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Abstract

Blind image deblurring (BID) is an important yet challenging image recovery
problem. Most existing deep learning methods require supervised training with
ground truth (GT) images. This paper introduces a self-supervised method for
BID that does not require GT images. The key challenge is to regularize the
training to prevent over-fitting due to the absence of GT images. By leveraging
an exact relationship among the blurred image, latent image, and blur kernel
across consecutive scales, we propose an effective cross-scale consistency loss.
This is implemented by representing the image and kernel with implicit neural
representations (INRs), whose resolution-free property enables consistent yet
efficient computation for network training across multiple scales. Combined with
a progressively coarse-to-fine training scheme, the proposed method significantly
outperforms existing self-supervised methods in extensive experiments.

1 Introduction

Uniform blurring, a degradation commonly encountered in optics, leads to the loss of important
details within a captured image. Uniform blurring usually can be described as the convolution:

y = k ⊗ x+ n, (1)

where ⊗ denotes the 2D discrete convolution operation, (y,x) is the pair of blurred and sharp
(latent) images. k represents the blur kernel responsible for degradation, and n denotes measurement
noise. For example, in digital photography, motion blur is caused by camera shake during exposure.
When scene depth variation is small and camera movement is mainly translational within the image
plane, motion blur can be approximated by the convolution model (1), with k representing camera
motion. In fluorescence microscopy, specimens stained with fluorescent dyes and exposed to specific
wavelength light often exhibit blurring due to light diffraction and optical path imperfections, such
as optical component misalignment or lens aberrations. These factors obscure critical details, like
micro-tubule arrangements in cells. Such blurring can also be modeled by (1). In either case, both
the latent image x and blur kernel k are unknown and must be estimated from the blurred image y.

BID aims at estimating (k,x), the pair of latent image and blur kernel, from the degraded image y.
BID is a challenging non-linear inverse problem with many plausible solutions due to its inherent
solution ambiguity. This ambiguity stems from the fact that the kernel can be decomposed into
k = k1⊗k2, suggesting that the pair (k1,k2⊗x) are also viable solutions since y = (k1⊗k2)⊗x =
k1 ⊗ (k2 ⊗ x). One such example is the pair (δ,y = k,x), where δ denotes the delta kernel, which
gives a trivial solution saying a blurred image is the convolution of a blurred image and a delta kernel.
This ambiguity indicates the ill-posed-ness of the BID problem.

1.1 Discussion on existing approaches for BID

The existing deep learning methods for BID can be roughly classified into the following categories:
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• Supervised deep learning for BID with paired data: Supervised learning methods (e.g., [50,
78, 68, 34, 69]) trains a neural network (NN) using paired data of blurred images (or blur
kernels) and GT images, to predict the latent image or/and blur kernel from an input blurred
image. These methods mainly depend on a large amount of paired data for training, limiting
their application to specific scenarios where such paired data is challenging to collect.

• Supervised deep learning for BID with un-paired data: Some works (e.g. [36, 61]) use
generative adversarial networks (GANs) to train on unpaired blurred and latent images.
Although effective for domain-specific images like faces and text, GANs perform poorly on
general natural images due to domain shift. Additionally, GAN-based methods often suffer
from mode collapse and training instability, resulting in suboptimal outcomes.

• BID with pre-trained generative model: These methods employ pre-trained generative
models, such as diffusion models [13], which are well-suited for processing images with
structural consistency features like human faces. However, their reliance on pre-trained
models to generate outputs that conform to the learned image distribution can lead to
inauthentic results. This is particularly problematic in fields that require high fidelity, such
as medical imaging and microscopy.

• Self-supervised learning for BID: To circumvent the challenges of data collection and
mitigate potential biases and inauthentic outcomes from generative models, a growing body
of research (e.g., [1, 47, 32, 33, 9, 18, 77]) focuses on developing self-supervised deep
learning approaches for BID that do not require training dataset or pre-trained model.

In this paper, we focus on self-supervised BID, which is challenging due to the lack of GT images
but offers many practical benefits. Most existing works on self-supervised BID are based on the deep
image prior (DIP) [57] of convolutional NNs (CNNs), which introduces the implicit prior from CNN
for preferring structured patterns over random noise during training. The DIP-based self-supervised
BID methods typically use two NN-based generators, Gk and Gx, to re-parameterize the blur kernel
k and the latent sharp image x. The generators are then trained to maximize the likelihood of the
blurred image y, minimizing the following self-supervised reconstruction loss:

Lsr(Θk,Θx) := ||Gk(·; Θk)⊗ Gx(·; Θx)− y||22. (2)

For instance, SelfDeblur [47] employed a CNN for Gx and a Multi-Layer Perceptron (MLP) for Gk.
MCEM [33] used U-Net for both Gx and Gk, and Zhuang et al. [77] used INR for both Gx and Gk.

Despite lacking access to GT images, these self-supervised BID methods perform competitively
against supervised or pre-trained model based approaches, particularly with severely blurred images.
However, their performance is less impressive on modestly blurred images and on real-world images.
There is practical need for further studies to improve the performance of self-supervised BID across
various blurring degrees and real-world images from different optics systems.

1.2 Main Idea and Contributions

Without GT images, self-supervised BID methods must address two vital questions for NN training:

1. Without accessing GT images, how to formulate a self-supervised loss to teach the NN-based
generators to accurately predict the latent image and kernel from only the blurred image?

2. The non-linear structure of BID makes training NN-based generators challenging. How can
we efficiently train them to ensure accurate convergence to the latent images and kernels?

Our answer to Question 1 is a cross-scale loss function that leverages the cross-scale consistency of
the estimates from consecutive scales for regularization. Our answer to Question 2 is a progressive
cross-scale training scheme to training the NNs, enhancing training efficiency and ensuring the
convergence to GT image/kernel.

Resolution-free INR for effective cross-scale interaction in BID: Our proposed method is built
on re-parametrizatrion of both latent images and kernels by INR [53, 51]. INR represents signals as
continuous functions rather than discrete valuel arrays, which in our case is expressed as follows,

k(i, j) = Φk(i, j; Θk) and x(i, j) = Φx(i, j; Θx), (3)

where (i, j) ∈ R2 denotes the spatial co-ordinates of images/kernels, and Θk,Θx denotes the weights
of NNs Φk, Φx for the kernel and image, respectively.
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Using INR for representing images/kernels is due to its inherent resolution-free property. By enabling
the model to generate the prediction with higher/lower resolutions from the same learned model,
INR facilitates seamless multi-scale processing and cross-scale interaction. In contrast, DIP-based
NNs that directly maps noise to an image handle cross-scale interaction clumsily, requiring manual
re-scaling or interpolation, which likely introduces artifacts in the prediction.

Self-supervised cross-scale loss for BID: Without GT images, the sole constraint we have for
training is y = k ⊗ x. Additional priors for regularization are necessary to alleviate over-fitting.
Historically, the down-sampled version of y, denoted as y↓s for scale s, has often been used to initiate
the blur kernel estimate. However, it is important to note that the blurred image after down-sampling
cannot be modeled by a convolution between the down-sampled image and a blur kernel:

(x⊗ k)↓2 ̸=x↓2 ⊗ k↓2.

In this paper, we present a cross-scale constraint that accurately characterizes the connection between
(y,x,k) at different scales. For instance, when s = 2, the cross-scale constraint is

(x↓2)⊗ (k↓2) =
1

4

(
(x⊗ k)↓ 2) +

3∑
d=1

(x⊗ gd)↓2
)
=

1

4

(
y↓2 +

3∑
d=1

(x⊗ gd)↓2
)
,

where {gd}3d=1 denote three quadrature mirror filters (QMFs) [59] of the kernel k. This constraint can
be easily implemented with INR-based resolution-free generators, and helps regularize the training of
two generators to prevent likely over-fitting caused by the lack of GT images in loss function.

Progressive cross-scale learning for BID: A well-established practice in traditional alternating
iterative methods of BID to avoid convergence to trivial solutions involves solving the problem in a
coarse-to-fine manner [67, 71]. This means the kernel is initially estimated for the blurred image at a
coarse scale, followed by propagation of the kernel estimate to finer scales. This approach has proven
effective in preventing iterations from converging to trivial solutions.

Despite its effectiveness, the coarse-to-fine strategy remains under-exploited in existing self-
supervised BID methods, likely due to the resolution-fixed limitations of CNN or MLP based
re-parametrization. Utilizing INR’s resolution-free properties, we introduce a progressive learning
strategy that begins training INR-based generators at a coarser scale and then refines training at finer
scales. This scheme effectively addresses over-fitting and ensures convergence to the truth.

Main contribution: Our main contributions are summarized as follows:

• Leveraging the resolution-independent properties of INR for latent images/kernels, we
propose a self-supervised cross-scale loss for training the NN without requiring GT images.

• We introduce a progressive multi-scale learning approach for BID, specifically designed to
mitigate potential over-fitting due to the non-linear nature of the BID problem.

Extensive experiments conducted on a variety of datasets reveals that our proposed method outper-
forms existing self-supervised BID techniques as well as the supervised alternatives.

2 Related Works

Traditional non-learning methods for BID: Before deep learning became prevalent, regularization
methods were the prominent approach for BID. These methods resolve solution ambiguities by
imposing pre-defined priors on images and blur kernels, such as image gradient sparsity [8, 4, 24, 5,
67], image patch recurrence [54, 38], and Laplace priors in dark channels [42, 70]. These methods
are based on some iteration scheme, and edge selection is an effective technique for better robustness
and stability of the iteration [12, 65, 41, 15, 71]. Since regularization methods can be recast as
Maximum-A-Posteriori (MAP) estimators in Bayesian inference, another class of BID methods is
derived from variational Bayesian estimators [35, 14, 28, 63, 2], as well as variational expectation
maximization [29, 71]. The success of these methods requires rigorous tuning of hyper-parameters
related to priors. In contrast, deep learning based methods can automatically learn priors from data.

Supervised deep learning for BID: In recent years, there has been rapid progress in supervised
deep learning methods for BID. By training over many pairs of blurred/truth images, these methods
either explicitly estimate the blur kernel (e.g., [50, 7, 40, 34] or only estimate latent images (e.g.,
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[66, 56, 25, 75, 20, 6, 11, 73, 72]). The former is more efficient for handling uniform blurring. The
latter is more general and can handle non-uniform blurring.

Deep learning for BID with unpaired data or pre-trained model: There are also methods that
are trained on unpaired dataset. Lu et al. [36] train the GAN for domain-specific deblurring. Wen
et al. [61] propose a structure-aware deblurring method, and Chung et al. utilize generative priors
from diffusion models to jointly estimate the blur kernel and latent images [13]. Nevertheless, these
methods still require GT images in unpaired data for training or depend on pre-trained models, which
can be challenging and present difficulties in adaptation. In contrast, our method goes through a
self-supervised manner, addressing this limitation.

Self-supervised deep learning for BID: These methods address the issues of data collection and
dataset bias in supervised methods. Built on the DIP prior for image/kernel, Ren et al. [47] intro-
duced SelfDeblur, leveraging two NN-based generators trained through a loss with optional TV
regularization. The ensemble NN [9] aggregates deblurring outcomes from multiple NNs to improve
performance. Li et al. [32] proposed using Monte-Carlo methods to sample NN weights as an
approximation of the MAP estimator of images and kernels. Li et al. [33] presented a self-supervised
training scheme derived from the EM method. Dong et al. [18] combined the implicit prior from NN
architecture and hand-crafted prior to regularize the NN training. Zhuang et al. [77] re-parametrized
images and kernels by INR, and reply on the implicit prior induced by INR and early stopping for
regularization. Built on resolution-free INR, we propose a cross-scale self-supervised loss function
and an efficient coarse-to-fine training scheme for self-supervised BID.

Most self-supervised BID methods are limited to handling uniform blurring, with Li et al. [33]
being the only one capable of addressing both uniform and non-uniform blurring caused camera
shake. Additionally, self-supervised super-resolution methods[3, 55] also involve the estimation
of blur kernel. While both estimate the blur kernel. However, these methods differ in their input:
low-resolution images versus high-resolution images. Moreover, the blur degree in BID usually is
much more severe than in super-resolution.

Coarse-to-fine estimation for BID: Coarse-to-fine schemes, which gradually refine the at different
scales, have proven effective in traditional alternating iterative methods [65, 12, 52]. The traditional
multi-scale methods typically use estimates from coarser scales solely as initial estimates for finer
scales. In contrast, our approach for self-supervised deep BID leverages the cross-scale interaction
of estimates with exact relations, rather than approximations. Coarse-to-fine scheme used in recent
supervised NN-based methods for BID (e.g., [39, 56, 74, 11, 73]) train the NN such that the estimates
fit well the input image at different scales. Our multi-scale scheme is more for introducing a new
scale consistency loss function specifically tailored for self-supervised BID. This allows for more
precise and consistent refinement of the estimations across scales.

INR for image recovery: In the domain of images, INR [10, 37, 43] encodes images as NN weights,
mapping coordinates to pixel values for a compact, continuous representation. There are also multi-
scale extensions [27, 49] of INR for more efficient image compression. It has been used for image
restoration tasks such as image in-painting, denoising, and super-resolution [51, 21, 64]. Besides
images, INR also has been used for encoding defocus blur kernels [46] and motion blur kernels [77].
Our work is the first to exploit the resolution-free properties of INR for BID, leveraging these
properties for a multi-scale approach and cross-scale interaction.

3 Methodology

In this paper, we propose an INR-based progressive cross-scale self-supervised BID method. We first
introduce the INR-based modeling for latent images and blur kernels, followed by the formulation of
the self-supervised cross-scale loss function and the progressive learning strategy.

Double-INR model for BID: In our approach, the blur kernel k and the latent image x are re-
parameterized by two INR models, Φk and Φx, respectively. Each model maps a spatial coordinate
[i, j] to a pixel value. Let Ik, Ix ⊂ Z2 denote the sets of spatial coordinates within the feasible
domain for the blur kernel k and the latent image x, respectively. Then, they can be expressed as{

k[Ik] = Φk(Ik; Θk) : k[i, j] = Φk

(
[i, j]), [i, j] ∈ Ik;

x[Ix] = Φx(Ix; Θx) : x[i, j] = Φx

(
[i, j]), [i, j] ∈ Ix,

(4)
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where Θk,Θx denote the NN weights of k,x. The INR-based re-parameterization (4) allows for the
generation of kernel and image at any coordinates, providing a representation at arbitrary scales.

INR-based multi-scale representation: Let ↓m denotes the standard down-sampling operator:
(k↓m)[i, j] = k[i ·m, j ·m] and (x↓m)[i, j] = x[i ·m, j ·m].

Then, we can form both the kernel and the image in a dyadic pyramid, from the original scale and to
coarser scales: Let k(0) = k,x(0) = x. Then define

k(s) = (k(s−1)) ↓2 and x(s) = (x(s−1)) ↓2, for 1 ≤ s ≤ S0. (5)

For any co-ordinate set I, we define its co-ordinate set at scale s as I(s) = {[i, j] : [2si, 2sj] ∈ I}.
Then, using INR-based model (4), k(s) and x(s) at scale s can be expressed as

k(s)[I(s)k ] = k[2sI(s)k ] = Φk

(
2sIk; Θk

)
and x(s)[I(s)x ] = x[2sI(s)x ] = Φx

(
2sIx; Θx

)
. (6)

Such a multi-scale representation can facilitate the training of the INR-based generators for BID, as it
allows for the generation of image details at arbitrary scales.

3.1 NN architecture of INR-based generators for kernel/image

Kernel generator: The kernel generator Φk in our approach is a three-layer MLP with 128 feature
nodes that takes coordinates normalized to [−1, 1] as input and adopts sinusoidal activation functions
in every layer, following the Sinusoidal Representation Networks (SIRENs) [53]. The output layer
employs a Softmax activation function to ensure the prediction satisfies the two physical constraints:

Non-negativity: k[i, j] ≥ 0 for all [i, j]; Normalization:
∑
i,j

k[i, j] = 1. (7)

Then, a Kernel Centering layer is applied to address possible positional shifts in estimated kernels for
better training stability. For a kernel k̃ ∈ RH×W satisfying (7), calculating its centroids (cx, cy) by

cy =
∑
i,j

i · k̃(i, j), cx =
∑
i,j

j · k̃(i, j)

The kernel k̃ is then shifted by [⌊H/2⌋ − cy, ⌊W/2⌋ − cx] to ensure it is centered geometrically.

Image generator: The image generator Φx adopts a U-Net structure with five blocks, separated by
down- or up-sampling layers and connected by skip connections. Each block integrates a sequence of
Convolution, Batch Normalization, and ReLU. The NN concludes with a 1 × 1 convolution layer
followed by a Sigmoid layer to ensure the output image values remain within [0, 1]. To efficiently
generate high-frequencies of images, following [51], the input spatial coordinates are first transformed
into a higher dimensional space using a high-frequency function γ(·) (sinusoidal):

γ(p) =
(
p, sin

(
20πp

)
, · · · sin

(
2L−1πp

)
, cos

(
2L−1πp

))
, (8)

where p := (i, j) represents the normalized coordinate values within [−1, 1], and L is an positive
integer. Note this encoding operation is used only in Φx, not in Φk.

3.2 Self-Supervised scale consistency loss

Without GT images, the only readily available loss function to train the generators is the fitting loss:

Lfit(Θk,Θx) =Mf

(
y − k ⊗ x

)
=Mfit

(
Φk(Ik; Θk)⊗ Φx(Ix; Θx),y

)
, (9)

whereMf (·) is some distance metric. Such a fitting loss clearly is not sufficient to resolve solution
ambiguities in BID. To address this, we introduce a scale consistency loss that regularize the training
by enforcing cross-scale consistency of the estimation, which is based on the following proposition.
Proposition 1. For a kernel (filter) k, let g1, g2, g3 denote its associated QMF filters [59] defined by

g1[m,n] = (−1)mk[m,n], g2[m,n] = (−1)nk[m,n], g3[m,n] = (−1)m+nk[m,n], (10)
for any [m,n] ∈ Ik. Then, we have the following relation between consecutive two dyadic scales:

(x↓2)⊗ (k↓2) =
1

4

(
(x⊗ k)↓2 +

3∑
d=1

(x⊗ gd)↓2
)
. (11)
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Proof. See Appendix A for the proof.

As seen from Proposition 1, the down-sampled blurred image y↓2 does not equal to the convolution
of the down-sampled latent image x↓2 and the down-sampled kernel k↓2, incurring additional term∑3

d=1(x⊗ gd)↓2. Therefore, down-sampled blurred images are fine for some initial estimation, not
for regularizing the NN to obtain accurate estimation. To address this, based on Proposition 1, we
introduce a scale consistency loss across two consecutive scales: for each scale s,

L(s)
cross(Θk,Θx) =Mc

(
4(x(s)↓2)⊗ (k(s)↓2), (x(s) ⊗ k(s))↓2 +

∑
1≤d≤3

(x(s) ⊗ g
(s)
d )↓2

)
(12)

=Mc

(
4(x(s+1))⊗ (k(s+1)), (x(s) ⊗ k(s))↓2 +

∑
1≤d≤3

(x(s) ⊗ g
(s)
d )↓2

)
, (13)

where {g(s)
d }3d=1 denotes the QMF filter bank of the kernel k(s) defined by (10), and by (6),

k(s)[I(s)k ] = Φk

(
2sI(s)k ; Θk

)
and x(s)[I(s)x ] = Φx

(
2sI(s)x ; Θx

)
. (14)

The scale-consistency loss (13)–(14) enforces cross-scale consistency of the estimations at different
scales, providing additional regularization for training two INR-based generators.

3.3 Progressively coarse-to-fine training for BID

To address the non-linear nature of BID and avoid convergence to trivial solutions, we introduce a
progressive learning strategy that trains the INR-based generators at multiple scales. The training
process consists of three stages at different scales. Define the fitting terms at different scale s by

L
(s)
fit =Mf

(
y↓2s ,Φx

(
2s · I(s)x ; Θx)⊗ Φk

(
2s · I(s)k ; Θk)

)
. (15)

The first stage serves as the initialization, operating at the coarsest scale with the fitting loss L(S0)
fit .

The second stage progressive refines the training from the scale S0 to 0 with both the fitting loss and
cross-scale consistency loss. Specifically, at scale s, the loss is L(s)

fit +λL(s)
cross where λ is a weight and

L(s)
cross is the cross-scale consistency loss defined by (13)–(14). The third stage is the final tuning stage

at scale 0 with L(0)
fit only. The training process is summarized in Algorithm 1. IIn our implementation,

Algorithm 1: Self-supervised progressively coarse-to-fine training for BID
input: a blurred image y
output: an estimated kernel k∗ and latent image x∗

1: Initializing two generator NNs Φk,Φx with random weights Θk and Θx;
2: Initial training: at the scale S0, training the NNs with only the fitting loss L(s)

fit ;
3: %% Progressively training the NNs
4: for s← S0 to 0 do

Training the NNs at the scale s with the loss L(s)
fit + λL(s)

cross;

5: Final tuning: training the NNs at scale 0 with only the fitting loss L(0)
fit ;

6. Define k∗ = Φk(Ik; Θ∗
k) and x∗ = Φx(Ix; Θ∗

x).

Structural Similarity Index Measure (SSIM) [60] is used forMf (·) in (15):

Mf (x,y) = (µ2
x + µ2

y + c1)
−1(σ2

x + σ2
y + c2)

−1(2µxµy + c1)(2σx,y + c2).

ForMc(·) in (13), note that convolution process in (13) can be efficiently computed by by transform-
ing the convolution operation into pointwise multiplication in its discrete Fourier transform (DFT),
denoted by F(·). Thus, we defineMc(·) in frequency domain with ℓ1-norm:

Mc(x,y) = ∥F(x)−F(y)∥1.
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Category Manmade Natural People Saturated Text Average

N
on

-l
ea

rn
in

g

Xu & Jia∆ [65] 19.23/0.654 23.03/0.754 25.32/0.852 14.79/0.563 18.56/0.7173 20.18/0.708
Xu et al.∆ [67] 17.99/0.597 21.38/0.679 24.40/0.813 14.53/0.538 17.64/0.668 19.23/0.659

Zhong et al.∆ [76] 17.32/0.556 21.07/0.695 24.39/0.761 14.86/0.602 15.86/0.532 18.70/0.628
Michaeli & Irani∆ [38] 17.43/0.418 20.70/0.511 23.35/0.699 14.14/0.491 16.23/0.468 18.37/0.518

Pan-DCP ∆[42] 18.59/0.594 22.60/0.698 24.03/0.772 16.52/0.632 17.42/0.619 19.89/0.666
Yan et al.∆[70] 19.32/0.579 23.69/0.678 27.01/0.842 16.46/0.588 18.64/0.689 21.02/0.675
Yang & Ji∆ [71] 19.99/0.599 24.33/0.692 27.22/0.861 17.04/0.605 20.35/0.762 21.79/0.704

Su
pe

rv
is

ed

DeblurGAN-v2 [25] 15.93/0.321 18.95/0.429 21.53/0.694 13.79/0.488 14.82/0.519 17.04/0.490
Kaufman & Fattal [20] 18.94/0.517 22.05/0.586 27.05/0.833 15.18/0.599 17.85/0.717 20.22/0.650

MIMO-UNet [11] 15.49/0.301 18.36/0.415 20.03/0.653 13.65/0.473 14.26/0.464 16.36/0.461
MPRNet [73] 15.58/0.309 18.56/0.429 20.08/0.656 13.67/0.478 12.83/0.400 16.15/0.454
MPRNet* [73] 17.39/0.419 20.53/0.510 22.85/0.673 15.35/0.551 16.01/0.499 18.42/0.531
Restormer [72] 15.63/0.324 18.55/0.433 20.29/0.665 13.70/0.499 13.40/0.451 16.31/0.474
Restormer*[72] 17.87/0.453 21.07/0.553 23.15/0.674 15.59/0.550 16.67/0.543 18.89/0.555

Se
lf

-s
up

er
vi

se
d

SelfDeblur∆[47] 20.08/0.538 22.50/0.581 27.41/0.850 16.58/0.654 19.06/0.731 21.13/0.671
SelfDeblur[47] 20.35/0.754 22.05/0.709 25.94/0.883 16.35/0.636 20.16/0.779 20.97/0.752

DEBID∆[9] 19.62/0.692 24.12/0.807 28.23/0.890 17.12/0.692 19.44/0.711 21.71/0.751
DEBID[9] 22.14/0.803 26.18/0.894 31.25/0.923 18.43/0.714 23.00/0.822 24.20/0.831

MCEM∆[33] 21.01/0.682 24.67/0.751 28.17/0.863 16.63/0.651 20.51/0.760 22.20/0.741
MCEM[33] 23.06/0.751 26.00/0.774 31.02/0.902 17.21/0.679 25.46/0.892 24.55/0.800
VDIP∆ [18] 20.97/0.647 24.51/0.770 27.53/0.862 17.18/0.716 20.23/0.743 22.08/0.747
VDIP[18] 22.86/0.868 26.18/0.895 30.76/0.927 18.55/0.727 27.24/0.927 25.12/0.869

Ours∆ 21.06/0.698 24.70/0.811 28.31/0.890 16.63/0.655 20.67/0.733 22.27/0.756
Ours 23.24/0.893 26.27/0.933 31.53/0.944 17.76/0.683 27.01/0.930 25.16/0.879

Table 1: Average PSNR/SSIM of the results for Lai et al. dataset [26]. The methods marked with
∆ deblur the image by [23] using the estimated kernel, a standard protocol for evaluating kernel
estimation accuracy in BID. The methods marked with * are retrained on the BSD-D dataset [48].

4 Experiments

Implementation details: The training consists of 5000 iterations across three stages. The first stage
operates at the coarsest scale S0 with 500 iterations. The second stage refines training from scale
S0 to scale 0, with 500 iterations per scale. The final stage is tuning at scale 0 for the remaining
iterations. The NN is trained using the Adam optimizer with a batch size of 1. The initial learning
rates for the image and kernel generators are set to 5× 10−3 and 5× 10−5, respectively, decreasing
to half their values every 2000 iterations. The weight λ in the loss function is set to 0.001 to keep the
values of the two loss terms Lcross and Lfit in the same order. For comparison, we use results from the
literature when available; otherwise, we use pre-trained models or train from the provided code to
achieve optimal performance. The code of the proposed method is available on Github.1.

4.1 Evalution of motion deblurring on synthesized datasets

Two metrics, PSNR (peak signal-to-noise ratio) and SSIM, are used for performance evaluation.
Following SelfDeblur [47], we compute PSNR/SSIM after finding the best shift between GT and the
result to handle shift ambiguity. In the tables, Bold in blue indicates the best among all supervised
methods, Bold in black indicates the best, and underline the second-best among all GT-free methods.

Synthetic dataset with uniform blurring from Lai et al. [26]: This dataset consists of 100 images
categorized into five groups: Manmade, Natural, People, Saturated, and Text, and covers 4 different
kernels whose size ranges from 31× 31 to 75× 75. For this dataset, S0 is set to 2 . As the focus of
BID is on accurately estimating the blur kernel. Thus, a two-stage evaluation protocol, as outlined
by [47], is also used in our test. Note that most supervised methods only generate clear images
without kernels, and thus their evaluation is solely on their output images. The competing methods
include 7 non-learning methods, 5 supervised methods, and 4 self-supervised methods. For all

1https://github.com/tjzhang-nus/Deblur-INR
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Metric
Non-learning Supervised

Cho & Lee Jia et al. Whyte et al. Hirsch et al. Vasu et al. Yan et al. Yang & Ji SRN DeblurGAN
[12] [67] [62] [16] [58] [70] [71] [56] -v2[25]

PSNR 28.98 27.34 28.07 27.77 29.89 29.61 29.22 27.06 26.97

MSSIM 0.933 0.796 0.848 0.852 0.927 N/A N/A 0.840 0.830

Metric
Supervised Diffusion Self-Supervised

Kaufman& MPRNet MIMO-UNet Li et al. BlindDPS SelfDeblur MCEM VDIP OursFattal [20] [73] [11] [31] [13] [47] [33] [18]

PSNR 30.17 26.32 25.34 26.89 24.02 25.85 30.26 29.58 30.69
MSSIM 0.915 0.827 0.791 0.837 0.702 0.792 0.940 0.922 0.942

Table 2: Average PSNR/MSSIM of the results from different methods on the dataset Köhler’s dataset [22].

supervised methods, except for [20], we use their models pre-trained on the GoPro dataset [39] with
both uniform and non-uniform blurring. For two recent methods, MPRNet [73] and Restormer [72],
we also include their models retrained on the BSD-D dataset [48] with only uniform blurring.

The comparison in Tab. 1 shows that our method achieved the best performance. Note that for
two supervised methods, MPRNet [73] and Restormer [72], their models trained on a dataset with
only uniform blur performs better on testing data with uniform blur, when compared to the ones
trained on the dataset with non-uniform blurring. However, this improvement is still not enough to
match the performance of our method. The main reason is that existing supervised methods target
general blurring and overlook the physics prior of image formation, specifically the convolution
model for uniform blurring. As a result, they underperform compared to our self-supervised method,
which leverages this prior. This highlights the generalization issues inherent in supervised learning
approaches, whose performance heavily depends the correlation degree between the training and
testing data. Refer to Appendix F.1 for visual comparisons of different methods.

Synthetic dataset with modest non-uniform blurring from Köhler et al. [22]: The benchmark
dataset Köhler [22] comprises 48 motion-blurred images which blurring is not exactly uniform. This
dataset is for evaluating the robustness of BID method to handle modest non-uniform blurring. Totally
17 methods are selected for comparison, and S0 is also set to 2. Following the evaluation protocol
in [33], we use the average PSNR and MSSIM (multi-scale SSIM) as the evaluation metrics. Tab.
2 shows that our method outperforms all others in terms of both PSNR and MSSIM, indicating its
robustness in handling modest non-uniform blur. Refer to Appendix F.2 for visual comparisons.

4.2 Evaluation of motion deblurring on real-world datasets

Real-world dataset from Lai et al.’s [26]: Lai et al.’s real-world dataset [26] consists of 100 real
blurred images captured in diverse scenarios using various capturing settings. As no GT images
for quantitative evaluation, we present only visual comparisons of many samples. Please refer to
Appendix F.3 for visual comparisons of different methods. Overall, our method generates the images
with the best visual quality, consistent with its performance on the synthetic datasets.

Non-learning Supervised Self-supervised

Dataset Metric
Xu & Jia Pan-DCP Hu et al. DeepDeblur DeblurGAN Restormer SelfDeblur MCEM

Ours
[65] [42] [17] [39] -v2[25] [72] [47] [33]

RealBlur-J
PSNR 27.14 27.22 26.41 27.87 28.70 28.96 27.92 28.17 28.31
SSIM 0.8303 0.7901 0.8028 0.8274 0.8662 0.8790 0.8420 0.8499 0.8511

RealBlur-R
PSNR 34.46 34.01 33.67 32.51 35.26 36.19 34.49 35.46 35.62
SSIM 0.9368 0.9162 0.9158 0.8406 0.9440 0.9570 0.9270 0.9436 0.9448

Table 3: Average PSNR/SSIM of the results on the RealBlur dataset [48].

Real-world dataset RealBlur [48] with small/modest blurring: Our proposed method is also
evaluated in another real-world dataset published in [48]: RealBlur-J and RealBlur-R, both containing
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980 real-world blurry images. See Tab. 3 for the results. It can be seen that, unlike the experiments
on synthetic datasets, there is a gap between the proposed method and supervised methods. This
is understandable, as our method cannot access GT images, whereas the supervised methods can.
However, our method still outperforms all traditional methods and existing self-supervised methods.
Refer to Appendix F.4 for visual comparisons of different methods.

4.3 Evaluation on microscopic deconvolution

In microscopic imaging, acquired images often suffer from blur due to optical limitations, out-
of-focus elements, specimen motion, and the diffraction limit of light. Following [45], the test
dataset consists of 120 images, covering 24 images from the test subsets "Confocal_BPAE_B" and
"TwoPhoton_MICE", and includes 3 Gaussian point spread functions (PSFs) and 2 Poisson PSFs
as the blur kernels. For the compared supervised methods, Restomer [72] and INIKNet [46], we
retrained their models using the microscopic dataset [45]. It can be seen from Tab. 4 that our method
outperforms all other self-supervised methods and is comparable to the supervised methods trained
on the microscopic dataset. Refer to Appendix F.5 for visual comparisons of different methods.

Supervised Diffusion Self-supervised

PSFs Restormer [72] INIKNet [46] BlindDPS [13] SelfDeblur [47] MCEM [33] VDIP [18] Ours

Gaussian 36.32/0.936 37.32/0.941 26.78/0.661 35.52/0.927 36.12/0.933 35.73/0.932 36.65/0.940

Poisson 40.73/0.958 41.56/0.961 26.94/0.667 39.88/0.950 39.26/0.945 38.47/0.942 40.71/0.960

Table 4: Average PSNR/SSIM of the results from different methods on microscopic deconvolution.

Category Manmade Natural People Saturated Text Average

w/o Lcross 21.19/0.778 25.84/0.887 30.74/0.918 17.69/0.682 26.75/0.917 24.44/0.836
Single-scale 22.04/0.803 25.93/0.890 30.33/0.933 17.68/0.688 24.76/0.886 24.14/0.840

w/o Progressive 20.36/0.742 23.91/0.829 26.35/0.821 17.22/0.675 22.88/0.857 22.14/0.790

INR/CNN as Φk/Φx 16.62/0.370 26.21/0.865 28.83/0/877 17.03/0.668 23.34/0.776 23.01/0.767
MLP/INR as Φk/Φx 19.88/0.661 19.47/0.479 26.77/0.718 16.07/0.667 15.66/0.537 19.17/0.521
MLP/CNN as Φk/Φx 15.87/0.331 19.20/0.430 23.32/0.578 15.58/0.627 16.57/0.481 18.19/0.470
Multi-scale by direct ↓ 18.64/0.616 22.61/0.722 25.95/0.781 16.64/0.601 20.65/0.861 20.89/0.716

Ours 23.24/0.893 26.27/0.933 31.53/0.944 17.76/0.683 27.01/0.930 25.16/0.879

Table 5: Ablation study of the proposed method in terms of of PSNR/SSIM.

4.4 Ablation study

The ablation study is conducted on the Lai et al. dataset [26]. The results are shown in Tab. 5

Effectiveness of self-supervised cross-scale consistency loss: To evaluate the gain from the proposed
cross-scale consistency loss functions, we retrain the NN using only the fitting loss Lfit for each scale,
i.e., without (w/o) Lcross. Tab. 5 shows an average gain of about 0.72 dB in PSNR with the cross-scale
consistency loss, demonstrating its effectiveness.

Effective of progressive coarse-to-fine training: We first examine the effectiveness of multi-scale
training by performing the training only at the original scale. Tab. 5 shows about a 1 dB loss in PSNR,
indicating multi-scale training’s contribution. To evaluate the progressive training strategy, we train
the NN with the sum of all loss functions at three scales, which resulting in a 3dB loss. This clearly
indicates that progressive training is critical for effectively utilizing the multi-scale scheme. The
reason is that the loss function at the coarser scale emphasizes lower frequencies since the image at
coarser scale retains low but loses high frequencies. Thus, a NN trained on the sum of loss functions
across 3 scales focuses more on low frequencies than one trained only at the finest scale, which fits
both low and high frequencies. Therefore, a scale-progressive training scheme is more effective than
a joint multi-scale loss. In scale-progressive training, the estimation at the coarser scale provides
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a strong initialization for the finer scales. The final result is obtained by applying the fitting term
exclusively at the finest scale.

INR (coordinate NN) vs. MLP/CNN (image-to-image NN) This ablation study is to evaluate
the necessity of using INR for re-parametrizatrion of image and/or kernel, instead of using the NN
that maps an image to an image. In the study, we separately replace our INR-based kernel/image
generator with MLP/CNN based representation adopted in [47], whose down-sampled versions of
images/kernels at different scales are generated by standard down-sampling process.

Direct down-sampling vs. using multi-scale grid in INR: To verify the benefit of resolution-free
property of INR, we also consider generating multi-scale versions of image/kernel by standard
down-sampling using bilinear interpolation, on their high resolution version from INPs, same to a
CNN-based representation. This is referred to as “Multi-scale by direct ↓”. Tab. 5 shows that the
performance of multi-scale by standard down-sampling process is very poor. Clearly multi-scale
representation by standard downsampling process is not as effective as resolution-free INR.

4.5 Comparison of computational effciency

The computational effciency of the propoposed method is compared to three most related self-
supervised BID methods. The results are reported in terms of running time, number of parameters,
and memory usage, when processing a 256× 256 image with a 31× 31 blur kernel on an NVIDIA
3090 RTX GPU. See Table 6 for the details. It can be seen that the proposed method achieves a
balance between computational cost and deblurring performance.

Methods SelfDeblur [47] MCEM [33] VDIP [18] Ours

Running time (s) 219.71 226.31 245.04 213.02
Number of parameters (k) 3427.2 2409.0 3523.2 2342.4

Memory usage (GB) 6.31 1.27 9.19 1.82

Table 6: Model complexity comparison.

4.6 More details, studies, experiments and visual comparisons in the appendix

The appendix includes (1) ablation study on setting scale S0, (2) details on hyper-parameter settings,
(3) details on NN architecture, (4) more comparison on running time; (5) visualization of some sample
results, (6) visualization of intermediate results, and (7) experiments on Levin et al.’s dataset [28].

5 Discussion and Conclusion

This paper introduces a self-supervised method for BID, which does not require GT images. Lever-
aging on the resolution-free representation of INR for image/kernel, we propose a self-supervised
cross-scale consistency loss function and a progressive coarse-to-fine training strategy. The proposed
method significantly outperforms existing methods in extensive experiments.

There are two limitations of the proposed self-supervised method. The first is the computational cost
for processing a large number of images, as the method requires training the model for each individual
sample. A potential solution is to explore the usage of the proposed techniques in meta-learning
or testing-time adaptation. This would allow the proposed technique to rapidly adapt a pre-trained
model instead of to train the NN from scratch. The second limitation is that the proposed method
is only applicable to handle uniform blurring, as it relies on the convolution model. Extending this
approach to handle non-uniform blur will be another important direction for future research.
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6 Appendix

Below we provide additional details and results which are not presented in the main manuscript.

A Proof of Proposition 1

Proof. The proof is based on the convolution theorem and the properties of the DFT. Without loss
of generality, we assume that the image x and the kernel k are of size 2M × 2N . Let x↓2 and
k↓2 denote the down-sampled images of x and k, respectively. Let F denote the discrete Fourier
transform (DFT). Recall that for a signal z ∈ R2M×2N , its DFT is defined as:

F(z)[m,n] =

2M−1∑
ℓ=0

2N−1∑
j=0

z[ℓ, j]e−i2π m
2M ℓe−i2π n

2N j .

Then, for a down-sampled version of the signal z↓2, whose DFT is

F(z↓2)[m,n] =

M−1∑
ℓ=0

N−1∑
j=0

z[2ℓ, 2j]e−i2π m
M ℓe−i2π n

N j .

The DFTs of the down-sampled signals x↓2 and k↓2 can be expressed as follows: For each frequency
[m,n], we have

F (x↓2) [m,n] =
1

4
(F(x) [2m, 2n] + F(x) [2m+M, 2n]

+ F(x) [2m, 2n+N ] + F(x) [2m+M, 2n+N ]),

(16)

F (k↓2) [m,n] =
1

4
(F(k) [2m, 2n] + F(k) [2m+M,n]

+ F(k) [2m, 2n+N ] + F(k) [2m+M, 2n+N ]),

(17)

and
F (y↓2) [m,n] =

1

4
(F(y) [2m, 2n] + F(y) [2m+M,n]

+ F(y) [2m, 2n+N ] + F(y) [2m+M, 2n+N ]),

(18)

By convolution theorem, for y = x⊗ k, we have that

F(y)[m,n] = F(x)[m,n] · F(k)[m,n]

Thus,

F (y↓2) [m,n] =
1

4

 1∑
ℓ=0

1∑
j=0

F(x) [2m+ ℓM, 2n+ jN ] · F(k) [2m+ ℓM, 2n+ jN ]

 .

(19)

Applying convolution theorem on x↓2 ⊗ k↓2 again, we have

F(x↓2 ⊗ k↓2)[m,n] = F(x↓2)[m,n] · F(k↓2)[m,n]. (20)

Plugging in (16) and (17) into the above equation, we have

F(x↓2 ⊗ k↓2)[m,n] =
1

16

 1∑
ℓ=0

1∑
j=0

F(x) [2m+ ℓM, 2n+ jN ] ·
1∑

i=0

1∑
j=0

F(k) [2m+ ℓM, 2n+ jN ]

 .

(21)
Define 3 filters g1, g2, g3 by

g1[m,n] = (−1)mk[m,n]
g2[m,n] = (−1)nk[m,n]
g3[m,n] = (−1)m+nk[m,n]

(22)

16



Then, theirs DFTs are given by

F(g1)[m,n] = F(k)[m+M,n]
F(g2)[m,n] = F(k)[m,n+N ]
F(g3)[m,n] = F(k)[m+M,n+N ]

(23)

Then, the expression of the right-hand side of Equation (21) can be rewritten as:

F(x↓2 ⊗ k↓2)[m,n] =
1

4

(
F ((x⊗ k)↓2) [m,n] +

3∑
d=1

F ((x⊗ gd)↓2) [m,n]

)
(24)

By convolution theorem, we have then

(x↓2 ⊗ k↓2) =
1

4

(
((x⊗ k)↓2) +

3∑
d=1

((x⊗ gd)↓2)

)
,

The proof is complete.

B Ablation study on performance impact by different maximum scale S0

In this ablation study, we investigate how different choices of scale S0 impact the performance on
motion deblurring tasks. The experiments are conducted using Lai et al.’s dataset. We compare
results using the same framework with different S0 values: single-scale, two-scale, three-scale, and
four-scale (i.e., S0 ∈ {0, 1, 2, 3}). Each setting undergoes a total of 5000 training epochs, with each
stage except the last one consisting of 500 training epochs.

As shown in Tab. 7, multi-scale frameworks consistently outperform single-scale setups. Among the
multi-scale configurations, the three-scale model demonstrates the most significant improvement.
However, the four-scale model shows only a slight improvement over the single-scale setup. This
minimal gain can be attributed to the initial stages of the four-scale framework, where the target image,
resized to 1/8 of the original size, is far from the true image. This highly erroneous initialization
causes more harm than benefit, hindering the NN’s convergence to the true image.

Category Manmade Natural People Saturated Text Average

Single-scale (S0 = 0) 22.04/0.803 25.93/0.890 30.33/0.933 17.68/0.688 24.76/0.886 24.14/0.840
Two-scale (S0 = 1) 22.87/0.866 25.89/0.888 30.54/0.921 17.89/0.693 26.72/0.919 24.78/0.857

Three-scale (S0 = 2) 23.24/0.893 26.27/0.933 31.53/0.944 17.76/0.683 27.01/0.930 25.16/0.879
Four-scale (S0 = 3) 22.89/0.869 25.04/0.866 30.21/0.899 17.71/0.699 25.21/0.903 24.21/0.847

Table 7: Scale variation study on the proposed architecture in terms of PSNR/SSIM on the dataset
Lai et al. [26]. Bold for best performers and underline for second-best performers.

C Implementation Details

C.1 Hyper-parameter settings for different Datasets

The following Tab. 8 summarizes the hyper-parameters, specifically the range of kernel sizes and the
coarsest scale S0 used in our model across various datasets. These parameters are selected based on
the specific characteristics of each dataset, including image size.

C.2 Details of image generators

Please see Tab. 9 for the details of the architectures used for image generative network Φx. In
Tab. 9, the "CBR" denotes the subblock for three successive layers: Conv2d+BatchNorm2d+ReLU.
The "CBR/Down" means modifying the Conv2d layer in "CBR" with stride (2, 2), which performs
downsampling operations. The "Up" means the upsampling layer with bilinear interpolation. The
"Cat(m,n)" denotes the concatenation of the outputs from layers No.m and No.n.
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Dataset Kernel Size Range Coarsest Scale S0

Lai et al.’s dataset [26] 31× 31 – 75× 75 2

Köhler et al.’s dataset [22] 27× 27 – 131× 131 2

Lai et al.’s real dataset [26] 27× 27 – 99× 99 2

Realblur datasets [48] 27× 27 – 79× 79 2

Microscopic datasets [45] 5× 5 – 13× 13 1

Levin et al.’s dataset [28] 11× 11 – 27× 27 1

Table 8: Kernel size ranges and coarsest scale settings for various datasets.

No. Block Channels No. Block Channels No. Block Channels No. Block Channels

Φx

Encoder Decoder
1 Encoding by Eq. 8 64 9 CBR/Down 128 17 Up – 25 CBR 128
2 CBR 128 10 CBR 128 18 Cat(14,17) 144 26 Up –
3 CBR/Down 128 11 CBR 16 19 CBR 128 27 Cat(5,26) 144
4 CBR 128 12 CBR/Down 128 20 Up – 28 CBR 128
5 CBR 16 13 CBR 128 21 Cat(11,20) 144 29 Up –
6 CBR/Down 128 14 CBR 16 22 CBR 128 30 Cat(2,29) 128
7 CBR 128 15 CBR/Down 128 23 Up – 31 CBR×2 128
8 CBR 16 16 CBR 128 24 Cat(8,23) 144 32 Sigmoid C

Table 9: Architecture details of image generative NN Φx in the proposed method

D Additional comparison of computational cost

Tab. 10 reports the running times for processing a 256 × 256 image with a 31 × 31 blur kernel,
comparing severe existing BID methods, including those beyond self-supervised approaches. The
inference time is measured using an NVIDIA 3090 RTX GPU. Unlike supervised methods, which
require considerable time for model training but is very fast on processing images using pre-trained
model, our approach involves training a model for each specific image that needs processing. This
makes our method similar to traditional iterative methods, focusing on a case-by-case basis rather
than relying on a pre-trained model. The running time for processing an image is comparable to many
iterative optimization methods and existing self-supervised learning solutions. One of future works
would be on how to reducing this per-image training time, possibly through the implementation of
meta learning or testing-time model adaption.

Non-learning Supervised Diffusion-based Self-Supervised
Sun et al. Jin et al. Yan et al. Yang & Ji MPRNet Restormer BlindDPS SelfDeblur MCEM VDIP Ours

[54] [19] [70] [71] [73] [72] [13] [47] [33] [18]
Time(s) 113.98 35.84 1242.97 354.03 0.21 0.25 286.55 219.71 226.33 245.04 213.02

Table 10: Time comparison with existing BID methods when processing a 256× 256 image

E Broader impacts

The proposed self-supervised learning method for deblurring images has the potential to impact
a wide range of applications, including surveillance security, scientific research, and digital media
restoration. By improving the accuracy and clarity of images, our research can facilitate deeper
insights and more effective interventions in these fields.

In surveillance, higher clarity images can enhance public safety by providing more detailed visual
information. However, this also raises concerns about privacy and the potential for mass surveillance.
In scientific research, improved image quality can lead to better data and more significant discoveries,
though there is a risk that overly processed images could misrepresent the original data. In digital
media restoration, while the technique helps preserve cultural heritage, it also poses the risk of
altering historical records.
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Despite these possible concerns, our goal is to contribute to enhancing image clarity in critical areas
such as public safety, scientific research, and cultural preservation. We emphasize the responsible
application and continuous improvement of this technology to mitigate potential risks and maximize
its positive impact.

F Visual comparisons of the results in the experiments

F.1 Visual comparisons on Lai et al.’s dataset

In this section, we visualize the results of different methods on some examples from Lai et al.’s
dataset [26], which is known for its severe blurring effects. Figs. 1 - 6 demonstrate that our method
consistently produces results with sharper details and fewer artifacts compared to existing methods,
showcasing its effectiveness in addressing significant blur challenges. In contrast, supervised learning
methods trained on external datasets yield poor quality results, highlighting the limited generalization
performance of supervised approaches when dealing with complex real-world blurring.

Blurry image Cho et al. [12] Xu & Jia [65] Xu et al. [67]

Michaeli & Irani [38] Perrone & Favaro [44] Pan-DCP [42] Kaufman & Fattal [20]

MPRNet [73] MIMO-UNet [11] Restormer [72] SelfDeblur [47]

MCEM [33] VDIP [18] Ours GT

Figure 1: Visual results on the dataset of Lai et al. [26]
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Blurry image Cho et al. [12] Xu & Jia [65] Xu et al. [67]

Michaeli & Irani [38] Perrone & Favaro [44] Pan-DCP [42] Kaufman & Fattal [20]

MPRNet [73] MIMO-UNet [11] Restormer [72] SelfDeblur [47]

MCEM [33] VDIP [18] Ours GT

Figure 2: Visual results on the dataset of Lai et al. [26]
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Blurry image Cho et al. [12] Xu & Jia [65] Xu et al. [67]

Michaeli & Irani [38] Perrone & Favaro [44] Pan-DCP [42] Kaufman & Fattal [20]

MPRNet [73] MIMO-UNet [11] Restormer [72] SelfDeblur [47]

MCEM [33] VDIP [18] Ours GT

Figure 3: Visual results on the dataset of Lai et al. [26]

Blurry image Pan-DCP [42] MIMO-UNet [11] SelfDeblur[47]

MCEM[33] VDIP [18] Ours GT image

Figure 4: Visual comparison on the dataset of Lai et al. [26]
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Blurry image Cho et al. [12] Xu & Jia [65] Xu et al. [67]

Michaeli & Irani [38] Perrone & Favaro [44] Pan-DCP [42] Kaufman & Fattal [20]

MPRNet [73] MIMO-UNet [11] Restormer [72] SelfDeblur [47]

MCEM [33] VDIP [18] Ours GT

Figure 5: Visual results on the dataset of Lai et al. [26]

Blurry image Pan-DCP [42] MIMO-UNet [11] SelfDeblur [47]

MCEM [33] VDIP [18] Ours GT image

Figure 6: Visual comparison on the dataset of Lai et al. [26]
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F.2 Visual comparisons on Köhler et al.’s dataset

In this section, we display the visual results on Köhler et al.’s dataset [22], which is characterized by
its non-uniform blurring effects. From Fig. 7-Fig. 8, our method demonstrats satisfying performance
on this challenging dataset, effectively handling the intricate and variable blurring effects. Further-
more, we compare our results with those obtained using the Diffusion-based method, BlindDPS [13],
revealing its difficulty in adapting to blurring effects and image types that deviate from its pre-trained
model’s training data.

Blurry image Cho &Lee [12] Kaufman & Fattal [20] BlindDPS [13]

SelfDeblur[47] MCEM[33] Ours GT image

Figure 7: Visual comparison on the dataset of Köhler et al. [22]

Blurry image Cho &Lee [12] Kaufman & Fattal [20] BlindDPS [13]

SelfDeblur[47] MCEM[33] Ours GT image

Figure 8: Visual comparison on the dataset of Köhler et al. [22]

F.3 Visual comparisons on Lai et al.’s real dataset

Fig. 9 illustrates a comparison between our method and other competitive self-supervised methods
on Lai et al.’s real-world data, where our method consistently generates higher quality images.
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Blurry image SelfDeblur [47] MCEM [33] Ours

Figure 9: Visual comparison on the real dataset of Lai et al. [26]

F.4 Visual comparisons on RealBlur dataset

In this section, we present a visual comparison of the results from state-of-the-art supervised learning
methods [73, 11, 72] and our approach on the RealBlur dataset. Although our method achieves slightly
lower average PSNR and SSIM values across the entire dataset compared to these representative
supervised learning methods, the visual evidence presented in Fig. 10 demonstrates that our results
are often sharper. In other words, the gap between our method and the supervised methods is smaller
in terms of visual quality than indicated by the quantitative metrics.

Blurry image MIMO-Unet [11] MPRNet [73] Restormer [72] Ours GT image

Figure 10: Visual comparison with supervised methods on challenging cases from RealBlur-J [48].
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F.5 Visual comparisons on Microscopic dataset

This section provides a comparison between our method and other methods in the task of microscopic
deconvolution. Our approach consistently restores images with more texture and details.

0 1

Blurry INIKNet SelfDeblur BlindDPS MCEM VDIP Ours GT

Figure 11: Visual comparison on the microscopic deconvolution. All images are originally grayscale but a
different colormap is used to better highlight the differences among the various reconstructions

G Visual comparison on the ablation study

This section provides a comprehensive visual comparison for the ablation study in Fig. 12, illustrating
the impact of various configurations on our model’s performance. These visuals serve as a supplement
to the detailed quantitative results discussed in the main text, found in Sec. 4.4.

Blurry image w/o Lcross Single-Scale w/o Progressive INR/CNN as Φk/Φx

MLP/INR as Φk/Φx MLP/CNN as Φk/Φx Multi-scale by ↓s Ours GT image

Figure 12: Visual comparison on the ablation study.
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H Visualization of Intermediate Results

Iteration=500 Iteration=1000 Iteration=1500 Iteration=5000

Blurry image x(2)[I(2)x ] x(1)[I(1)x ] x(0)[I(0)x ] x(0)[I(0)x ] GT image

Figure 13: Intermediate results of estimated blur kernel and latent image at end of each stage.

Apart from validating the efficacy of our approach through the quality of the final results, it is also
interestting to see the intermediate status of the proposed method. To this end, we use "manmade_01"
from Lai et al.’s dataset [26] as a case study, visualizing intermediate results to better understand
the progress through different stages to the final output. As shown in Figure 13, in the first stage,
we obtain an initial representation at the smallest scale during initialization. In the second and third
stages, we achieve results at larger scales with finer details. In the final stage, the neural network
builds on the groundwork laid by the preceding stages to refine the output, ultimately generating the
desired clear image.

I Experiments on Levin et al.’s dataset [28] with small kernel size.

Levin et al.’s dataset contains 32 images generated by convolving 4 clear images using 8 motion-blur
kernels and adding Gaussian white noise with s.t.d. 1%. The size of these kernels is small, ranging
from 11× 11 to 27× 27. Following [47], besides PSNR and SSIM, Error Ratio [30] is also used as a
quantitative metric. From Tab. 11, our approach performs well across all three metrics. For visual
comparisons, please see Figs. 14- 15 where our results more closely resemble the GT image, with
fewer artifacts and more details.

Metric
Non-learning

known k Krishnan et al. Cho&Lee Levin et al. Xu & Jia Sun et al. Zuo et al. Pan-DCP
[24] [12] [29] [65] [54] [78] [42]

PSNR 34.53 29.88 30.57 30.80 31.67 32.99 32.66 32.69
SSIM 0.949 0.866 0.896 0.909 0.916 0.933 0.933 0.928

Error Ratio 1.000 2.452 1.711 1.772 1.489 1.284 1.250 1.255

Metric
Supervised Diffusion-based Self-Supervised

SRN* MPRNet Restormer BlindDPS SelfDeblur MCEM VDIP Ours[56] [73] [72] [13] [47] [18] [33]
PSNR 23.43 26.21 27.78 14.91 33.07 32.81 33.12 33.74
SSIM 0.712 0.795 0.838 0.367 0.931 0.927 0.929 0.938

Error Ratio 6.086 3.050 2.633 21.96 1.196 1.273 1.188 1.185

Table 11: Average PSNR/SSIM of the results from different methods on the dataset Levin et al.’s
dataset [28]. The method marked with * is retrained with synthesized datasets using eight blur kernels
in the dataset of Levin et al. [28].
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Blurry image Krishnan et al. [24] Cho et al. [12] Levin et al. [29]

Xu & Jia [65] Sun et al. [54] Zuo et al. [78] Pan-DCP [42]

MPRNet [73] Restormer [72] BlindDPS [13] SelfDeblur [47]

MCEM [33] VDIP [18] Ours GT

Figure 14: Visual comparison on the dataset of Levin et al. [28]
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Blurry image Krishnan et al. [24] Cho et al. [12] Levin et al. [29]

Xu & Jia [65] Sun et al. [54] Zuo et al. [78] Pan-DCP [42]

MPRNet [73] Restormer [72] BlindDPS [13] SelfDeblur [47]

MCEM [33] VDIP [18] Ours GT

Figure 15: Visual comparison on the dataset of Levin et al. [28]
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper introduces a novel self-supervised method for blind image deconvo-
lution that does not require ground truth images. We provide a detailed introduction in the
Methodology section, and the contributions proposed are proven through extensive experi-
ments across various datasets, showing improvements over existing methods. These results
directly support the claims made in our abstract and introduction, accurately reflecting our
research contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

29



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: For the proposition used in our paper, we provide detailed proof in Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present the implementation details in Sec. 4 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We utilize publicly available datasets, which allows researchers to easily access
and use the same data for verification and comparison purposes. Additionally, we have
detailed the implementation specifics of our method in the Sec. 4 and Appendix C.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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