρ by reading random
bits from an input bit string, we can compute V π

ν,Um
by run-

ning DTS on the bit string. Each time DTS outputs a bit
string for which ρ outputs a sequence in X 2m, we add to
the estimate of the value the probability of that bit string
(= 2−ℓ(bit string)) times the utility of the sequence in X 2m.
This approaches the true value as DTS runs for longer, and
the value never decreases because Um is non-negative.

An optimizer is an any-time program for computing actions
(perhaps stochastically) whose value approaches the optimal
value, as it runs for longer. The optimal value takes the



following form:

V ∗
ν,Um

(x<2t−1) = max
at∈X

Eot∼ν(·|a1o1...at) (1)

max
at+1∈X

Eot+1∼ν(·|a1o1...at+1) ... (2)

max
am∈X

Eom∼ν(·|a1o1...am) Um(a1o1...amom) (3)

Definition 5 (Optimizer). For an environment ν, a utility
function Um, and a computation quantity c, an optimizer is
a computable policy πc,ν,Um for which limc→∞ V

πc,ν,Um

ν,Um
=

V ∗
ν,Um

.

Proposition 6 (Optimizers exist). For any lower semi-
computable semi-distribution ν (the environment), any m,
and any computable utility function Um, there exists an
optimizer.

Proof. We can construct the optimizer using the algorithm
presented in the proof of Proposition 5, with π being the
uniform random policy. The optimizer can then estimate
Equation 1 using the outputs of DTS for lower bounds on
the probabilities in underlying the expectations. The opti-
mizer then keeps track of the actions that are responsible for
achieving the maxima in Equation 1, and whenever “time
is up” and it has to produce an output, it outputs the action
which maximizes the first max in Equation 1.

As the optimizer runs for longer, the lower-bounds on the
expectations approach the truth, and the value of the action
selected approaches the optimal value (even if the actual
choice of action oscillates infinitely often).

For the setting where odd characters are actions, originating
from a different process than the even characters, obser-
vations, we redefine ξ as follows [Catt et al., 2023]. We
have two prior distributions over ν ∈ M, wa and wo,
and these are both identical to the prior distribution de-
fined before. But the posteriors are different: wa(ν|x<t) :∝
wa(ν)

∏
k∈{1,3,5,...}∪[t−1] ν(xk|x<k) and wo(ν|x<t) :∝

wa(ν)
∏

k∈{2,4,6,...}∪[t−1] ν(xk|x<k). And for odd (or
even) t, ξ(x|x<t) =

∑
ν∈M

wa

or wo
(ν|x<t)ν(x|x<t).

This is equivalent to a change in programming language un-
derlying the original definition of ξ, and since this language
was unspecified, our previous results apply. The program-
ming language now expects a program to be composed of
two component programs concatenated together, and the
compiler of the program executes the first component pro-
gram if the input has odd length, and if executes the second
component program if the input has even length. We omit a
proof that this (re)formulation of ξ is equivalent to what we
describe above.

Proposition 7 (ξ-optimizer exists). For any m and any
computable utility function Um, there exists a ξ-optimizer.

Proof. This does not follow immediately from the previous
result because ξ(ot|a≤to<t) is not, in general, lower semi-
computable. wo(ν|a≤to<t) is the quotient of two lower
semi-computable values:

∏
k<t ν(ok|a≤ko<k) is the numer-

ator, and the denominator is the sum over all ν of such
terms.

However, an unnormalized value function has the same op-
timum as the value function itself. Let ξsmall(ot|a≤to<t) =∑

ν∈M wo(ν)
[∏

k<t ν(ok|a≤ko<k)
]
ν(ot|a≤to<t).

The sum of these “probabilities” will typically not
come close to 1, but they are proportional to those
of ξ, so V π

ξ,Um
(x<t) > V π′

ξ,Um
(x<t) if and only if

V π
ξsmall,Um

(x<t) > V π′

ξsmall,Um
(x<t). Finally, observe that

ξsmall is lower semi-computable because it is a product
of lower semi-computable terms, so by Proposition 6, a
ξsmall-optimizer exists, which is also a ξ-optimizer.

Now we define a KL-regularized optimizer. First, let
π(ak:m|x<2kok:m) :=

∏m
t=k π(at|x<2kakok...at−1ot−1).

(So note that at is not in fact conditioned on ot+1.)

Definition 6 (KL-regularized optimizer). For any lower
semi-computable semi-distributions ν and ρ, a horizon m, a
utility function Um, a starting string x<2k, and a tolerance
δ, a KL-regularized optimizer is an any-time program πδ

c

for computing actions (perhaps stochastically) for which
the following holds. First, letting

KL
x<2k,m

(πδ
c ||ρ) := max

ok:m∈Xm−k+1

∑
ak:m∈Xm−k+1

πδ
c (ak:m|x<2kok:m) log

πδ
c (ak:m|x<2kok:m)

ρ(ak:m|x<2kok:m)
, (4)

KLx<2k,m(πδ
c ||ρ) < δ, and second, V πδ

c
ν approaches the

optimal value subject to that constraint, as c → ∞.

Proposition 8 (KL-regularized optimizers exist). For any
lower semi-computable semi-distributions ν and ρ, any m,
any computable utility function Um, any starting string
x<2k, and any tolerance δ ≥ 0, there exists a KL-
regularized optimizer.

Proof. First, we show that for any computable probabil-
ity distribution π, and any lower semi-computable semi-
distribution ρ, KLx<2k,m(π||ρ) is upper semi-computable,
and therefore the set of probability distributions π which
have bounded KL divergence from ρ is computably enumer-
able.

Omitting the x<2k and the ok:m that all distributions
are conditioned on, note that KL(π||ρ), which equals∑

z∈Xm−k+1 π(z) log
π(z)
ρ(z) , is monotonically decreasing in

ρ(z) for any z. Since π(z) is computable, and since ρ(z) is
lower semi-computable, then π(z) log π(z)

ρ(z) is upper semi-
computable.



By dovetailing (repeatedly switching between ongoing com-
putations, executing one step at a time) the computation over
all possible π (countably many), we can admit any semi-
distribution π to a list of viable candidates whenever the
estimate of the KL-divergence from ρ falls below δ. Since
the KL estimates never increase, once a semi-distribution
π is added to the list, it need never be removed. And every
viable policy will eventually be added to the list because
the KL estimates approach the truth in the limit of infinite
computation, and [0, δ) is open on the right.

Dovetailing over all semi-distributions π on the list of viable
candidates (and adding in the new ones as they get added to
the list), we simultaneously update estimates of the value of
each one in the given environment ν, recalling that V π

ν,Um
is

lower semi-computable (Proposition 5). When the computa-
tion budget of the any-time optimizer is reached, it samples
an action from its estimate of the semi-distribution π which
is (so far) estimated to be of highest value. (It will need to
have a running estimate of the semi-distribution π in order
to estimate its value).

C REGULARIZING TO AN
APPROXIMATE SOLOMONOFF
INDUCTOR

Let ξ be the Solomonoff Bayes mixture probability semi-
distribution defined in Section A. ξ is not computable, but
we can do KL regularization to an approximation of ξ. Let
ξ̂i be a semi-distribution and a computable estimate of ξ,
with limi→∞ ξ̂i = ξ. (The existence of this is established by
Proposition 4). ξ̂i can be used as the base predictive model
(taking the place of ρ in the definition of KL-regularized op-
timizers). We fix Um to an arbitrary utility function for the
remainder of this work, and drop it from the notation. For
a given δ and a given i, let πδ

i,c be the KL-regularized opti-
mizer using ξ̂i for the KL constraint, and using ξ to optimize
with respect to (taking the place of ν from the definition).
Let this policy approach the optimal value, subject to the
constraint, as c → ∞; the existence of πδ

i,c is established by
Proposition 8. When this policy is conditioned on x<2t for
t ≥ k, and with ak:t sampled from πδ

i,c itself, we can think
of πδ

i,c as an optimizer that is regularized to an approximate
Bayesian estimate of a human policy, given the origin of
x<2k.

D BEHAVIOR IN UNPRECEDENTED
CIRCUMSTANCES

The following theorem establishes that as c and i go to
infinity, the constraint on πδ

i,c becomes quite weak in the
presence of unprecedented events.

Theorem 1 (Little constraint in novel situations). ∃ a con-
stant d such that ∀ Um, and ∀ E, if E is unprecedented and

occurs at time t, then for any v < V ∗
ξ,Um

(x<2t), ∃ a pol-
icy π for which V π

ξ,Um
(x<2t) > v, and KLx<2t,m(π||ξ) <

[d+K(Um) +K(E) +K(vξ(x<2t))]/ log 2.

Proof. Let π∗
c denote an unconstrained optimizer of Um in

the environment ξ, which approaches optimality as c → ∞,
whose existence is shown by Proposition 7. As in the proof
of Proposition 7, let ξsmall be the un-normalized version of
ξ, which is lower semi-computable: ξsmall(ot|a≤to<t) =∑

ν∈M wo(ν)
[∏

k<t ν(ok|a≤ko<k)
]
ν(ot|a≤to<t). And

note that the value according to ξ versus ξsmall is con-
nected by the normalizing constant: ξ(x<2t)V

π
ξ,Um

(x<2t) =
V π
ξsmall,Um

(x<2t). Now, we let π∗
u = π∗

c where c is set to

be the minimal value for which V
π∗
c

ξsmall,Um
(x<2t) exceeds

u. If u ≥ V ∗
ξsmall,Um

(x<2t), then π∗
u will not halt, but oth-

erwise, because the value is lower semi-computable, we
can increase c until the value reaches at least u. Letting
v = u/ξ(x<2t), observe that V π∗

u

ξ,Um
(x<2t) exceeds v, as

long as v < V ∗
ξ,Um

(x<2t), although it may not be possible
to compute v in finite time. So π∗

u satisfies the first of the
properties promised in the theorem.

We now show that it satisfies the second as well. Re-
call that KLx<2t,m(π||ξ) only requires evaluating ξ on
its predictions for actions, and this takes the form
ξ(ak|a<ko<k) =

∑
ν∈M wa(ν|a<ko<k)ν(ak|a<ko<k).

And it is straightforward to show an analogous property
for ξ’s predictions on longer strings: ξ(at:m|a<to<m) =∑

ν∈M wa(ν|a<to<t)ν(at:m|a<to<m). So we now exam-
ine the posterior weights of various models after being con-
ditioned on a<to<t ∈ E.

Recall that each ν ∈ M is computed by a corresponding
program s ∈ L. Given the event E, the utility function Um,
and a target value u, we construct, for each s ∈ L, an s′u as
follows: if, in the input to s′u, E has not happened, execute
the program s; otherwise compute π∗

u. Keeping account of
the control flow in s′u, we can see there exists a constant
d such that ∀s ∀E ∀Um and ∀u, s′u has length less than
ℓ(s) +K(E) +K(Um) +K(u) + d.

Letting ν′u be the probability semi-distribution computed
by s′u, consider the ratio of prior weights between ν and ν′u.
Because w(ν) = 2−ℓ(s) for the corresponding program s, it
follows from the bound on the difference in length between s
and s′u that w(ν′u)/w(ν) > 2−d2−K(E)−K(Um)−K(u). The
posterior ratio w(ν′u|x<2t)/w(ν|x<2t) is the same as the
prior ratio, if E happens for the first time at time t, because
they will have assigned exactly the same probabilities to all
characters in x<2t. Because the sum over ν ∈ M of the
posterior weights must be 1, the sum

∑
ν∈M w(ν′u|x<2t) >

2−d2−K(E)−K(Um)−K(u).

Note by construction that for all ν ∈ M,
ν′u(at:m|a<to<m) = π∗

u(at:m|a<to<m). Because all



ν′u belong to M for all ν ∈ M,

ξ(at:m|a<to<m)

=
∑
ν∈M

wa(ν|a<to<t)ν(at:m|a<to<m)

>
∑
ν∈M

wa(ν
′
u|a<to<t)ν

′
u(at:m|a<to<m)

=

[∑
ν∈M

wa(ν
′
u|a<to<t)

]
π∗
u(at:m|a<to<m)

>2−d−K(E)−K(Um)−K(u)π∗
u(at:m|a<to<m) (5)

Finally,

KL
x<2t,m

(π∗
u||ξ)

= max
ot:m∈Xm−t+1

∑
at:m

π∗
u(at:m|a<to<m) log

π∗
u(at:m|a<to<m)

ξ(at:m|a<to<m)

<
∑
at:m

π∗
u(at:m|a<to<m) log 2d+K(E)+K(Um)+K(u)

=[d+K(E) +K(Um) +K(u)]/ log 2 (6)

and u = vξ(x<2t). Therefore, π∗
u satisfies the theorem.

What does Theorem 1 mean for the optimizer constrained
by KLx<2k,m(π||ξ̂i) for large i? If the optimization of Um

does not require urgent action, then one valid strategy for a
policy π is to wait for an unprecedented event, imitating the
base policy ξ̂i until then, and then start optimizing. The tele-
scoping property of the KL Divergence clarifies the validity
of this approach. That is, for t > k, KLx<2k,m(π||ρ) =
KLx<2k,t(π||ρ) + Ex2k:2(t−1)∼π KLx<2t,m(π||ρ) [Hutter,
2005]. So starting with a policy with low KL divergence
from the base policy preserves a “budget” for high KL di-
vergence to be “spent” later by switching to a policy with
greater divergence from the base policy.

Proposition 2 (Frequency of simple unprecedented events).
In any environment, at time t, the complexity of the simplest
unprecedented event yet to occur (at any time T > t) grows
more slowly, as t → ∞, than every computable function
that tends to infinity.

Proof. Consider the very simple event ET = X T ; it oc-
curs (and is of course unprecedented) at time T . K(ET )
is within a constant of K(T ). So we are interested in the
rate of growth of minT≥t K(T ) as t increases. Zvonkin and
Levin’s [1970] Theorem 1.4 (d) states that this function is
eventually less than every computable function that tends to
infinity.

E TOTAL VARIATION DISTANCE

Definition 7 (Vξ,Um
-optimal). An action at

is Vξ,Um
-optimal after a history x<2t if

Eot∼ξ(·|x<2tat) V
∗
ξ,Um

(x<2tatot) = V ∗
ξ,Um

(x<2t).

Theorem 2 (TVD constraint). If πTV D
c (at|x<2t) >

β(at|x<2t), then at is Vξ,Um
-optimal.

Proof. Letting π(x2t:2m|x<2t) :=
∏m

t′=t π(at′ |x<2t′),
if πTV D

c (at|x<2t) > β(at|x<2t), then there ex-
ists an x2t+1:2m such that πTV D

c (atx2t+1:2m|x<2t) >
β(atx2t+1:2m|x<2t). Suppose at is not Vξ,Um

-optimal.
Then there exists an a′t such that Q(x<2ta

′
t) > Q(x<2tat).

Let x′
2t+1:2m be a sequence where all actions are Vξ,Um-

optimal, and all observations have positive probability.

Let π′
ε(x2t:2m|x<2t) equal πTV D

c (x2t:2m|x<2t)
for all x2t:2m, except π′

ε(atx2t+1:2m|x<2t) =
πTV D
c (atx2t+1:2m|x<2t)− ε, and π′

ε(a
′
tx

′
2t+1:2m|x<2t) =

πTV D
c (a′tx

′
2t+1:2m|x<2t)+ ε. The conditional probabilities

π′
ε(at′ |x<2t′) can easily be defined to achieve the properties

in the previous sentence.

For small enough ε > 0, this policy exists (no prob-
abilities are outside [0, 1]) because πTV D

c (at|x<2t) >
β(at|x<2t) ≥ 0 and therefore, πTV D

c (a′t|x<2t) < 1.
And for small enough ε > 0, TVDx<2k,m(π′

ε, β) ≤
TVDx<2k,m(πTV D

c , β), because decreasing the probability
on atx2t+1:2m will reduce the total variation distance by ε,
for ε ≤ π(atx2t+1:2m|x<2t)−β(atx2t+1:2m|x<2t) (which
is positive), while increasing the probability on a′tx

′
2t+1:2m

will not increase the total variation distance by more than ε.

Finally, since Q(x<2ta
′
t) > Q(x<2tat), V

π′
ε

ξ,Um
(x<2t) >

V
πTV D
c

ξ,Um
(x<2t). This contradicts that πTV D

c =
argmaxπ:TVDx<2k,m(π,β)<c V

π
ξ,Um

since a policy with no
more total variation distance has greater value.

F DETAILED EXPERIMENTAL SETUP

The details of the experimental setup are as follows. Code
is available at https://github.com/mkc1000/kl_
reg_paper.

F.1 ENVIRONMENT

The state of the environment, as mentioned in the main text,
is the activations of the last three hidden layers of Mixtral-
base-model with the transcript-so-far as input, along with
the fraction of the episode remaining. This gives a state
space of 12289. Using the Mistral tokenizer, the action
space is 32000. The environment uses a temperature of 0.05
for generating the student’s responses and a temperature of
1 for the base policy for the agent/teacher.

https://github.com/mkc1000/kl_reg_paper
https://github.com/mkc1000/kl_reg_paper


F.2 NETWORK ARCHITECTURE

The critic network is a fully connected network with two
hidden layers of size 128 with tanh activations. The actor
network consists of just one parameterized layer, which is
fully connected, of size (|state space|, |action space| + 1).
The extra output is for controlling the KL divergence to
the base policy. We compute the target KL divergence
as sigmoid(activation) * the KL budget remaining to the
agent for the episode. So the activation controls what
fraction of the remaining KL budget for the episode to
use on the very next token. At initialization, this fraction
comes to 1/16. The KL budget remaining starts as the to-
tal episode KL budget (of course), and is decreased by
log(policy(action)/basepolicy(action)) with each action.
The other outputs are interpreted as logits and are added to
the base policy logits. Calling this resulting distribution a,
and the base policy distribution b, we find an α ∈ [0, 1] such
that KL(αa+ (1−α)b||b) equals the target KL, if possible.
If we cannot achieve a sufficiently high KL divergence, we
set α = 1. The output policy is αa + (1 − α)b. We add
any squared error (target KL − achieved KL)2 to the loss
function to encourage the network to output logits that allow
further control by the neuron controlling the KL target.

In the forward pass, our custom PyTorch operation does
binary search the calculate α in the interval [0, 1]. The back-
ward pass uses implicit differentiation, assuming we have
found exactly the right α—there is no need to differentiate
backward through the binary search, which would be unsta-
ble. Code for this PyTorch object can be found at https:
//github.com/mkc1000/kl-fixed-mixture/.

F.3 PPO

We use the following hyperparameters for PPO. We do not
use a generalized advantage estimate.

Training timesteps 6 million
Update frequency 1 / 64 episodes

Training epochs / update 8
Training batch size 213

Epsilon clip 0.1
Entropy coefficient 1e-4
Max gradient norm 0.1
Actor learning rate 2e-5
Critic learning rate 1e-4

A higher entropy coefficient is unnecessary given the KL
constraint to the base policy. Over the first 3 million
timesteps of training, we slowly increase the per-episode
KL budget from 0 to its final value. We increase this at a
linear schedule each time we update the network.

When we re-train for a longer episode length (256 tokens
to 512 tokens), we train for 3 million steps, plenty to reach

apparent convergence.

F.4 PARALLELISM

We use threading to run 64 agent-environment-loops in “par-
allel”. When we would need to send a transcript of length
l to be processed by the Mixtral model, we wait until all
64 agent-environment-loops need to send a transcript of
length l, and then they are batched and evaluated together in
parallel on the GPU. The result might needed by either the
agent or the environment, and we use the python asyncio
library to manage this. Doing just that step in parallel is
enough for substantial speedup.

F.5 RESOURCE USAGE

We ran our experiments on two A100-SXM4-80GBs. Train-
ing for 9 million timesteps took approximately 90 hours.
Our seven training runs (one of which was stopped after
6 million timesteps) took about 25 days, all told. (We ran
the experiments two or three at a time). The full research
project required much more compute, since finding good hy-
perparameters for PPO is never straightforward, especially
when we were attempting to achieve a desired per-episode
KL divergence, only with the use of a fixed per-token KL
cost; recall that we eventually switched to a policy archi-
tecture that allowed direct control of the per-episode KL
divergence.

G AI EVALUATION OF TRANSCRIPTS

Table 1 demonstrates that the less optimized agent is usu-
ally judged “better” and “more complex/unpredictable” by
GPT3.5-turbo.

Table 1: Automated comparison of teacher behavior gen-
erated by base model, trained KL budget 10 policies, and
trained KL budget 20 policies. The percentages refer to the
fraction of the time that that agent “won” according to the
comparator, with a 95% confidence interval.

“Better” “More complex/
unpredictable”

20 (cf. base) 11.3±3.6% 4.0±2.2%
10 (cf. base) 15.3±4.1% 29.0±5.1%
20 (cf. 10) 17.7±4.3% 14.3±4.0%

https://github.com/mkc1000/kl-fixed-mixture/
https://github.com/mkc1000/kl-fixed-mixture/
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